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Abstract

This thesis explores the behavior of cohomology under degeneration, with the main goal of

understanding the Clemens–Schmid exact sequence, which relates the cohomology of the general

fiber in a semistable degeneration to that of the special fiber. The sequence is a fundamental

tool in Hodge theory for analyzing how the topology and Hodge structures of a smooth fiber

change as it degenerates. In particular, it imposes strong constraints on the monodromy action

and shows how information about the cohomology and monodromy of the smooth fiber can be

extracted from the central fiber alone.

In Chapter 1, we begin with the necessary background on spectral sequences. We introduce

filtered and double complexes and explain how spectral sequences arise from them. These

tools are used throughout the thesis to compute and organize cohomological information in

degenerations.

Chapter 2 introduces Kähler manifolds, the Hodge decomposition and the theory of Hodge

structures. We discuss differential forms, Hermitian metrics, and how the Hodge decomposition

arises naturally in the setting of compact Kähler manifolds.

In Chapter 3, we study normal crossing divisors and their cohomology. We define the de

Rham and Čech double complexes, and use them to compute the cohomology of a normal

crossing divisor in a Kähler manifold. We also construct the spectral weight filtration on the

cohomology of the divisor and introduce the dual complex, which captures the combinatorics of

the intersection pattern.

Chapter 4 builds towards the Clemens–Schmid exact sequence, which is the central result of

the thesis. We introduce semistable degenerations and the semistable reduction theorem, and

study the behavior of the monodromy operator on cohomology. Although we do not prove the

Clemens–Schmid sequence, we use it to obtain interesting results and to analyze examples.

In Chapter 5, we turn to degenerations of smooth curves. We focus on the case where the

central fiber is a nodal curve and generalize the consequences of the Clemens–Schmid sequence

in this setting. We give explicit formulas for the genus and Betti numbers of the general fiber,

in terms of topological data of the central fiber.

Finally, in Chapter 6, we study degenerations of surfaces, focusing on projective K3 surfaces

and abelian surfaces, and examine how the monodromy weight filtration appears in these cases.
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3.3 The Čech Double Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 The Weight Filtration on Hm(X,Q) . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 The Dual Complex Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 The Clemens-Schmid Exact Sequence 40

4.1 Semistable Degenerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 The Monodromy Weight Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 The Spectral Weight Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Weighted Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 The Clemens–Schmid Exact Sequence . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Some Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 First Cohomology Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ii



5 Degeneration of Curves 51

5.1 Basic Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 The Dehn Twist and the Picard-Lefschetz Transformation . . . . . . . . . . . . . 54

5.3 Constructing the Generic Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Computing the (Co)homology of X0 . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Degenerations of Surfaces 61

6.1 First Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 K3 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Abelian Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography 66

iii



Chapter 1

Spectral Sequences

In this chapter, we introduce spectral sequences and the basic algebraic setup behind them. We’ll

start by defining graded and bigraded modules, and then move on to differential structures and

exact couples. From there, we’ll see how spectral sequences naturally arise and how to work with

them. The goal is to understand the definitions and constructions well enough to use spectral

sequences as a tool in later chapters, where they’ll help us compute and organize cohomological

information. Some references for this chapter are [3, Chapter 3, Section 14], [9] and [15].

Throughout this section, let R be a commutative ring with unity. All modules are R-modules.

1.1 Cohomology Spectral Sequences

Definition 1.1.1. A graded module A is a collection of modules {Ap}p∈Z.
For A, B graded modules, a map of graded modules of degree s, is a collection of module

homomorphisms (fp : Ap → Bp+s)p∈Z.

A differential graded module A is a graded module equipped with a map of graded modules

d : A→ A•+s such that d2 = 0. We call d the differential and s the degree of d.

Remark 1.1.2. A chain complex is a differential graded module with d of degree −1.

A cochain complex is a differential graded module with d of degree 1.

Definition 1.1.3. A bigraded module E is a collection of modules {Ep,q}p,q∈Z. For D, E

bigraded modules, a map of bigraded modules of bidegree (s, t) with s, t ∈ Z, is a collection of

module homomorphisms (fp,q : Dp,q → Ep+s,q+t)p,q∈Z.

A differential bigraded module is a bigraded module E equipped with a map of bigraded

modules d : E•,• → E•+s,•+t such that d2 = 0. We call d the differential and (s, t) the bidegree

of d.

Definition 1.1.4. Fix r0 a nonnegative integer. A cohomology spectral sequence is a family of

differential bigraded modules {Er, dr}r≥r0 , where each differential

dr : E
p,q
r → Ep+r,q−r+1

r

has bidegree (r,−r+ 1). These pages are linked by the condition that the (r+ 1)-st page is the

1



CHAPTER 1. SPECTRAL SEQUENCES 2

cohomology of the r-th page:

Ep,qr+1
∼=

ker(dr : E
p,q
r → Ep+r,q−r+1

r )

im(dr : E
p−r,q+r−1
r → Ep,qr )

.

We say the spectral sequence is first quadrant if Ep,qr = 0 whenever p < 0 or q < 0, for all r ≥ r0.

Remark 1.1.5. For each r ≥ r0, the collection Er = {Ep,qr }p,q∈Z is referred to as the r-th page

of the spectral sequence.

We say that a spectral sequence converges if, for some sufficiently large r1, the pages stabilize:

Er ∼= Er1 for all r ≥ r1. In this case, we say that the spectral sequence degenerates at Er1 , we

denote the limiting page by E∞ and refer to it as the limit or last page of the spectral sequence.

1.2 Exact Couples

Spectral sequences often arise from structures called exact couples, which encode a recursive

relationship between modules and allow for the construction of the pages of a spectral sequence

step by step.

Definition 1.2.1. An exact couple (A,B, i, j, k) is a diagram of modules and linear maps:

A A

B

i

jk

such that the sequence is exact at each object: the image of one map equals the kernel of the

next.

From an exact couple (A,B, i, j, k), one can define a differential d := jk : B → B, with

d2 = j(kj)k = 0. This allows us to construct a new derived exact couple (A′, B′, i′, j′, k′) as

follows:

A′ A′

B′

i′

j′k′

� A′ = i(A) (the image of i),

� B′ = H(B, d) = ker(d)/ im(d),

� i′ : A′ → A′ is induced by i,

� j′ : A′ → B′ is defined by i(x) 7→ [j(x)],

� k′ : B′ → A′ is defined by [y] 7→ k(y).

Proposition 1.2.2. The derived couple (A′, B′, i′, j′, k′) is an exact couple.

Proof. We check first that the maps j′ and k′ are well-defined:
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� Since kj = 0, observe that for any i(x) ∈ A, jkj(x) = 0 and thus j(x) ∈ ker d. If

i(x) = i(x′) then x− x′ ∈ ker i = im k and thus, there is a y ∈ B with k(y) = x− x′. Now,

jk(y) = j(x) − j(x′) and so, [j(x)] = [j(x′) + jk(y)] = [j(x′)] in B′ = H(B, d) and j′ is

well-defined.

� If [y] = [y′] in B′ then y = y′ + jk(z) for some z ∈ B and k(y) = k(y′) + kjk(z) = k(y′).

Thus, k′ is well-defined.

Now we will prove exactness.

� At the left A′: Take x ∈ A. If i(x) ∈ ker i′ then i2(x) = 0. That means, there is a

y ∈ B such that k(y) = i(x). This implies jk(y) = ji(x) = 0 and y ∈ ker d. Hence,

k′([y]) = k(y) = i(x) and i(x) ∈ im k′. Conversely, if i(x) ∈ im k′, for x ∈ A, there exists

a y ∈ ker d such that k(y) = i(x). But then i2(x) = ik(y) = 0 and thus i(x) ∈ ker i′. We

conclude ker i′ = im k′.

� At the right A′: Take i2(x) ∈ im i′ for x ∈ A. Of course, j′(i2(x)) = [ji(x)] = [0] and thus

i2(x) ∈ ker j′. Conversely, if j′(i(x)) = [j(x)] = [0] for x ∈ A, then there exists a y ∈ B

such that j(x) = jk(y). That means x−k(y) ∈ ker j = im i and thus there is a z ∈ A with

i(z) = x− k(y). But then, i(x) = i2(z) + ik(y) = i2(z) and thus i(x) ∈ im i′. We conclude

ker j′ = im i′.

� At B′: Given i(x) ∈ A′ we have k′j′(i(x)) = k([j(x)]) = kj(x) = 0. Conversely, take

k′([y]) = k(y) = 0 for y ∈ ker d ⊂ B. Since ker k = im j, there is a x ∈ A such that

y = j(x), and thus, [y] = [j(x)] = j′(i(x)) ∈ im j′. We conclude ker k′ = im j′.

By iterating this process, starting with an exact couple we can generate a sequence of exact

couples

(An, Bn, in, jn, kn)

where the n-th exact couple is derived from the previous one.

The notion of an exact couple naturally extends to the setting of (bi)graded modules. When

A and B are (bi)graded modules, we say that (A,B, i, j, k) is an exact couple if the maps i, j,

and k are morphisms of (bi)graded modules of certain (bi)degrees.

Theorem 1.2.3. Let D and E be bigraded modules equipped with maps of bigraded modules

i, j, k of bidegree (−1, 1), (0, 0), (1, 0) respectively such that they form an exact couple:

D D

E

i

jk

Then we have a cohomology spectral sequence {Er, dr}r≥1, where E1 = E, (Dr, Er, ir, jr, kr) for

r > 1 is the (r− 1)-th derived exact couple and the differentials dr are given by the composition

dr = jrkr.
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Proof. Since by construction Er = H(Er−1, dr−1), it suffices to verify that the differential dr has

bidegree (r, 1 − r). We will prove by induction that the bidegrees of ir, jr and kr are (−1, 1),

(r − 1, 1− r) and (1, 0) respectively.

The base case r = 1 is clear. Fix r ≥ 2 and assume that the bidegrees of ir−1, jr−1, and kr−1

are (−1, 1), (r − 2, 2− r), and (1, 0), respectively.

Since ir is induced by ir−1, and kr([y]) = kr−1(y), it follows that the bidegrees of ir and kr

remain (−1, 1) and (1, 0), respectively.

Now, because ir−1 has bidegree (−1, 1), we have

Dp,q
r = ir−1(D

p+1,q−1
r−1 ).

For any x ∈ Dp+1,q−1
r−1 , we have

jr(ir−1(x)) = [jr−1(x)]r,

where [ · ]r denotes the class in Er = ker dr−1/ im dr−1.

By the inductive hypothesis, jr−1(x) ∈ Ep+r−1,q−r+1
r−1 . Since Ep,qr is a subquotient of Ep,qr−1, it

follows that the bidegree of jr is (r− 1, 1− r). Therefore, the differential dr = jrkr has bidegree

(r − 1, 1− r) + (1, 0) = (r, 1− r) as required.

Example 1.2.4 (The Bockstein Spectral Sequence - Cohomology version). Let C be a cochain

complex of torsion-free abelian groups and p a prime number. Then there is a short exact

sequence

0 → C
·p−→ C

mod p−−−−−→ C ⊗Z Z/pZ → 0

Taking cohomology, we get an exact couple of bigraded modules

H∗(C) H∗(C)

H∗(C ⊗ Z/pZ)

i=·p

j= mod pk=δ

where (H∗(C))p,q = Hp+q(C) and (H∗(C ⊗Z/pZ))p,q = Hp+q(C ⊗Z/pZ). We can regard i, j, k

of bidegrees (−1, 1), (0, 0), (1, 0) respectively. By Theorem 1.2.3, we get a spectral sequence,

with first page Ep,q1 = Hp+q(C ⊗ Z/pZ).

1.3 Filtered Complexes

Filtered chain complexes give rise to exact couples and therefore to spectral sequences. This is

one of the most basic sources of spectral sequences.

Definition 1.3.1. A decreasing filtration F• on a differential graded module (A, d), d of degree

s, is a collection of submodules

· · · ⊃ Fp−1A
n ⊃ FpA

n ⊃ Fp+1A
n ⊃ · · ·

for each integer n, satisfying the following properties:
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1. d(FpA
n) ⊆ FpA

n+s (compatible with the differential)

2.
⋃
p FpA

n = An for every n. (exhaustive)

3.
⋂
p FpA

n = 0 for every n. (Hausdorff)

The filtration is said to be bounded if we can write it as

An = F0A
n ⊃ F1A

n ⊃ . . . ⊃ FmA
n ⊋ Fm+1A

n = 0

for some m.

Remark 1.3.2. Similarly, an increasing filtration on a differential graded module, is the same

as a decreasing filtration with the subset symbols reversed.

Definition 1.3.3. A filtered differential graded module (A, d, F•) is a differential graded module

(A, d) equipped with a decreasing filtration F•.

Remark 1.3.4. From property (1) of the definition of filtration, the differential d induces a

well-defined differential d : FpA
n/Fp+1A

n → FpA
n+s/Fp+1A

n+s , and makes {FpA/Fp+1A, d}
into a differential graded module. We denote GrFp A = FpA/Fp+1A the graded pieces of such

filtration.

We now turn our attention to filtered cochain complexes. Cohomology spectral sequences

arise naturally from decreasing filtrations of complexes as follows.

Given a filtered cochain complex {A, d}, the filtration on A induces a filtration on the

cohomology of A, H∗(A):

FpH
∗(A) = im (H∗(FpA) → H∗(A))

For each level p of the filtration, we have a short exact sequence of cochain complexes

0 → Fp+1A→ FpA→ FpA/Fp+1A→ 0

which induces a long exact sequence in cohomology

· · · k−→ Hp+q(Fp+1A)
i−→ Hp+q(FpA)

j−→ Hp+q(FpA/Fp+1A)
k−→ Hp+q+1(Fp+1A) → . . .

where i is induced by the inclusion, j by the quotient map and k is the connecting map.

Define Ep,q = Hp+q(FpA/Fp+1A) = Hp+q(GrFp A) and D
p,q = Hp+q(FpA). Then we have a

long exact sequence of graded modules

· · · → Dp+1,q−1 i−→ Dp,q j−→ Ep,q
k−→ Dp+1,q → . . .

with i of bidegree (−1, 1), j of bidegree (0, 0) and k of bidegree (1, 0). This gives an exact couple

D D

E

i

jk
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By Theorem 1.2.3 this yields a spectral sequence Ep,qr with cohomology type.

Theorem 1.3.5. If the filtration on A is bounded, then Ep,qr converges and

Ep,q∞ = GrFp H
p+q(A) = FpH

p+q(A)/Fp+1H
p+q(A).

Remark 1.3.6. The result of the theorem is often written Ep,qr (A) ⇒ Hp+q(A) and Er is said

to converge to H∗(A).

Proof. A proof can be found in [9, Chapter 3, Theorem 3.2].

Remark 1.3.7. Let k be a field. Given a filtered graded k-module H, i.e., a collection of

filtered k-vector spaces, we can reconstruct H from the graded pieces GrF H if the filtration F•

is bounded. In this case

Hn =
⊕
p+q=n

GrFp H
p+q.

1.4 Double Complexes

Definition 1.4.1. A double complex (A, d, δ) is a bigraded module A equipped with two differ-

entials:

� the horizontal differential d : Ap,q → Ap+1,q,

� the vertical differential δ : Ap,q → Ap,q+1,

such that the following conditions hold:

d2 = 0, δ2 = 0, dδ + δd = 0.

We say that the double complex is first quadrant if Ap,q = 0 whenever p < 0 or q < 0.

Let (A, d, δ) be a first quadrant double complex. We define its total complex Tot(A)• by

Tot(A)n =
⊕
p+q=n

Ap,q, with differential D = d+ δ.

There are two standard filtrations on Tot(A)•:

� The column filtration:

W̃p =
⊕
i≥p

⊕
j≥0

Ai,j ,

� The row filtration:

W̃q =
⊕
i≥0

⊕
j≥q

Ai,j .
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We observe that these filtrations are bounded and so we can apply Theorem 1.3.5. Different

choices of filtration yield different initial pages of the spectral sequence associated to the filtered

complex Tot(A)•. Using the column filtration, the spectral sequence has:

Ep,q0 = Ap,q, d0 = δ,

Ep,q1 = Hq(Ap,•, δ), d1 = d,

Ep,q2 = Hp(Hq(A•,•, δ), d), d2 =?

While with the row filtration:

Ep,q0 = Ap,q, d0 = d,

Ep,q1 = Hp(A•,q, d), d1 = δ,

Ep,q2 = Hq(Hp(A•,•, d), δ), d2 =?

The remarkable fact is that both spectral sequences converge to the same object:

Theorem 1.4.2. Let (A, d, δ) be a first quadrant double complex and (Tot(A), D = d + δ) its

associated total complex. The column filtration and row filtration give two different spectral

sequences which both converge to the cohomology of the total complex.

Ep,qr ⇒ Hp+q(Tot(A), D).

Proof. A proof for this theorem can be found in [3, Theorem 14.14].

Remark 1.4.3. Although the spectral sequences arising from the row and column filtrations

both converge to the cohomology of the total complex, they may degenerate at different pages.

Definition 1.4.4. We say that an element a ∈ Ap,q survives to Er if it represents a cohomology

class in Ep,qr . In this case, we denote the class of a in Er by [a]r.

Each Ep,qr is a subquotient of Ap,q, so the definition makes sense. The following proposition

will be useful later.

Proposition 1.4.5. If a ∈ Ap,q survives to Er, it can be extended to a ‘zig-zag’; there exist

elements ci ∈ Ap−i,q+i, 1 ≤ i ≤ r − 1, such that

0 = da,

δa = dc1,

δc1 = dc2,

...

δcr−2 = dcr−1,

and such that, setting c0 = a, the action of the differentials di on Ei is given by di([a]i) = [δci−1]i,

i ≤ r.
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cr−1

cr−2

. . .

c2

c1

a 0

d

d

δ

δ

d

δ

d

δ

d

δ

d

Proof. A proof can be found in [3, Chapter 3, Section 14].

Remark 1.4.6. The ci’s are not unique. However, the class of δci−1 in Ei does not depend on

the choice of ci−1 provided that the difference is d-exact. In other words, if dci−1 = dc′i−1 then

[δci−1]i = [δc′i−1]i.



Chapter 2

Kähler Manifolds and Hodge

Decomposition

In this chapter, we briefly review some foundational results on Kähler manifolds and Hodge

theory that will be used throughout the rest of the thesis. We focus in particular on the structure

of differential forms, the Hodge decomposition, and the cohomological properties characteristic

of compact Kähler manifolds. Some references for this chapter are [3], [12] and [14].

For this chapter, X is a complex manifold of dimension n.

2.1 Differential Forms and the Dolbeault Operators

We denote the (real) tangent bundle (smooth vector bundle of rank 2n) of X by TX and its

complexified dual, called the cotangent bundle by T ∗X = HomR(TX,C). A smooth differential

C-valued k-form is a smooth section of the k-th exterior power of the cotangent bundle:
∧k T ∗X.

We call k the degree of the form. We denote by Ak
X the sheaf of smooth differential k-forms on

X; for an open subset U of X,

Ak
X(U) := C∞(U,

k∧
T ∗X).

Locally on a complex manifold of complex dimension n with local holomorphic coordinates

(z1, . . . , zn), a smooth k-form can be written as a linear combination of wedge products of the

local coordinate 1-forms, dzi, and their complex conjugates, dz̄i:

α =
∑

|I|+|J |=k

αI,J dz
I ∧ dz̄J =

∑
|I|+|J |=k

αI,J dz
i1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq

where I = (i1 < · · · < ip), J = (j1 < · · · < jq), p + q = k and αI,J ∈ C∞(U) are smooth

complex-valued functions. We call such a k-form, a form of type (p, q). We denote by Ap,q
X the

space of (p, q)-forms.

We can define the Dolbeault operators

∂ : Ap,q
X → Ap+1,q

X and ∂ : Ap,q
X → Ap,q+1

X

9
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as follows. Let α =
∑

|I|+|J |=k αI,J dz
I ∧ dz̄J then

∂α =
∑

|I|+|J |=k

∑
l

∂αI,J
∂zl

dzl ∧ dzI ∧ dz̄J ,

and

∂α =
∑

|I|+|J |=k

∑
l

∂αI,J
∂z̄l

dz̄l ∧ dzI ∧ dz̄J .

One can check that they satisfy the Leibniz rule:

∂(α ∧ β) = ∂α ∧ β + (−1)degαα ∧ ∂β,

∂(α ∧ β) = ∂α ∧ β + (−1)degαα ∧ ∂β,

and that

∂2 = ∂
2
= ∂∂ + ∂∂ = 0.

We define d = ∂ + ∂ : Ak
X → Ak+1

X the exterior derivative. Clearly,

d2 = (∂ + ∂)2 = ∂2 + ∂∂ + ∂∂ + ∂
2
= 0

and d satisfies the Leibniz rule:

d(α ∧ β) = dα ∧ β + (−1)degαα ∧ dβ.

Definition 2.1.1. We call a k-form α closed if dα = 0. We call a k-form α exact if α = dβ for

some (k − 1)-form β. Since d2 = 0, every exact form is closed.

Remark 2.1.2. If a (p, q)-form α is d-closed, then it is automatically ∂- and ∂-closed. Indeed,

since d = ∂ + ∂, we have

0 = dα = ∂α+ ∂α.

But ∂α ∈ Ap+1,q
X and ∂α ∈ Ap,q+1

X , which lie in different bidegrees and are therefore linearly

independent. It follows that both components must vanish:

∂α = 0 and ∂α = 0.

Theorem 2.1.3 (de Rham’s Theorem). Let X be a complex manifold, and let Ak
X denote the

sheaf of C-valued smooth differential k-forms. Let d be the exterior derivative on AX =
⊕

kAk
X .

Then the k-th cohomology of X with complex coefficients, is given by the space of closed k-forms,

modulo the exact k-forms:

Hk(X,C) ∼= Hk
dR(X) :=

ker
(
d : Ak

X(X) → Ak+1
X (X)

)
im
(
d : Ak−1

X (X) → Ak
X(X)

) .
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2.2 Holomorphic Forms

Let X be a complex manifold. The tangent bundle as a smooth vector bundle is a real rank 2n

vector bundle TX on X. An almost complex structure J is an endomorphism J : TX → TX

with the property that J2 = − Id. The complex structure on X equips TX with a natural

almost complex structure given by multiplication by i in local holomorphic coordinates.

After complexifying the tangent bundle to TX ⊗R C → X, the endomorphism J extends

C-linearly to an endomorphism of TX ⊗ C, defined by

J(u+ iv) = J(u) + iJ(v), for u, v ∈ TX.

Since J2 = − Id, this extended J has eigenvalues i and −i, and the complexified tangent bundle

splits as

TX ⊗ C = T 1,0X ⊕ T 0,1X

where T 1,0X is the i-eigenbundle and T 0,1X the −i-eigenbundle. We call T 1,0X the holomorphic

tangent bundle and T 0,1X the anti-holomorphic tangent bundle.

The holomorphic cotangent bundle is the dual bundle T ∗
1,0X := (T 1,0X)∗, and similarly the

anti-holomorphic cotangent bundle is T ∗
0,1X := (T 0,1X)∗. Complex conjugation interchanges

these bundles, giving a natural R-linear (but in general not C-linear) isomorphism T 1,0X ∼=
T 0,1X.

Locally, in a system of holomorphic coordinates (z1, . . . , zn) onX, the holomorphic cotangent

bundle T ∗
1,0X is spanned by the differentials {dz1, . . . , dzn}, and the anti-holomorphic cotangent

bundle T ∗
0,1X is spanned by {dz1, . . . , dzn}.

This decomposition extends to the exterior powers:

k∧
(TX ⊗ C)∗ ∼=

⊕
p+q=k

(
p∧
T ∗
1,0X ⊗

q∧
T ∗
0,1X

)

Smooth sections of the summand bundles on the RHS are the smooth differential forms of type

(p, q) on X, i.e., sections of Ap,q
X .

The holomorphic p-forms onX are defined as holomorphic sections of
∧p T ∗

1,0X. Equivalently,

a smooth (p, 0)-form α is holomorphic if and only if ∂α = 0. Therefore, ΩpX can be defined as

the sheaf of holomorphic sections of
∧p T ∗

1,0X or equivalently, ΩpX = ker
(
∂ : Ap,0

X → Ap,1
X

)
.

The canonical line bundle of X is defined as the top exterior power of the holomorphic

cotangent bundle:

KX :=

n∧
T ∗
1,0X

Theorem 2.2.1 (Dolbeault’s Theorem). Let X be a complex manifold, let Ak
X denote the sheaf

of C-valued smooth differential k-forms and ΩpX = ker(∂ : Ap,0
X → Ap,1

X ) the sheaf of C-valued
holomorphic p-forms. Then the sheaf cohomology of ΩpX is isomorphic to the Dolbeault cohomol-

ogy group:

Hq(X,ΩpX) = Hp,q

∂
(X) =

ker
(
∂ : Ap,q → Ap,q+1

)
im
(
∂ : Ap,q−1 → Ap,q

) .
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2.3 Hermitian Metric

Definition 2.3.1. Let V be a complex vector space of dimension n. A hermitian form h on V

is an R-bilinear map h : V × V → C such that

1. it is C linear with respect to the first argument and C-antilinear with respect to the second

one, i.e., h(λu, v) = λh(u, v) and h(u, λv) = λ̄h(u, v), where u, v ∈ V and λ ∈ C.

2. h(v, u) = h(u, v)

We say that a hermitian form h is positive definite, if in addition h(u, u) > 0, for every u ∈ V ,

u ̸= 0.

Write ⟨ , ⟩ := ℜ(h) and ω = −ℑ(h) such that h = ⟨ , ⟩ − iω. We have the following

proposition:

Proposition 2.3.2. Let h = ⟨·, ·⟩−i ω be a positive definite Hermitian form on a complex vector

space V . Then:

� ⟨·, ·⟩ is a real scalar product on the underlying real vector space of V .

� ω is a form with the following properties:

– it is of type (1, 1), i.e., ω(iu, iv) = ω(u, v).

– it is skew-symmetric, i.e., ω(u, v) = −ω(v, u).

– it is non-degenerate, i.e., ω(u, v) = 0 for all v, implies u = 0.

– it is positive, i.e., ω(u, iu) > 0 for all u ̸= 0.

� Moreover, ⟨·, ·⟩ determines ω uniquely and vice versa.

Proof. By definition of a Hermitian form, we see that ⟨·, ·⟩ = Re(h(·, ·)) is an R-bilinear form.

It is also symmetric; for all u, v ∈ V ,

⟨u, v⟩ = Re(h(u, v)) = Re(h(v, u)) = Re(h(v, u)) = ⟨v, u⟩,

Positivity of h implies ⟨u, u⟩ > 0 for u ̸= 0, so ⟨·, ·⟩ is a positive definite scalar product on the

real vector space underlying V .

Next, ω = −Im(h(·, ·)) is a real-valued bilinear form. From the Hermitian symmetry of h,

h(v, u) = h(u, v) =⇒ Im(h(v, u)) = −Im(h(u, v)),

so ω is skew-symmetric: ω(u, v) = −ω(v, u).
Now, ω is a 2-form and decomposes into form type as

ω = ω2,0 + ω1,1 + ω0,2
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Recall that by definition of type, a (p, q)-form, is complex linear in each of its p (type (1, 0))

holomorphic arguments and complex anti-linear in each of its q (type (0, 1)) anti-holomorphic

arguments. By the definition of h,

h(iu, iv) = −i2h(u, v) = h(u, v)

and thus, ω(iu, iv) = ω(u, v). This forces ω2,0 = ω0,2 = 0 and thus, ω is of type (1, 1).

To prove non-degeneracy, assume ω(u, v) = 0 for all v ∈ V . Then

0 = ω(u, v) = −Im(h(u, v)) =⇒ h(u, v) ∈ R ∀v.

Similarly, evaluating at iv,

h(u, iv) = i · h(u, v),

which is purely imaginary unless h(u, v) = 0. Since h(u, iv) must be real as well , it forces

h(u, v) = 0 for all v. By positive-definiteness and non-degeneracy of h, this implies u = 0.

Hence, ω is non-degenerate.

We see:

ω(u, v) = −ℑ(h(u, v)) = ℑ(i2h(u, v)) = ℑ(ih(iu, v)) = ⟨iu, v⟩

Hence, ω determines ⟨ , ⟩ and conversely, ⟨ , ⟩ determines ω. In addition, for u ̸= 0 and v = iu

on the identity above, we get

ω(u, iu) = ⟨iu, iu⟩ = h(iu, iu) > 0

and ω is positive.

Definition 2.3.3. A hermitian metric over a smooth manifold X is a smooth global section

h of the complex vector bundle (T 1,0X ⊗C T
0,1X)∗, where T 1,0X is the holomorphic tangent

bundle of X and T 0,1X = T 1,0X its complex conjugate, such that for every p ∈ X, the map

hp : T
1,0
p X ⊗C T

0,1
p X → C is a positive definite hermitian form on T 1,0

p X.

Proposition 2.3.4. Every complex manifold admits a Hermitian metric.

Definition 2.3.5. A Hermitian manifold (X,h) is a complex manifold X with a choice of a

hermitian metric h.

An immediate consequence of Proposition 2.3.2 is the following:

Theorem 2.3.6. If (X,h) is a hermitian manifold, then ω = −ℑ(h) is a non-degenerate, skew-

symmetric, positive (1, 1)-form. Conversely, if a (1, 1)-form ω on a complex manifold X is

non-degenerate, skew-symmetric and positive, it arises as ω = −ℑ(h) for the hermitian metric

h(u, v) = −ω(iu, v)− iω(u, v).

Definition 2.3.7. A Kähler manifold is a complex manifold that admits a hermitian metric h

with ω = −ℑ(h) closed, i.e., dω = 0.
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Examples. 1. The complex vector space Cn with the standard Hermitian metric is a Kähler

manifold (but not compact).

2. The complex projective space CPn with the Fubini–Study metric is a compact Kähler

manifold.

3. A smooth subvariety of CPn, or equivalently, a complex manifold embedded in projective

space, equipped with the restriction of the Fubini–Study metric, is a compact Kähler

manifold.

4. A submanifold of a Kähler manifold is naturally a Kähler manifold, with the induced

Kähler form ω.

5. A Riemann surface (a complex manifold of complex dimension 1), endowed with a Her-

mitian metric h, is Kähler. The associated 2-form ω is defined on a real 2-dimensional

manifold, so it is automatically closed: dω = 0.

2.4 The Laplacian and Decomposition of Forms

Theorem 2.4.1. Let X be a compact complex manifold of complex dimension n. A choice of

Hermitian metric h = ⟨ , ⟩ − iω on X determines:

1. A Hermitian L2-inner product ⟨α, β⟩L2 =
∫
X ⟨α, β⟩ dV on the space of global smooth dif-

ferential forms AX(X), where AX =
⊕

kAk
X .

2. A Hodge star operator ∗ : Ap,q
X → An−p,n−q

X defined by

⟨α, β⟩L2 =

∫
X
α ∧ ∗β,

satisfying ∗2 = (−1)p+qId on (p, q)-forms.

3. An adjoint operator d∗ = − ∗ d∗ : Ak+1
X → Ak

X to the exterior derivative d : Ak
X → Ak+1

X ,

characterized by

⟨dα, β⟩L2 = ⟨α, d∗β⟩L2 ,

and satisfying (d∗)2 = 0.

4. Similarly, adjoints ∂∗ = −∗∂∗ : Ap+1,q
X → Ap,q

X and ∂
∗
= −∗∂∗ : Ap,q+1

X → Ap,q
X , satisfying

(∂∗)2 = 0, (∂
∗
)2 = 0, and d∗ = ∂∗ + ∂

∗
.

Note that we take X to be compact so the hermitian product is well defined. With a choice

of a hermitian metric h on X, we define the Laplacian

∆d = dd∗ + d∗d : Ak
X → Ak

X .

The kernel

Hk
d = ker{∆d : Ak

X → Ak
X}

is the space of d-harmonic k-forms.
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Of course dα = d∗α = 0 implies ∆dα = 0. The other direction can be seen via the equality

⟨∆dα, α⟩L2 = ⟨dd∗α, α⟩L2 + ⟨d∗d, α⟩L2 = ⟨d∗α, d∗α⟩L2 + ⟨dα, dα⟩L2 = ∥d∗α∥2 + ∥dα∥2

and hence, ∆dα = 0 if and only if dα = d∗α = 0.

Theorem 2.4.2 ([14], Sections 5.2.2 & 5.2.3). We have a decomposition of k-forms, orthogonal

with respect to the hermitian product on AX(X):

Ak
X(X) ∼= Hk

d(X)⊕ dAk−1
X (X)⊕ d∗Ak+1

X (X)

Corollary 2.4.3. The d-closed forms are given by

ker d = Hk
d(X)⊕ dAk−1

X (X).

This implies Hk
d(X) ∼= Hk

dR(X) ∼= Hk(X,C).

Proof. Using Theorem 2.4.2 we can express a k-form α as

α = α0 + dβ + d∗β′

with α0 d-harmonic, and the summands on the RHS are pairwise orthogonal. Now, if α is

d-closed,

〈
d∗β′, d∗β′

〉
L2 =

〈
α− α0 − dβ, d∗β′

〉
L2 =

〈
α, d∗β′

〉
L2 =

〈
dα, β′

〉
L2 = 0

and hence d∗β′ = 0 as desired.

Similarly, we can construct

∆∂ = ∂ ∂
∗
+ ∂

∗
∂ : Ap,q

X → Ap,q
X and ∆∂ = ∂∂∗ + ∂∗ ∂ : Ap,q

X → Ap,q
X

whose kernels give the spaces of ∂-harmonic and ∂-harmonic (p, q)-forms:

Hp,q

∂
= ker{∆∂ : Ap,q → Ap,q} and Hp,q

∂ = ker{∆∂ : Ap,q → Ap,q}

Using the same trick as before, we can show that

∆∂α = 0 ⇐⇒ ∂α = ∂
∗
α = 0

and

∆∂α = 0 ⇐⇒ ∂α = ∂∗α = 0

Theorem 2.4.4. We have a decomposition of (p, q)-forms, orthogonal with respect to the her-

mitian product on AX(X):

Ap,q
X (X) ∼= Hp,q

∂
(X)⊕ ∂Ap,q−1

X (X)⊕ ∂
∗Ap,q+1

X (X)

Ap,q
X (X) ∼= Hp,q

∂ (X)⊕ ∂Ap,q−1
X (X)⊕ ∂∗Ap,q+1

X (X)
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Corollary 2.4.5. The ∂-closed forms are given by

ker ∂ = Hp,q
∂ (X)⊕ ∂Ap,q−1

X (X)

Similarly, the ∂-closed forms are given by

ker ∂ = Hp,q

∂
(X)⊕ ∂Ap,q−1

X (X)

This implies Hp,q

∂
(X) ∼= Hp,q

∂
(X) ∼= Hq(X,ΩpX).

2.5 Hodge Decomposition on a Kähler manifold

In general, ∆d, ∆∂ and ∆∂ are not related. However, if the manifold X is Kähler , we will see

in Theorem 2.5.1 that

∆d = 2∆∂ = 2∆∂

It follows that the corresponding spaces of harmonic (p, q)-forms coincide: Hp,q
∂ = Hp,q

∂
.

To simplify notation, we will write Hk = Hk
d for the space of d-harmonic k-forms, and

Hp,q := Hp,q
∂ for the space of ∂-harmonic forms of type (p, q).

Given a k-form α, we can decompose α into its (p, q)-components with p+ q = k.

α =
∑
p+q=k

αp,q

If in addition α is d-harmonic, i.e., ∆dα = 0, then every component αp,q must be d-harmonic

since

0 = ∆dα =
∑
p+q=k

∆dα
p,q

and every component on the RHS has different bidegree. In particular, each αp,q is ∂-harmonic;

∆dα
p,q = 0 implies dαp,q = d∗αp,q = 0 which forces ∂αp,q = ∂αp,q = ∂∗αp,q = ∂

∗
αp,q = 0.

The decomposition of a harmonic k-form into its harmonic (p, q)-components with p+ q = k

and the relation of the Laplacians on a compact Kähler manifold gives the decomposition:

Hk =
⊕
p+q=k

Hp,q and Hp,q = Hq,p

From Theorem 2.1.3 and Theorem 2.4.2 we have that Hk ∼= Hk(X,C). We will see that this

decomposition induces decomposition on the cohomology of X.

Theorem 2.5.1. On a Kähler manifold X with Kähler form ω, the Dolbeault operators, the

Laplacian, the Hodge star operator, and the Lefschetz operator

L : Ap,q
X → Ap+1,q+1

X , α 7→ ω ∧ α,

together with their adjoints, satisfy a collection of commutation relations known as the Kähler

identities:
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� [L∗, ∂] = i∂̄∗

� [L∗, ∂̄] = −i∂∗

� [L∗, ∂∗] = −i∂̄

� [L∗, ∂̄∗] = i∂

� [L, ∂] = 0

� [L, ∂̄] = 0

� [L, ∂∗] = 0

� [L, ∂̄∗] = 0

� [∆d, L] = 0

� [∆d, L
∗] = 0

� [∆d, ∂] = 0

� [∆d, ∂̄] = 0

� [∆d, ∗] = 0

� ∂∂∗ + ∂∗∂ = 0

� ∂∂
∗
+ ∂

∗
∂ = 0

� ∆d = 2∆∂ = 2∆∂

where [A,B] := AB −BA is the commutator operator.

Proof. Proof of the Kähler identities can be found in [14, Chapter 6].

Lemma 2.5.2 (∂∂-lemma). Let X be a Kähler manifold and α ∈ Ap,q
X (X) be a smooth complex

differential (p, q)-form on X with p, q ≥ 1 which is d-closed, i.e., dα = 0. Then, the following

are equivalent:

(1) α is ∂∂ exact, i.e., α = ∂∂β for some β ∈ Ap−1,q−1
X (X).

(2) α is ∂ exact, i.e., α = ∂γ for some γ ∈ Ap−1,q
X (X)

(2’) α is ∂ exact, i.e., α = ∂γ′ for some γ′ ∈ Ap,q−1
X (X)

(2”) α is d-exact, i.e., α = dγ′′ for some γ′′ ∈ Ap+q−1
X (X).

(3) α is orthogonal to Hp,q(X) ⊂ Hp+q(X)

Proof. Using the identities ∂2 = ∂
2
= ∂∂ + ∂∂ = 0 and d = ∂ + ∂ we see that (1) implies (2),

(2′) and (2′′):

α = ∂∂β = ∂(∂β) = ∂(∂(−β)) = d(∂(−β)).

Moreover, any of the conditions (2), (2′) or (2′′) implies (3), by Theorem 2.4.2 and Theorem

2.4.4.

We will prove (3) =⇒ (1). Take α orthogonal to Hp,q(X). Using the orthogonal decomposition

of Theorem 2.4.4 we have that

α = ∂γ + ∂
∗
γ′

for some γ ∈ Ap,q−1
X (X) and γ′ ∈ Ap,q+1

X (X) with〈
∂γ, ∂

∗
γ′
〉
L2

= 0

Since α is d closed, α must be both ∂ and ∂ closed (see Remark 2.1.2). This gives〈
∂
∗
γ′, ∂

∗
γ′
〉
L2

=
〈
α− ∂γ, ∂

∗
γ′
〉
L2

=
〈
α, ∂

∗
γ′
〉
L2

=
〈
∂α, γ′

〉
L2 = 0

and thus ∂
∗
γ′ = 0, and α = ∂γ. Now, we apply the Hodge decomposition on γ for ∂ to get

γ = γ0 + ∂η + ∂∗η′
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with γ0 ∂-harmonic, η ∈ Ap−1,q−1
X (X) and η′ ∈ Ap+1,q−1

X (X).

Since ∆∂ = ∆∂ , γ0 is also ∂-harmornic, and thus ∂γ0 = ∂
∗
γ0 = 0. This implies

α = ∂∂η + ∂∂∗η′

We use the Kähler identity ∂∂∗ = −∂∗∂ and the fact that

〈
∂η, ∂∗η′

〉
L2 = 0

to get similarly

〈
∂∂∗η′, ∂∂∗η′

〉
L2 =

〈
α, ∂∂∗η′

〉
L2 = −

〈
α, ∂∗∂η′

〉
L2 =

〈
∂α, ∂η′

〉
L2 = 0

and hence ∂∂∗η′ = 0, and α = ∂∂η = −∂∂η as desired.

Theorem 2.5.3 (Hodge Decomposition). Let X be a compact Kähler manifold. Then the

cohomology of X with complex coefficients admits a decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X) with Hp,q(X) = Hq,p(X)

where Hp,q(X) is the subspace of de Rham cohomology classes which are representable by a closed

(p, q)-form. In particular, the decomposition does not depend on the choice of the hermitian

metric.

Proof. The isomorphism Hk
d

∼−→ Hk(X,C) is given by sending a d-harmonic form α to the class

[α]. Let Kp,q ⊂ Hp+q(X,C) be the subspace of the de Rham cohomology corresponding to Hp,q

under this isomorphism.

We will show that Kp,q = Hp,q(X). That is, a cohomology class admits a closed (p, q)-form

representative if and only if it admits a harmonic (p, q)-form representative. The inclusion

Kp,q ⊂ Hp,q(X) is clear. Now for the inverse inclusion take a class in Hp,q(X) represented by a

d-closed, and hence ∂-closed, (p, q)-form ω. By corollary 2.4.5 we can write

ω = α+ ∂β

where α is ∂-harmonic and β ∈ Ap,q−1
X (X). Now, we apply Lemma 2.5.2 to write ω = α + dγ

for some γ (p+ q− 1)-form. We conclude that ω and α represent the same class in Hp,q(X) and

since α is harmonic, Hp,q(X) ⊂ Kp,q.

We have seen in Corollary 2.4.5 that

Hp,q(X) ∼= Hq(X,ΩpX)

So we get an alternative description of the decomposition of a compact Kähler manifold:

Hk(X,C) ∼=
⊕
p+q=k

Hq(X,ΩpX)
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Definition 2.5.4. LetX be a compact complex manifold. The numbers hp,q = dimCH
q(X,ΩpX)

are called the Hodge numbers of X and the numbers bk = dimCH
k(X,C) are called the Betti

numbers of X.

Remark 2.5.5. We assume that X is compact so that the cohomology groups Hk(X,C) and

Hq(X,ΩpX) are finite-dimensional. This ensures that the Hodge numbers hp,q and the Betti

numbers bk are well-defined.

Theorem 2.5.6. Let X be a compact Kähler manifold. Then, there is an isomorphism

∗ : Hp,q → Hn−p,n−q

Hence, the Hodge numbers of X satisfy

hp,q = hq,p = hn−p,n−q

and the Betti numbers are given by

bk =
∑
p+q=k

hp,q.

Proof. Since ∆d = 2∆∂ , we can see from the Kähler identities (2.5.1) that ∆∂ commutes with

the Hodge star operator

∗ : Ap,q
X → An−p,n−q

X .

This induces an isomorphism Hp,q ∼−→ Hn−p,n−q. Combining with Theorem 2.5.3 the result

follows.

The Hodge numbers can be arranged in a symmetric pattern known as the Hodge diamond.

For example, for a compact Kähler manifold of complex dimension 2, the Hodge diamond looks

like

h0,0 b0

h1,0 h0,1 b1

h2,0 h1,1 h0,2 b2

h2,1 h1,2 b3 = b1

h2,2 b4 = b0

while for a compact Kähler manifold of complex dimension 3, the Hodge diamond takes the

form:

h0,0 b0

h1,0 h0,1 b1

h2,0 h1,1 h0,2 b2

h3,0 h2,1 h1,2 h0,3 b3

h3,1 h2,2 h1,3 b4 = b2

h3,2 h2,3 b5 = b1

h3,3 b6 = b0
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Theorem 2.5.6 implies that this diagram is symmetric across the vertical axis and the center.

Related to the Hodge numbers, for a connected compact complex manifold X we define the

following:

1. Holomorphic Euler characteristic. The Euler characteristic of the structure sheaf

OX = Ω0
X , sheaf of complex holomorphic functions, is defined by:

χ(OX) :=
n∑
i=0

(−1)ihi(X,OX) =
n∑
i=0

(−1)ih0,i.

2. Topological Euler characteristic. The Euler number (or topological Euler character-

istic) of X is given by:

e(X) :=
2n∑
i=0

(−1)ibi(X),

where bi(X) = dimH i(X,C) are the Betti numbers.

3. Geometric genus. The geometric genus of X is the Hodge number

pg(X) := dimH0(X,ΩnX) = hn,0.

It is a birational invariant of complex manifolds and algebraic varieties.

4. Arithmetic genus. The arithmetic genus of X is defined as:

pa(X) := (−1)dimX (χ(OX)− 1)

And now we present some results from Hodge theory on compact Kähler manifolds.

Proposition 2.5.7. Let X be a compact Kähler manifold and let α ∈ Ap,q
X be a smooth dif-

ferential form that is d-exact. Then there exist forms β′ ∈ Ap−1,q
X and β′′ ∈ Ap,q−1

X such that

α = dβ′ = dβ′′.

Proof. Since α is d-exact, it is in particular d-closed. By Lemma 2.5.2, α is ∂∂-exact: there

exists a form β ∈ Ap−1,q−1
X such that α = ∂∂β.

Define β′ := −∂β ∈ Ap,q−1
X and β′′ := ∂β ∈ Ap−1,q

X . Then,

dβ′ = −(∂ + ∂)∂β = −∂∂β = ∂∂β = α,

and similarly,

dβ′′ = (∂ + ∂)∂β = ∂∂β = α.

This proves the claim.

Proposition 2.5.8 (Principle of two types). Let X be a compact Kähler manifold and let

[β] ∈ Hn(X,C) be a cohomology class that can be represented by both β ∈ Ap,q
X and β′ ∈ Ap′,q′

X

with p+ q = p′ + q′ = n and p ̸= p′. Then [β] = 0.
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Proof. The result follows from the Hodge decomposition on Hn(X,C):

Hn(X,C) =
⊕
p+q=n

Hp,q(X)

where the sum is direct. If the cohomology class [β] ∈ Hn(X,C) can be represented by both

a (p, q)-form and a (p′, q′)-form with p ̸= p′, then [β] lies in two distinct components of this

decomposition. Since the decomposition is direct, this forces [β] = 0.

Proposition 2.5.9. The odd Betti numbers b2k+1 = dimCH
2k+1(X,C) of a compact Kähler

manifold X are even.

Proof. Theorem 2.5.6 gives

b2k+1 =
∑

p+q=2k+1

hp,q.

Since p+ q = 2k+1 is odd, there are no terms with p = q. By symmetry of the Hodge numbers,

the summands come in complex conjugate pairs: hp,q = hq,p with (p, q) ̸= (q, p). Therefore, the

dimension is even:

b2k+1 =
∑

p+q=2k+1

hp,q = 2
k∑
p=0

hp,2k+1−p.

Theorem 2.5.10. The even Betti numbers b2k = dimCH
2k(X,C), 1 ≤ k ≤ dimCX of a

compact Kähler manifold X are positive.

Proof. Let dimCX = n. It suffices to show that hk,k > 0 for all k = 1, . . . , n. Let ω be the

Kähler form of X. We can see from the Kähler identities (Theorem 2.5.1) that the Lefschetz

operator L : α 7→ ω ∧ α commutes with ∆d:

[L,∆d] = 0 ⇐⇒ L∆d −∆dL = 0

This shows that wedging any harmonic form with ω will again produce a harmonic form. In

particular, ω = ω∧1 is harmonic and ωk = ω∧· · ·∧ω (taken k times) are harmonic (k, k)-forms

for all 1 ≤ k ≤ n.

2.6 Hodge Structures

Definition 2.6.1. Let n be an integer. A pure Hodge structure of weight n consists of an

abelian group HZ and a decomposition of its complexification H := HZ ⊗Z C into a direct sum

of complex subspaces Hp,q, where p + q = n, with the property that the complex conjugate of

Hp,q is Hq,p:

H = HZ ⊗Z C =
⊕
p+q=n

Hp,q and Hp,q = Hq,p

Remark 2.6.2. One can also speak of rational (resp. real) pure Hodge structures, obtained by

replacing the group HZ with a rational (resp. real) vector space.
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Examples. (a) If X is a compact Kähler manifold, then the cohomology group Hn(X,C) is
obtained from the integral cohomology Hn(X,Z) by extension of scalars:

Hn(X,C) = Hn(X,Z)⊗Z C

By Theorem 2.5.3, this complex cohomology group admits a decomposition

Hn(X,C) =
⊕
p+q=n

Hp,q(X,C),

This decomposition endows Hn(X,Z) with a pure Hodge structure of weight n.

(b) Let n = 2k be even. Defining H = Hk,k and Hp,q = 0 for (p, q) ̸= (k, k) we obtain the

trivial pure Hodge structure of weight 2k.

(c) Define Z(1) := 2πiZ ⊂ C as a subgroup of C and set H = Z(1) ⊗Z C = C = H−1,−1.

This is a Hodge structure of weight −2 and it is the unique one dimensional pure Hodge

structure of weight −2 up to isomorphism. This Hodge structure is called the Tate-Hodge

structure.

(d) Define Z(n) := (2πi)nZ the n−th tensor power of Z(1). It is pure Hodge structure of

weight −2n.

2.7 Smooth Curves over C

By a smooth curve over C, we mean a smooth, connected, one-dimensional complex projective

variety. There are two important notions of genus associated with a smooth curve C over C:

� The geometric genus pg(C) is the topological genus of C, viewed as a compact, orientable

surface of real dimension 2; that is, the number of “holes” in the surface. Algebraically, it

is defined as

pg(C) = h1,0(C) = dimH0(C,Ω1
C).

� The arithmetic genus pa(C) is defined algebraically as

pa(C) = 1− χ(OC) = 1− h0,0(C) + h0,1(C) = h0,1(C).

Since on a compact Kähler manifold we have h0,1(C) = h1,0(C), the two notions of genus

agree. We refer to their common value simply as the genus of C, denoted by g(C).

A smooth complex curve is, up to isomorphism, the same as a connected compact Riemann

surface. The Hodge numbers of such a curve of genus g are given by the following Hodge

diamond:
1

g g

1

Definition 2.7.1. An elliptic curve over C is a smooth complex projective curve of genus 1.
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2.8 Smooth Surfaces over C

By a smooth surface over C, we mean a smooth, connected, two-dimensional complex projective

variety. As before, such a variety is naturally a compact Kähler manifold.

Let S be a smooth projective surface. We define the irregularity q(S) of S by

q(S) := h1,0(S).

We say that a surface S is regular, if q(S) = 0.

We also have Noether’s formula:

χ(OS) =
K2
S + e(S)

12
,

where KS is the canonical divisor on S, and K2
S := KS ·KS denotes its self-intersection number.

Example 2.8.1. A ruled surface over a smooth connected curve C is a smooth, connected

projective surface S together with a surjective morphism φ : S → C such that the fiber over

each point y ∈ C is isomorphic to P1, and such that φ admits a section. It has irregularity

q(S) = g(C) and Hodge numbers h2,0 = 0 and h1,1 = 2.

Example 2.8.2. A rational surface is any surface birationally equivalent to P2. It is regular,

i.e., q(S) = 0.

2.9 K3 Surfaces

Definition 2.9.1. A K3 surface is a compact, connected complex manifold S of dimension

2 such that the canonical bundle KS =
∧2 T ∗S is trivial and the irregularity vanishes, i.e.,

q(S) = h1,0(S) = 0.

Theorem 2.9.2. Every K3 surface is a compact Kähler manifold.

Let S be a K3 surface. Since S is regular, we have h0,1(S) = h1,0(S) = 0. Furthermore,

since Ω2
S
∼= OS , we have

h0,2 = h2,0 = dimH0(S,Ω2
S) = dimH0(S,OS) = h0,0 = 1.

We find

χ(OS) = 2, and e(S) = 4 + h1,1.

Noether’s formula then gives h1,1 = 20. The Hodge diamond of a K3 surface is:

1

0 0

1 20 1

0 0

1
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2.10 Complex Tori and Abelian Varieties

In this section, we introduce only the basic background on complex tori and abelian varieties

needed for the rest of the thesis. We omit many interesting aspects of the theory focusing on

definitions and results that will be used in later chapters. The main reference for this material

is [2].

Definition 2.10.1. Let g be a positive integer. A complex torus X = V/Λ of dimension g is

the quotient of a complex vector space V ∼= Cg by a full rank lattice Λ ⊂ V ; that is, a discrete

subgroup isomorphic to Z2g.

For the rest of the chapter, we fix a complex vector space V of dimension g, and let Λ ⊂ V

be a full lattice. We denote by X = V/Λ the corresponding complex torus.

The complex structure on V descends to the quotient, and the standard flat Hermitian metric

on Cg induces a Kähler metric on X, making it a compact Kähler manifold.

Since V is contractible, it serves as the universal cover of X, and the fundamental group

π1(X) is naturally identified with the lattice Λ ⊂ V . As a consequence, since Λ is abelian, the

first homology group of X is

H1(X,Z) ∼= Λ.

Moreover, by the universal coefficient theorem, the first cohomology group satisfies

H1(X,Z) ∼= HomZ(H1(X,Z),Z) ∼= HomZ(Λ,Z).

In the case of a complex torus X = V/Λ, the cohomology ring H•(X,Z) is particularly

well-behaved:

Proposition 2.10.2 ([2], Lemma 1.3.1). Let X = V/Λ be a complex torus of dimension g.

Then we have an isomorphism ∧n
H1(X,Z) ∼−−→ Hn(X,Z)

for all 0 ≤ n ≤ 2g.

Denoting

Altn(Λ,Z) :=
∧n

HomZ(Λ,Z)

as the group of Z-valued alternating n-forms on Λ, Proposition 2.10.2 yields

Hn(X,Z) ∼= Altn(Λ,Z)

for every n ≥ 0. Now let AltnR(V,C) denote the group of C-valued, R-linear alternating n-forms

on V . The canonical identification

Altn(Λ,Z)⊗ C ∼= AltnR(V,C)

implies

Hn(X,C) ∼= AltnR(V,C) =
∧n

HomR(V,C) ∼=
∧n

H1(X,C).
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The Hodge decomposition on H1(X,C) = H1,0(X) ⊕H0,1(X) induces a corresponding de-

composition on Hn(X,C):

Hn(X,C) ∼=
∧n

H1(X,C) ∼=
⊕
p+q=n

(∧p
H1,0(X)⊗

∧q
H0,1(X)

)
.

This gives the identification

Hp,q(X) ∼=
∧p

H1,0(X)⊗
∧q

H0,1(X).

Topologically, X is a real torus of dimension 2g, so b1(X) = 2g, and therefore h1,0(X) = g.

It follows that

hp,q(X) =

(
g

p

)(
g

q

)
.

In particular, the Hodge diamond of a complex torus of dimension g = 2 is:

1
2 2

1 4 1
2 2

1

The set of isomorphism classes of holomorphic line bundles on X can be naturally identified

with H1(X,O∗
X), by interpreting holomorphic line bundles in terms of their transition functions.

We define the first Chern class of a holomorphic line bundle L on X as follows. Consider the

short exact sequence of sheaves on X:

0 → Z ι−→ OX
exp(2πi·)−−−−−−→ O∗

X → 1,

where ι is the inclusion of the constant sheaf Z into the sheaf of holomorphic functions OX , and

the map

exp(2πi·) : OX → O∗
X , f 7→ e2πif

is the exponential map. This sequence induces a long exact sequence on cohomology, in partic-

ular:

· · · → H1(X,OX) → H1(X,O∗
X)

c1−→ H2(X,Z) → H2(X,OX) → · · ·

We define the first Chern class of a holomorphic line bundle L ∈ H1(X,O∗
X) to be c1(L), i.e.,

its image under the map c1. Since

H2(X,Z) ∼= Alt2(Λ,Z),

we may regard c1(L) ∈ H2(X,Z) as an alternating Z-valued form EL on the lattice Λ.

We can extend EL to V by tensoring with R:

EL ⊗ R : V × V → R

to obtain a real alternating form on V . We denote this form again with EL.
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Conversely, it can be shown that a real alternating form E on V represents the Chern class

of a holomorphic line bundle L on X if and only if E(Λ,Λ) ⊂ Z and E(iv, iw) = E(v, w) for all

v, w ∈ V . (See [2, Proposition 2.1.6].)

Mimicking the proof of Proposition 2.3.2, we can show that a real alternating form E on V

satisfying E(iv, iw) = E(v, w) corresponds to a Hermitian form H : V × V → C, via

E = ℑ(H) and H(v, w) = E(iv, w) + iE(v, w)

for all v, w ∈ V .

Putting everything together, we have the following:

Theorem 2.10.3. Let X = V/Λ be a complex torus. There is a one-to-one correspondence

between the following data:

1. Chern classes of holomorphic line bundles on X.

2. Real alternating forms E : V × V → R satisfying:

E(Λ,Λ) ⊂ Z and E(iv, iw) = E(v, w) for all v, w ∈ V.

3. Hermitian forms H : V × V → C such that the imaginary part satisfies:

ℑ(H)(Λ,Λ) ⊂ Z.

Definition 2.10.4. Let L be a holomorphic line bundle on a complex torus X = V/Λ. We

say that L is positive definite if the corresponding Hermitian form c1(L) = H on V is positive

definite.

Definition 2.10.5. A polarization on a complex torus X = V/Λ is a definite Hermitian form

H on V , whose imaginary part E = ℑH satisfies E(Λ,Λ) ⊂ Z.

With these definitions and the previous results, we conclude that any positive definite holo-

morphic line bundle L on X = V/Λ defines a polarization H = c1(L) on X. Thus, by abuse of

notation, we sometimes consider the line bundle L itself as a polarization.

Definition 2.10.6. An abelian variety is a complex torus that admits a polarization, i.e.,

a positive definite holomorphic line bundle. A polarized abelian variety (X,L) is an abelian

variety X equipped with a polarization L.

Example 2.10.7. Suppose X = C/Λ is an elliptic curve. Without loss of generality we may

assume that Λ = Z⊕ zZ for some z ∈ C with ℑ(z) > 0. Define

H : C× C → C, H(v, w) =
vw

ℑ(z)

It is easy to check that H is a hermitian form with ℑ(H)(Λ,Λ) ⊂ Z. Since H is positive definite,

X is an abelian variety. So every elliptic curve is an abelian variety.



Chapter 3

Normal Crossing Divisors

In this chapter, we study subspaces of a Kähler manifold with normal crossing singularities. We

begin with the definition of a normal crossing divisor and its stratification, and then construct

two key double complexes: the de Rham complex and the Čech complex. Finally, we introduce

the dual complex. The main reference for this chapter is [10].

3.1 Definition and Stratification

Definition 3.1.1 (Normal Crossing Divisor). Let X be a Kähler manifold of dimension n+ 1.

A closed analytic subset X ⊂ X is called a normal crossing divisor if it is a reduced divisor of

X with normal crossings. In other words,

1. X is of pure codimension 1 in X ; that is, every irreducible component of X has complex

dimension n.

2. for every point x ∈ X, there exists a holomorphic coordinate chart (U ; z1, . . . , zn+1) of X
centered at x such that X ∩ U is defined by

z1 · · · zr = 0

for some 1 ≤ r ≤ n + 1. In particular, X ⊂ X locally consists of coordinate hyperplanes

intersecting transversely.

X is a simple normal crossing if its irreducible components Xi are all smooth.

Remark 3.1.2. When X = Pn+1, we call X normal crossing variety.

For the remainder of this chapter, we fix a Kähler manifold X of dimension n + 1, and let

X =
⋃
iXi be a compact simple normal crossing divisor in X , withXi its irreducible components.

For any finite index set I, denote XI =
⋂
i∈I Xi, and define the codimension-q stratum of X as

X(q) =
⊔

|I|=q+1

XI .

and the ‘gluing’ maps iq : X
(q) → X induced by inclusions. As a matter of convention, we

assume that all index sets I are increasingly ordered.

27
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Observe that each stratum of X arises as a finite transverse intersection of the Xi’s, and is

therefore itself a smooth submanifold of X . Since X is compact and each stratum is closed in

X, it follows that the strata are compact as well. Being closed complex submanifolds of the

ambient Kähler manifold X , they inherit Kähler structures from X , and hence, each stratum is

a compact Kähler manifold. This allows us to apply the results developed in Chapter 2 to the

strata X(q).

Example 3.1.3. Figure 3.1 shows the stratification of X = X0 ∪X1 ∪X2 ⊂ P2 with Xi
∼= P1.

We have X(0) = X0 ⊔X1 ⊔X2, X
(1) = {X01, X02, X12} and X(q) = ∅ for q > 1.

Figure 3.1: Lines intersecting in P2

Example 3.1.4. Let X =
⋃
Xi be the union of l distinct, connected, smooth projective curves

in P2, where each Xi has degree di and genus gi. Then,

X(0) =
l−1⊔
i=0

Xi

is a disjoint union of l smooth complex curves of total geometric genus g =
∑

i gi. The stratum

X(1) consists of the (finitely many) points where pairs of distinct curves intersect. The union X

is a simple normal crossing divisor when all intersections are transverse, meaning that at most

two curves meet at any given point, and the intersection is transverse in the usual sense. In this

case, by Bézout’s theorem, the number of intersection points is

N := #X(1) =
∑
i<j

didj .

We have natural inclusions jk : X
(1) → X(0) for k = 0, 1, where j0 is induced by Xij ↪→ Xj and

j1 by Xij ↪→ Xi. These induce morphisms of sheaves of locally constant Q-valued functions:

j∗k : QX(0) → QX(1) ,

and we define the map δ = j∗0 − j∗1 . Explicitly, if f is a locally constant function on X(0), then

(δf)(Xij) = f(Xj)− f(Xi).
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This leads to the short exact sequence of sheaves:

0 → QX
γ−→
⊕
i

QXi

δ−→
⊕
i<j

QXij → 0,

where γ is the natural restriction map.

Remark 3.1.5. Strictly speaking, the sheaves
⊕

iQXi and
⊕

i<j QXij appearing in the sequence

should be understood as the pushforwards of the constant sheaves onX(0) andX(1), respectively,

under the gluing maps i0 and i1 into X. For simplicity and readability, we omit the pushforward

notation and write them directly as sheaves on X.

This induces a long exact sequence in cohomology:

0 → H0(X)
γ−→
⊕
i

H0(Xi)
δ−→
⊕
i<j

H0(Xij)
α−→ H1(X)

γ−→
⊕
i

H1(Xi) → 0,

0 → H2(X) →
⊕
i

H2(Xi) → 0.

Since each Xi is connected, we have H0(Xi) ∼= Q, so
⊕

iH
0(Xi) ∼= Ql. Likewise, each Xij is a

finite set of points, so H0(Xij) ∼= Qdidj , and thus:⊕
i<j

H0(Xij) ∼= QN .

Also, H1(Xi) ∼= Q2gi for a connected smooth curve of genus gi, so
⊕

iH
1(Xi) ∼= Q2g where

g =
∑

i gi. Finally, H
2(Xi) ∼= Q for each curve. Therefore, the long exact sequence becomes:

0 → Q → Ql δ−→ QN α−→ H1(X)
γ−→ Q2g → 0,

0 → H2(X) → Ql → 0.

From this, we conclude:

b2(X) = dimQH
2(X,Q) = l,

and the dimension of H1(X,Q) is:

b1(X) = dimQH
1(X,Q) = 2g +N − l + 1.

We also obtain a natural weight filtration on H1(X,Q), arising from the exact sequence:

0 ⊂W0 = im(α) = coker(δ) ⊂W1 = H1(X,Q),

with

Gr1 =W1/W0 = H1(X,Q)/ im(α) ∼= H1(X,Q)/ ker(γ) ∼= im(γ) ∼=
⊕
i

H1(Xi)

We will see how this process can be generalized to any compact simple normal crossing divisor

in a Kähler manifold in Section 3.3.
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3.2 The de Rham Double Complex

Let Kp,q = (iq)∗Ap

X(q) be the pushforward-to-X sheaf of smooth differential p-forms on X(q). It

comes naturally equipped with two differentials: the horizontal differential d : Kp,q → Kp+1,q,

the exterior derivative on p-forms, and the vertical differential δ : Kp,q → Kp,q+1, called the

combinatorial differential, defined as follows.

Let

jk : X
(q+1) → X(q)

be the map induced by the natural inclusions Xi0···iq+1 ↪→ Xi0···îk···iq+1
for 0 ≤ k ≤ q + 1.

These induce restriction maps

j∗k : Kp,q → Kp,q+1.

Define

δ = (−1)p
q+1∑
k=0

(−1)kj∗k .

We already know that d2 = 0, and it is straightforward to verify by direct computation that

δ2 = 0 as well. Moreover, due to the sign factor (−1)p in the definition of δ, d and δ anticommute:

dδ + δd = 0.

This double complex of sheaves gives a total complex of sheaves K• = Tot(K)•, with

Kℓ =
⊕
p+q=ℓ

Kp,q, D = d+ δ.

Given an open set U ⊆ X, we can define a double complex of C-vector spaces Kp,q = Kp,q(U).

If we filter the total complex K• = K•(U) by rows, the corresponding spectral sequence has:

Ep,q0 = Kp,q, d0 = d,

Ep,q1 = Hp(K•,q, d), d1 = δ,

Ep,q2 = Hq(Ep,•1 , δ), d2 unknown in general.

From the total complex K•, one can extract information about the cohomology of X:

Proposition 3.2.1. The sequence

0 −→ CX −→ K0 D−→ K1 D−→ K2 −→ · · ·

where the first arrow is the natural inclusion, is a resolution of the constant sheaf CX by Γ-

acyclic sheaves. Hence, the cohomology of X with complex coefficients is computed by the global

sections of this complex:

H∗(X,C) ∼= H∗(Γ(X,K•)).

Proof. The sheaves Kp,q are sheaves of smooth differential forms on smooth manifolds, so they

are fine ([13, Prop. 12.3]), and therefore Γ-acyclic. Since each Kℓ is a direct sum of sheaves of

smooth differential forms on the strata X(q), it follows that Kℓ is also a Γ-acyclic sheaf.
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To prove exactness, it suffices to check the sequence is exact locally. Let U be an open

subset of the ambient space X such that X ∩ U is diffeomorphic to the union of k coordinate

hyperplanes in Cn+1 (where n+ 1 = dimCX ):

X ∩ U ∼= {z1 · · · zk = 0}.

Thus, the irreducible components of X∩U are given by {zi = 0} for i = 1, . . . , k. For an ordered

index set I ⊂ {1, . . . , k}, we define:

XI ∩ U ∼=
⋂
i∈I

{zi = 0}, and U (q) := X(q) ∩ U ∼=
⊔

|I|=q+1

XI ∩ U.

Note that U (q) = ∅ for q ≥ k.

Set Kℓ := Kℓ(U) for ℓ ≥ 0, and consider the complex K•:

0 → K0 D−→ K1 D−→ K2 D−→ · · · .

We show that this complex is exact at all terms except the first by analyzing the spectral

sequence arising from the row filtration of the double complex Kp,q = Kp,q(U). On the E0 page,

the q-th row is:

0 → A0
X(q)(U

(q))
d−→ A1

X(q)(U
(q))

d−→ A2
X(q)(U

(q))
d−→ · · ·

p = −1 p = 0 p = 1 p = 2

Taking cohomology with respect to d (the horizontal differential), the E1 page is given by the de

Rham cohomology of U (q). Since each connected component of U (q) is contractible, we obtain:

Ep,q1 = Hp(U (q),C) =

C(
k

q+1) if p = 0,

0 if p > 0.

The E2 page is then the cohomology of the first column with respect to the combinatorial

differential δ, acting on the terms E0,•
1 . This is precisely the Čech cohomology of the (k − 1)-

simplex, which corresponds to the dual complex associated to X ∩ U = {z1 · · · zk = 0} (see

Section 3.5 and Proposition 3.5.3). The dual complex encodes the intersection pattern of the

components {zi = 0}: it has one vertex for each component, and a q-simplex for each nonempty

intersection of q + 1 components. Thus, the terms E0,q
1

∼= C(
k

q+1) match the dimension of the

space of q-cochains on the simplex, and the differential δ corresponds to the Čech differential

computing its simplicial cohomology with constant coefficients. Hence:

Ep,q2 =

C if (p, q) = (0, 0),

0 otherwise.

and the spectral sequence therefore degenerates at the E2 page. By Theorem 1.4.2 it converges
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to the cohomology of the total complex. Therefore,

H∗(K•, D) =

C in degree 0,

0 in higher degrees.

This shows that the complex K• is exact in positive degrees, and the kernel at the first term

is precisely the constant sheaf CX . We conclude that the sequence in the statement of the

proposition is indeed a Γ-acyclic resolution of the constant sheaf CX .

In what follows, we focus on the de Rham double complex obtained by taking global sections:

Kp,q := Γ(X,Kp,q) = Kp,q(X).

The associated total complex is given by

Kℓ = Γ(X,Kℓ) = Kℓ(X).

As in the proof of Proposition 3.2.1, the first page of the spectral sequence associated with

the row filtration is given by

Ep,q1 = Hp(X(q),C).

We call this spectral sequence the de Rham spectral sequence. In the global setting we do not

have a straightforward way to compute the second page E2 explicitly, as we did in the local case,

since we are no longer working with contractible open sets.

Nevertheless, by Theorem 1.4.2, this spectral sequence converges to the cohomology of the

total complex K•, which, by Proposition 3.2.1, computes the cohomology of X with complex

coefficients:

Ep,q1 = Hp(X(q),C) =⇒ Hp+q(K•, D) ∼= Hp+q(X,C).

At this point, it is important to highlight a special feature of the objects appearing in the

spectral sequence. As previously noted, the strata X(q) are smooth, compact Kähler manifolds.

Smoothness follows directly from the definition of the strata, while compactness is inherited

from X, and the Kähler structure is induced from the ambient space X .

As we have discussed in Chapter 2, the complex cohomology groups Hp(X(q),C) carry a

natural pure Hodge structure of weight p. Since the first page of the spectral sequence is given

by

Ep,q1 = Hp(X(q),C),

each Ep,q1 carries this pure Hodge structure.

Furthermore, for r > 1, the terms Ep,qr are obtained as subquotients of Ep,q1 through the

successive differentials of the spectral sequence. As a result, they inherit a pure Hodge structure

of weight p. This structure is preserved throughout the spectral sequence and remains compatible

with the differentials.

We use this fact to prove the following:
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Theorem 3.2.2. The de Rham spectral sequence arising from the double complex Kp,q of global

differential forms on the strata of X, with the filtration by rows, degenerates at the E2-page.

Proof. It suffices to show that dr = 0 for all r ≥ 2.

Let a ∈ Ep,qr be a class that survives to the Er-page. By Proposition 1.4.5, the class [a]r can

be extended to a zig-zag: there exist ci ∈ Kp−i,q+i for i = 1, . . . , r − 1, satisfying

dci = δci−1 (where c0 = a), and dr([a]r) = [δcr−1]r.

Without loss of generality, suppose that δcr−2 is a form of type (s, t). Since δcr−2 = dcr−1

is d-exact, we may apply Proposition 2.5.7 to write

δcr−2 = dβ′ = dβ′′,

where β′ and β′′ are forms of type (s− 1, t) and (s, t− 1), respectively.

By Remark 1.4.6, the cohomology class [δcr−1]r is equal to both [δβ′]r and [δβ′′]r. However,

since the combinatorial differential δ preserves type, δβ′ and δβ′′ live in distinct bidegrees:

δβ′ ∈ As−1,t

X(q+r) , δβ′′ ∈ As,t−1

X(q+r) .

Now, Ep−r+1,q+r
r is a subquotient of Ep−r+1,q+r

1 = Hp−r+1(X(q+r),C), which, by Hodge

theory, carries a pure Hodge structure of weight p − r + 1. Since δβ′ and δβ′′ have different

types but are equal in cohomology, the principle of two types (Proposition 2.5.8) implies that

their class is trivial:

[δβ′]r = [δβ′′]r = 0.

Therefore,

dr([a]r) = [δcr−1]r = 0.

This proves that all higher differentials vanish, and hence the spectral sequence degenerates at

the E2-page.

3.3 The Čech Double Complex

We now construct a different double complex that will allow us to compute the cohomology of

X with rational coefficients.

Definition 3.3.1. An open cover {Uα} of a topological space is called a good cover if each Uα

is contractible, and all finite intersections

Uα0 ∩ · · · ∩ Uαk

are either empty or contractible.

Proposition 3.3.2. Let X be a Kähler manifold and X ⊂ X a simple normal crossing divisor.

Then there exists a good open cover {Uα} of X such that the induced cover U = {Uα ∩X} is a

good cover of X.
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Sketch of Proof. It is a fact that every smooth manifold admits a good cover; around each point

of X , we can choose a coordinate chart diffeomorphic to an open ball in R2 dimX , which is

contractible. By paracompactness, any open cover can be refined to a good cover.

Since X ⊂ X is a simple normal crossing divisor, it is locally defined by the vanishing of a

product of coordinate functions, say z1 · · · zk = 0 in local coordinates. By taking the good cover

{Uα} of X sufficiently fine, we can ensure that each Uα ∩ X is either empty or is a union of

coordinate hyperplanes intersecting transversely, and hence is also contractible. The same holds

for finite intersections Uα0 ∩ · · · ∩Uαk
∩X. Thus, the restriction {Uα ∩X} defines a good cover

of X.

Let A be an abelian group. When a topological space Y admits a good open cover U , the
Čech cohomology Ȟ∗(U , A) computed with respect to this cover agrees with the sheaf coho-

mology H∗(Y,AY ), where AY denotes the constant sheaf with values in A. Moreover, if Y is

Hausdorff, locally contractible, and every open subset is paracompact (for instance, if Y is a

topological manifold), then the singular cohomology H∗(Y,A) coincides with the sheaf cohomol-

ogy H∗(Y,AY ). In our setting, the space X and each stratum X(q) are topological manifolds

satisfying these conditions. Consequently, for these spaces, the singular cohomology, Čech co-

homology, and sheaf cohomology for the constant sheaf all agree.

By choosing a good cover as in the proposition above, we ensure that the Čech cohomology

of X with rational coefficients agrees with its singular (or sheaf) cohomology:

Ȟ∗(U ,QX) ∼= H∗(X,Q).

Moreover, the restriction of the open cover {Uα} to each stratum X(q), given by

Uq = {Uα ∩X(q)},

defines a good cover of X(q) as well. This follows from the fact each XI ∩Uα is either empty or

contractible (as in the proof of Proposition 3.2.1). Hence, for each q, we similarly have:

Ȟ∗(Uq,QX(q)) ∼= H∗(X(q),Q).

For notational simplicity, we will omit subscripts on constant sheaves and write Q instead of

QX or QX(q) in what follows.

We define the Čech double complex Cp,q = Cp(Uq,Q) as the Čech cochains of degree p,

associated to the open cover Uq of the q-stratum of X, with coefficients in Q. This complex

is equipped with two differentials: the horizontal differential d : Cp,q → Cp+1,q, the Čech

coboundary, and the vertical differential δ : Cp,q → Cp,q+1, the combinatorial differential defined

similarly to before: For each U ∈ U , and 0 ≤ k ≤ q + 1, we have maps

jUk : U ∩X(q+1) → U ∩X(q)

induced by the natural inclusions Xi0···iq+1 ↪→ Xi0···îk···iq+1
. These give rise to restriction maps
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on sections of the constant sheaf:

jUk
∗
: Q(U ∩X(q)) → Q(U ∩X(q+1)),

which in turn induce maps on the Čech cochains:

j∗k : Cp(Uq,Q) → Cp(Uq+1,Q), j∗k =
∏

|I|=p+1

jUI
k

∗

The differential δ is then defined as

δ = (−1)p
q+1∑
k=0

(−1)kj∗k .

We begin by filtering the double complex Cp,q by rows. With this choice of filtration, the first

page E1 of the associated spectral sequence is obtained by computing cohomology with respect

to the horizontal differential, that is, the Čech coboundary. Consequently, the E1-page consists

of Čech cohomology groups. Under the assumptions on the open cover introduced above, this

yields

Ep,q1 = Hp(X(q),Q).

We call this spectral sequence, the Čech spectral sequence. Tensoring with C, we recover the

first page of the de Rham spectral sequence:

Ep,q1 ⊗ C = Hp(X(q),C) = DREp,q1 .

Since the differential d1 on the E1-pages in both the Čech and de Rham spectral sequences is

defined via the same combinatorial formula, we obtain an embedding of the Čech complex into

the de Rham complex. As the de Rham spectral sequence degenerates at the E2-page, the same

follows for the Čech spectral sequence.

It is difficult to describe the second page of the Čech spectral sequence. Instead, we consider

the column filtration of the double complex Cp,q, which yields a different spectral sequence. By

Theorem 1.4.2, both sequences must converge to the same object.

In this case, the first page is computed by taking cohomology with respect to the vertical

differential δ. To make this more transparent, we observe that for fixed p, the E0-page consists

of columns of the form

0 → Cp(U0,Q)
δ−→ Cp(U1,Q)

δ−→ Cp(U2,Q)
δ−→ · · ·

q = −1 q = 0 q = 1 q = 2

Taking cohomology with respect to δ, we obtain

Ep,q1 =

Cp(U ,Q) if q = 0,

0 if q > 0.
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To see this, we examine more closely the kernel

ker

(
δ :
∏
V

Q(V ∩X(0)) −→
∏
V

Q(V ∩X(1))

)

where the product ranges over all V , the intersections of p elements of the open cover U , as in the

definition of Čech cochains of degree p. A locally constant function on the irreducible components

of X assigns a value to each component, and the differential δ computes the differences of these

values on the pairwise intersections Xij = Xi∩Xj , namely (δf)(Xij) = f(Xj)−f(Xi). Being in

the kernel of δ is therefore equivalent to assigning the same value to all irreducible components,

and thus to all of X. Hence, on degree 0, ker δ = Cp(U ,Q).

For degrees q > 0, we have the identity:

ker

(∏
V

Q(V ∩X(q))
δ−→
∏
V

Q(V ∩X(q+1))

)
= im

(∏
V

Q(V ∩X(q−1))
δ−→
∏
V

Q(V ∩X(q))

)

Recall that by the choice of the open cover U , any intersection V of p elements of U satisfies the

property that, for every multi-index I with |I| = q + 1, the intersection V ∩ XI is contracible

and hence, connected. In particular, the connected components of V ∩ X(q) are precisely the

sets V ∩XI as I ranges over multi-indices of length q + 1.

Fix such a V , and for a set of indices I, write YI := V ∩XI . Then we have a disjoint union:

Y (q) := V ∩X(q) =
⊔

|I|=q+1

YI .

Suppose X has l + 1 irreducible components, indexed by {0, 1, . . . , l}, and let the indices in

each I be ordered: i0 < i1 < · · · < iq. A locally constant function f on Y (q) in the kernel of δ

amounts to giving numbers xi0...iq ∈ Q satisfying the cocycle condition:

q+1∑
k=0

(−1)kxi0...îk...iq+1
= 0.

To find a locally constant function g on Y (q−1) such that δg = f means solving the system

of linear equations:

xi0...iq =

q∑
k=0

(−1)kxi0...îk...iq

for all strictly increasing index tuples i0 < · · · < iq. This system always has a solution. One

such solution is given by:

xi1...iq =

0 if i1 = 0,

x0i1...iq if i1 > 0.

Alternatively, one can interpret the data xi0...iq as values on q-simplices of the standard

l-simplex, with δ being the usual combinatorial differential. Since the standard simplex is

contractible, its cohomology vanishes in degrees > 0, so every cocycle is a coboundary. This

guarantees the existence of such a function g whenever f ∈ ker δ.
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Consequently, the second page of the spectral sequence is given by

Ep,q2 =

Hp(X,Q) if q = 0,

0 if q > 0.
.

Since only the first row survives, the sequence degenerates at E2 and thus converges to the

cohomology of X with rational coefficients. This shows that the spectral sequence arising from

the row filtration, i.e., the Čech spectral sequence, also converges to the same target:

Ep,q1 = Hp(X(q),Q) =⇒ Hp+q(X,Q).

3.4 The Weight Filtration on Hm(X,Q)

To obtain the Čech spectral sequence we have filtered the total complex Tot(C)• by rows:

W̃k Tot(C)
• =

⊕
p≥0

⊕
q≥k

Cp,q.

This filtration induces a (decreasing) filtration on the cohomology of Tot(C)•, and consequently

on the cohomology of X, Hm(X,Q), which we denote again by W̃k:

W̃kH
m(X,Q) =

⊕
p+q=m
q≥k

GrW̃q Hm(X,Q) =
⊕

p+q=m
q≥k

Ep,q∞ =
⊕

p+q=m
q≥k

Ep,q2

We adjust this filtration to obtain an increasing filtration, referred to as the spectral weight

filtration, defined by

WkH
m(X,Q) := W̃m−kH

m(X,Q) =
⊕

p+q=m
q≥m−k

Ep,q2 =
⊕

p+q=m
p≤k

Ep,q2

One must make sure that the graded pieces of this filtration agree with the graded pieces of

the old one, so the convergence of the spectral sequence still holds. We have

GrW̃p Hp+q =
W̃pH

p+q

W̃p+1Hp+q
=

WqH
p+q

Wq−1Hp+q
= GrWq H

p+q = GrWp H
p+q

where the last equality comes from Theorem 1.4.2 and the fact that the E0 pages of the two

spectral sequences differ by interchaning the roles of p and q.

The following two corollaries follow immediately:

Corollary 3.4.1. The spectral weight filtration on Hm := Hm(X,Q) satisfies WmH
m = Hm.

Hence, the filtration is of the form

0 ⊂W0H
m ⊂W1H

m ⊂ · · · ⊂WmH
m = Hm
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Corollary 3.4.2. If X(k) = ∅ then Wm−kH
m = 0.

Proof. If X(k) = ∅ then Ep,q1 = 0 for all p ≥ 0 and q ≥ k. But then Ep,q2 = 0 as well for p ≥ 0

and q ≥ k and hence Wm−kH
m = W̃kH

m = 0.

Example 3.4.3. Let X be the union of l connected smooth curves as in Example 3.1.4. We

will compute the cohomology of X with the theory we developed in this chapter. To save space,

all the cohomology groups are with rational coefficients. The first page of the Čech spectral

sequence on X is:

E1 :

q = 2 0 0 0

q = 1
⊕

i<j H
0(Xij)

⊕
i<j H

1(Xij)
⊕

i<j H
2(Xij)

q = 0
⊕

iH
0(Xi)

⊕
iH

1(Xi)
⊕

iH
2(Xi)

p = 0 p = 1 p = 2

which becomes

E1 :

q = 2 0 0 0

q = 1 QN 0 0

q = 0 Ql Q2g Ql

p = 0 p = 1 p = 2

We obtain the second page by taking cohomology with respect to the vertical differential δ (going

upwards). Hence, the second page is:

E2 :

q = 2 0 0 0

q = 1 QN/ im δ 0 0

q = 0 ker δ Q2g Ql

p = 0 p = 1 p = 2

Recall that each entry Ep,q2 on the second page is the p-graded piece of the cohomology of X:

Ep,q2
∼= GrpH

p+q(X,Q)

We reconstruct Hp+q(X,Q) by summing along the appropriate diagonal:

H0(X,Q) ∼= ker δ

H1(X,Q) ∼= (QN/ im δ)⊕Q2g

H2(X,Q) ∼= Ql

Now, since X is connected, we have that dimQ ker δ = 1 and dimQ im δ = l − 1. This gives us

the Betti numbers:

b0(X) = 1, b1(X) = 2g +N − l + 1, b2(X) = l
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as we already found in Example 3.1.4.

To determine the induced weight filtration on Hm(X,Q), we focus on the diagonal p+q = m

on E2. The weight filtration is obtained by summing contributions from the columns up to a

given index. For example:

W0H
1(X,Q) =

QN

im(δ)
∼= QN−l+1, W0H

2(X,Q) =W1H
2(X,Q) = 0.

3.5 The Dual Complex Γ

Definition 3.5.1. Define the dual complex Γ of X to be a simplicial complex with a vertex Pi

for each irreducible component Xi of X, and the simplex [Pi0 , . . . , Pip ] belongs to Γ if and only

if Xi0,...,ip is nonempty.

Example 3.5.2. In Figure 3.2, X is a normal crossing variety and Γ is its dual complex.

Figure 3.2

Proposition 3.5.3. With the above definition of the dual complex Γ, we have

Gr0H
m(X,Q) ∼= Hm(|Γ|,Q).

Proof. By the construction of the Čech spectral sequence computing the cohomology of X, we

have

W0H
m(X,Q) = Gr0H

m(X,Q) ∼= Hm
δ (H0(X(•))),

where Hm
δ denotes the cohomology of the complex formed by the zeroth cohomology of the

strata:

0 −→ H0(X(0))
δ−→ H0(X(1))

δ−→ H0(X(2))
δ−→ · · · .

This complex is precisely the simplicial cochain complex associated to the dual complex Γ.

Therefore,

Gr0H
m(X,Q) ∼= Hm(|Γ|,Q).



Chapter 4

The Clemens-Schmid Exact

Sequence

In the study of degenerations of algebraic varieties, particularly over the complex unit disk,

it’s important to understand how the topology and Hodge structures of the fibers behave near

the central fiber. When the degeneration is semistable, that is, when the central fiber is a

normal crossing divisor, the geometry becomes easier to work with, and both topological and

algebraic tools can be used together. In this chapter, we look at what happens to cohomology in

such situations, focusing on the Clemens-Schmid exact sequence. Our approach uses semistable

reduction, monodromy around the central fiber, and the weight spectral sequence that comes

from the normal crossing structure. Some references for this chapter are [7, Chapter 5], [10] and

[12]

4.1 Semistable Degenerations

Definition 4.1.1 (Semistable Degeneration). Let ∆ be the unit open disk around 0 in the

complex plane and let X be a Kähler manifold. A degeneration is a surjective, proper, flat,

holomorphic map π : X → ∆ of relative dimension n, such that each generic fiber Xt := π−1(t)

for t ̸= 0 is a smooth complex variety. The degeneration is semistable if, in addition, the central

fiber X0 is a normal crossing divisor, that is, π in a neighborhood of each point x ∈ X0 is defined

by

x1x2 · · ·xk = t

for some k with 1 ≤ k ≤ n+ 1. Moreover, the degeneration is strictly semistable if, in addition,

the central fiber has smooth components, i.e., it is a simple normal crossing divisor.

Remark 4.1.2. Properness implies that each fiber Xt, t ∈ ∆∗ = ∆ \ {0}, is a compact complex

submanifold of X . In a strictly semistable degeneration, X0 is a compact simple normal crossing

divisor in X . This allows us to apply the results from Chapter 3 to X0.

Remark 4.1.3. A degeneration restricted to the punctured disk, π∗ : X ∗ = π−1(∆∗) → ∆∗ is

automatically smooth of relative dimension n. Smooth in this context means flat with all the

fibers smooth. ([5, Chapter III, Theorem 10.2]). Also, π∗ is a submersion as a map between

smooth manifolds. ([5, Chapter III, Proposition 10.4]).

40
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Definition 4.1.4. Let π : X → ∆ be a degeneration. A degeneration ψ : Y → ∆ is called a

modification of π, if there exists a map f : Y → X , biholomorphic outside of the central fiber,

and the following diagram commutes:

Y X

∆

ψ

f

π

By Hironaka’s theorem (also known as the desingularization of varieties), any degeneration

can be modified into one of the form π : X → ∆, where the central fiber X0 is a divisor with

normal crossings. That is, locally near each point x ∈ X0, the map π can be written as

xa11 x
a2
2 · · ·xakn+1 = t,

for some integers ai ≥ 0. In our context, a degeneration is called semistable if ai ≤ 1 for all i -

that is, if X0 is a reduced divisor with normal crossings, i.e., a normal crossing divisor.

However, not every degeneration can be directly modified into a semistable one. Nonetheless,

Mumford showed in [6, Chapter 2] that, after a suitable base change, such a semistable model

can always be obtained.

Given a degeneration π : X → ∆ and a base change map b : ∆ → ∆, t 7→ ta for some positive

integer a, we can construct a new degeneration πb := Xb := X ×∆ ∆ → ∆ via the fiber product:

Xb X

∆ ∆

πb π

b

This corresponds to pulling back the family π along the map b, thereby replacing the base disc

with a ramified cover.

Theorem 4.1.5 (Semistable Reduction Theorem). Given a degeneration π : X → ∆, there

exists a basis change b : ∆ → ∆, t 7→ ta, for some a, a semistable degeneration ψ : Y → ∆ which

is a modification of πb : Xb → ∆ and a commutative diagram

Y Xb X

∆ ∆
ψ

f

πb π

b

Moreover, f : Y → Xb is obtained by blowing up and blowing down subvarieties of the central

fiber.

This theorem allows us to reduce to the semistable case, provided we work within a framework

that is invariant under blow-ups and blow-downs. Once a semistable model has been obtained,

we may resolve the singularities on the components of the central fiber to achieve a strictly

semistable degeneration.
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Example 4.1.6 (Degeneration of 0-manifolds). Consider the case where k distinct points in C
degenerate to a single point, that is, they merge into one. This family is given by the subvariety

X = {(x, t) ∈ C×∆ | xk = t} ⊂ C×∆,

with projection to ∆ via the second coordinate.

The generic fiber Xt for t ̸= 0 consists of k distinct points, while the central fiber is a single

point of multiplicity k. Hence, the central fiber is a divisor with normal crossings, but it is not

reduced.

To obtain a semistable model, we first perform the base change b : ∆ → ∆, t 7→ tk, and form

the fiber product

Xb := X ×∆ ∆ = {(x, t) ∈ C×∆ | xk = tk}.

This can be written as the union of k smooth components:

Xb =
k−1⋃
j=0

{
(x, t) ∈ C×∆ | x = ζjkt

}
,

where ζk is a primitive k-th root of unity. Each component is smooth and maps isomorphically

to ∆, but they intersect at the origin (x, t) = (0, 0), so the central fiber remains non-reduced.

To separate these branches and obtain a reduced central fiber, we normalize Xb. Define

Y :=

k−1⊔
j=0

∆,

as k copies of ∆, and let

µ : Y → Xb

be the normalization map, with each copy of ∆ mapping isomorphically to the component

x = ζjkt.

The family Y → ∆ is the trivial family of k disjoint sections. In particular, its central fiber is a

disjoint union of k points. Thus, after base change and normalization, the degeneration becomes

semistable and, in fact, trivial.

The following result will allow us to work cohomologically with X0 in place of the total space

X which is often more manageable due to the stratified normal crossing structure of X0.
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Proposition 4.1.7. In the case of a semistable degeneration, the central fiber X0 is a deforma-

tion retract of the total space X . As a consequence,

Hm(X0,Q) ∼= Hm(X ,Q) and Hm(X0,Q) ∼= Hm(X ,Q)

The proof is technical. A detailed construction in the case of families of curves can be found in

[1, p.146-148]. The construction of the deformation retraction can be generalized to arbitrary

dimension.

For the rest of the chapter, fix a generic smooth fiber Xt and denote

� Hm(X ,Q) ∼= Hm(X0,Q) by Hm

� Hm(X ,Q) ∼= Hm(X0,Q) by Hm and

� Hm(Xt,Q) by Hm
lim.

4.2 The Monodromy Weight Filtration

Let π : X → ∆ be a degeneration, and let π∗ : X ∗ → ∆∗ denote the restriction to the punctured

disk. Fix an integer m, and choose a generic fiber Xt for some t ∈ ∆∗.

Ehresmann’s lemma states that if f : M → N is a smooth, proper, surjective submersion

between smooth manifolds, then f is a locally trivial fibration. In our setting, π∗ satisfies the

hypotheses of Ehresmann’s lemma, and hence is a locally trivial fibration. It follows that the

fibers of π∗ are all diffeomorphic (and in particular, homotopy equivalent), and that a loop γ in

∆∗ based at t determines, up to homotopy, a monodromy homeomorphism

Tγ : Xt → Xt
of the fiber over t. This homeomorphism induces automorphisms on the homology and coho-

mology of the generic fiber:

Tγ∗ : H∗(Xt,Z) → H∗(Xt,Z), T ∗
γ : H∗(Xt,Z) → H∗(Xt,Z).

The action of a canonical generator of π1(∆
∗) ∼= Z on the limiting cohomology group defines an

automorphism

T : Hm
lim → Hm

lim,

called the Picard-Lefschetz transformation.

Theorem 4.2.1 (Monodromy Theorem). For a degeneration π : X → ∆, the Picard-Lefschetz

transformation acting on Hm
lim is quasi-unipotent, with index of unipotency at most m+ 1; that

is, there exists a positive integer a such that

(T a − I)m+1 = 0.

In particular, after a finite base change t 7→ ta, the monodromy becomes unipotent.
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By taking the base change t 7→ ta, we may assume that the monodromy T is unipotent. This

allows us to define the logarithm of the monodromy,

N = log T = (T − I)− 1

2
(T − I)2 +

1

3
(T − I)3 − · · ·

acting on Hm
lim. N is nilpotent, and the index of unipotency of T coincides with the index of

nilpotency of N . In particular, Nm+1 = 0, and N = 0 if and only if T = 1.

We define a weight filtration on the vector space Hm
lim

0 ⊂W0 ⊂W1 ⊂ · · · ⊂W2m−1 ⊂W2m = Hm
lim

called the monodromy weight filtration:

Proposition 4.2.2. Let H be a finite-dimensional Q-vector space and N : H → H a nilpotent

linear map, i.e., Nm+1 = 0 for some m > 0. Then there exists a unique increasing filtration

0 ⊂W0 ⊂W1 ⊂ · · · ⊂W2m = H

such that N(Wk) ⊂Wk−2 for all k, and the induced maps

Nk : GrWm+kH −→ GrWm−kH (4.1)

are isomorphisms for all 0 ≤ k ≤ m, where GrWℓ H :=Wℓ/Wℓ−1.

Proof. Set Wj := 0 for all j < 0. The isomorphism condition (4.1) for k = m, implies imNm ⊆
W0 and W2m−1 ⊆ kerNm. Therefore, we have

dimQH − dimQ kerNm = dimQ imNm ≤ dimQW0 = dimQH − dimQW2m−1

≤ dimQH − dimQ kerNm

so all inequalities are equalities, which forces

W0 = imNm, W2m−1 = kerNm.

Now set H1 := W2m−1/W0, on which N descends to a well-defined nilpotent operator with

Nm|H1 = 0. The condition (4.1) for k = m− 1 reads:

Nm−1 :
W2m−1

W2m−2
=

H1

W2m−2/W0

∼−→ W1

W0
.

This implies
W1

W0
= im(Nm−1|H1),

W2m−2

W0
= ker(Nm−1|H1),

and we define W1, W2m−2 ⊂ H as the inverse images under the projection H → H/W0.

Proceeding inductively, assume that for some 1 ≤ k < m, we have constructed

0 ⊂W0 ⊂ · · · ⊂Wk−1 ⊂W2m−k ⊂ · · · ⊂W2m = H
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such that:

(1) N(W2m−k) ⊂W2m−k,

(2) Nm−k+1(W2m−k) ⊂Wk−2,

(3) Wk−1 ⊂ Nm−k(W2m−k).

These hold for k = 1 by construction. From (2) and (3), it follows that N(Wk−1) ⊂Wk−1.

Set Hk := W2m−k/Wk−1, so N induces a well-defined nilpotent map on Hk with N |m−k+1
Hk

= 0.

Then condition (4.1) for m− k forces

Wk

Wk−1
= im(Nm−k|Hk

),
W2m−k−1

Wk−1
= ker(Nm−k|Hk

).

Since Wk/Wk−1 ⊂W2m−k−1/Wk−1, we have Wk ⊂W2m−k−1.

More explicitly property (3) allows us to write:

Wk = Nm−k(W2m−k), W2m−k−1 = N−(m−k)(Wk−1).

One verifies easily that this construction satisfies the inductive hypotheses. In particular, we

have:

N(Wk) = Nm−k+1(W2m−k) ⊂Wk−2.

This completes the construction.

Example 4.2.3. When N2 = 0 and N ̸= 0, the monodromy weight filtration is of the form

0 ⊂W0 = imN ⊂W1 = kerN ⊂W2 = H

Example 4.2.4. Consider the map N : Qm+1 → Qm+1, (x1, . . . , xm+1) 7→ (0, x1, . . . , xm) that

shifts by one entry and adds a zero in the beginning. It is clear that Nm+1 = 0 and Nm ̸= 0.

The weight filtration has

0 ⊂W0 =W1
∼= Q ⊂W2 =W3

∼= Q2 ⊂ · · · ⊂W2m−2 =W2m−1
∼= Qm ⊂W2m = Qm+1

with graded pieces Grk = Q for k even and Grk = 0 for k odd.

We now list some fundamental properties of this filtration, stated specifically for the loga-

rithm of the Picard-Lefschetz monodromy operator. Sketches of the proofs for these properties

can be found in [4, p. 255].

Proposition 4.2.5. Let N = log T : Hm
lim → Hm

lim be the logarithm of the Picard-Lefschetz mon-

odromy operator and {WkH
m
lim} the monodromy weight filtration constructed as above. Denote

� GrkH
m
lim =WkH

m
lim/Wk−1H

m
lim

� Km = ker(N : Hm
lim → Hm

lim)

� WkK
m =WkH

m
lim ∩Km
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� GrkK
m =WkK

m/Wk−1K
m.

Then the following hold:

1. N(WkH
m
lim) = (imN) ∩Wk−2H

m
lim

2. for k ≤ m

GrkH
m
lim

∼=
⌊ k
2
⌋⊕

a=0

Grk−2aK
m

3. for 0 ≤ k ≤ m, Nk : Hm
lim → Hm

lim is the zero map if and only if Wm−kH
m
lim = 0; if and

only if Wm−kK
m = 0

4. coker(Grm+2H
m
lim

N−→ GrmH
m
lim) = GrmH

m
lim/ im(Grm+2H

m
lim

N−→ GrmH
m
lim)

∼= GrmK
m

4.3 The Spectral Weight Filtration

As discussed in Section 3.4, in the case of a strictly semistable degeneration, the spectral weight

filtration on Hm := Hm(X0,Q) takes the form:

0 ⊂W0H
m ⊂ · · · ⊂WmH

m = Hm.

This filtration induces, via duality, a weight filtration on the homology group Hm := Hm(X0,Q),

defined by:

W−kHm := Ann(Wk−1H
m) = {h ∈ Hm | (h,Wk−1H

m) = 0}.

Then, the associated graded pieces satisfy:

Gr−kHm
∼= (GrkH

m)∗ .

With this definition, the graded pieces vanish outside the expected range:

GrkH
m = 0 for k < 0 or k > m,

GrkHm = 0 for k > 0 or k < −m.

4.4 Weighted Vector Spaces

Definition 4.4.1 (Weighted Vector Space). A weighted vector space is a Q-vector space H

equipped with an increasing filtration by Q-subspaces:

0 ⊂W0H ⊂ · · · ⊂WkH ⊂Wk+1H ⊂ · · · ⊂ H,

called the weight filtration.

A morphism of weighted vector spaces of type r is a linear map ϕ : H → H ′ such that

ϕ(WkH) =Wk+2rH
′ ∩ Im(ϕ).
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The following spaces carry natural weight filtrations making them weighted vector spaces:

� The cohomology Hm := Hm(X0,Q), with the spectral weight filtration:

0 ⊂W0H
m ⊂ · · · ⊂WmH

m = Hm.

� The limit cohomology Hm
lim := Hm(Xt,Q), with the monodromy weight filtration:

0 ⊂W0H
m
lim ⊂ · · · ⊂W2mH

m
lim = Hm

lim.

Remark 4.4.2. By Proposition 4.2.5(1), the logarithm of the monodromy operator N = log T ,

where T is the Picard–Lefschetz transformation, defines a morphism of weighted vector spaces

of type −1 acting on Hm
lim.

4.5 The Clemens–Schmid Exact Sequence

To define the Clemens-Schmid exact sequence for a semistable degeneration π : X → ∆, we

begin by constructing several natural maps between (co)homology groups.

First, recall the Lefschetz duality:

Theorem 4.5.1 (Lefschetz Duality). LetM be an orientable, connected n-dimensional manifold

with boundary ∂M , and suppose that the homology and cohomology groups of M are finitely

generated. Then, for any abelian group G, there is a natural isomorphism

Hn−m(M ;G) ∼= Hm(M,∂M ;G),

for all 0 ≤ m ≤ n.

Lefschetz duality applies to the total space X : every complex manifold is orientable, and

since the homology and cohomology groups of X coincide with those of the compact central fiber

X0 (see Proposition 4.1.7), they are finitely generated. Therefore, we obtain an isomorphism

between the relative cohomology and homology groups of X , which has complex dimension n+1:

H2n+2−m(X ;Q) ∼= Hm(X , ∂X ;Q)

By composing with the map to absolute cohomology, appearing in the long exact sequence of

the pair (X , ∂X ), we obtain the map:

α : H2n+2−m(X ;Q)
LD−−→ Hm(X , ∂X ;Q) → Hm(X ;Q).

The map

β : Hm(Xt;Q) → H2n−m(Xt;Q)
i∗−→ H2n−m(X ;Q)

is obtained by applying first Poincaré duality on the smooth compact fiber Xt to obtain an

isomorphism

Hm(Xt;Q) ∼= H2n−m(Xt;Q),
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and then composing with the pushforward map in homology i∗ induced by the inclusion.

We also have the pullback

i∗ : Hm(X ,Q) → Hm(Xt,Q)

induced by the inclusion.

Theorem 4.5.2. The maps α, i∗, N , and β are morphisms of weighted vector spaces. In

particular,

� α is of type n+ 1,

� i∗ is of type 0,

� N is of type −1,

� β is of type −n.

Theorem 4.5.3 (Clemens–Schmid Exact Sequence). Let π : X → ∆ be a semistable degenera-

tion. Then the following sequence of vector spaces is exact:

· · · β−→ H2n+2−m
α−→ Hm i∗−→ Hm

lim
N−→ Hm

lim
β−→ H2n−m

α−→ Hm+2 i∗−→ · · ·

Moreover, if π is strictly semistable, then the sequence is an exact sequence of weighted vector

spaces. Consequently, this induces exact sequences on the filtered and graded pieces with respect

to the respective weight filtrations.

4.6 Some Consequences

A number of results follow from the Clemens–Schmid exact sequence:

Theorem 4.6.1 (Local Invariant Cycle Theorem). Let π : X → ∆ be a semistable degeneration.

Then the sequence

Hm(X ,Q)
i∗−→ Hm(Xt,Q)

N−→ Hm(Xt,Q)

is exact, where i : Xt ↪→ X denotes the natural inclusion. In other words, every monodromy-

invariant class in Hm(Xt,Q) arises as the restriction of a class in Hm(X ,Q).

Proof. Immediate from Theorem 4.5.3.

Proposition 4.6.2. In a semistable degeneration, the number of connected components of the

central fiber coincides with that of the generic fiber. In particular, the central fiber is connected

if and only if the generic fiber is.

Proof. Since the central fiber has complex dimension n, H2n+2 = 0. On the other hand, The-

orem 4.2.1 implies that the monodromy transformation T acts trivially on H0
lim, so N vanishes

on H0
lim. Applying the Clemens–Schmid exact sequence in degree 0, we obtain:

0 → H0 → H0
lim → 0,

which implies that H0 ∼= H0
lim.
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Proposition 4.6.3. Let Km denote ker(N : Hm
lim → Hm

lim). Then, WkH
m ∼=WkK

m for k < m.

Proof. We apply Theorem 4.5.2 to decompose the Clemens-Schmid exact sequence according to

the weight filtration:

· · · β−→Wk−2n−2H2n+2−m
α−→WkH

m i∗−→WkH
m
lim

N−→Wk−2H
m
lim

β−→ · · ·

By the construction of the filtration on the graded pieces GrlHs we have

GrlHs = 0 for l > 0 or l < −s.

Since k < m implies k − 2n − 2 < −(2n + 2 −m) we have Grk−2n−2H2n+2−m = 0, and thus,

Wk−2n−2H2n+2−m = 0. This makes the sequence

0 →WkH
m i∗−→WkH

m
lim

N−→Wk−2H
m
lim

exact. This gives WkK
m ∼=WkH

m.

Proposition 4.6.4. For k > 0, Nk : Hm
lim → Hm

lim is the zero map if and only if Wm−kH
m = 0.

In particular, Nm = 0 if and only if Hm(|Γ|) = 0.

Proof. Property (3) of the monodromy weight filtration (4.2.5) and the previous proposition

imply

Nk = 0 ⇐⇒ Wm−kK
m = 0 ⇐⇒ Wm−kH

m = 0

The last assertion follows from Proposition 3.5.3.

Proposition 4.6.5. The following sequence is exact

0 → Grm−2K
m−2 → Grm−2n−2H2n+2−m → GrmH

m → GrmK
m → 0

Proof. We decompose the Clemens-Schmid exact sequence according to the graded pieces:

· · · i∗−→ GrmH
m−2
lim

N−→ Grm−2H
m−2
lim

β−→Grm−2n−2H2n+2−m
α−→ GrmH

m i∗−→

i∗−→ GrmH
m
lim

N−→ Grm−2H
m
lim

β−→ · · ·

which simplifies to:

0 → cokerN
β−→ Grm−2n−2H2n+2−m

α−→ GrmH
m i∗−→ im i∗ → 0.

But by property (4) of the monodromy weight filtration cokerN ∼= Grm−2K
m−2 and

im i∗ = ker(N : GrmH
m
lim → Grm−2H

m
lim)

∼= GrmK
m
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4.7 First Cohomology Groups

Let π : X → ∆ be a strictly semistable degeneration. The fibers are of complex dimension n,

and thus have real dimension 2n. It follows that H2n+1 = 0 and therefore, the Clemens-Schmid

exact sequence in degree 1 simplifies to

0 → H1 i∗−→ H1
lim

N−→ H1
lim

being exact. In particular, this implies that K1 = ker
(
N : H1

lim → H1
lim

) ∼= H1.

Now, applying Proposition 4.2.5 (2), we obtain

Gr2H
1
lim

∼= Gr0H
1
lim

∼= Gr0K
1 ∼= Gr0H

1 ∼= H1(|Γ|)

where |Γ| denotes the dual graph of X0.

Recalling that the weight-graded pieces satisfy GrkH
m ∼= Ek,m−k

2 , we also find

Gr1H
1
lim

∼= Gr1K
1 ∼= Gr1H

1 = E1,0
2

∼= ker
(
H1(X (0)

0 ) → H1(X (1)
0 )
)

Knowing the dimensions of the graded pieces allows us to reconstruct the total dimension of

H1
lim. Letting

Φ := dimQGr1H
1 = dimQ ker

(
H1(X (0)

0 ) → H1(X (1)
0 )
)
,

we obtain

b1(Xt) = dimQH
1
lim =

2∑
k=0

dimQGrkH
1
lim = 2b1(|Γ|) + Φ

Moreover, by Theorem 4.6.4, we get the monodromy criterion:

N = 0 on H1
lim ⇐⇒ b1(|Γ|) = 0 ⇐⇒ b1(Xt) = Φ.



Chapter 5

Degeneration of Curves

In this chapter, we aim to provide intuitive descriptions, visual interpretations, and key results

rather than detailed proofs or technical developments. The main reference for this chapter is [1,

Chapter X].

5.1 Basic Constructions

We now consider the case when the smooth fibers are connected complex projective curves, i.e.,

connected compact Riemann surfaces. In this case, we see what happens when the central fiber

is a nodal curve, that is, a connected algebraic curve such that every one of its points is either

smooth or a node: locally complex-analytically isomorphic to a neighborhood of the origin in

the locus with equation xy = 0 in C2.

Example 5.1.1. Figure 5.1 shows a degeneration of a torus to a pinched one.

Figure 5.1: Degeneration of a torus

Let π : X → ∆ be a semistable degeneration of curves. To achieve strict semistability, one

resolves the nodes caused by self-intersections of the components via successive blow-ups. Each

blow-up essentially replaces a node with an exceptional curve isomorphic to P1.

Figure 5.2

51
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By generalizing our techniques from the strictly semistable case, we can describe the mon-

odromy T and its logarithm N for semistable degenerations that allow self-intersections within

irreducible components.

Let E′ denote the finite set of nodes on X0 that arise from self-intersections of individual

irreducible components, and let E = {p1, . . . , pe} be the set of all nodes of X0. Denote by

µ : BlE′(X ) → X

the blow-up of X at the points in E′, and by

ν : X̃0 → X0

the normalization map. Write {ri, si} = ν−1(pi) for the pair of points lying over each node pi.

Geometrically, this amounts to constructing a new space X̃0 from X0 in which the nodes have

been “untangled”: instead of two branches meeting at a single point, each node is replaced by

two distinct smooth points, one on each branch (see Figure 5.7). The normalization decomposes

as X̃0 =
⊔
X̃i, where each X̃i is the normalization of the irreducible component Xi.

The central fiber X0 can be reconstructed by starting with the disjoint union of the normal-

izations X̃j of its irreducible components, for j = 1, . . . , v, and then identifying pairs of points

rik ∼ sik resulting into self-intersections within the components.

The definition of the dual graph Γ must be adjusted: each vertex corresponds to an irre-

ducible component of X0, and each edge corresponds to a node, regardless of whether the node

arises from the intersection of two distinct components or from a self-intersection of a single

component. Observe that the dual graph is connected, since X0 is.

Example 5.1.2. Figure 5.3 shows a nodal curve and its dual graph.

Figure 5.3: The dual graph of a nodal curve.

Proposition 5.1.3. With the notation above, let ΓBl be the dual graph of BlE′(X ) and Γ be the

generalized dual graph of X0. Then, µ induces a homeomorphism

|Γ| ∼−−→ |ΓBl|

Proof. We will show that a blow-up at a node arising from a self-intersection of a component

of the central fiber does not change the topology of the dual graph. In particular, we will show

that a self loop in the dual graph becomes a cycle with two vertices and two edges.
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Let p ∈ E′ be a node on a component X of the central fiber X0 ⊂ X , and consider the

blow-up of X at p,

µ : Blp(X ) → X .

This process replaces the point p with a copy of P1, known as the exceptional divisor, denoted

by S = µ−1(p) ∼= P1. Intuitively, the blow-up separates the tangent directions at p, resolving

the self-intersection. The map µ is a biholomorphism away from the exceptional divisor:

µ : Blp(X ) \ S ∼−−→ X \ {p}

so the geometry of X is unchanged outside of p.

Now, consider the strict transform X ′ of the component X under the blow-up. It is obtained

by taking the closure of X \{p} under the inverse image of µ. The strict transform intersects the

exceptional divisor S in two distinct points, say Q and R, which correspond to the two branches

of X meeting at p prior to the blow-up. These points reflect the distinct tangent directions at

the node. See Figures 5.2 and 5.4 for a visual reference.

Figure 5.4: The blow up of X at p

Topologically, this means that in the dual graph of Blp(X ), the single vertex corresponding

to X (with a self-loop edge at p) is replaced by two vertices: one for X ′ and one for S, connected

by two edges corresponding to the intersections at Q and R. The resulting graph is a 2-cycle:

two vertices joined by two edges. Its topological realization is still a circle, hence homeomorphic

to a self-loop.

Repeating this for each p ∈ E′ shows that every self-loop in Γ is replaced in ΓBl by a 2-cycle.

Since the rest of the graph remains unchanged, the topological realizations of Γ and ΓBl are

homeomorphic.
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5.2 The Dehn Twist and the Picard-Lefschetz Transformation

We now introduce the notion of a Dehn twist. Informally, the Dehn twist δc about a smooth,

simple closed curve c on an oriented smooth surface S is a homeomorphism constructed as

follows: first, orient c and cut the surface S along c; then rotate the right edge of c by 180◦

counterclockwise and the left edge by 180◦ clockwise; finally, glue the edges back together.

Precise construction of the Dehn Twist can be found in [1, pp. 145-146].

Figure 5.5: The Dehn Twist

It is easy to see that on homology, the induced map δc∗ : H1(S,Z) → H1(S,Z) is given by

δc∗(d) = d+ (d · c)c,

where d · c denotes the intersection number of the cycles d and c.

Proposition 4.1.7 says that the central fiber X0 is a deformation retract of the total space X .

Composing this deformation retraction with the inclusion of the nearby smooth fiber Xt ↪→ X ,

we obtain a continuous map

rt : Xt → X0.

By choosing local analytic coordinates near a node of X0, the total space X can be locally

modeled by the family of curves {xy = t} ⊂ C2 ×∆, whose central fiber at t = 0 is the nodal

curve xy = 0. For small t, the fiber Xt is smooth and topologically a surface with a small neck,

while X0 has a node at the origin (see 5.6).

In this model, the deformation retraction collapses the vanishing neck in Xt to the node

in X0, and the map rt can be constructed so that it is a homeomorphism away from a single

embedded circle c ⊂ Xt, which is collapsed to the node. This circle c is known as the vanishing

cycle. Its name reflects the fact that it “vanishes” in the limit as t→ 0.

It can be shown that the Picard-Lefschetz representation

T∗ : π1(∆
∗, t) → Aut(H1(Xt,Z))

sends a generator of π1(∆
∗, t) ∼= Z to the automorphism induced by the Dehn twist δc along the

vanishing cycle c ⊂ Xt. A detailed proof of this fact can be found in [1, pp. 148-149].
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Figure 5.6: The family {xy = t} ⊂ C2 ×∆

Globally, the smooth fiber Xt may acquire multiple nodes in the central fiber X0, and each of

these corresponds to a distinct vanishing cycle ci ⊂ Xt. These cycles can be realized as smoothly

embedded circles that collapse to the nodes as t → 0, and they generate a distinguished set of

homology classes in H1(Xt,Z). In this case, the Dehn twist can be generalized:

Theorem 5.2.1 (Picard-Lefschetz Formula). Let π : X → ∆ be a semistable degeneration of

curves and let {ci} ⊂ H1(Xt,Z) be the set of vanishing cycles associated with π. Then for any

class d ∈ H1(Xt,Z), the monodromy action is given by

T (d) = d+
∑
i

(d · ci)ci,

where d · ci denotes the topological intersection number.

This formula shows that the monodromy acts trivially on cycles disjoint from all vanishing

cycles, and twists those intersecting ci by adding integer multiples of ci, analogous to the effect

of a right-handed Dehn twist in surface topology.

Since (T − I)2 = 0 on the dual space H1
lim, the logarithm of the monodromy, which now

simplifies as N = T − I, satisfies

N(d∗) =
k∑
i=1

(d · γi)γ∗i .

For simplicity, we omit the star and denote cohomology classes by the same symbol.

Example 5.2.2. Consider a torus X, with H1(X,Z) ∼= Zα ⊕ Zβ. Let α be the loop that is

contracted like Figure 5.1. Then, under the logarithm N of the Picard-Lefschetz transformation

on the dual space H1
lim we have:

α 7→ 0, β 7→ α.
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5.3 Constructing the Generic Fiber

Since the degeneration acts by ‘collapsing’ certain embedded circles - namely, the vanishing

cycles ci - to nodes pi in the central fiber, one can heuristically think of the generic fiber Xt as
being obtained by reversing this process. It is made explicit in [1, pp. 149-152].

We begin by performing the real oriented blow-up of X̃0 along the set

Ẽ = {r1, s1, . . . , re, se},

which consists of the preimages of the nodes of X0 under the normalization map ν. This yields

a surface Bl
Ẽ
(X̃0), and we denote the blow-up map by

τ : Bl
Ẽ
(X̃0) → X̃0.

The blow-up replaces each point of Ẽ with a copy of S1, resulting in a (possibly disconnected)

Riemann surface with boundary.

Next, we construct a new surface Σ by gluing each pair of boundary circles τ−1(ri) and

τ−1(si) for i = 1, . . . , e, to form a family of embedded circles γi. To ensure that the resulting

surface is oriented, each gluing is performed so that the orientation of τ−1(ri) is identified with

the opposite orientation of τ−1(si). The outcome is a connected, compact Riemann surface.

Let

h : Bl
Ẽ
(X̃0) → Σ

denote the quotient map, and let

ξ : Σ → X0

be the map that collapses each γi to the corresponding node pi. One can regard Σ as the generic

fiber Xt, and the circles γi ⊂ Σ as the vanishing cycles of the degeneration.

Example 5.3.1. Figure 5.7 shows the normalization, the real blow up, and the associated curve

Σ for a specific example of a central fiber.

Figure 5.7: Construction of Σ
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5.4 Computing the (Co)homology of X0

In this section, we present key results that will help us compute the (co)homology of the central

fiber, using the tools developed in the previous sections. For this section, all (co)homology

groups are taken with rational coefficients, unless otherwise specified.

As before, let ν : X̃0 → X0 denote the normalization of X0. Let V , with #V = v, be the

set of irreducible components of X0, and let E = {p1, . . . , pe} be the set of nodes of X0. Let

Ẽ = {r1, s1, . . . , re, se} denote the preimages of the nodes under ν, so that ν−1(pi) = {ri, si}.
Recall that the restriction ν : X̃0 \ Ẽ

∼−−→ X0 \E is a biholomorphism. From comparing the long

exact sequences in homology for the pairs (X0, E) and (X̃0, Ẽ):

0 H1(X0) H1(X0, E) H0(E) H0(X0) H0(X0, E) 0

0 H1(X̃0) H1(X̃0, Ẽ) H0(Ẽ) H0(X̃0) H0(X̃0, Ẽ) 0

one can get

b1(X0) + e− 1 = b1(X̃0) + 2e− v

or

b1(X0) = b1(X̃0) + e− v + 1 = b1(X̃0) + b1(|Γ|).

In fact, something stronger holds:

Proposition 5.4.1. With the previous notation, the following short exact sequence holds:

0 −→ H1(|Γ|,Z) −→ H1(X0,Z)
ν∗−→ H1(X̃0,Z) −→ 0.

Proof. Let ZX0 and ZX̃0
be the constant sheaves with values in Z on X0 and X̃0 respectively.

There is a natural map of sheaves ZX0 → ν∗ZX̃0
, and we claim that this fits into a short exact

sequence of sheaves on X0:

0 −→ ZX0 −→ ν∗ZX̃0
−→ Q −→ 0, (5.1)

where Q is a skyscraper sheaf supported on E, with stalks isomorphic to Z.
We check exactness on stalks: For a point p ∈ X0, the stalk of ν∗ZX̃0

at p is the direct sum

of the stalks of ZX̃0
at the preimages ν−1(p). If p ∈ X0 is a smooth point (i.e., not a node), then

ν is a local isomorphism near p, and ν−1(p) consists of a single point. Hence in this case the

map ZX0,p → (ν∗ZX̃0
)p is an isomorphism, and the cokernel vanishes. If p ∈ X0 is a node, then

ν−1(p) = {r, s} and the sequence becomes isomorphic to the sequence:

0 → Z → Z⊕ Z → Z → 0,

where the first nonzero arrow is given by Z ∋ a 7→ (a, a) and the second nonzero arrow by

Z2 ∋ (a, b) 7→ b− a.

We now pass to cohomology. Since skyscraper sheaves have vanishing higher cohomology,
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the long exact sequence in cohomology associated to (5.1) is

0 −→ H0(X0,ZX0) −→ H0(X0, ν∗ZX̃0
) −→ H0(Q) −→ H1(X0,ZX0) −→ H1(X̃0, ν∗ZX̃0

) −→ 0.

We claim that

H i(X0, ν∗ZX̃0
) ∼= H i(X̃0,Z),

for i = 0, 1. To prove this, we introduce the Leray spectral sequence for sheaf cohomology:

Ep,q2 = Hp(X0, R
qν∗ZX̃0

) =⇒ Hp+q(X̃0,ZX̃0
).

The constant sheaf ZX̃0
is flasque and the direct image of a flasque sheaf under a continuous

map remains flasque. Hence, ν∗ZX̃0
is also a flasque sheaf on X0, and so all higher direct images

Rqν∗ZX̃0
vanish for q > 0. Therefore, the only nonzero terms on the E2-page of the Leray

spectral sequence lie in the q = 0 row, and we obtain

Hp(X0, ν∗ZX̃0
) ∼= Hp(X̃0,Z) for all p ≥ 0.

We now identify each term:

� H0(X0,ZX0)
∼= Z, since X0 is connected.

� H0(X̃0,ZX̃0
) ∼= Hom(V,Z) = ZV .

� H0(Q) ∼= Hom(E,Z) = ZE .

Thus we arrive at the exact sequence:

0 −→ Z −→ ZV δ−−→ ZE −→ H1(X0,Z) −→ H1(X̃0,Z) −→ 0. (5.2)

We now show that coker(δ) ∼= H1(|Γ|,Z). Let C0(Γ) and C1(Γ) denote the sets of vertices

and edges of the dual graph Γ, respectively. As before, we identify the set of vertices with the

set V of irreducible components of X0, and the set of edges with the set E of nodes.

To describe the map δ : ZV → ZE more explicitly, we give an orientation to Γ, that is, we

assign a direction to each edge e ∈ E, specifying a source vertex e− ∈ V and a target vertex

e+ ∈ V , such that the map δ sends a function f : V → Z to the function δ(f) : E → Z defined

by

δ(f)(e) = f(e+)− f(e−).

In other words, δ is the dual of the boundary map ∂ : C1(Γ) −→ C0(Γ), which sends each edge

e to ∂(e) = e+ − e−. The cochain complex ZV δ−→ ZE then computes the simplicial cohomology

of the dual graph. In particular, ker(δ) ∼= H0(|Γ|,Z) ∼= Z, and coker(δ) ∼= H1(|Γ|,Z).

Another useful result is the following:

Proposition 5.4.2 ([1, pp. 160]). The sequence

0 → H1(|Γ|,Z) → H1(Xt,Z)
r∗−→ H1(X0,Z) → 0,

with r∗ induced by the inclusion Xt ↪→ X followed by the retraction X → X0, is exact.
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Combining the previous two propositions we get the following:

Theorem 5.4.3. Let π : X → ∆ be a semistable degeneration of curves and let X̃0 =
⊔
i X̃i be

the normalization of the central fiber X0, where each X̃i is the normalization of the irreducible

component Xi of X0. Then

g(Xt) = b1(|Γ|) + g(X̃0) = b1(|Γ|) +
∑
i

g(X̃i)

Remark 5.4.4. In a strictly semistable degeneration of curves, the components of the central

fiber are smooth and thus X̃i
∼= Xi. Also, since H

1(X (1)
0 ) = 0,

Φ = dimQH
1(X (0)

0 ) = 2
∑
i

g(Xi).

In this case, using the results in Section 4.7, we have that

g(Xt) = b1(Γ) +
∑
i

g(Xi)

Theorem 5.4.3 is a generalization of this fact.

Corollary 5.4.5. We obtain the monodromy criterion for a semistable degeneration of curves:

N = 0 on H1
lim ⇐⇒ b1(|Γ|) = 0 ⇐⇒ g(Xt) =

∑
j

g(X̃j).

Example 5.4.6. Consider the degeneration with central fiber as in Figure 5.8.

Figure 5.8

From the figure, we find b1(Xt) = 6, b1(|Γ|) = 2 and b1(X̃0) = 2. Either of Theorem 5.4.1 or

Theorem 5.4.2 give b1(X0) = 4.

We will explicity compute N . Take α1, γ1, α2, β2, α3, γ4 as the generators of H1(Xt). The
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vanishing cycles are γ1, γ2, γ3, γ4. As elements in H1
lim we have the relations

γ2 = −γ1 and γ3 = 0

From Theorem 5.2.1, the Picard-Lefschetz transformation acts on the generators as

� α1 7→ α1 − γ1 + γ2 = α1 − 2γ1

� γ1 7→ γ1

� α2 7→ α2

� β2 7→ β2

� α3 7→ α3 + γ4

� γ4 7→ γ4

And thus dimQK
1 = dimQ kerN = dimQ ker (T − I) = 4 as expected from Proposition 4.6.1.

The monodromy weight filtration of H1
lim

∼= Q6 is

0 ⊂W0 = Q2 ⊂W1 = Q4 ⊂W2 = Q6

Proposition 5.4.7. Let π : X → ∆ be a semistable degeneration curves. Then the generic fiber

Xt is isomorphic to P1 if and only if the central fiber is a tree of P1’s, that is:

� each irreducible component of X0 is isomorphic to P1,

� the dual graph Γ of X0 is connected and acyclic (i.e., a tree: no cycles or self-loops).

Proof. To see this, first note that Xt is connected if and only if X0 is connected, which in turn

holds if and only if the dual graph Γ is connected (Proposition 4.6.2).

Second, recall that a connected graph with v vertices is a tree if and only if it has exactly

v − 1 edges, which is equivalent to having first Betti number b1(|Γ|) = 0.

Third, if the dual graph has no self-loops (as is the case for a tree), then the components of

X0 are smooth, and hence each component is isomorphic to its own normalization: X̃i
∼= Xi.

Applying Theorem 5.4.3, we compute the genus of the generic fiber:

g(Xt) = b1(|Γ|) +
∑
i

g(X̃i).

If Xt ∼= P1, then g(Xt) = 0, which forces both b1(|Γ|) = 0 and g(X̃i) = 0 for all i. In other

words, Γ is a tree, and each X̃i
∼= Xi

∼= P1, since smooth connected compact curves of genus

zero are isomorphic to P1. Conversely, if X0 is a tree of P1’s, then the same formula shows that

g(Xt) = 0. With the same argument as before, Xt ∼= P1.



Chapter 6

Degenerations of Surfaces

In this chapter, we study semistable degenerations of complex surfaces. We start with some

general computations using the Clemens-Schmid exact sequence, which help us express the

graded pieces of H2
lim in terms of the geometry of the central fiber and its dual complex. From

this, we extract some useful criteria for when the monodromy is zero. To see these ideas in

action, we look at degenerations of K3 surfaces, and abelian surfaces.

6.1 First Computations

Recall that X (0)
0 is a disjoint union of complex surfaces (see 2.8), and X (1)

0 is a disjoint union of

complex curves (see 2.7) called the double curves.

We define

� Φ = dimQ ker
(
H1(X (0)

0 ) → H1(X (1)
0 )
)
= dimQGr1H

1.

� q = 1
2b1(X

(0)
0 ) =

∑
i q(Xi), the sum of the irregularities of the components.

� g = 1
2b1(X

(1)
0 ) =

∑
i<j g(Xij), the sum of the genera of the double curves.

Proposition 6.1.1. In a semistable degeneration of surfaces, the dimensions of the graded

pieces of H2
lim are given by:

� dimQGr0H
2
lim = dimQGr4H

2
lim = b2(|Γ|)

� dimQGr1H
2
lim = dimQGr3H

2
lim = Φ− 2q + 2g

Consequently,

dimQGr2H
2
lim = b2(Xt)− 2Φ− 4g + 4q − 2b2(|Γ|).

Independently of the Betti number of the generic fiber,

dimQGr2H
2
lim = b0(|Γ|) + b2(|Γ|)−#{Xi}+ dimQ ker

(
H2(X (0)

0 ) → H2(X (1)
0 )
)
.

Proof. By Propositions 4.2.5(2) and 4.6.3, we have

Gr0H
2
lim

∼= Gr0K
2 ∼= Gr0H

2 ∼= H2(|Γ|),

61
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so that

dimQGr0H
2
lim = b2(|Γ|).

Similarly, the first graded piece is given by

Gr1H
2
lim

∼= Gr1K
2 ∼= Gr1H

2 ∼= E1,1
2 =

H1(X (1)
0 )

im
(
H1(X (0)

0 ) → H1(X (1)
0 )
) .

Using the identity

dimQ im
(
H1(X (0)

0 ) → H1(X (1)
0 )
)
= dimQH

1(X (0)
0 )− dimQ ker

(
H1(X (0)

0 ) → H1(X (1)
0 )
)
,

we deduce:

dimQGr1H
2
lim = b1(X (1)

0 )−
(
b1(X (0)

0 )− Φ
)
= Φ− 2q + 2g.

To compute Gr2H
2
lim, we use the identity:

b2(Xt) = dimGr2H
2
lim + 2dimGr1H

2
lim + 2dimGr0H

2
lim,

so that

dimQGr2H
2
lim = b2(Xt)− 2(Φ− 2q + 2g)− 2b2(|Γ|).

We now derive a formula for Gr2H
2
lim independent of b2(Xt). By Poincaré duality, we have:

Gr−4H4 = (Gr4H
4)∗ = (E4,0

2 )∗ = H4(X (0)
0 )∗ ∼= H0(X (0)

0 )∗,

so

dimQGr−4H4 = #{Xi},

the number of irreducible components. We also have:

Gr2H
2 = E2,0

2 = ker
(
H2(X (0)

0 ) → H2(X (1)
0 )
)
.

From Proposition 4.6.5, we have the exact sequence:

0 → Gr0K
0 → Gr−4H4 → Gr2H

2 → Gr2K
2 → 0.

Taking dimensions and using dimQGr0K
0 = b0(|Γ|), we get:

dimQGr2K
2 = b0(|Γ|)−#{Xi}+ dimQ ker

(
H2(X (0)

0 ) → H2(X (1)
0 )
)
.

Finally, since Gr2H
2
lim = Gr2K

2 + Gr0K
2 by Proposition 4.2.5(2), and Gr0K

2 = H2(|Γ|), we
conclude:

dimQGr2H
2
lim = b0(|Γ|) + b2(|Γ|)−#{Xi}+ dimQ ker

(
H2(X (0)

0 ) → H2(X (1)
0 )
)
.
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Theorem 6.1.2 (Monodromy Criteria for Surfaces). Let π : X → ∆ be a semistable degeneration

of surfaces. Then:

N = 0 on H1
lim ⇐⇒ b1(|Γ|) = 0

N2 = 0 on H2
lim ⇐⇒ b2(|Γ|) = 0

N = 0 on H2
lim ⇐⇒ b2(|Γ|) = 0 and Φ+ 2g = 2q

Proof. The first two statements are immediate from Proposition 4.6.4. For the last one, recall

that the monodromy weight filtration on H2
lim is

0 ⊂W0 = imN2 ⊂W1 = N(W3) ⊂W2 = N−1(W0) ⊂W3 = kerN2 ⊂ H2
lim

This gives N = 0 on H2
lim if and only if N2 = 0 and dimQGr1 = 0.

6.2 K3 Surfaces

We now apply the preceding results to study the monodromy weight filtration of a degeneration

of projective K3 surfaces, making use of the results established in Sections 2.8 and 2.9.

The following classification theorem will be fundamental:

Theorem 6.2.1 ([8], Theorem II). Let π : X → ∆ be a semistable degeneration of projective

K3 surfaces. Then π is a modification of a semistable degeneration whose central fiber X0 is of

one of the following types:

Type (1) X0 is a K3 surface.

Type (2) X0 = X0 ∪X1 ∪ · · · ∪Xk+1, where:

� X0 and Xk+1 are smooth rational surfaces,

� For 1 ≤ i ≤ k, each Xi is a ruled surface over an elliptic curve,

� For 1 ≤ i ≤ k, each Xi intersects only Xi±1 in a smooth elliptic curve, a section of

the ruling.

Type (3) X0 =
⋃
iXi, where:

� Each component Xi is a smooth rational surface,

� The intersections Xi ∩Xj are isomorphic to P1,

� The dual complex of X0 is homeomorphic to a sphere S2.

Applying the monodromy criteria developed in Section 4.7 we analyze each type

Type (1): The central fiber X0 is a K3 surface, so h1(X0) = 0, implying q = Φ = 0. Since X (1)
0

is empty, we also have g = 0. The dual graph |Γ| is just a point, hence h1(|Γ|) = h2(|Γ|) = 0.

Therefore, the logarithm of the monodromy satisfies N = 0 on H2
lim.
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Type (2): The dual complex |Γ| is homeomorphic to the interval [0, 1], so again h1(|Γ|) =

h2(|Γ|) = 0 and N2 = 0 on H2
lim. Since h

1(Xt) = 0, it follows that Φ = 0. The components

X0 and Xk+1 are regular, while the intermediate components Xi for i = 1, . . . , k each have

irregularity 1, giving q = k. Each of the k + 1 double curves has genus 1, so g = k + 1.

Then,

Φ− 2q + 2g = 0− 2k + 2(k + 1) = 2 ̸= 0,

and thus N ̸= 0. The monodromy weight filtration on H2
lim

∼= Q22 is:

0 =W0 ⊂W1 = Q2 ⊂W2 = Q20 ⊂W3 =W4 = Q22.

Type (3): The dual graph |Γ| has h2(|Γ|) = 1, so N2 ̸= 0 on H2
lim. Since h1(Xt) = 0 and

h1(|Γ|) = 0, we obtain Φ = 0. All components are rational surfaces, so q = 0, and

the double curves are also rational, implying g = 0. Hence dimQGr1H
2
lim = 0. The

monodromy weight filtration on H2
lim

∼= Q22 is:

0 ⊂W0 =W1 = Q1 ⊂W2 =W3 = Q21 ⊂W4 = Q22.

6.3 Abelian Surfaces

We now study the monodromy filtration in a degeneration of abelian surfaces, making use of

the results established in Section 2.10.

We have the following classification theorem; more details can be found in [11, Chapter II].

Theorem 6.3.1. Let π : X → ∆ be a semistable degeneration of abelian surfaces. Then π is a

modification of a semistable degeneration whose central fiber X0 is of one of the following types:

Type (1) X0 is an abelian surface.

Type (2) X0 = X0 ∪X1 ∪ · · · ∪Xk−1, where:

� Each component Xi is a ruled surface over an elliptic curve,

� The components are glued together in a cyclic pattern. In particular, each Xi meets

only Xi−1 and Xi+1 (indices modulo k), and the intersections Xi ∩Xi±1 are smooth

elliptic curves, which are sections of the ruling on Xi.

Type (3) X0 =
⋃
iXi, where:

� Each component Xi is a smooth rational surface,

� The intersections Xi ∩Xj are isomorphic to P1,

� The dual complex of X0 is homeomorphic to a topological 2-torus S1 × S1.

Applying the monodromy criteria developed in Section 4.7 we analyze each type:

Type (1): The central fiber X0 is an abelian surface, so Φ = dimQH
1(X0,Q) = 4, g = 0 and

q = h1,0(X0) = 2. Also, b1(Γ) = b2(Γ) = 0. Since Φ + 2g − 2q = 0, we conclude that N is

zero both on H1
lim and H2

lim.
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Type (2): The dual complex |Γ| is homeomorphic to S1, so b1(|Γ|) = 1 and thus N ̸= 0 on H1
lim,

but b2(|Γ|) = 0 and N2 = 0 on H2
lim. Since b1(Xt) = 4, we have Φ = b1(Xt)− 2b1(Γ) = 2.

The components Xi each have irregularity 1, giving q = k. Each of the k double curves

has genus 1, so g = k. Then,

Φ− 2q + 2g = 2− 2k + 2k = 2 ̸= 0,

and thus N ̸= 0 on H2
lim. The monodromy weight filtration on H1

lim
∼= Q4 is:

0 ⊂W0 = Q1 ⊂W1 = Q3 ⊂W2 = Q4,

while the monodromy weight filtration on H2
lim

∼= Q6 is:

0 =W0 ⊂W1 = Q2 ⊂W2 = Q4 ⊂W3 =W4 = Q6.

Type (3): The dual complex |Γ| has b2(|Γ|) = 1, so N2 ̸= 0 on H2
lim. Since b1(Xt) = 4 and

b1(|Γ|) = 2, we obtain Φ = 0. All components are rational surfaces, so q = 0, and the

double curves are isomorphic to P1, implying g = 0. The monodromy weight filtration on

H1
lim

∼= Q4 is:

0 ⊂W0 =W1 = Q2 ⊂W2 = Q4,

while the monodromy weight filtration on H2
lim

∼= Q6 is:

0 ⊂W0 =W1 = Q1 ⊂W2 =W3 = Q5 ⊂W4 = Q6.
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