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Chapter 1

Introduction

1.1 Singular moduli and their di�erences

By complex multiplication (CM) theory, the value of the modular j-function at an imaginary
quadratic number τ is an algebraic integer generating the ring class �eld of the order generated
by τ . This algebraic integer is called a singular modulus. Complex multiplication gives one of
the only constructive methods to generate class �elds. It is the focus of Hilbert's twelfth problem
to generalise this to general number �elds.

In the paper `On singular moduli', Gross and Zagier provide an explicit factorisation of the norm
of the di�erence between two singular moduli [GZ84]. For example the di�erence of the singular
moduli of the CM-values 1+

√
−163
2 , 1+

√
−67
2 is equal to

j
(
1+

√
−163
2

)
− j
(
1+

√
−67
2

)
= −218 · 33 · 53 · 233 · 293 + 215 · 37 · 53 · 113

= −215 · 37 · 53 · 72 · 13 · 139 · 331.

Notice that the primes occuring in this factorisation are not split in the number �elds of dis-
criminants −163, and −67, and that they divide a positive integer of the form 163·67−x2

4 > 0.
Gross and Zagier give an explicit formula for the multiplicity of any such prime q in terms of the
embeddings of the associated imaginary quadratic �elds in the quaternion algebra Bq,∞ rami�ed
at q and ∞.

In [GZ86], Gross and Zagier carefully reconsider the arguments of [GZ84] to give an explicit
description of the height of a Heegner point in terms of the derivative of the L-series of an elliptic
curve E at s = 1. If this derivative is non-zero, then Heegner points can be used to construct a
rational point on the elliptic curve of in�nite order, hence showing that if E has analytic rank 1,
then it has algebraic rank ⩾ 1. Combined with later results of Kolyvagin [Kol89], this solves the
Birch and Swinnerton-Dyer conjecture for elliptic curves of analytic rank ≤ 1.

1.2 Real quadratic singular moduli: an archimedean attempt

Singular moduli are connected to two central problems in number theory, as mentioned above.
Generalising their theory to other number �eldsK is therefore of key importance. We will discuss
two attempts to generalise singular moduli to the case where K is real quadratic, the �rst of
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2 Chapter 1: Introduction

which is complex analytic in nature. If τ ∈ K \Q is a real quadratic irrationality, then, since it is
not an element of the upper half-plane, we cannot evaluate the j-function at τ directly. We can
however consider the geodesic in the upper half-plane connecting τ and its conjugate τ ′. We will
integrate over this geodesic to de�ne a way to `evaluate' j at a real quadratic number in terms
of cycle integrals.

−1+
√
−7

2

1+
√
−3

2

0

(a) Imaginary quadratic points in the upper
half-plane

ττ ′

z0

γz0

(b) The geodesic in the upper half-plane con-
necting a real quadratic irrationality τ and its
conjugate τ ′.

Figure 1.1: Quadratic points with respect to the upper half-plane

Consider the stabiliser of the geodesic associated to τ under the action of SL2(Z). It is generated
by −I and a free element γ, called an automorph of τ . The eigenvalues of γ are fundamental
units of norm 1 in a quadratic order associated to τ (cf. [Bue89]). We make the choice of γ
unique by �ipping the sign and possibly inverting such that its trace is positive and the eigenvalue
corresponding to τ is greater than 1.

De�nition 1.1. Let τ be a real quadratic irrationality and let f ∈ C[j] be a modular function
that is holomorphic on H. Let Q(z) = az2+ bz+ c be the unique primitive quadratic polynomial
with discriminant ∆ = b2 − 4ac such that τ is its principal root, i.e.

τ =
−b+

√
∆

2a
.

Furthermore let γτ be the automorph of τ . Then we de�ne the value of f in τ to be

f [τ ] :=

∫ γτz0

z0

f(z)

√
∆dz

Q(z)

for any z0 on the geodesic in H connecting τ and τ ′.

This de�nition is independent of the base point z0. Moreover, cycle integrals are invariant under
SL2(Z): for any γ ∈ SL2(Z) we have f [γτ ] = f [τ ]. Cycle integrals of the j-function have
gained attention in recent decades after a paper by Kaneko [Kan09] who made some interesting
observations about their numerical values, and a paper by Duke, Imamo§lu and Tóth who studied
the traces of cycle integrals of modular functions [DIT11]. They use them to generalise several
results of Zagier on the traces of singular moduli [Zag02] to the real quadratic case.

Although they exhibit many interesting properties analogous to CM-singular moduli, no algebraic
values have been recognised in them, neither theoretically nor numerically, in spite of serious
e�orts. This makes it unclear whether they have a role to play in explicit class �eld theory or
the Birch and Swinnerton-Dyer conjecture.
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1.3 Real quadratic singular moduli: a non-archimedean attempt

The distinguishing property of a real quadratic �eld K is that the place ∞ is split in K instead
of inert. One might therefore try to replace the complex analytic (and hence ∞-adic) j-function
with a p-adic analytic object, where p is inert in K. This is the approach of Darmon and Vonk
in [DV21], who replace the j function with a certain p-adic limit of the Knopp cocycles, de�ned
below. For any two real quadratic irrationalities τ1, τ2 and any prime p inert in both respective
real quadratic number �elds, Darmon and Vonk de�ne a quantity

Θp(τ1, τ2) ∈ Cp

which (conjecturally) behaves in all key respects like the di�erences of singular moduli studied by
Gross and Zagier. For example, for the real quadratic irrationalities τ1 = 1+

√
5

2 , and τ2 = −6+
√
44

2
with discriminants (∆1,∆2) = (5, 44) and p = 3, the quantity Θ3(τ1, τ2) is veri�ed to satisfy the
polynomial

48841x8 + 115280x6 + 164562x4 + 115280x2 + 48841

up to precision O(3200). The roots of this polynomial generate the compositum of the corre-
sponding Hilbert class �elds H1 and H2. The constant coe�cient of this polynomial factors as
48841 = 132 · 172. Notice that both of these primes are inert in K1 and K2 and that they divide
a positive integer of the form

∆1∆2 − x2

4p
.

Darmon and Vonk also conjecture an explicit formula for the multiplicity of in any �nite place q
of H1H2 in Θp(τ1, τ2). This formula is related to the embeddings of K1 and K2 into the inde�nite
quaternion algebra that is rami�ed at p and q.

1.4 Archimedean real quadratic singular moduli

Having successfully de�ned a p-adic theory of di�erences of real quadratic singular moduli, there
are now two questions to be asked. Firstly one may wonder if there is an analogous p-adic theory
of di�erences of CM-singular moduli. This question was answered a�rmatiely by Daas' PhD the-
sis [Daa24]. Secondly, we ask if there is an ∞-adic construction of real quadratic singular moduli.
We start exploring this question in this thesis, and hope to make some useful observations.

ν ∞ p
K imaginary Gross-Zagier [GZ84] Daas [Daa24]
K real ? Darmon-Vonk [DV21]

The construction of Darmon and Vonk crucially relies on p-adic limits of the Knopp cocycle.
Given a real quadratic irrationality τ1, the (multiplicative) Knopp cocycle Knτ1 is a cocycle for
SL2(Z) whose logarithmic derivative is given by

knτ : γ 7→
∑

w∈SL2(Z)τ1

δ∞,γ∞(w)

z − w
, (1.2)

where δ∞,γ∞(w) is the right-handed signed intersection number between the geodesics connecting
∞ with γ∞ and the conjugate w′ of w with w.
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ww′ γ∞

(a) δ∞,γ∞(w) = 1

ww′ γ∞

(b) δ∞,γ∞(w) = 0

w′w γ∞

(c) δ∞,γ∞(w) = −1

Figure 1.2: Examples of all possible values of the intersection number δ∞,γ∞(w) ∈ {−1, 0, 1}.

In Chapter 4, we prove (following [DIT11; DIT10a]) that the additive Knopp cocycle also appears
as the period of the logarithmic derivative of the di�erence of two modular j functions j(z1) −
j(z2). More explicitly: for τ a real quadratic irrationality with automorph γτ and corresponding
primitive polynomial Q, we de�ne an analytic continuation F (z) to the upper half-plane of the
function given by ∫ γτw0

w0

j′(z)

j(z)− j(u)

√
∆du

Q(u)
(1.3)

in a neighbourhood of the cusp ∞. This function satis�es the transformation formula

1

(cz + d)2
F (
(
a b
c d

)
) = F (z) + (knτ +knτ ′)(γ−1)(z)

for all γ =
(
a b
c d

)
∈ SL2(Z).

We hope that this connection between the p-adic construction of Darmon and Vonk and the
∞-adic cycle integrals will eventually lead us to an ∞-adic analogue of real quadratic singular
moduli. We will explore this connection as follows.

� In Chapter 2 we will explore the �rst approximation Θ of the p-adic limits de�ning Θp. To
do this, we will �rst construct the multiplicative Knopp cocycle Knτ1 . This construction
is di�erent from the construction given in [DV21], as we do not rely on any cohomological
arguments. This allows us to remove an ambiguity in the original construction.

Let τ1 and τ2 be two real quadratic irrationalities not in the same SL2(Z) orbits. Let
K1 = Q(τ1) and K2 = Q(τ2) and let γ2 be the automorph of τ2. We de�ne

Θ(τ1, τ2) = Knτ1(γ2)(τ2). (1.4)

This map already shares various properties with the di�erences of singular moduli. For
example, Θ is invariant under the action of SL2(Z) on either argument: for γ ∈ SL2(Z) we
have Θ(τ1, τ2) = Θ(γτ1, τ2) = Θ(τ1, γτ2). We will prove that the primes dividing the norm
of Θ(τ1, τ2) also divide a positive integer of the form

∆1∆2 − x2

4
,

where ∆1 and ∆2 are the discriminants of the orders associated to τ1 and τ2. These
primes are however not all inert in K1 and K2. Also in contrast to the di�erences of
singular moduli, Θ(τ1, τ2) does not generate the compositum of the respective Hilbert class
�elds H1H2; instead it always lies in K1K2. We end the chapter by conducting many
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computations of various values of Θ using the programming language Sage. We include an
appendix which explains the algorithms used to make these computations. Informed by
these computations we conjecture that Θ is antisymmetric:

Θ(τ1, τ2)×Θ(τ2, τ1) = 1.

� In Chapter 3 we discuss the various properties of cycle integrals of modular functions. In
[DIT11], Duke, Imamo§lu and Tóth use these cycle integrals to extend many of the results
of Zagier on the traces of CM-singular moduli [Zag02] to include also positive discriminants.
We will also discuss the numerical computations of cycle integrals of the j-function made
by Kaneko [Kan09] and discuss his observations. Inspired by (1.3) we also de�ne a possible
candidate construction of di�erences of real quadratic singular moduli: the `double' cycle
integral

Ψ(τ1, τ2) =

∫ γ1z0

z0

∫ γ2w0

w0

(j(z)− j(w))

√
∆1dz

Q1(z)

√
∆2dw

Q2(w)
,

where γ1, γ2, Q1, Q2,∆1,∆2 are the automorphs, primitive polynomials and discriminants
associated to the real quadratic irrationalities τ1, τ2. However we are not able to recognise
any algebraic values in Ψ.

� In Chapter 4 we show the connection between the previous two chapters as is sketched
above. The analytic continuation F of (1.3) is related via the logarithmic derivative to
a real quadratic Borcherds product that has the multiplicative Knopp cocycle Knτ as its
period. We are able to use this to give explicit formulae for symmetrised versions of the
Knopp cocycle and Θ.



Chapter 2

The Knopp Cocycle

The construction of Θp(τ1, τ2) ∈ Cp by Darmon and Vonk [DV21] yields p-adic real quadratic
di�erences of singular moduli. It relies crucially on taking p-adic limits of the Knopp cocycle.
As a �rst step of trying to de�ne a similar ∞-adic construction of real quadratic di�erences
of singular moduli, we will study the �rst approximation Θ(τ1, τ2) of Θp(τ1, τ2). This is a
global quantity lying in the compositum of the numbers �elds Q(τ1),Q(τ2). A similar complex
analytic construction of di�erences of real quadratic singular moduli would likely consist of an
archimedean limit procedure involving Θ(τ1, τ2). We will de�ne Θ and study its properties.

Let Mk be the space of meromorphic functions on the upper half-plane H, endowed with the
left weight k action of SL2(Z) given by(

a b
c d

)−1

⋆k f :=
1

(cz + d)k
f

(
az + b

cz + d

)
.

Notice that the j-function is an element of Z0(SL2(Z),M×
0 ). Looking at the next cohomological

group Z1(SL2(Z),M×
0 ), Darmon and Vonk �nd that it contains an element associated to any

SL2(Z)-class of real quadratic irrationalities [τ ]: the (multiplicative) Knopp cocycle Knτ . This
cocycle even lies in the subspace Z1(SL2(Z),K(z)×), where K = Q(τ). A way of constructing
this cocycle is by lifting the additive Knopp cocycle

knτ : SL2(Z) −→ K(z) ⊂ M2

γ 7−→
∑

w∈SL2(Z)τ

δ∞,γ∞(w)

z − w
(2.1)

under the logarithmic derivative
dlog : K(z)× → K(z)

f 7→ f ′/f,

where the SL2(Z)-action on K(z)× is induced by K(z)× ⊂ M×
0 . In Theorem 2.18, we will prove

that such a lift exists.

We `evaluate' the Knopp cocycle Knτ1 at a second real quadratic irrationality τ2 by �rst evalu-
ating it at the automorph γ2 of τ2:

Θ(τ1, τ2) := Knτ1(γ2)(τ2).

6



Chapter 2: The Knopp Cocycle 7

To study the properties of Θ, we will �rst construct the Knopp cocycle. Afterwards we make
some computations of the values of Θ.

2.1 Lifting the additive Knopp cocycle

Let τ be a real quadratic irrationality. The Knopp cocycle is constructed by lifting the additive
Knopp cocycle under the logarithmic derivative map. We �rst prove that the additive Knopp
cocycle is indeed a cocycle and then construct its lifts.

Proposition 2.2. The map knτ de�ned in (2.1) is well-de�ned and a 1-cocycle.

Before proving this proposition, we will �rst need some more knowledge about the intersection
numbers. One of their crucial properties, is that they are additive: For τ a quadratic irrationality
and r, s, t ∈ H ∪ P1(R) three elements not lying on the geodesic associated to τ , we have:

δr,s(τ) + δs,t(τ) = δr,t(τ).

This is because the geodesic from r to s composed with the geodesic from s to t is homotopic to
the geodesic from r to t (see Figure 2.1).

r

s tτ τ ′

Figure 2.1: δr,s(τ) + δs,t(τ) = δr,t(τ) = 0

The second crucial property is SL2(Z)-equivariance: for γ ∈ SL2(Z) it holds that

δγr,γs(γτ) = δr,s(τ).

We can now prove that the sum occuring in (2.1) is �nite.

Lemma 2.3. Let τ be a real quadratic irrationality, and let r, s ∈ P1(Q). Then we have that the
set {w ∈ SL2(Z)τ : δr,s(w) ̸= 0} is �nite. Furthermore,∑

w∈SL2(Z)τ

δr,s(w) = 0. (2.4)

Proof. First we will prove the statement for r = ∞ and s = 0. Let w be an element of {w ∈
SL2(Z)τ : δr,s(w) ̸= 0}. Let Qw(z) = az2 + bz + c be its associated primitive polynomial with
discriminant∆. Then δ∞,0(w) ̸= 0 is equivalent to c/a = ww′ < 0. Every element of SL2(Z)τ has
the same discriminant, and there exist only �nitely many triples (a, b, c) such that b2 − 4ac = ∆
and ac < 0, so we �nd that this set is indeed �nite.

Let S, T be the two standard generators of SL2(Z):

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
.
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It follows from equivariance that applying the matrix S to any w in this set gives you an element
of this set with opposite sign, which shows that∑

w∈SL2(Z)τ

δ∞,0(w) = 0.

To extend this result to general r, s ∈ P1(Q), we will use the following. Given r, s, t ∈ P1(Q), we
have

{w ∈ SL2(Z)τ : δr,t(w) ̸= 0} = {w ∈ SL2(Z)τ : δr,s(w) ̸= 0}△{w ∈ SL2(Z)τ : δs,t(w) ̸= 0}, (2.5)

where △ denotes the symmetric di�erence, and∑
w∈SL2(Z)τ

δr,t(w) =
∑

w∈SL2(Z)τ

δr,s(w) +
∑

w∈SL2(Z)τ

δs,t(w). (2.6)

By using equivariance, we may without loss of generality assume that r = ∞. Let γs be a matrix
such that s = γs∞. By writing γs as a product of matrices of the form TnS for n ∈ Z, we can
split up the path ∞ → γs∞ into �nitely many paths of the form γ∞ → γ0 for γ ∈ SL2(Z).
Alongside (2.5), (2.6) this proves the statement. □

Proof of Proposition 2.2. Well-de�nedness follows from Lemma 2.3, so we only need to prove the
cocycle relation

knτ (σγ) = knτ (σ) + σ ⋆2 knτ (γ).

We use the additivity and the equivariance of δ to �nd

knτ (σγ) =
∑

w∈SL2(Z)τ

δ∞,σ∞(w)

z − w
+

∑
w∈SL2(Z)τ

δσ∞,σγ∞(w)

z − w

=
∑

w∈SL2(Z)τ

δ∞,σ∞(w)

z − w
+

∑
w∈SL2(Z)τ

δ∞,γ∞(w)

z − σw
.

One can make a tedious computation to see that for w1, w2 ∈ R there is an equality

1

z − σw1
− 1

z − σw2
= σ ⋆2

(
1

z − w1
− 1

z − w′
2

)
.

Note that there are also more insightful ways of seeing this, e.g [Von, Lemmas 3.7 and 3.13].
Using Lemma 2.3 we now �nd∑

w∈SL2(Z)τ

δ∞,γ∞(w)

z − σw
= σ ⋆2

∑
w∈SL2(Z)τ

δ∞,γ∞(w)

z − w
. □

Notice that the value of knτ in T = ( 1 1
0 1 ) is trivial. Cocycles with this property are called

parabolic. A parabolic cocycle is determined by its value in S, which is called a rational period
function if it takes values in C(z) endowed with the weight two action of SL2(Z). These were
�rst studied by Knopp in [Kno78]. The group of rational period functions, and hence the group
of parabolic cocycles taking values in C(z), were completely determined in [Kno78], [Ash89],
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[CZ93]. The subgroup of parabolic cocycles whose values lie in the image of dlog is generated by
the additive Knopp cocycles and the cocycle(

a b
c d

)−1

7→ c

cz + d
. (2.7)

This cocycle is the logarithmic derivative of the multiplicative cocycle J ∈ H1(SL2(Z),M×
0 )

given by

J :

(
a b
c d

)−1

7→ cz + d (2.8)

that occurs in the de�nition of modular forms.

We will now construct the lift Knτ of knτ . We take a di�erent approach than in [DV21], where the
authors use cohomological arguments to prove the existence of such a multiplicative lift. Instead,
we take a more direct approach. We compute what the possible values of such a multiplicative
lift can be in the generators S and U := TS. To prove that we can de�ne a cocycle by giving
the values in the generators in this way, and to �nd what relations they have to satisfy, we give
a characterisation of 1-cocycles as homomorphisms.

Lemma 2.9. Let G be a group and M a G-module. Let πG be the projection map G⋉M → G,
and πM the projection map G⋉M → M . Then there is an isomorphism

Z1(G,M) → {f ∈ Hom(G,G⋉M) : πG ◦ f = idG}
φ 7→ (idG, φ),

(2.10)

with inverse πM ◦ −.

Proof. This proof is a trivial check of relations. □

Proposition 2.11. Let G be a �nitely presented group and M a G-module with action denoted
⋆. Then (by de�nition) there exist k, n and a short exact sequence

0 → Fk
i−→ Fn

p−→ G → 0, (2.12)

where Fk and Fn denote the free groups in respectively k, n generators. Let (xi)
n
i=1 ⊂ Fn be a

set of generators of Fn, (yj)
k
j=1 ⊂ Fk a set of generators of Fk, and (mi)

k
i=1 ⊂ M a collection of

elements. Consider the action of Fn on M induced by p. If for any word xi1 . . . xik that is the
image of one the yj, the (mi)i satisfy

mi1 + xi1 ⋆ mi2 + (xi1xi2) ⋆ mi3 + · · ·+ (xi1 . . . xik−1
) ⋆ mik = 0, (2.13)

then there exists a unique 1-cocycle φ for G taking values in M with φ(p(xi)) = mi for all i.

Proof. By Lemma 2.9, there is an equivalence between 1-cocycles for G taking values in M
and morphisms f : G → G ⋉ M satisfying πG ◦ f = idG. Under this equivalence, the cocycle
φ would correspond to a homomorphism f : G → G ⋉ M such that f(p(xi)) = (p(xi),mi).
Since G ∼= Fn/i(Fk) and Fn is free, such a homomorphism exists if and only if the induced
homomorphism Fk → G ⋉M is trivial. This property is equivalent to (2.13) being true for all
images of the yj . □

We are now able to explicitly write down the lifts of knτ under the logarithmic derivative using
the following computation.
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Lemma 2.14 (Lemma 2.1 from [DV21]). De�ne

hτ (z) :=
∏

w∈SL2(Z)τ

(z − w)δ∞,0(τ). (2.15)

Then we have

(1× S) ⋆0 hτ = ξ2τ , (2.16)

(1× U × U2) ⋆0 hτ = ξ3τε
−3, (2.17)

where ξτ is given by

ξτ =
∏

w∈SL2(Z)τ
w′<0<w

w,

and
ε =

∏
ww′<0

|w|<1<|w′|

|w|−1 > 1.

is a fundamental unit of norm one in the order associated to τ .

The proof of this lemma mostly consists of a direct computation. Proving that ε is fundamental
unit of norm one can be done using the theory of continued fractions, as in [Zag75a, Equation
(6.4)]. These continued fractions are also introduced in the appendix.

Theorem 2.18. There are 12 cocycles Φ ∈ Z1(SL2(Z),C(z)×) such that dlog(Φ) = knτ , each
di�ering by a cocycle taking values in the group of 12-th roots of unity µ12. Precicely two of these
cocycles take values in K(z)×, and these by the non-trivial cocycle taking values in {±1}.

Proof. The group SL2(Z) is generated by the matrices S and U = TS. The relations in SL2(Z)
are generated by S4 = 1, and S2U3 = 1. By Proposition 2.11, a cocycle Φ with dlog(Φ) = knτ
corresponds to a pair (f, g) ∈ (C(z)×)2 satisfying dlog(f) = dlog(g) = knτ (S) and{

(1× S × S2 × S3) ⋆ f = 1

(1× S) ⋆ f × (−1×−U ×−U2) ⋆ g = 1,
(2.19)

where × denotes multiplication in C(z)×. The equality dlog(f) = dlog(g) = knτ (S) implies that
f, g are equal to h (de�ned in (2.15)) up to multiplication with some constant. Using Lemma 2.14
we then compute

(1× S × S2 × S3) ⋆ h = ((1× S) ⋆ h)2 = ξ4τ .

Therefore the possible values for f are equal to h/ξτ · ik for some k ∈ {0, 1, 2, 3}. Again using
Lemma 2.14 we �nd

(1× S) ⋆
hik

ξτ
× (−1×−U ×−U2) ⋆ h = ±(−1)kξ3τε

−3,

where ε is the fundamental unit > 1 of norm 1 in the order associated to τ . Therefore there
are three options for g, namely ±(−1)kζℓ3 · h · εξ−1

τ for ℓ ∈ {0, 1, 2}. The cocycles with values in
K(z)× correspond to the cases where k is even and ℓ = 0. □
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Let Φ be a multiplicative lift of knτ . Since S,U generate SL2(Z), the values of Φ in a matrix γ
can be computed by writing γ as a word in S and U and using the cocycle relation. For example,
since T−1 = SU we �nd

Φ(T−1) = ikξ−1
τ h× S ⋆±(−1)kζℓ3ξ

−1
τ εh = (−i)kζℓ3 × ε.

Therefore there exists exactly one multiplicative lift Φ with Φ(T ) = ε−1 > 0 corresponding to
k = ℓ = 0.

De�nition 2.20. We call the unique cocycle Knτ ∈ Z1(SL2(Z),K(z)×) such that dlog(Knτ ) =
knτ and Knτ (T ) = ε−1 > 0, the (multiplicative) Knopp cocycle.

Computing the values of the Knopp cocycle using the cocycle relation gives us little theoretical
insight and it would be nice to have an explicit formula. The methods of Chapter 4 are able to
give an explicit formula for Kn2τ , but it is as of yet not in a useful form. Darmon and Vonk are
able to give an explicit and useful formula for the reduction of Knτ mod εZ.

Before giving this closed form we recall that the automorph of τ is a generator of the free part
of the stabiliser of τ under the action of SL2(Z). It is chosen such that it has eigenvalues ε, ε−1

corresponding the the eigenvectors ( τ1 ),
(
τ ′

1

)
.

Lemma 2.21. (Lemma 2.4 in [DV21]) Let γτ be the automorph of τ . Then

Knτ (γ)(z) ≡
∏

g∈PSL2(Z)/γZ
τ

det

[(
z
1

)
, g

(
τ
1

)]δ∞,γ∞(gτ)

mod εZ. (2.22)

Proof. Note that this expression is (only) well de�ned up to εZ as γτ (
τ
1 ) = ε( τ1 ). Using the

additivity of δ we �nd

∏
g∈PSL2(Z)/γZ

τ

det

[(
z
1

)
, g

(
τ
1

)]δ∞,σγ∞(gτ)

≡
∏

g∈PSL2(Z)/γZ
τ

det

[(
z
1

)
, g

(
τ
1

)]δ∞,σ∞(gτ)+δσ∞,σγ∞(gτ)

.

By the equivariance of δ and Lemma 2.3 we compute

∏
g∈PSL2(Z)/γZ

τ

det

[(
z
1

)
, g

(
τ
1

)]δσ∞,σγ∞(gτ)

≡
∏

g∈PSL2(Z)/γZ
τ

det

[(
z
1

)
, σg

(
τ
1

)]δ∞,γ∞(gτ)

≡
∏

g∈PSL2(Z)/γZ
τ

det

[
σ−1

(
z
1

)
, g

(
τ
1

)]δ∞,γ∞(gτ)

≡
∏

g∈PSL2(Z)/γZ
τ

det

[(
σ−1z
1

)
, g

(
τ
1

)]δ∞,γ∞(gτ)

,

to see that the expression in (2.22) is a cocycle. It is clearly a lift of knτ and its value in T is
positive, so the proof is completed. □

Since δr,s(τ) = −δr,s(τ
′) for all r, s ∈ P1(Q), the cocycle Knτ ′ is equal to the inverse of the Galois

conjugate of Knτ . The εZ ambiguity of Lemma 2.21 disappears when taking the norm, which
gives us the following expression.
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Corollary 2.23. Let γτ be the automorph of τ . For γ ∈ SL2(Z) we have

(Knτ ÷Knτ ′)(γ) =
∏

g∈PSL2(Z)/γZ
τ

(
det

[(
z
1

)
, g

(
τ
1

)]
det

[(
z
1

)
, g

(
τ ′

1

)])δ∞,γ∞(gτ)

.

2.2 Evaluating the Knopp cocycle

In this section we will study the evaluation of the Knopp cocycle in a second real quadratic
irrationality.

De�nition 2.24. Let τ1, τ2 be two real quadratic irrationalities that are not equivalent under
SL2(Z). Let γ2 be the automorph of τ2. We de�ne

Θ(τ1, τ2) := Knτ1(γ2)(τ2).

We continue by observing some of its properties.

Proposition 2.25. Let τ1, τ2 be two real quadratic irrationalities in the �elds K1 = Q(τ1),K2 =
Q(τ2). Write τ ′1, τ

′
2 for the Galois conjugates of τ1, τ2. Let σ1, σ2 be the automorphisms of

K1K2/Q such that σ1(τ1) = τ ′1, σ1(τ2) = τ2, and σ2(τ1) = τ1, σ2(τ2) = τ ′2. Then we have the
relations

(i) Θ(στ1, τ2) = Θ(τ1, στ2) = Θ(τ1, τ2) for all σ ∈ SL2(Z);

(ii) Θ(τ ′1, τ2) = σ1(Θ(τ1, τ2))
−1;

(iii) Θ(τ1, τ
′
2) = σ2(Θ(τ1, τ2))

−1;

(iv) Θ(−τ1,−τ2) = Θ(τ1, τ2)
−1.

Proof. (i) Invariance in the �rst argument follows from Knστ1 = Knτ1 . Let γ2 be the auto-
morph of τ2. Then invariance in the second argument follows from an easy computation
using the cocycle relation and the fact that στ2 has automorph σγ2σ

−1
2 .

(ii) We extend the automorphism σ1 to the set K1K2(z) such that it leaves z invariant. Since
δr,s(w) = −δr,s(w

′) holds for all w ∈ SL2(Z)τ1, we have the equality Knτ ′
1
= σ1(Knτ1)

−1.

(iii) The conjugate τ ′2 has automorph γ−1
2 . We compute using the cocycle property

Knτ1(γ
−1
2 )(τ ′2) = γ2 ⋆Knτ1(γ2)(τ

′
2)

−1 = Knτ1(γ2)(τ
′
2)

−1.

(iv) For w ∈ SL2(Z)τ we have δ∞,0(−w) = −δ∞,0(w), which implies kn−τ (S)(z) = − knτ (S)(−z).
Since S(−z) = −(Sz) and T (−z) = −(T−1z), consider the automorphism of SL2(Z) given
by conjugation with the matrix

(−1 0
0 1

)
, which maps S to −S = S−1 and T to T−1. From

these relations it follows that φ(γ)(z) := Knτ1(
(−1 0

0 1

)
γ
(−1 0

0 1

)
)(−z)−1 is a cocycle: we

check

φ(Sγ)(z) = Knτ1(
(−1 0

0 1

)
Sγ
(−1 0

0 1

)
)(−z)−1

= Knτ1(−S)(−z)−1 × (−S) ⋆0 Knτ1(
(−1 0

0 1

)
γ
(−1 0

0 1

)
)(−z)−1

= Knτ1(−S)(−z)−1 ×Knτ1(
(−1 0

0 1

)
γ
(−1 0

0 1

)
)(z−1)−1

= φ(S)(z)× φ(γ)(−z−1),
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and

φ(Tγ)(z) = Knτ1(
(−1 0

0 1

)
Tγ
(−1 0

0 1

)
)(−z)−1

= Knτ1(T
−1)(−z)−1 ×

[
T−1 ⋆0 Knτ1(

(−1 0
0 1

)
γ
(−1 0

0 1

)
)
]
(−z)−1

= Knτ1(T
−1)(−z)−1 ×Knτ1(

(−1 0
0 1

)
γ
(−1 0

0 1

)
)(−z + 1)−1

= φ(T )(z)× φ(γ)(z − 1).

Since dlog(φ(S)) = kn−τ1(S) and φ(T ) = Knτ1(T
−1)−1 = ε−1 > 0 we then �nd

Kn−τ1(γ)(z) = Knτ1(
(−1 0

0 1

)
γ
(−1 0

0 1

)
)(−z)−1.

The statement now follows once we note that the automorph of −τ2 is equal to the auto-
morph of τ2 conjugated by

(−1 0
0 1

)
. □

The invariance of Θ under the action of SL2(Z) on either argument leads to an interesting
observation, for which we need some theory on binary quadratic forms.

For every real quadratic irrationality τ there is a unique primitive binary quadratic form Q =

aX2 + bXY + cY 2 with discriminant ∆ = b2 − 4ac > 0 such that τ = −b+
√
∆

2a . Conversely given
a binary quadratic form Q, we write τQ for this principal root. The binary quadratic form Q
is the homogenisation of the primitive quadratic polynomial introduced in De�nition 1.1. From
now on we will speak interchangeably about binary quadratic forms and primitive polynomials
associated to (real) quadratic irrationalities.

There is a right action of SL2(Z) on the set of binary quadratic forms via

Q(X,Y ) ·
(
a b
c d

)
= Q(aX + bY, cX + dY ).

Let Q∆ be the set of primitive binary quadratic forms of discriminant ∆ > 0. It is a well-known
result that there is a bijection between Q∆/ SL2(Z) and the narrow class group of the unique

order Oτ := Z[∆+
√
∆

2 ] of discriminant ∆. It is given by

Q∆/ SL2(Z) → Pic+(Oτ )

[aX2 + bXY + cY 2] 7→
[(

a, −b+
√
∆

2

)]
.

Endowing the set binary quadratic formsQ∆ with the composition law of Gauss, this furthermore
becomes an isomorphism of groups.

Therefore for real quadratic orders O1,O2 in respective number �elds K1,K2, the map Θ induces
a map

Θ : Pic+(O1)× Pic+(O2) → K1K2

([Q1], [Q2]) 7→ Θ(τQ1 , τQ2).
(2.26)

By combining the relations of Lemma 2.24 you �nd that all Galois conjugates of Θ(Q1, Q2)
appear in the image of (2.26). For example by combining relations (ii), (iv) of Proposition 2.25
you �nd

σ1(Θ(τ1, τ2)) = Θ(τ ′1, τ2)
−1 = Θ(−τ ′1,−τ2).

When any of the associated elements in the narrow class group coincide, then it is possible that
Θ(τ1, τ2) is equal to some of its Galois conjugates or its inverses. This can be detected by looking
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at the minimal polynomial. It will be palindromic or of degree lower than 4 if this is the case,
which it very often is for small discriminants.

We continue with some examples that were computed using Sage [Ste+25]. See the appendix for
the code that was used to generate these examples and for explanations of the algorithms used,
for example on how to compute the automorph of real quadratic irrationality.

Example 2.27. Consider the smallest pair of discriminants (∆1,∆2) = (5, 8). Both of their
respective orders have narrow class number one, and hence all conjugates and their inverses are
equal. Indeed we compute

Θ( 1+
√
5

2 ,
√
2) = 1.

Example 2.28. The smallest non-trivial example is obtained from the pair of discriminants
(∆1,∆2) = (5, 12). The order of discriminant 12 has narrow class number 2. The two distinct
elements are for example represented by the binary quadratic forms associated to ±

√
3. The

image of Θ is given by the two roots of

11x2 + 147 + 11,

which has discriminant 53 · 132.

Example 2.29. For the pair (∆1,∆2) = (12, 21), both of the associated orders have narrow
class number 2. The image of Θ contains the roots of

511031x4 − 915810078500x3 − 5198875539126x2 − 915810078500x+ 511031.

The constant coe�cient factors as

511031 = 47 · 83 · 131.

Example 2.30. So far all of the polynomials have been palindromic. The smallest example where
this is not the case occurs for the pair of discriminants (12, 148). The orders of the respective
class groups are equal to 2 and 3. A set of representatives of the class group of discriminant 12 is
equal to {X2+2XY −2Y 2,−X2+2XY +2Y 2}. The corresponding real quadratic irrationalities
are

√
−3− 1 and 1−

√
3. A set of representatives of the class group of discriminant 148 is equal

to {X2 +12XY − 1Y 2, 4X2 +6XY − 7Y 2, 7X2 +6XY − 4Y 2}. We have computed the minimal
polynomial of all six pairs of quadratic irrationalities.

Θ(
√
3,−6 +

√
37) and Θ(−

√
3,−6 +

√
37) satisfy 945131x2 + 12127274x+ 945131,

Θ(
√
3, −3+

√
37

4 ) and Θ(−
√
3, −3+

√
37

7 ) satisfy 636851927x2 − 7354672441006x+ 5440463831,

Θ(−
√
3, −3+

√
37

4 ) and Θ(
√
3, −3+

√
37

7 ) satisfy 5440463831x2 − 7354672441006x+ 636851927.

The leading coe�cients factor as

945131 = 112 · 73 · 107, 636851927 = 47 · 73 · 419 · 443 and 5440463831 = 116 · 37 · 83.

Example 2.31. The smallest example of a minimal polynomial that is not palindromic and of
degree 4 is already quite large. This is because there is only one relation allowed in either class
group, which is very restrictive. Consider the discriminants (∆1,∆2) = (148, 316) with respective
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narrow class numbers 3 and 6. We compute the minimal polynomial of Θ(−3+
√
37

4 , −3+
√
79

7 ) to
be

1932404095170907030264359057729397827008726868759052041951451351988561892462708697 x4

− 4306435258386914218036226884073702969386340275372644597995378230700574931870323193172025188 x3

− 14335270990687861756254357363169891601512209118402872071205989182796448348557888969017462382942327018 x2

+ 1673185694775894168010946749258487874368640510237139298991336652824983124019268555005894812 x

+ 62611282959971165236114513553945184977289328158699272876446643264567685445748697.

Its leading coe�cient is factored as

72 · 478 · 612 · 715 · 73 · 101 · 107 · 211 · 619 · 733 · 739 · 9412

· 953 · 1163 · 1259 · 1669 · 2347 · 2657 · 3881 · 7723 · 11467

and its constant coe�cient as

33 · 72 · 172 · 192 · 292 · 733 · 101 · 107 · 139 · 1812 · 269 · 271 · 3792 · 4192

· 433 · 761 · 1163 · 1381 · 1489 · 1601 · 3617 · 3889 · 8443 · 9091 · 11251.

From these examples it is obvious that the primes p of K1K2 dividing Θ are all small. With
closer inspection you might see that if the arguments of Θ(τ1, τ2) have discriminants ∆1,∆2,
then these primes also divide a positive integer of the form

∆1∆2 − x2

4
.

This is also conjectured to be the case for the p-adic versions of Θ [DV21, Conjecture 2]. We
will prove this to be true using an explicit expression of Θ modulo units.

Proposition 2.32. (Proposition 2.5 in [DV21]) Let τ1, τ2 be real quadratic irrationalities with
automorphs γ1, γ2, and let O1,O2 be their associated orders. Then we have

Θ(τ1, τ2) ≡
∏

g∈γZ
2\PSL2(Z)/γZ

1

det

[
g

(
τ1
1

)
,

(
τ2
1

)]δ(gτ1,τ2)
modO×

1 O
×
2 . (2.33)

Proof. Applying Lemma 2.21 we �nd

Θ(τ1, τ2) ≡
∏

g∈PSL2(Z)/γZ
1

det

[(
τ1
1

)
, g−1

(
τ2
1

)]δ∞,γ2∞(gτ1)

modO×
1 O

×
2

Since g−1γ−n
2 ( τ21 ) and g−1( τ21 ) di�er by a power of ε2, we may group together all terms in the

product that di�er by a power of γ2. The roots τ2, τ
′
2 are respectively the stable and unstable

�xed points of γ2 acting on P1(R), so we �nd for g ∈ γZ
2 \PSL2(Z)/γZ

1 :∑
n∈Z

δγ−n
2 ∞,γ−n+1

2
(gτQ1) = δ(τ ′2, gτ1) = δ(gτ1, τ2),

where δ(τ, τ̃) denotes the signed intersection number of the geodesics connecting τ, τ ′ and τ̃ , τ̃ ′.
We now obtain the desired expression for Θ(τ1, τ2). □
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Since there are no primes dividing units, the expression in (2.33) has the same factorisation as
Θ(τ1, τ2). Using this expression we are able to prove our observation about the primes dividing
Θ(τ1, τ2). We will make use of the embeddings of the number �elds Q(τ1) and Q(τ2) into the
quaternion algebra M2(Q). Let Q = aX2+ bXY + cY 2 be the binary quadratic forms associated
to the real quadratic irrationality τ with discriminant ∆ = b2−4ac not a square. Then we de�ne

ατ : K = Q(τ) → M2(Q)

√
∆ 7→

(
b 2c

−2a −b

)
.

(2.34)

The matrices in the image of ατ all have the eigenvectors (τ, 1)T , (τ ′, 1)T . The quaternion algebra
M2(Q) has the involution † given by(

r s
t u

)†

=

(
u −s
−t r

)
(also known as adjugation) satisfying M + M† = Tr(M)I and MM† = M†M = det(M)I for
M ∈ M2(Q). Notice that the matrices invariant under † are exactly the multiples of the identity
matrix. The characteristic polynomial of anyM ∈ M2(Q) is given by X2−(M+M†)X+(MM†).
For example, the image e of

√
∆ under α satis�es e + e† = 0 and ee† = −∆, and so e indeed

satis�es X2−∆. (Note that we have abused language and identi�ed the rational number ∆ with
its image ∆ · I2, as we will often do in the proof of the following theorem.) Lastly, we note that

the image of the order Z[∆+
√
∆

2 ] is contained in M2(Z).

Theorem 2.35. Let τ1, τ2 be two quadratic irrationalities in the number �elds K1,K2. Let
Q1, Q2 be the binary quadratic forms associated to τ1, τ2 with discriminants ∆1,∆2. Write L =
K1K2. Suppose p is a prime of L dividing Θ(τ1, τ2). Let p be the rational prime contained in p.
Then p divides a positive integer of the form

∆1∆2 − x2

4
.

Proof. This proof is inspired by [GKZ87, Section I.3]. By Proposition 2.32, we �nd that p divides
det [g( τ11 ), ( τ21 )] for some g ∈ SL2(Z) such that δ(gτ1, τ2) ̸= 0. Therefore the vectors g( τ11 ), ( τ21 )
are linearly dependent mod p and hence gτ1 ≡ τ2 mod p. Without loss of generality, we may
assume that.

We de�ne α1 = ατ1 , α2 = ατ2 and ei = αi(
√
∆i), Ei = αi(

∆i+
√
∆i

2 ) for i ∈ {1, 2}. Also let
Q1 = a1X

2+ b1XY + c1Y
2, Q2 = a2X

2+ b2XY + c2Y
2 be the binary quadratic forms associated

to τ1, τ2. We have (e1e2 + e2e1)
† = e1e2 + e2e1 and hence we see that e1e2 + e2e1 is the image

of integer, explicitly:
e1e2 + e2e1 = (2b1b2 − 4a1c2 − 4a2c1) · I2.

Let x = b1b2 − 2a1c2 − 2a2c1. Then we can also compute

(E1E2 − E2E1)
2 =

(e1e2 − e2e1
4

)2
=
( (e1e2 + e2e1)

2 − 2(e1e2e2e1 + e2e1e1e2)

16

)
=

x2 −∆1∆2

4
.

Note that this is an integer because E1E2 − E2E1 ∈ M2(Z). Since (τ1, 1)
T , (τ2, 1)

T are linearly
dependent mod p, they are eigenvectors of both E1, E2 mod p. Therefore E1E2 − E2E1 mod p
has eigenvalue 0 corresponding to this eigenvector. We therefore see 1

4 (∆1∆2−x2) = det(E1E2−
E2E1) ≡ 0 mod p.
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We will now prove that this integer is positive. We know that δ(τ1, τ2) ̸= 0, which is equivalent
to the statement that the cross ratio

τ1 − τ2
τ ′1 − τ2

τ ′1 − τ ′2
τ1 − τ ′2

is negative. This cross ratio has the same sign as the norm of τ1 − τ2:

NK1K2/Q(τ1 − τ2) =
a21c

2
2 + a22c

2
1 − a1b1b2c2 − a2b1b2c1 + a1b

2
2c1 + a2b

2
1c2 − 2a1a2c1c2

a21a
2
2

,

which is equal to 1
4 (x

2 −∆1∆2). Therefore 1
4 (∆1∆2 − x2) is positive. □

With notation as in the proof above, when p is inert in K1 and K2, then pk | τ1− τ2 is equivalent
to the statementthat the minimal polynomials of τ1, τ2 are equal mod pk. In that case E1E2 −
E2E1 ≡ 0mod pk. The converse is also true and hence the multiplicity of p in τ1− τ2 is the same
as in det(E1E2 − E2E1). De�ning [τ1 · τ2]p = ordp(E1E2 − E2E1), one then �nds the following
exact formula for the multiplicity of p dividing Θ(τ1, τ2).

Proposition 2.36. (Proposition 2.7 from [DV21]) Let p be a rational prime that is inert in K1

and K2. Then

ordp(Θ(τ1, τ2)) =
∑

g∈γZ
2\PSL2(Z)/γZ

1

[gτ1 · τ2]p · δ(gτ1, τ2).

Using the explicit expression found in Proposition 2.32, we are also able to �nd the following.

Corollary 2.37. (Proposition 2.5 from [DV21]) Let O1,O2 be the rings of integers of K1,K2

respectively. Then we have

Θ(Q1, Q2) ≡ Θ(Q2, Q1)
−1 modO×

1 O
×
2 .

Proof. Replacing g with g−1 in the product in (2.33) we get

Θ(Q1, Q2) ≡
∏

g∈γZ
Q2

\PSL2(Z)/γZ
Q1

det

[
g

(
τQ1

1

)
,

(
τQ2

1

)]δ(gτQ1
,τQ2

)

≡
∏

g∈γZ
Q1

\PSL2(Z)/γZ
Q2

det

[(
τQ1

1

)
, g

(
τQ2

1

)]δ(τQ1
,gτQ2

)

≡ Θ(Q2, Q1)
−1. □

In any example computed using Sage, the relation of Corollary 2.37 also holds without the
projection modulo units. The relation

Θ(τ1, τ2)×Θ(τ2, τ1) = 1

is veri�ed to hold for all pairs of distinct τ1, τ2 with corresponding discriminants lower than 160.
These are 2211 relations, with some duplicates. Therefore we propose the following.

Conjecture. The map Θ is antisymmetric.

To prove this conjecture, one would likely need an explicit expression for Θ, and hence also an
explicit expression for the multiplicative Knopp cocycle. Some methods related to Chapter 4
show promise and therefore the author hopes to prove this conjecture soon.

Remark 2.38. After �nishing this thesis, the author has been made aware of other methods to
prove this Corollary, covered in the PhD thesis of Sören Sprehe [Spr25].



Chapter 3

Cycle integrals of the j-function

We now switch to looking at an analytic attempt to generalising singular moduli to real quadratic
�elds: cycle integrals. Cycle integrals of modular forms have for example already appeared in
[GKZ87]. Cycle integrals of the j-function have gained attention in the last decades because
of the observations made by Kaneko [Kan09] and their interesting similarities to CM singular
moduli when gathered in traces, which were mostly proved by Duke, Imamo§lu, Tóth in [DIT11].
We will discuss these observations and results and de�ne a possible real quadratic analogue of
di�erences of singular moduli.

3.1 Evaluating the j-function in real quadratics

For convenience we recall the de�nition of `evaluating' a modular function f ∈ C[j] in a real
quadratic irrationality.

De�nition 1.1. Let τ be a real quadratic irrationality and let f ∈ C[j] be a modular function
that is holomorphic on H. Let Q(z) = az2+ bz+ c be the unique primitive quadratic polynomial
with discriminant ∆ = b2 − 4ac such that τ is its principal root, i.e.

τ =
−b+

√
∆

2a
.

Furthermore let γτ be the automorph of τ . Then we de�ne the value of f in τ to be

f [τ ] :=

∫ γτz0

z0

f(z)

√
∆dz

Q(z)

for any z0 on the geodesic in H connecting τ and τ ′.

We show that this de�nition is independent of z0. First, we note that the hyperbolic arc-length
dz

Q(z) transforms as
d(γz)

Q(γz)
=

dz

(Q · γ)(z)
, (3.1)

where (Q ·
(
a b
c d

)
)(z) = (cz+ d)2Q((az+ b)/(cz+ d)), which is equal to the corresponding action

on binary quadratic forms. Therefore, for z0, z′0 ∈ H, we have∫ γQz0

z0

f(z)

√
∆dz

Q(z)
−
∫ γQz′

0

z′
0

f(z)

√
∆dz

Q(z)
=

∫ z′
0

z0

f(z)

√
∆dz

Q(z)
−
∫ γτz

′
0

γτz0

f(z)

√
∆dz

Q(z)
= 0,

18
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where the last equality can be seen using the coordinate transformation z → γ−1
τ z. (Note that

γτpreservesQ.) We see that De�nition 1.1 is indeed independent of the choice of z0. It can even
be chosen to be any element of the upper half-plane. For convenience we will write CQ for any
path from z0 to γτz0.

Kaneko gives a slightly di�erent de�nition of j[τ ], dividing by
∫
CQ

√
∆dz

Q(z) = 2 log ε. We will denote

this normalised value as jnor(Q), as in [BI19]. Kaneko proves some simple relations and then
studies the values of j numerically.

Proposition 3.2. [Kan09] Let τ be a real quadratic irrationality with associated primitive poly-
nomial Q and conjugate τ ′. Then we have for f ∈ C[j]

(i) f [τ ] = f [στ ] for all σ ∈ SL2(Z);

(ii) f [τ ] = f [τ ′];

(iii) f [−τ ] = f [τ ].

Proof. (i) Let σ ∈ SL2(Z). Let γτ be the automorph of τ . The primitive polynomial associated
to στ is equal to Q · σ−1. We make the coordinate transformation z = σ−1w. By (3.1) we
have∫ γτz0

z0

f(z)

√
∆dz

Q(z)
=

∫ (σγτσ
−1)σz0

σ−1z0

f(σw)

√
∆dw

(Q · σ−1)(w)
=

∫
CQ·σ−1

f(w)

√
∆dw

(Q · σ−1)(w)
.

(ii) If γτ is the automorph of τ , then τ ′ has automorph γ−1
τ . The primitive polynomial associ-

ated to τ ′ is −Q. By the independence of the starting point we have that CQ is inverse to
C−Q. Therefore we have

f(τ) =

∫
CQ

f(z)

√
∆dz

Q(z)
=

∫
C−Q

f(z)

√
∆dz

−Q(z)
= f(τ ′).

(iii) If Q = a(z−τ)(z−τ ′), then the primitive polynomial associated to −τ is equal to w(Q) :=
−a(z + τ)(z + τ ′). There is an equality w(Q)(−z) = −Q(z). Let r : [0, 1] → CQ be a
parametrisation of CQ. Then −r is a parametrisation of Cw(Q). Therefore we have

f(τ ′) =

∫ 1

0

f
(
− r(t)

)√
∆

w(Q)
(
− r(t)

) · −r′(t)dt =

∫ 1

0

f(r(t))
√
∆

−Q(r(t))
· −r′(t)dt = f(τ). □

Alongside stating the above proposition, Kaneko conjectures that the real parts of jnor(τ) lie in
the interval [706.324 . . . , 744], with the lower bound being 706.324 . . . = jnor( 1+

√
5

2 ), and that
the imaginary parts lie in (−1, 1). He also notices that the real part of jnor(τ) is larger when
τ can be closely approximated by a rational number. Therefore the values of jnor(τ) seem to
be especially interesting at Marko� irrationalities, which are real quadratic irrationalities that
cannot be approximated well by rationals. Bengoechea and Imamo§lu investigate further in
[BI19] [BI20] [Ben21] and [Ben22], where they prove parts of the conjectures of Kaneko. There
is also more known about the traces of cycle integrals, see [DIT10b] [Mas12] [DFI11].

Although these are interesting observations and theorems, they do not seem to be of use in
generating singular moduli for algebraic applications to Hilbert's 12th problem or the Birch and
Swinnerton-Dyer conjecture, since no algebraic values have yet been recognised in them, despite
reported vigorous e�orts to do so by several authors mentioned above.
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3.2 Di�erences of cycle integrals

In our context of trying to generalise di�erences of singular moduli, it becomes natural to study
di�erences of values of the j-function in two real quadratics:

j[τ1]− j[τ2] =

∫
CQ1

j(z)

√
∆1dz

Q1(z)
−
∫
CQ2

j(z)

√
∆2dz

Q2(z)
. (3.3)

Just like the di�erences of CM-singular moduli, they are invariant under the action on either
argument. This means that it induces a map on the narrow class groups.

De�nition 3.4. Let ∆1,∆2 > 0 be two square-free discriminants, with associated orders O1,O2.
We de�ne the map

Φ : Pic+(O1)× Pic+(O2) → C
([Q1], [Q2]) 7→ j[τQ1 ]− j[τQ2 ]

If Q1, Q2 have roots τ1, τ2, we will also write Φ(τ1, τ2) for Φ([Q1], [Q2]).

By Proposition 2.25 and Proposition 3.2, the functions logNK1K2/Q(Θ) and ImΦ are both an-
tisymmetric, invariant under SL2(Z), τ 7→ τ ′, and they both �ip sign when τ1, τ2 both �ip sign.
Moreover, Φ is also additive: for τ1, τ2, τ3 three real quadratic irrationalities, we have

Φ(τ1, τ2) + Φ(τ2, τ3) = Φ(τ1, τ3).

However, Θ is not additive.

Example 3.5. Consider the smallest pair of distinct discriminants (∆1,∆2) = (5, 8), which both
have class number 1. For any τ5, τ8 of discriminant 5, 8 we have

Φ(τ5, τ8) = −1143.15596424359.

Example 3.6. The smallest discriminant with a non-trivial class group is 12, which has class
number 2. However, the relations of Proposition 3.2 still ensure that the values of Φ in any pair
τ5, τ12 of real quadratic irrationalities with discriminants 5, 12 is the same:

Φ(τ5, τ12) = −509.965894309611.

Example 3.7. For the pair of discriminants (∆1,∆2) = (12, 148) with class numbers 2, 3 there
are two di�erent values of Φ.

Φ(
√
3, −3+

√
37

4 ) = −5222.69226673213,

Φ(
√
3,
√
37) = −5354.17205090473.

Example 3.8. For the pair of discriminants (∆1,∆2) = (148, 316) of class numbers 3, 6 we have
up to conjugation four di�erent values of Φ:

Φ(−3+
√
37

7 , −3+
√
79

10 ) = −141.46027203105− 3.303461418083i,

Φ(−3+
√
37

7 , −7+
√
79

2 ) = −255.7402879002,

Φ(
√
37, −3+

√
79

10 ) = −9.98048785845− 3.303461418083i,

Φ(
√
37, −7+

√
79

2 ) = −124.2605037276.

We have not recognised any algebraic values in Φ.
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3.3 Traces of singular moduli

The most important aspect of singular moduli is the fact that they are algebraic. Even though
cycle integrals of the j-function have not been recognised to have this property, they do share
many similarities with CM singular moduli when gathered in traces.

After Zagier's joint work with Gross on norms of di�erences of singular moduli, he also published
a paper about their traces [Zag02]. He showed that they appear as the Fourier coe�cients of a
modular form of weight 3/2, and gave several relations between these coe�cients. In [DIT11],
Duke, Imamo§lu and Tóth extend these results to the real quadratic setting by introducing cycle
integrals. They provide a natural real quadratic analogue of singular moduli. We will give an
overview of the results of Zagier and Duke, Imamo§lu and Tóth and how they relate.

For d a discriminant, let Qd be the set of binary quadratic forms of discriminant d. The set of
binary quadratic forms is acted upon by PSL2(Z) via Q(X,Y ) ·

(
a b
c d

)
= Q(aX + bY, cX + dY )

and the stabiliser of Q ∈ Qd is denoted ΓQ. The number of equivalence classes of primitive forms
in Qd is denoted h(d) and also called the (narrow) class number of d. If d < 0, then j(τQ) is
an algebraic integer of degree h(d). Its conjugates correspond to the values of j in the other
primitive equivalence classes. Therefore, the trace of j(τQ) is equal to∑

q∈Qd/ SL2(Z)
q primitive

j(τq).

Zagier considers a slight adjustment of these traces, namely the values

Trd(j1) :=
∑

Q∈Qd/ SL2(Z)

|ΓQ|−1j1(τQ), where j1 = j − 744.

The sum is taken over all equivalence classes, not just the primitive ones. He shows that they
appear as coe�cients of the weakly holomorphic form of weight 3/2

T− := −θ1(z)
E4(4z)

η(4z)6
= q−1 − 2 +

∑
0>d≡0,1 mod 4

Trd(j1)q
|d| ∈ M !

3/2,

where θ1, E4, η are given by

θ1(z) =
∑
n∈Z

(−1)nqn
2

, E4(z) = 1 + 240

∞∑
n=1

n3qn

1− qn
, η(z) = q1/24

∞∏
n=1

(1− qn).

Let M !
k+1/2 be the space of weakly holomorphic forms of weight k + 1/2 for Γ0(4) whose n-th

coe�cient vanish unless (−1)kn ≡ 0, 1mod 4. Zagier shows that M !
3/2 has a unique basis given

by {gd : 0 < d ≡ 0, 1mod 4} such that gd has Fourier expansion

gd = −q−d +
∑

0⩾n≡0,1 mod 4

a(d, n)q|n|.

The form T− is the �rst element of this basis. The coe�cients a(d, n) of these modular forms
also appear in the basis {fd : d ≤ 0} of M !

1/2 as described by Borcherds [Bor95]. The fd are
given by

fd = qd +
∑
n>0

a(n, d)qn. (3.9)
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In [DIT11], it is shown that this basis extends naturally to a basis for the space M1/2 ⊃ M !
1/2

of mock modular forms of weight 1/2. Mock modular forms of weight 1/2, �rst understood by
Zwegers [Zwe08][Zag09], are functions that can be completed to be modular by adding a certain
non-modular function g∗, known as the shadow of the mock modular form. This shadow is
associated to a weakly holomorphic form g of weight 3/2. Duke, Imamo§lu and Tóth show that
for a positive discriminant d, there is a unique mock modular form fd with shadow gd. De�ne
a(n, d) for positive discriminants d such that

fd =
∑
n>0

a(n, d)qn. (3.10)

Then the Fourier coe�cients satisfy a(n, d) = a(d, n). The set {fd : d any discriminant} forms a
basis for M1/2. The element f1 with shadow g1 = T− is equal to

T+ :=
∑
d>0

Trd(j1)q
d ∈ M1/2,

with Trd(j1) de�ned as

Trd(j1) :=
1

2π

∑
Q∈Qd/ SL2(Z)

∫
CQ

j1(z)
dz

Q(z,1)

for d > 0 not a square.

With this extended de�nition of the a(n, d), Duke, Imamo§lu and Tóth also generalise a well
known result of Zagier [Zag02, (25)] to include positive discriminants. This result involves certain
`twisted' traces. Let d be a negative or positive discriminant, and let D > 0 be a fundamental
discriminant. If dD is not a square, de�ne the twisted trace

Trd,D(jm) =

{
1√
D

∑
χ(Q)|ΓQ|−1jm(τQ) if dD < 0,

1
2π

∑
χ(Q)

∫
CQ

jm(z) dz
Q(z,1) if dD > 0,

where the sums are taken overQ ∈ Qd/ SL2(Z), jm is the unique function in C[j] with q-expansion
q−m +O(q), and χ : QdD → {−1, 1} is a certain function that restricts to a group character on
the primitive classes. Then it is shown for m ⩾ 1 that

Trd,D(jm) =
∑
n|m

(
D

m/n

)
na(n2D, d). (3.11)

In particular for m = 1, this gives

a(D, d) = Trd,D(j1) =

{
1√
D

∑
χ(Q)|ΓQ|−1j1(τQ) if dD < 0,

1
2π

∑
χ(Q)

∫
CQ

j1(z)
dz

Q(z,) if dD > 0.

In the case m = 0, Duke, Imamo§lu and Tóth consider the function

Z+ =
∑
d>0

Trd(1)q
d,

where Trd(1) = π−1d−1/2h(d) log εd. It relates to a function studied by Zagier in [Zag75b]

Z− =
∑
d≤0

Trd(1)q
|d|,
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where Trd(1) = H(|d|) for d ≤ 0 is the Hurwitz class number. Zagier showed that this function
can be completed to be modular of weight 3/2. Duke, Imamo§lu and Tóth give a similar com-
pletion of Z+, which has weight 1/2 for Γ0(4). They state that the automorphic nature of this
completion gives reason to hope that there might be a connection between the cycle integrals of
j and abelian extensions of real quadratic �elds.

Lastly in [DIT11], Duke, Imamo§lu and Tóth give a real quadratic analogue of a result of
Borcherds [Bor95, Theorem 14.1]. For all negative discriminants, Borcherds associates to fd =
qd +

∑
n>0 a(n, d)q

n the in�nite product

Ψd = q−Trd(1)
∏
m>0

(1− qm)a(m
2,d).

It is a meromorphic modular form of weight 0 whose zeros and poles are either cusps or imaginary
quadratic irrationalities. Conversely, every such modular form also has an associated weakly
modular form of weight 1/2. This can be used to give a product formula for the modular
polynomial

∏
(j − j(τQ)), with the product running over SL2(Z)-representatives of primitive

binary quadratic forms. The (scaled) logarithmic derivative of this in�nite product is equal to

Fd = −Trd(1)−
∑
m>0

(∑
n|m

na(n2, d)
)
qm (3.12)

It is a meromorphic form of weight 2 with corresponding properties. Duke, Imamo§lu and
Tóth consider these functions also for d > 0, and then the Fd satisfy a transformation property
involving traces of additive Knopp cocycles. We will explore this further in Chapter 4.



Chapter 4

An analytic expression of the Knopp

cocycle

In the previous two chapters we have discussed two attempts at generalising the theory of singular
moduli to real quadratic �elds. In this chapter, we show a connection between these two attempts.
This connection is based on the appearance of the Knopp cocycle in the transformation formula
for a function related to Borcherds products.

4.1 Real quadratic Borcherds products

We will start by introducing regular Borcherds products, which are inherently imaginary quadratic
in nature. Afterwards, we will try to generalise these Borcherds products to also be `real
quadratic'. Recall that M !

1/2 is the space of nearly holomorphic moudular forms f =
∑

anq
n of

weight 1/2 for Γ0(4) whose integer coe�cients vanish unless n ≡ 0, 1mod 4. Also de�ne M ′
× to

be the multiplicative group of meromorphic modular forms of integral weight for some character
of SL2(Z), whose zeros and poles are either cusps or imaginary quadratic irrationals.

Theorem 4.1. (Theorem 14.1 of [Bor95]) There is an isomorphism

M !
1/2 −→ M ′

×

f =
∑

n≫−∞
a(n)qn 7−→ Ψf = q−h

∏
n>0

(1− qn)a(n
2), (4.2)

where h is the constant term of f
∑

n H(n)qn for H(n) =
∑

Q∈Q−n/PSL2(Z)
1

#PSL2(Z)Q the Hur-

witz class number of discriminant −n. The weight of Ψf is equal to a(0) and the multiplicity of
a zero of Ψf at an imaginary quadratic irrationality τ of discriminant D < 0 is

∑
d>0 a(Dd2).

A product formula for a modular form as in (4.2) is called a Borcherds product. We recall from
the previous chapter that Borcherds [Bor95], and later Zagier [Zag02] proved, that M !

1/2 admits

a basis {fd : d ≤ 0 a discriminant}, where fd is the unique modular form in M !
1/2 having Fourier

expansion such that
fd = qd +

∑
n>0

a(n, d)qn.

24
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Looking at d = 0, we �nd that f0 is equal to the θ-function

θ = 1 + 2
∑
n>0

qn
2

.

Applying Theorem 4.1 to f0 = θ one �nds

Ψθ = q1/12
∏
n>0

(1− qn)2 = ∆1/12.

The coboundary of ∆1/12 is equal to the cocycle γ =
(
a b
c d

)−1 7→ ∆(γz)1/12/∆(z)1/12 = cz + d

from equation (2.8). The logarithmic derivative of∆1/12 is equal to 1
12E2 when scaled by (2πi)−1,

which satis�es ((
a b
c d

)−1
⋆2

1
12E2

)
(z) = E2(z) +

1

2πi

c

cz + d
,

which is the cocycle from (2.7). For d < 0, the modular form Ψfd has weight 0 and hence its
coboundary is trivial.

Also recall that Duke, Imamo§lu and Tóth extended the basis {fd : d < 0 a discriminant} of
M !

1/2 to a basis {fd : d any discriminant} of the spaceM1/2 of mock modular forms of weight 1/2,
where the fd are as in (3.10). A natural question is now what happens when we apply the map
f 7→ Ψf de�ned in (4.2) to fd when d is a positive discriminant. We then obtain the function

Ψd := Ψfd = q−Trd(1)
∏
n>0

(1− qn)−a(n2,d). (4.3)

Note that Trd(1) is not a rational power. We will prove that Ψd satis�es the transformation
formula

Ψd(γ
−1z)

Ψd(z)
=

∏
Q∈Qd/ SL2(Z)

KnτQ(γ)(z)
2i/

√
d =

∏
Q∈Qd

(z − τQ)
δ∞,γ∞(τQ)·2i/

√
d. (4.4)

We will prove this by looking at the (scaled) logarithmic derivative

Fd :=
1

2πi
dlog(Ψd) = −Trd(1)−

∑
m⩾1

(∑
n|m

na(n2, d)
)
qm = −

∑
m⩾0

Trd(jm)qm (4.5)

of Ψd, where the last equality follows from (3.11). For d = 0, we have seen that this gives 1
12E2.

For d > 0, it is shown in [DIT11] that Fd satis�es

(γ − 1) ⋆2 Fd(z) =
1

2π
√
d

∑
Q∈Qd/ SL2(Z)

knτQ(γ).

De�nition 4.6. Let φ be a parabolic cocycle for SL2(Z) taking values inM2. A modular integral
F of φ is a holomorphic function on H∗ satisfying

(γ − 1) ⋆2 F = φ(γ)

for all γ ∈ SL2(Z). Conversely, φ is called the period of F .



26 4.2: The modular integral of the symmetrised additive Knopp cocycle

Since M2(SL2(Z)) = 0, a modular integral is unique if it exists. In the outgrowth paper [DIT10a]
of [DIT11] Duke Imamo§lu and Tóth also give a (new) construction for the modular integral Fτ

of knτ +knτ ′ . Its existence was already proved by Knopp [Kno78] using certain Poincaré series.

The symmetrised multiplicative Knopp cocycle Knτ ×Knτ ′ then also appears as the period of
the lift Ψτ of Fτ under the logarithmic derivative

Ψτ (γ
−1z)

Ψτ (z)
= (Knτ ×Knτ ′)(γ)(z). (4.7)

Closely following the construction of Duke, Imamo§lu and Tóth we are able to give a closed from
expression for Fτ , which we can apply to (4.7) to obtain an explicit expression for Knτ ×Knτ ′ .
We can also use this to obtain an explicit expression for Θ.

4.2 The modular integral of the symmetrised additive Knopp cocycle

Let τ be a real quadratic irrationality. We will follow the construction of [DIT11] [DIT10a] of
the modular integral of knτ +knτ ′ . We will give an explicit expression for this modular integral.

Theorem 4.8. (A speci�c case of [DIT10a, Theorem 3]) Let τ be a real quadratic irrationality
with the associated binary quadratic form Q with discriminant ∆ > 0. Choose CQ such that it
lies on the geodesic connecting τ ′ to τ . Then knτ +knτ ′ has a modular integral given by

Fτ (z) = −
∫
CQ

j′(z)

j(u)− j(z)

√
∆du

Q(u)
+
∑
q∼Q

δ∞,z(τq)

√
∆

q(z)
, (4.9)

outside the set SL2(Z)CQ. At ∞, it has q-expansion

Fτ (z) = −
∞∑

m=0

jm[τ ]qm, where jm[τ ] =

∫
CQ

jm(u)

√
∆du

Q(u)
. (4.10)

The cycle integral in (4.9) is analytic outside SL2(Z)CQ, with jumps along SL2(Z)CQ. The
second term is added to get rid of these jumps. Before proving this theorem, we state some
lemmas.

Lemma 4.11. (Speci�c case of [AKN97, Corollary 4]) Let j′ = 1
2πi

dj
dz = E14

∆ . Then for �xed
s ∈ H we have

j′(z)

j(u)− j(z)
=
∑
m⩾0

jm(u)q(z)m.

Note that this function is equal to the logarithmic derivative of j(u) − j(z) with respect to z,
scaled by −(2πi)−1.

Lemma 4.12. For �xed z not a zero of j′ and γ =
(
a b
c d

)
∈ SL2(Z),

resu=γz

(
j′(z)

j(u)− j(z)

√
∆

Q(u)

)
=

1

2πi

√
∆

(Q · γ)(z)
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Proof. We calculate

resu=γz

(
j′(z)

j(u)− j(z)

√
∆

Q(u)

)
= lim

u→γz

(u− γz)j′(z)
√
∆

(j(u)− j(z))Q(u)
= lim

u→γz

j′(z)
√
∆

dj
du (u)Q(u)

=
1

2πi

j′(z)

j′(γz)

√
∆

Q(γz)

=
1

2πi

1

(cz + d)2

√
∆

Q(γz)
,

which is equal to the desired expression. □

Proof. For a given z ∈ H, the function

u 7→ − j′(z)

j(u)− j(z)

√
∆

Q(u)

is meromorphic on H, with poles at the SL2(Z)-orbit of z. Therefore the function

z 7→ −
∫
CQ

j′(z)

j(u)− j(z)

√
∆du

Q(u)

is holomorphic on the set H∗ \ SL2(Z)CQ. The function Fτ is obtained by taking the analytic
continuation at the cusp. □

Proof of Theorem 4.8. For a given z ∈ H, the function

u 7→ − j′(z)

j(u)− j(z)

√
∆

Q(u)

is meromorphic on H, with poles at the SL2(Z)-orbit of z. Therefore the function

z 7→ −
∫
CQ

j′(z)

j(u)− j(z)

√
∆du

Q(u)

is holomorphic on the set H∗ \ SL2(Z)CQ. The function Fτ is obtained by taking the analytic
continuation at the cusp. By Lemma 4.11 we have

Fτ (z) = −
∫
CQ

∑
m⩾0

jm(u)q(z)m
√
∆du

Q(u)
= −

∑
m⩾0

(∫
CQ

jm(u)

√
∆du

Q(u)

)
q(z)m = −

∑
m⩾0

jm[τ ]qm

locally at ∞. Note that this q-expansion converges everywhere, but the swapping of the integral
and the sum is only allowed su�ciently close to ∞, where j′(z)/(j(u)− j(z)) has no poles. We
will �rst show that this analytic continuation is given by (4.9), and afterwards that this function
has knτ +knτ ′ as its period.

To prove that Fτ is given by (4.9), assume �rst that Q ≁ −Q. Let X∞ be the connexted
component of ∞ in H∗ \ SL2(Z)CQ. Suppose z ∈ H lies in a connected component adjacent
to X∞. Then there exists γ ∈ SL2(Z) such that the connected component of z is equal to
γX∞. Adjust the path CQ to C ′

Q such that z lies in the same connected component as ∞ in
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H∗ \ SL2(Z)C ′
Q. The path CQ − C ′

Q is a loop that contains exactly one point in the orbit of z,
namely γz, looping around it once with orientation −δ∞,z(τQ·γ). Therefore we �nd

Fτ (z) = −
∫
C′

Q

j′(z)

j(u)− j(z)

√
∆du

Q(u)

= −
∫
CQ

j′(z)

j(u)− j(z)

√
∆du

Q(u)
− 2πi · δ∞,z(τQ·γ) · resw=γz

j′(z)

j(w)− j(z)

√
∆

Q(w)

= −
∫
CQ

j′(z)

j(u)− j(z)

√
∆du

Q(u)
− δ∞,z(τQ·γ) ·

√
∆

(Q · γ)(z)
,

where we have used the Residue Theorem and Lemma 4.12. Note that Q · γ is the only bi-
nary quadratic form q in the orbit of Q such that δ∞,z(τq) ̸= 0. Therefore δ∞,z(τQ·γ)

(Q·γ)(z) =∑
q∼Q δ∞,z(τq)

√
∆

q(z) . For general z ∈ H \ SL2(Z)CQ, we may repeat this argument for every
time a path from ∞ to z crosses SL2(Z)CQ to obtain (4.9) for all z.

If Q ∼ −Q, then the geodesics connecting τ to τ ′ and τ ′ to τ overlap, and hence z crosses two
geodesics simultaneously when crossing SL2(Z)CQ. To �x this we can choose z0 outside the
geodesic connecting τ, τ ′, carry out the same argument and then let z0 approach this geodesic.

We will now verify the transformation formula for Fτ . Let γ =
(
a b
c d

)−1 ∈ SL2(Z), and let
z ∈ H \ SL2(Z)CQ be in the connected component of ∞. We compute

(γ ⋆2 Fτ )(z) =
1

(cz + d)2

−
∫
CQ

j′(γ−1z)

j(u)− j(γ−1z)

√
∆du

Q(u)
−
∑
q∼Q

δ∞,γ−1z(τq)

√
∆

q(γ−1z)


= −

∫
CQ

j′(z)

j(u)− j(z)

√
∆du

Q(u)
−
∑
q∼Q

δγ∞,z(τq·γ−1)

√
∆

(q · γ−1)(z)

= Fτ (z) +
∑
q∼Q

δ∞,γ∞(τq)

√
∆

q(z)

= Fτ (z) +
∑
q∼Q

δ∞,γ∞(τq)

(
1

z − τq
− 1

z − τ ′q

)
.

Therefore the transformation property (γ − 1) ⋆ Fτ = (knτ +knτ ′)(γ) holds in a neighbourhood
of ∞. We conclude that it also holds on the entirety of H by analytic continuation. □

4.3 Explicit lift of the Knopp cocycle

Having constructed the modular integral of knτ +knτ ′ , and more importantly having found an
explicit expression for it, will allow us to give an explicit expression for the symmetrised Knopp
cocycle Knτ ×Knτ ′ . Evaluating this in another real quadratic irrationality will allow us to derive
an explicit expression for a symmetrised Θ using analytic methods. This explicit expression of
Knτ ×Knτ ′ is obtained using the transformation formula of a lift of F under the logarithmic
derivative. The following theorem is inspired by [DIT17, Theorem 2.1].

Theorem 4.13. Let Fτ be the modular integral of knτ +knτ ′ . Then by de�nition Fτ is a
holomorphic function on H ∪ {∞} satisfying

Fτ (γ
−1z)− Fτ (z) = (knτ +knτ ′)(γ)
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for all γ ∈ SL2(Z). Let Ψτ be a lift of Fτ under the logarithmic derivative. Then Ψτ satis�es
the transformation formula

Ψτ (γ
−1z)

Ψτ (z)
= exp

∫ γ−1z

z

Fτ (s)ds = (Knτ ×Knτ ′)(γ)(z).

Proof. Let Gτ be an antiderivative of Fτ . Let Φ(γ)(z) = Gτ (γ
−1z)/Gτ (z) be the coboundary of

Gτ . Then clearly Φ is a cocycle. It satis�es dlog(Φ) = knτ +knτ ′ , and therefore Φ is equal to
one of the twelve lifts of knτ +knτ ′ under dlog. The theorem therefore follows if we show that
Φ(T ) > 0.

Let F̃ be a primitive of F . By Theorem 4.8, F̃ (z) is equal to

c+ j0[τ ]z +
1

2πi

∑
m⩾1

jm[τ ]

m
qm

for some c ∈ C and Im z large enough. Up to a constant, Gτ is equal to exp F̃ . Note that
Φ is independent of this constant. Using this we �nd Φ(T ) = exp j0[τ ]. Note that j0 = 1. A
simple calculation shows that 1[τ ] = ε−2, where ε is the fundamental unit of norm 1 in the order
associated to τ with ε > 0. □

This theorem proves the transformation formula (4.4) by noting that

F∆ = −
∑
m⩾0

Tr∆(jm)qm = − 1

2π
√
∆

∑
Q∈Q∆/ SL2(Z)

∫
CQ

∑
m⩾0

jm(u)qm
√
∆du

Q(u)

=
1

π
√
∆

∑
Q∈Q∆/ SL2(Z)

FτQ

and

F∆ =
1

2πi
dlogΨ∆.

Since we have an explicit formula for Fτ , we can use it to �nd an explicit expression for the
antiderivative of knτ +knτ ′ , and use this to �nd an explicit expression for Knτ ×Knτ ′ .

Corollary 4.14. Let τ be a real quadratic irrationality with the associated binary quadratic
form Q of discriminant ∆ > 0. Let φ̃ be the cocycle with knτ +knτ ′ as its derivative (i.e. the
coboundary of the modular integral Fτ ). Then for all γ ∈ SL2(Z) we have

φ̃(γ)(z) = −
∫ γ−1z

z

∫
CQ

j′(s)

j(u)− j(s)

√
∆du

Q(u)
+
∑
q∼Q

δ∞,s(τq)

√
∆ds

q(s)
(4.15)

and exp(φ̃) = Knτ ×Knτ ′ .

The lift φ̃ of knτ +knτ ′ under the derivative contains more information than the liftKnτ ×Knτ ′ =
exp φ̃ under dlog, since any multiple of 2πi gets lost when applying exp. The imaginary part of
φ̃ was studied by Duke, Imamo§lu and Tóth in [DIT17]. They show that there is an equality

− 2

π
lim
y→∞

Im φ̃(γ, iy) = #{q ∼ Q : δ∞,γ∞(τq) ̸= 0} ∈ 2Z.
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By a Theorem of Birkho� [Bir17], this quantity is closely related to the intersection number
between modular geodesics associated to real quadratic irrationalities τ1, τ2.

There is also no ambiguity under this lifting construction. The other eleven lifts under the
logarithmic derivative can be found by adding a cocycle in H1(SL2(Z),C/(2πi)Z) before expo-
nentiating, which is of course unnatural. Therefore, Corollary 4.14 gives us a canonical choice
for the lift of knτ +knτ ′ . This choice is consistent with our previous choice of demanding Knτ to
take values in Q(τ)(z). However it cannot distinguish between the two lifts with this property.
The map d

dz : H1(SL2(Z),M0) → H1(SL2(Z),M2) is not surjective, so not all rational cocycles
can be lifted this way.

We now move on to an application of Corollary 2.23. We can evaluate the explicit formula we
found for Knτ ×Knτ ′ in a second real quadratic irrationality to obtain an explicit expression of
a symmetrised version of Θ.

Theorem 4.16. Let τ1, τ2 two real quadratic irrationalities in distinct SL2(Z)-orbits. Let Q1,∆1

be the binary quadratic form and the discriminant associated to τ1, and let γ1, γ2 be the auto-
morphs of τ1, τ2. Recall from (2.8) that we have de�ned J(

(
a b
c d

)
)(z) = −cz + a. We have

Θ(τ1, τ2)Θ(τ ′1, τ2) = exp

∫ γ2∞

∞

∫ γ1u0

u0

j′(z)

j(u)− j(z)

√
∆1du

Q1(u)
dz

×
∏

q∼Q1

[(
τq − τ2
τ ′q − τ2

)
×

√∣∣∣J(γ2)(τq)
J(γ2)(τ ′q)

∣∣∣ ]δ∞,γ2∞(τq) (4.17)

for any u0 ∈ H, and

Θ(τ1, τ2)Θ(τ ′1, τ2)Θ(τ1, τ
′
2)Θ(τ ′1, τ

′
2) =

∏
g∈γZ

2\PSL2(Z)/γZ
1

(
gτ1 − τ2
gτ ′1 − τ2

gτ ′1 − τ ′2
gτ1 − τ ′2

)δ(gτ1,τ2)

. (4.18)

Proof. We have (Knτ1 ×Knτ ′
1
)(γ2)(z) = expΦ(γ2)(z) for z ∈ H. To evaluate it in τ2, we use the

equality τ2 = limn→∞ γn
2 z0 for z0 ∈ H and the continuity of (Knτ1 ×Knτ ′

1
)(γ2). We obtain

logΘ(τ1, τ2)Θ(τ ′1, τ2) = lim
n→∞

−
∫ γn−1

2 z0

γn
2 z0

∫ γ1u0

u0

j′(s)

j(u)− j(s)

√
∆1du

Q1(u)
+
∑
q∼Q

δ∞,s(τq)

√
∆1

q(s)
ds

= lim
n→∞

∫ γ2z0

z0

∫ γ1u0

u0

j′(z)

j(u)− j(z)

√
∆1du

Q1(u)
+
∑
q∼Q

δγ−n+1
2 ∞,z(τq)

√
∆1

q(z)
dz,

(4.19)
where we have made the coordinate transformation z = γ−n+1

2 s. Since this expression is inde-
pendent of z0, we may take the limit z0 → i∞. We use the additivity of δ to obtain the equality
δγ−n+1

2 ∞,z(τq) = δγ−n+1
2 ∞,∞(τq) + δ∞,z(τq). We split up the integral above into three terms

and work the second and third out separately. For the second integral we make the coordinate
transformation z′ = γm+1

2 z to get

lim
z0→i∞

lim
n→∞

∫ γ2z0

z0

∑
q∼Q

δγ−n+1
2 ∞,∞(τq)

√
∆1

q(z)
dz =

∞∑
m=0

∫ γ2∞

∞

∑
q∼Q

δγ−m−1
2 ∞,γ−m∞(τq)

√
∆1

q(z)
dz

=
∑
q∼Q

δ∞,γ2∞(τq)

∫ τ2

∞

√
∆1

q(z′)
dz′ =

∑
q∼Q

δ∞,γ2∞(τq) log

(
τq − τ2
τ ′q − τ2

)
. (4.20)
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For q = aX2+bXY +cY 2 a binary quadratic form with δ∞,γ2∞(τq) ̸= 0, let rq be the intersection
point of the geodesic connecting τq, τ

′
q and the vertical line at γ2∞. Using elementary geometry

you �nd the equality
τq − rq
τ ′q − rq

= −i ·
√∣∣∣τq − γ2∞

τ ′q − γ2∞

∣∣∣.
Therefore we �nd for the third integral∫ γ2∞

∞

∑
q∼Q

δ∞,z(τq)

√
∆1

q(z)
ds =

∑
q∼Q

δ∞,γ2∞(τq)

∫ γ2∞

rq

√
∆1

q(z)
ds

=
∑
q∼Q

δ∞,γ2∞(τq)

[
log

(
τq − γ2∞
τ ′q − γ2∞

)
− log

(
τq − rq
τ ′q − rq

)]

=
∑
q∼Q

δ∞,γ2∞(τq)

[
log

∣∣∣∣τq − γ2∞
τ ′q − γ2∞

∣∣∣∣+ πi− log

∣∣∣∣τq − rq
τ ′q − rq

∣∣∣∣+ 1

2
πi

]

=
∑
q∼Q

1
2δ∞,γ2∞(τq) log

∣∣∣∣τq − γ2∞
τ ′q − γ2∞

∣∣∣∣ .
Note that if γ2 =

(
a b
c d

)
, then z − γ2∞ = −1

c J(γ2)(z). The imaginary parts of the logarithm are
taken to lie in (−π, π], though they cancel out mod 2πi because of Lemma 2.3. Adding the three
integrals again and applying the exponential function leaves us with exactly (4.17).

We will now prove (4.18). As in (4.19) we �nd by making coordinate transformations

logΘ(τ1, τ2)Θ(τ ′1, τ2)Θ(τ1, τ
′
2)Θ(τ ′1, τ

′
2)

= lim
n→∞

∫ γ2z0

z0

∫ γ1u0

u0

j′(z)

j(u)− j(z)

√
∆1du

Q1(u)
+
∑
q∼Q

δγ−n+1
2 ∞,z(τq)

√
∆1

q(z)
dz

+ lim
n→∞

∫ z0

γ2z0

∫ γ1u0

u0

j′(z)

j(u)− j(z)

√
∆1du

Q1(u)
+
∑
q∼Q

δγn
2 ∞,z(τq)

√
∆1

q(z)
dz,

The cycle integrals cancel and we use the additivity of intersection numbers to �nd that this is
equal to

lim
n→∞

∫ γ2z0

z0

∑
q∼Q

δγ−n+1
2 ∞,γn∞(τq)

√
∆1

q(z)
dz,

which can be rewritten as ∑
q∼Q

δ∞,γ2∞(τq) log

(
τ2 − τq
τ2 − τq

τ ′2 − τ ′q
τ2 − τ ′q

)
,

(cf. (4.20)). We note that
τ2 − τq
τ2 − τq

τ ′2 − τ ′q
τ2 − τ ′q

is independent of replacing τq with γm
2 τq for some m ∈ Z. We may therefore group together

these terms. Now (4.18) follows after noting that∑
n∈Z

δ∞,γ2∞(γn
2 τq) =

∑
n∈Z

δγ−n
2 ∞,γ1−n

2 ∞(τq) = δ(τq, τ2). □
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Note that the expression (4.18) for Θ(τ1, τ2)Θ(τ ′1, τ2)Θ(τ1, τ
′
2)Θ(τ ′1, τ

′
2) is antisymmetric.

We may also express Θ(τ1, τ2) in terms of Ψτ . We have

Θ(τ1, τ2)×Θ(τ ′1, τ2) = lim
n→∞

Ψτ1(γ
n+1
2 z0)

Ψτ1(γ
n
2 z0)

and

Θ(τ1, τ2)Θ(τ ′1, τ2)Θ(τ1, τ
′
2)Θ(τ ′1, τ

′
2) = lim

n→∞

Ψτ1(γ
n+1
2 z0)

Ψτ1(γ
n
2 z0)

Ψτ1(γ
−n−1
2 z0)

Ψτ1(γ
−n
2 z0)

.

The antisymmetry of Θ(τ1, τ2)Θ(τ ′1, τ2)Θ(τ1, τ
′
2)Θ(τ ′1, τ

′
2) then gives us the peculiar equality

lim
n→∞

Ψτ1(γ
n+1
2 z0)

Ψτ1(γ
n
2 z0)

Ψτ1(γ
−n−1
2 z0)

Ψτ1(γ
−n
2 z0)

= lim
n→∞

Ψτ2(γ
n
1 z0)

Ψτ2(γ
n+1
1 z0)

Ψτ2(γ
−n
1 z0)

Ψτ2(γ
−n−1
1 z0)

.

4.4 Further study

There are several loose ends left. First of all, from Theorem 4.16 we can deduce that

exp

∫ γ2∞

∞

∫ γ1u0

u0

j′(z)

j(u)− j(z)

√
∆1du

Q1(u)
dz

is algebraic. An explicit algebraic expression for this integral would shed more light on the
quantity Θ(τ1, τ2)×Θ(τ ′1, τ2). Combined with the explicit expression for Θ(τ1, τ2)/Θ(τ ′1, τ2) that
can be obtained from Corollary 2.23, this could lead to a proof that Θ(τ1, τ2)

2 is antisymmetric.

Secondly, the methods in the proof of Theorem 4.16 are very similar to the argument in [DIT17]
to show that the antiderivative of the Knopp cocycle is related to linking numbers of modular
geodesics associated to any two real quadratic irrationalities τ1 and τ2. Explicitly they prove
that

− 2

π
lim

n→∞
lim

z0→i∞

Im φ̃τ1(γ
n
τ2 , z0)

n

is equal to the linking number of the two geodesics in SL2(Z)\ SL2(R) associated to τ1 and τ2.
Here φ̃τ1 is the antiderivative of knτ1 +knτ ′

1
, which according to Corollary 4.14 is equal to

φ̃(γ)(z) = −
∫ γ−1z

z

∫
CQ

j′(s)

j(u)− j(s)

√
∆du

Q(u)
+
∑
q∼Q

δ∞,s(τq)

√
∆ds

q(s)
.

In Theorem 4.16, we have instead looked at the real part. We have showed that

log(Θ(τ1, τ2)×Θ(τ ′1, τ2)) = lim
n→∞

lim
z0→∞

Re φ̃τ1(γ
n
τ1 , z0)

and used this to give an explicit expression for log(Θ(τ1, τ2)×Θ(τ ′1, τ2)). We see therefore that
Θ(τ1, τ2) is closely related to linking numbers. This relation could be further studied.

Thirdly, one might wonder whether the p-adic limit of the Knopp cocycle also becomes a cobound-
ary when looking at a bigger ambient space. Perhaps this might also lead to a better under-
standing of Θp(τ1, τ2) as de�ned in the introduction.

Lastly, our use of the logarithmic derivative seems convoluted. Summarising our current approach
for �nding an explicit formula for Θ: we take the logarithmic derivative of the di�erence of
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two j-functions j(z1) − j(z2) and take the cycle integral over the other variable. We take the
analytic continuation of this function before integrating with respect to the �rst variable again
and exponentiating.

A more natural approach seems to be to not introduce the logarithmic derivative, but just
work with the functions Ψτ . Perhaps these functions also come from certain mock modular
forms, which would give us an extrinsic de�nition of the Ψτ without considering the logarithmic
derivative. We can then also wonder whether there is a direct proof of the transformation formula
of Ψτ .

A more naive approach is to take the double cycle integral of j(z1) − j(z2) with respect to the
primitive binary quadratic forms Q1, Q2 with positive non-square discriminant, without taking
the logarithmic derivative �rst. In that case you obtain the quantity∫

CQ1

∫
CQ2

j(z1)− j(z2)

√
∆1dz1

Q1(z1)

√
∆1dz1

Q1(z1)
= log(ε2)j[τ1]− log(ε1)j[τ2].

We have also computed many values of this map, but we have not recognised them to be algebraic.

In conclusion: we have not been able to �nd an analytic construction of real quadratic di�erences
of singular moduli. We have however found a connection between the p-adic work of Darmon
and Vonk on real quadratic singular moduli and the complex analytic work of Kaneko and Duke,
Imamo§lu and Tóth on real quadratic singular moduli, which will hopefully lay the groundwork
of such a construction in the future.
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Appendix A

Computing Θ

In this chapter we will discuss the algorithms used to compute values of Θ. We have implemented
this algorithm in Sage, and refer the interested reador to GitHub for the source code. The general
strategy of the algorithm is as follows. Let τ1, τ2 be two real quadratic numbers.

1. We compute the value of the Knopp cocycle in S:

Knτ1(S) =
∏

w∈SL2(Z)τ

(z − w)δ∞,0(w) ×
∏

w∈SL2(Z)τ
w′<0<w

w−1 (A.1)

and its value in T : Knτ1(T ) = ε−1
1 , the fundamental unit of norm 1 in the order associated

to τ1 lying in the interval (0, 1) [DV21, Lemma 2.2, Corollary 2.3].

2. We compute the automorph γ2 of τ2, and write it as a word in S and T .

3. We use the cocycle relation to compute the value of Knτ (γ2) and evaluate it in τ2.

The automorph of τ1 and the set {w ∈ SL2(Z)τ1 : δ∞,0(w) ̸= 0} can be computed using the same
algorithm. Since the automorph of τ1 has eigenvalue ε1, this allows us to compute both Knτ1(S)
and Knτ1(T ). We will discuss this algorithm.

De�nition A.2. Let τ be a real quadratic irrationality with conjugate τ ′. We call τ nearly
reduced if ττ ′ < 0, and reduced if it also satis�es |τ | < 1 < |τ ′|.

This de�nition can also be formulated in terms of binary quadratic forms. See [Bue89] and
[BV07]. To compute (A.1), we want to compute the set of nearly reduced numbers in the orbit of
τ1. It will be useful to reformulate this de�nition in the context of continued fraction expansions.
For r ∈ R a real number, its continued fraction expansion is a sequence of integers (an)n⩾0 such
that

r = a0 +
1

a1 +
1

a2+...

=: [a0, a1, a2, . . . ].

This expansion is made unique by choosing ai to be positive for i > 0. It can be shown that r is
a real quadratic irrationality if and only if its continued fraction expansion is eventually periodic,
i.e. if there exist k,N such that ai = ai+N for all i ⩾ k [Bue89, Theorem 3.15]. We will denote
such a sequence by [a0, . . . , ak−1, ak, . . . , ak+N ]. A real quadratic irrationality is said to be purely
periodic if it satis�es this condition with k = 0.
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Theorem A.3. (Theorems 4.1 and 4.2 from [Old78]) Let τ be a quadratic irrationality with
conjugate τ ′. Then τ has a purely periodic expansion if and only if τ > 1 and −1 < τ ′ < 0.
Moreover if τ = [a0, a1, . . . , an], then −(τ ′)−1 = [an, . . . , a1, a0].

We see that a real quadratic irrationality is reduced if and only |τ |−1 has a purely periodic
expansion. Suppose |τ | has periodic fraction expansion [a0, a1, . . . ]. The matrices S, T have the
following e�ect on the periodic fraction expansion.

|Tτ | = [a0 + sgn(τ), a1, . . . ] and |Sτ | =

{
[0, a0, a1, . . . ] if a0 ̸= 0,

[a1, a2, . . . ] if a0 = 0.

From these relations it can be seen that SL2(Z) can arbitrarily change, add and remove �nitely
many terms of the fraction expansion of |τ |, but it leaves the periodic tail invariant. The matrix
ST− sgn(τ)a0 has the e�ect of removing the �rst coe�cient of the fraction expansion of |τ |. By
repeatedly removing this �rst coe�cient and �nally applying S, one can �nd a reduced real
quadratic irrationality in the orbit of τ . There are also more e�cient algorithms to do this, cf.
[BV07]. You can continue to remove more coe�cients to �nd more reduced numbers in the orbit
of τ . The following theorem tells us that we will eventually reach all reduced forms in this way.

Theorem A.4. Given a reduced real quadratic irrationality τ = ±[0, a1, a2, . . . , an], de�ne

σ(τ) = (T sgn(τ)a1S)τ.

Then the image σ(τ) is also reduced, and σ de�nes a bijection on the set of reduced real quadratic
numbers. The orbit of τ under σ contains exactly the reduced numbers that are SL2(Z)-equivalent
to τ . The map σ has period lcm(2, n) on this orbit. Furthermore, the automorph of τ is equal to

γ =
(
(T sgn(τ)anS) · · · (T sgn(τ)a1S)

)− lcm(2,n)/n
. (A.5)

Proof. We have σ(τ) = ∓[0, a2, . . . , an, a1], which is reduced by Theorem A.3. Any SL2(Z)-
transformation changes the fraction of |τ | by only �nitely many terms. Therefore the only
possible reduced forms in the orbit of τ are given by ±[0, ai, . . . , ai+n] for some i. When n
is odd, these are all reached by powers of σ. When n is even, it can be shown using [Bue89,
Proposition 3.19] that for γ ∈ SL2(Z), any continued fraction expansion of γτ such that the
coe�cients are eventually positive, has an odd number of coe�cients preceding the periodic part
a1, . . . , an. However, the continued fraction expansion of −τ = [−1, 1,−1, 0, a1, . . . , an] has an
even number of coe�cients preceding this periodic part. Therefore τ is equivalent to −τ if and
only if n is odd, and the orbit of τ under σ contains all equivalent reduced forms. It is now
evident that the orbit {σi(τ) : i ⩾ 0} of τ under σ contains exactly the reduced forms equivalent
to τ and that σ has period lcm(2, n) on this orbit.

Applying σlcm(2,n) to τ gives us the equality γ−1τ = τ . There is no non-trivial word in S, Tn

shorter than (A.5) that stabilises τ , so γ generates the stabiliser of τ up to sign. Recall that we
have de�ned the automorph of τ such that the eigenvalue corresponding to τ is greater than 1.
We verify that this is indeed the case. Since τ is reduced we have |τ | < 1. If τ = w1/w2, then
the bottom entry of T sgn(τ)a1S(w1

w2
) is smaller than w2 and of opposite sign. Inductively we �nd

that the bottom entry of γ−1( τ1 ), which is the eigenvalue of γ−1 corresponding to τ , is a positive
number smaller than 1. This completes the proof □

Theorem A.4 not only gives us an algorithm to compute the set of reduced forms in the orbit of
a real quadratic irrationality τ , it also allows us to compute its automorph e�ciently.
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Let w be a nearly reduced real quadratic number with conjugate w′. If |w−w′| > 1, then w can
be translated to be reduced. If |w−w′| < 1, then we have | −w−1 +w′−1| > 1 and hence −w−1

is a translate of a reduced form. Therefore the set of nearly reduced forms can be computed
simultaneously with the computation of the set of reduced forms, by keeping track of all the
nearly reduced translates.
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