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Abstract

Topological defects are field excitations that are stabilised by topological
obstructions. They emerge in symmetry breaking phase transitions. Such
transitions are mathematically described by quotients of Lie groups and
result in a vacuum manifold. Topological defects can be characterised by
the topology of the vacuum manifold using homotopy theory. As such,
the study of topological defects presents a surprising application of the

theoretical field of algebraic topology.
This thesis provides the mathematical background of Lie groups and

homotopy theory as well as the physical background of field theory and
symmetry breaking needed to understand topological defects. We look at

some examples of topological defects and the grand unified theory of
SU(5). We will conclude that strings cannot form as a result of symmetry

breaking phase transitions of the grand unified theory of SU(5).
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Chapter 1
Introduction

“Topological defects are ubiquitous in physics and also appear in cosmol-
ogy” [1]. Topological defects turn-up in the discovery of gauge bosons
in the standard model in particle physics, which describes the elementary
particles widely thought of as the building blocks of our universe. They
also play a major role in grand unified theories. Grand unified theories ex-
plore the possibility of a merger of the electromagnetic interactions with
the nuclear interactions.

The study of topological defects is an alluring subject because of the
extensive mathematics involved. The mathematics used to describe topo-
logical defects is an exquisite study on it’s own. What makes this study
of topological defects especially captivating is the unexpected application
of the, at first sight, mere theoretical algebraic topology in physics. The
direct physical relevance of homotopy theory is remarkable.

Topological defects typically arise during symmetry breaking phase
transitions. When the symmetry of a system breaks, the newly defined
ground states are incoherently chosen, which may result in structures that
preserve excitations of the field. These are topological defects. The type of
topological defects formed is determined by the topology of the vacuum
manifold.

In many papers and researches the rigorous maths is swept under the
rug, for more accessible papers. However, more rigorous maths also has
it’s beauty, therefore this thesis will cover the lion’s share of the mathemat-
ics needed to describe topological defects.

The mathematical subjects included in this thesis revolves around Lie
groups, Lie algebras, homogeneous manifolds and homotopy theory. Lie
groups and Lie algebras are inescapable in mathematics, describing all
sorts of transformations. As for the physics, we will study field theory,
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8 Introduction

gauge theory and symmetry breaking. The goal of this thesis is to explain
topological defects at an undergraduate level, including the mathematical
splendour.

This thesis assumes a graduate level of mathematics and physics as
prior knowledge, specifically group theory and differentiable manifolds
are important.

In chapter 2 we will start our study of Lie groups and algebras which,
among other things, form the mathematical frame work of symmetries.
We extend our mathematical framework to homogeneous manifolds and
we will learn to characterise such manifolds as quotients of Lie groups.

Next, in chapter 3, we will be introducing homotopy groups, which
allow us to distinguish between topological spaces such as homogeneous
manifolds. In order to calculate homotopy groups, we will acquaint our-
selves with two long exact sequences of homotopy groups.

In chapter 4 we will commence the physical background needed to de-
scribe topological defects, with an introduction to field theory. A speciali-
sation area in field theory is that of gauge theory, which we discuss with a
passage along Yang-Mills theory.

We begin chapter 6 with an explanation of symmetry breaking, which
describes the forming mechanism of topological defects. Subsequently,
we will explain what topological defects are and look at the examples of
a domain wall, a string and a monopole. Finally, we will study the grand
unified theory of SU(5), and determine the topological defects that may
arise as a result of the symmetry breaking pattern.

8



Chapter 2
Lie groups and algebras

In this chapter we will lay the ground works for the rest of this thesis. We
will consider Lie groups and Lie algebras and some important properties
they have. We will focus on matrix Lie groups and algebras as those will be
paramount in what follows. We will be using the definitions of manifolds,
smoothness, differentials etc. as described in [2].

2.1 Lie groups

Lie groups are a special set of differentiable manifolds. They are differen-
tiable manifolds that also have a group structure. This group structure is
compatible with the structure of the differentiable manifold.

The theory in this section is based on chapter three of [3].
Let us begin by defining a Lie group.

Definition 2.1.1. A Lie group G is a differentiable manifold, with a group struc-
ture, such that the map:

ψ : G × G → G, (σ, τ) 7→ στ−1 (2.1)

is smooth.

This definition is equivalent to demanding that both the group opera-
tion (multiplication) and the map sending each element to it’s inverse are
smooth maps. Let us examine a few example of Lie groups.

• The simplest example is euclidean space Rn where we choose the op-
eration to be vector addition. It is easy to check that vector addition
is a smooth group operation with a smooth inverse.

9



10 Lie groups and algebras

• The non-zero complex numbers C∗ form a Lie group under multipli-
cation. Note that omitting the zero is necessary to ensure smooth-
ness of the inverse map and to ensure that the group structure is
well-defined.

• The unit circle S1 as a closed subgroup of C∗ becomes a Lie group by
Cartan’s theorem, see Theorem 2.1.2.

• The product of two Lie groups is again a Lie group, with the product
manifold structure and the direct product chosen as group structure,
see [2].

Cartan’s theorem is a useful statement which we will use to identify
Lie groups as subgroups of known Lie groups.

Theorem 2.1.2 (Closed subgroup theorem, Cartan). Suppose G is a Lie group,
and let H be a closed subgroup of G, that is subgroup of G that is also a topologi-
cally closed subset of G, then H is a Lie group with group structure from G.

Proof. See Theorem 20.12 in [2].

The matrix group Mat(n × n, R) can be given a differentiable manifold
structure, through the identification of each argument of the matrix with
a coordinate in Rn2

. With this identification we can define a topology on
Mat(n × n, R) and this turns the set into a differentiable manifold. The
general linear group is a subgroup of the matrix group that deserves a
little more attention. Let us define it.

Definition 2.1.3. Let det : Mat(n × n, R) → R be the determinant map. The
real general linear group of dimension n, GL(n, R), is the matrix subgroup
of Mat(n × n, R), defined as follows:

GL(n, R) = det −1(R \ {0}).

Equivalently, it is the set of invertible real n × n matrices.
We can also define the complex general linear group, GL(n, C), as the set of
invertible complex n × n matrices, which is a subgroup of Mat(n × n, C). If
detC : Mat(n × n, C) → C is the determinant map for complex matrices we
have,

GL(n, C) = det −1
C

(C \ {0}).

10



2.1 Lie groups 11

When we talk about the general linear group we may refer to both the
real and the complex general linear group, GL(n, R/C). Which is meant
will be clear from context, often the distinction is redundant.

Trough the restriction of charts, GL(n, R/C) ⊆ Mat(n × n, R) becomes
a differentiable manifold, as explained in example 1.26 in [2]. In fact, the
general linear group of dimension n, GL(n, R/C), is a Lie group under
matrix multiplication.

Lemma 2.1.4. The general linear group GL(n, R/C) is a Lie group.

Proof. We will prove this for R only, but the proof for C is completely
analogous.

All matrices in the general linear group are invertible, so we can define
a group structure on GL(n, R) with matrix multiplication. We need to
check that matrix multiplication and taking the inverse are smooth maps.

For multiplication, we simply note that, written as a map between Rn2
,

all component maps of the multiplication are smooth as polynomials in
the coefficients of our matrices.

Smoothness of inverses is a bit harder to prove. We use Cramers rule
(Proposition 10.22 [4]) to write inverses of matrices as a scalar multiplica-
tion combined with polynomials. For A ∈ GL(n, R) we define Aij as the
matrix A with the ith row and the jth column removed, and Ã = (aij) with
aij = (−1)i+j det(Aji) then we have:

A−1 =
1

det A
Ã. (2.2)

Here det A ̸= 0 and every entry of Ã is a polynomial in the entries of
matrix A. This is clearly a smooth map, so the general linear group of
dimension n is a Lie group.

Some useful subgroups of the general linear group are the following:

• The special linear group, both complex and real,

SL(n) = {A ∈ GL(n, R/C)|det(A) = 1}, (2.3)

• The orthogonal group

O(n) = {A ∈ GL(n, R)|A⊤ = A−1}, (2.4)

• The special orthogonal group

SO(n) = {A ∈ SL(n, R)|A⊤ = A−1}, (2.5)

11



12 Lie groups and algebras

• The unitary group

U(n) = {A ∈ GL(n, C)|A† = A−1}, (2.6)

where A† is the complex conjugate transposed, A† = (A∗)⊤, and

• The special unitary group

SU(n) = {A ∈ SL(n, C)|A† = A−1}. (2.7)

With the closed subgroup theorem of Cartan, Theorem 2.1.2, we can con-
clude that these subgroups are all Lie groups. We will be using the general
linear group, both complex and real, and their Lie subgroups, repeatedly
in the rest of this thesis.

2.2 Lie algebras

Now that we have introduced Lie groups, it is time to consider Lie alge-
bras. Both Lie groups and Lie algebras will be important in describing
gauge theories and field symmetries later in this thesis. This section is
based on Chapter 8 of [2].

First we discuss some basic theory of vector fields. Recall that a tangent
vector on a manifold M is a derivation of a smooth map on M.

Definition 2.2.1. A linear map v : C∞(M) → R is a derivation at p, if

v( f g) = f (p)v(g) + g(p)v( f ) for all f , g ∈ C∞(M). (2.8)

The set of all derivations at p, TpM, is the tangent space of M at p and v ∈ TpM
is a tangent vector at p. The tangent bundle of M, TM, is the union over
p ∈ M of all tangent spaces TpM.

Now let us define a vector field.

Definition 2.2.2. Let M be a smooth manifold, and TM its tangent bundle. A
vector field is a continuous map X : M → TM, given by p → Xp such that for
all p ∈ M we have Xp ∈ TpM.
In other words, a vector field is a section of the projection map π : TM → M,
that sends any tangent vector to its base.

We define a rough vector field similarly, only without the requirement
of continuity. A vector field X is called smooth if it is a smooth map be-
tween the manifolds M and TM. We introduce the notation X(M) for the
set of all smooth vector fields on M.

12



2.2 Lie algebras 13

Lemma 2.2.3. The set X(M) is a vector space under the following pointwise
addition and scalar multiplication: (aX + bY)p = aXp + bYp.
Furthermore, if f ∈ C∞(M) and X ∈ X(M) then f X is a vector field defined by
( f X)p = f (p) · Xp.

Proof. See page 177 and Proposition 8.8 in [2].

It is important to note the difference between f X and X f . For f ∈
C∞(M), X ∈ X(M), f X as defined above, is a vector field on M. On the
other hand, X f is a smooth function, defined by the action of the vector
field X on the smooth map f . In other words, we have X f ∈ C∞(M)
defined as (X f )(p) = Xp( f ).

Next, we introduce a relation between two vector fields. Recall that the
differential dFp : TpM → TF(p)N of a map F : M → N at point p is the map
that we define through its evaluation in a function f ∈ C∞(N):

dFp(v)( f ) = v( f ◦ F). (2.9)

See definition 1.22 of [3] .
For a smooth map F : M → N and a vector field X on M, we can find

tangent vectors of N with the differential of F, dFp(Xp) ∈ TF(p)N. The set
of vectors defined as such does not always form a vector field on N. For
example, if F is not surjective, we cannot identify a tangent vector at each
point in N. Still, there may exist vector fields on N containing the vectors
dFp(Xp) ∈ TF(p)N.

Definition 2.2.4. Let F : M → N be a smooth map of manifolds, X a vector field
on M and Y a vector field Y on N. X and Y are called F-related if ∀p ∈ M the
relation dFp(Xp) = YF(p) ∈ TF(p)N holds.

A useful characterisation of two vector fields being F-related is given
in the following proposition.

Proposition 2.2.5. Suppose F : M → N is a smooth map of manifolds, and
X ∈ X(M) and Y ∈ X(N). Then X and Y are F-related if and only if for every
open subset U ⊆ N and every f ∈ C∞(U, R) we have:

X( f ◦ F) = (Y f ) ◦ F. (2.10)

Proof. Let p ∈ M be any point and f ∈ C∞(U, R) be any smooth real-
valued function defined on an open subset U ∋ F(p) of N. Then we have

X( f ◦ F)(p) = Xp( f ◦ F) = dFp(Xp) f (2.11)

13



14 Lie groups and algebras

and

(Y f ) ◦ F(p) = (Y f )(F(p)) = YF(p) f . (2.12)

These are equal for all f ∈ C∞(U, R) if and only if dFp(Xp) = YF(p) for all
p ∈ M, and thus X and Y are F-related.

For a given function F : M → N and a smooth vector X field on
M, there might not exist any vector field on N that is F-related to X. In
some cases however, we do know that such a field exists and may even
be unique. As could be expected, a diffeomorphism gives a one-to-one
correspondence between a vector field in its domain and in its codomain.

Proposition 2.2.6. Suppose M and N are smooth manifolds and F : M → N is
a diffeomorphism. Then for every X ∈ X(M), there exists a unique smooth vector
field on N that is F-related to X.

Proof. See Proposition 8.19 in [2].

F-relations can also be defined when F is an endomorphism. This will
be important in the construction of vector fields that are homogeneous,
that is, the vector field behaves similarly at every point on the manifold.

We will now define the Lie bracket which will be important for Lie
algebras. The Lie bracket is a way to construct smooth vector fields given
two smooth vector fields.

Definition 2.2.7. The Lie bracket of the vector fields X and Y is defined by

[X, Y] : C∞(M) → C∞(M),
[X, Y] f = XY f − YX f .

(2.13)

The notation XY f , indicates that first Y acts on f and consequently X
acts on Y f .

Lemma 2.2.8. The Lie bracket of a pair of smooth vector fields is a smooth vector
field.

Proof. See Lemma 8.25 of [2].

The Lie bracket has some nice properties.

Proposition 2.2.9. For all X, Y, Z ∈ X(M), f , g ∈ C∞(M) and a, b ∈ R, the
Lie bracket satisfies the following identities:

14



2.2 Lie algebras 15

(a) Bilinearity:

[aX + bY, Z] = a[X, Z] + b[Y, Z]
[X, aY + bZ] = a[X, Y] + b[X, Z]

(2.14)

(b) Antisymetry:

[X, Y] = −[Y, X] (2.15)

(c) The Jacobi identity:

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 (2.16)

(d) Product with smooth maps:

[ f X, gY] = f g[X, Y] + ( f Xg)Y − (gY f )X (2.17)

Proof. See Proposition 8.28 in [2].

Another important property of the Lie bracket is that it preserves F-
relations.

Proposition 2.2.10. If F : M → N is a smooth map between manifolds and
X1, X2 ∈ X(M) and Y1, Y2 ∈ X(N) are vector fields such that Xi and Yi are
F-related, then [X1, X2] is F-related to [Y1, Y2].

Proof. See Proposition 8.30 in [2].

The commutator operator and the map F commute for F-related vector
fields. The preservation of F-relations will allow us to define the set of
left-invariant vector fields. This will be important in the construction of
Lie algebras of Lie groups. First we define a Lie algebra.

Definition 2.2.11. A Lie algebra g over R is a real vector space g with a bilinear
operator [ , ] : g × g → g, that is anti symmetric and satisfies the Jacobi
identity, Equation 2.16.

To get some feeling for Lie algebras we present a few examples.

1. The vector space Mat(n× n, R) of real n× n matrices under the com-
mutator bracket, [A, B] = AB− BA, becomes a Lie algebra of dimen-
sion n2 denoted by gl(n, R).

2. Similarly gl(n, C) is the 2n2 dimensional Lie algebra of Mat(n, C)
with the commutator bracket.

15



16 Lie groups and algebras

3. If we have a vector space V and on the vector space of endomor-
phisms on V we define the commutator bracket similar to the matrix
commutator [A, B] = A ◦ B− B ◦ A, we find a Lie algebra on End(V),
denoted by gl(V).

4. The space of all smooth vector fields X(M) on a manifold M, under
the Lie bracket is a Lie algebra.

5. We can define a bracket such that all entries map to zero. Under this
definition any vector space becomes a Lie algebra. We call such Lie
algebras abelian, as they relate to abelian Lie groups, see Corollary
3.50(b) of [3]. We will not go into this in this thesis.

Since Lie algebras are vector spaces, we can use all techniques of linear
algebra to find their characteristic properties. We want to use this sim-
plicity to better understand Lie groups, therefore we want to find a Lie
algebra distinctive to a Lie group. For this, we define an important prop-
erty of vector fields.

Definition 2.2.12. A vector field X ∈ X(G) on a Lie group G is called left-
invariant if it is invariant under all left translations. In other words, X is left
invariant if it is Lg-related to itself for every left-multiplication Lg. That is:

d(Lg)h(Xh) = Xgh, ∀g, h ∈ G (2.18)

The set of all left-invariant vector fields is a linear subspace of X(G)
and it is closed under the Lie bracket (Proposition 8.33 in [2]). These two
properties make the set into a Lie algebra. We will call the set of left-
invariant vector fields on a Lie group G, ’the’ Lie algebra of G and denote
it by g. The notation Lie(G) may be used to emphasise the Lie group G.

Definition 2.2.13. Let G be a Lie group. The Lie algebra of G, often denoted by
g, is the set of left-invariant vector fields on G.

Let us take a look at the dimension of the Lie algebra g of a Lie group
G. The dimension of g reflects the profound connection between the Lie
algebra and the group, as a matter of fact, the dimensions of the algebra
and the group are equal. Let us prove this.

Theorem 2.2.14. Let G be a Lie group and g the Lie algebra of G. Then the
evaluation map ε : g → TeG, X → Xe is a vector space isomorphism. We thus
find dim g = dim TeG = dim G.

16



2.2 Lie algebras 17

Proof. We want to prove that ε is a bijective linear map. Note that by
Lemma 2.2.3 linearity of ε is ensured.

For injectivity, suppose Xe = 0 for some X ∈ g. Then by left-invariance
we find that Xg = d(Lg)e(Xe) = 0, so X has to be the constant zero vector
field and ε is injective.

To prove surjectivity, take v ∈ TeG. We define a rough vector field

vL|g = d(Lg)e(v). (2.19)

Note that any left-invariant vector field X satisfying Xe = v has to abide
the equation above. Hence, if there is any left-invariant vector field on
G that maps to v it is equal to vL. We now prove that vL is smooth and
left-invariant.

We will use Proposition 8.14 in [2], which states that a vector field X
on G is smooth if and only if for all f ∈ C∞(G) the map X f is a smooth
map on G. Accordingly, we will prove that vL f is smooth for all maps
f ∈ C∞(G).

Define a curve γ : (−1, 1) → G, such that γ(0) = e and γ′(0) = v.
Then for g ∈ G we find

(vL f )(g) = vL|g f
= d(Lg)e(v) f .

(2.20)

Here we used the definition of a vector field acting on a function, and the
definition of vL. Using the derivative and implementing the curve γ we
find

d(Lg)e(v) f = v( f ◦ Lg)

= γ′(0)( f ◦ Lg)

=
d
dt
∣∣
t=t0 ( f ◦ Lg ◦ γ)(t).

(2.21)

We rewrite this using φ : (−1, 1) × G → R, φ(t, g) = f (gγ(t)). Then φ
is a smooth map as a composition of group multiplication and the smooth
maps f and γ. Therefore, we conclude that (vL( f ))(g) = ∂φ/∂t(0, g) is a
smooth map in g for all smooth maps f ∈ C∞(G).

We now prove that vL is left invariant, that is d(Lh)g(vL|g) = vL|hg for
all g, h ∈ G. Take g, h ∈ G, then we have

d(Lh)g(vL|g) = d(Lh)g ◦ d(Lg)e(v) = d(Lh ◦ Lg)(v)

= d(Lhg)e(v) = vL|hg.
(2.22)

So we have found vL ∈ g and since ε(vL) = vL|e = d(Le)e(v) = id(v) = v,
the map ε is surjective.

17



18 Lie groups and algebras

This theorem states something a lot stronger than only the equality of
dimensions. First of all, we have that the Lie algebra of a Lie group G is iso-
morphic to the tangent space of G in the identity. This is useful for finding
Lie algebras, because the space of left-invariant vector fields is generally
harder to find than the tangent space. Further, the vector field vL as de-
fined in Equation 2.19 implies that any left-invariant vector field is in fact
smooth and we are thus justified to omit the assumption of smoothness in
Definition 2.2.13.

Lemma 2.2.15. Any left-invariant rough vector field on a Lie group G is smooth.

Proof. Suppose X is a left invariant vector field, and Xe = v ∈ TeG. Then
by Equation 2.19 we have that X = vL and thus X is smooth.

Let us use Theorem 2.2.14 to find the Lie algebras of some Lie groups.
First of all, some Lie algebras below Definition 2.2.11 are ‘the’ Lie algebras
of well chosen Lie groups.

1. As the notation suggests, the Lie algebra of the general linear group,
is gl(n, R), in other words it is the vector space of n × n matrices. We
know that for any element of a vector space, the tangent space of the
vector space to this point is equal to the whole vector space. Using
the identification between Mat(n × n, R) and Rn2

it is clear that the
tangent space of Rn2

in the identity element is equal to Rn2
. Thus the

Lie algebra of GL(n, R) is defined as gl(n, R) := Mat(n × n, R).

2. Likewise, gl(n, C) is the Lie algebra of GL(n, C). This can be seen
using the identification between Mat(n × n, C) and Cn2

.

Let us also take a look at the Lie algebras of some subgroups of the
matrix groups. For this we use yet a different characterisation of the Lie
algebra of a Lie group containing the exponential map. For general Lie
groups the exponential map is a map from the Lie algebra to the Lie group.
We will only use it for matrix Lie groups, in which case it is simply the
exponential map we are used to. For A an n × n matrix we have:

exp(A) = eA =
∞

∑
k=1

1
k!

Ak, (2.23)

which is a convergent sequence by Proposition 20.2 of [2].
For matrix Lie groups we can now define the Lie algebra as in [5].

Definition 2.2.16. Let G ⊆ Gl(n, R/C). We can define the Lie algebra of G as

g = {X ∈ gl(n, R)| exp(tX) ∈ G for all t ∈ R}. (2.24)

18



2.2 Lie algebras 19

Using this characterisation we find the Lie algebras of O(n) and U(n).

• The orthogonal algebra,

o(n) = {X ∈ gl(n, R)| exp(tX) ∈ O(n) for all t ∈ R}. (2.25)

We know that exp(tX) ∈ O(n) if and only if

exp(tX⊤) = (exp(tX))⊤ = (exp(tX))−1 = exp(−tX). (2.26)

Taking the derivative of the exponents with respect to t of the first
and last expression and evaluating at t = 0, we obtain

d
dt
∣∣
t=0 exp(tX⊤) = X⊤ = −X =

d
dt
∣∣
t=0 exp(−tX). (2.27)

So we need X⊤ = −X. The other direction is clear, since if X⊤ = −X
we find exp(tX⊤) = exp(−tX) and thus exp(tX) ∈ O(n). Hence,
o(n) is the set of skew-symmetric real matrices,

o(n) = {X ∈ gl(n, R)|X⊤ = −X}. (2.28)

• The unitary algebra,

u(n) = {X ∈ gl(n, C)| exp(tX) ∈ U(n) for all t ∈ R}
= {X ∈ gl(n, C)| exp(tX)† = exp(−tX) for all t ∈ R}.

(2.29)

With the same differentiation as for O(n), we obtain the condition
X† = −X, which is also a sufficient condition. The acquire that u(n)
is the set of skew-hermitian complex matrices,

u(n) = {X ∈ gl(n, C)|X† = −X}. (2.30)

To find the Lie algebras of the special linear group, we use one more
lemma.

Lemma 2.2.17. For X ∈ Mat(n × n, R/C), we have

det(exp(X)) = exp(TrX). (2.31)

Proof. See Lemma 4.13 of [5].

With this proposition, we can investigate the Lie algebras of the special
linear group and therefore also of the subgroups SO(N) and SU(N).
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20 Lie groups and algebras

• The special linear algebra, both in the complex and real case, requires
det(exp(tX)) = 1. Using Lemma 2.2.17, we find

1 = det(exp(tX)) = exp(tTrX). (2.32)

Since this need to hold for all t ∈ R we need TrX = 0. Clearly, if
TrX = 0 we find det(exp(tX)) = exp(tTrX) = 1, and therefore this
is also a sufficient condition. We have,

sl(n) = {X ∈ gl(n, R/C)|TrX = 0}. (2.33)

• The special orthogonal algebra is the Lie algebra of matrices X , for
which exp(tX) is orthogonal and has unit determinant. This consti-
tutes an intersection of sl(n, R) and o(n). So we obtain

so(n) = {X ∈ gl(n, R)|X⊤ = −X, TrX = 0}. (2.34)

• The special unitary algebra, follows with the same reasoning,

su(n) = {X ∈ gl(n, C)|X† = −X, TrX = 0}. (2.35)

2.2.1 The structure constants

We will describe the structure constants of Lie algebras following Section
3.2 of [6].

A Lie algebra is a vector space, this means that we can find a basis for
the Lie algebra. We focus on matrix Lie groups G and the corresponding
matrix Lie algebras g. In this case, the basis consists of n = dim G = dim g
generating matrices Ti. The commutator of the Lie algebra decomposes in
terms of the generators.

Definition 2.2.18. Let g be a Lie algebra (or the Lie algebra of G) with generators
Ti. The coefficients Cijk such that

[Ti, Tj] =
n

∑
k=1

CijkTk, (2.36)

are called the structure constants of the Lie algebra, or equivalently of the Lie
group G.

Structure constants are always anti-symmetric in the first two indices
by anti-symmetry of the Lie bracket. Note that the structure constants are
dependent on the choice of basis.

Let us take a look at an example.
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2.2 Lie algebras 21

SU(2) is a matrix Lie group of dimension 3. The Lie algebra su(3), as
discussed before is the set of anti-Hermitian, traceless 2× 2 matrices.
We choose a basis Tk = − i

2 τk, where τk are the Pauli matrices,

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (2.37)

We determine the structure constants. Direct calculation yields

[τk, τl] = 2iεklmτm, (2.38)

where εklm is the Levi-Civita symbol. The Levi-Civita symbol, or the
permutation symbol, for three indices is defined as on page 172 of
[7],

εklm =


1 if (klm) is an even permutation of (123),
0 if {k, l, m} ̸= {1, 2, 3},
−1 if (klm) is an odd permutation of (123).

(2.39)

For SU(3) with generators − i
2 τk, we find Cklm = εklm.

In physics it is customary to define the su(2) algebra as the set of
Hermitian, traceless 2 × 2 matrices, with basis Tk = 1

2 τk. This can
easily be realised by multiplying all matrices by a factor i. With the
physics convention, we find purely imaginary structure constants
Cklm = iεklm.

The generators of any Lie algebra can be chosen to form an orthonor-
mal basis with normalisation according to

Tr(titj) = −1
2

δij. (2.40)

When working in such a basis, the structure constants are not only anti-
symmetric in the first two coordinates, but also in the last two, yielding
fully anti-symmetric structure constants.

Lemma 2.2.19. If (ti) is an orthonormal basis of a Lie algebra, with normalisation
according to Equation 2.40, then the structure constants of the Lie algebra are
fully anti-symmetric.

Proof. Using Theorem 2.2.18 we find, for fixed k,

[ti, tj]tk = ∑
l

Cijltltk. (2.41)
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22 Lie groups and algebras

Using Equation 2.40 this yields,

Tr([ti, tj]tk) = ∑
l

Tr(Cijltltk) = −1
2

Cijk. (2.42)

Therefore we have

Cijk = −2Tr([ti, tj]tk) = −2
(
Tr(titjtk)− Tr(tjtitk)

)
, (2.43)

abd we conclude

Cikj = −2
(
Tr(titktj)− Tr(tktitj)

)
= −2

(
Tr(tjtitk)− Tr(titjtk)

)
= −Cijk.

(2.44)

For the second equality, we use that the trace is invariant under cyclic
shifts, which follows from Lemma 9.24 in [4].

The structure constants will re-appear when we are looking for the gen-
eral description of gauge fields of compact Lie groups.

2.2.2 The adjoint representation

When talking about Lie groups and Lie algebras, representations are often
considered. In this thesis the adjoint representation of matrix Lie groups
is a relevant representation, which we will therefore discuss. Let us first
give a more general definition of a representation.

Definition 2.2.20. A representation of a Lie group G in a linear space V is a
group homomorphism of G to the space of automorphism on V,

T : G → Aut(V). (2.45)

A representation of a Lie algebra g in a linear space V is a vector space homo-
morphism from g to the space of endomorphism of V, where the homomorphisms
respect the Lie bracket,

T : g → End(V). (2.46)

We now specify to matrix Lie groups and algebras. We start with the
adjoint representation of a matrix Lie group G, in the linear space of its
own Lie algebra g.
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2.2 Lie algebras 23

Definition 2.2.21. The adjoint representation, Ad, of a matrix Lie group
G in its Lie algebra g is given by,

Ad : G → Aut(g),

g 7→ (A 7→ gAg−1).
(2.47)

Lemma 2.2.22. The map Ad is a well-defined group homomorphism.

Proof. We need to prove that for g ∈ G and A ∈ g we have gAg−1 ∈ g and
that the map Ad preserves the relations under the group operations and
the commutator bracket.

Take g ∈ G, A ∈ g. Using the Definition 2.2.16, we find

gAg−1 ∈ g ⇐⇒ ∀t ∈ R , exp(tgAg−1) ∈ G. (2.48)

The equality (gtAg−1)k = g(tA)kg−1 yields exp(gtAg−1) = g exp(tA)g−1,
but we know that A ∈ g and thus for all t ∈ R we have exp(tA) ∈ G and
g, g−1 ∈ G, so g exp(tA)g−1 ∈ G. As such, the adjoint map is well-defined.

We check the properties of a group homomorphism. For g, g1, g2 ∈ G
and A ∈ g, we have

Ad(g1g2)A = g1g2Ag−1
2 g−1

1 = Ad(g1) ◦ Ad(g2)A, (2.49)

Ad(g) ◦ Ad(g−1)A = gg−1Agg−1 = IdA (2.50)

and thus Ad is a homomorphism.

For matrix Lie groups we conclude that the adjoint representation is
simply the conjugation map.

2.2.3 Compact Lie groups and algebras

In what follows we will mainly be working with compact and simple Lie
groups and corresponding compact and simple Lie algebras. We will base
this section on Section 2.6 of [6].

Sadly, the mathematical rigour of part of this section is beyond the
scope of this thesis and we will not include all proofs or simply refer to
more advanced sources. The statements can be found in Section 2.6 of [6]
and their proofs follow from the theory presented in Chapter 4 of [8]. We
do include these theorems, as they are important in later parts of the thesis
when we consider non-abelian gauge fields.

Definition 2.2.23. A compact Lie group is a Lie group that is compact as a
topological space, that is to say, any open cover of the Lie group has a finite sub-
cover.
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24 Lie groups and algebras

We will examine some earlier examples of matrix Lie groups. Since the
topology on matrix Lie groups is defined by the topology on Euclidean
space, any matrix Lie group is compact if and only if it is a closed an
bounded subset of Mat(n × n).

• GL(n, C) and GL(n, R) are not compact, since they are not bounded.
For example, the sequence

(Ak) =

(
k 0
0 In−1

)
, k ∈ N (2.51)

is contained in GL(n, R/C) and the norm of these matrices diverges.

• SO(n) is compact.
We can define a continuous map,

fn : Mat(n × n, R) → Mat(n × n, R),

fn(A) = AA⊤.
(2.52)

Then O(n) = f−1
n ({In}) and thus O(n) is is closed in Mat(n × n, R).

We know that SO(n) = (det |O(n))
−1({1}), so SO(n) is a closed sub-

group of O(n) and thereby a closed subgroup of Mat(n × n, R).

Furthermore, the norm of orthonormal matrices is bounded by 1 and
thus SO(n) is compact.

• SU(n) is compact.

Similar to the case for SO(n) we can define SU(n) as the inverse of a
closed set under a continuous map, and therefore SU(n) is closed. It
is bounded also bounded, because the norm of all unitary matrices
is equal to 1. Hence we find that SU(n) is compact.

• U(1) is compact. This can be seen using the fact U(1) ∼= S1, which
is a compact subset of C. And thus U(1) is a compact subset of
GL(1, C).

A compact Lie algebra is a Lie algebra corresponding to a compact Lie
group. An important property of compact Lie algebras is given in Section
3.4 of [6].

Theorem 2.2.24. If Lie algebra is compact, it has a positive semi-definitive scalar
product which is invariant under the action of the adjoint representation of the
group.
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2.2 Lie algebras 25

Proof. A more general theory of Lie algebras discusses the Killing form.
The Killing form is a symmetric bilinear from on a Lie algebra (page 13 of
[8]). With this in mind:

Corollary 4.26 of [8] proves the existence of a negative semidefinite
form on g, and thus also of a positive semidefinite form on g. Proposition
13.1 of [9] now proves that this form is also invariant under the adjoint
representation of the Lie group.

The existence of a positive definite bilinear form will be important in
non-abelian gauge theory, therefore we will often be using compact Lie
algebras in the rest of this thesis. To find such forms, the decomposition of
compact Lie algebras into smaller Lie algebras will be important.

Definition 2.2.25. A (Lie) subalgebra is a real vector space that is a subspace
of a Lie algebra, which closed under the commutator operation.

Definition 2.2.26. Let A,B be two Lie algebras of dimensions nA and nB respec-
tively. The direct sum of A and B forms a vector space. We can define a bracket
on this vector space pointwise, for (A, B), (C, D) ∈ A+B we define:

[(A, B), (C, D)]A+B = ([A, C]A, [B, D]B). (2.53)

With this definition the direct sum A+B becomes a Lie algebra of dimension
nA + nB. The direct sum of N Lie algebras can be constructed inductively.

Given a Lie algebra there are some especially interesting subalgebras
called ideals, or invariant subalgebras, which are defined similarly to ide-
als in ring theory.

Definition 2.2.27. Let A be a Lie algebra and C a Lie subalgebra, then C is called
an ideal, or an invariant subalgebra of A, if for all c ∈ C and for all a ∈ A

[c, a] ∈ C. (2.54)

An eminent Lie (sub)algebra is U(1). To see this, we take a look at the
following theorem.

Theorem 2.2.28. All abelian compact Lie algebras are direct sums of U(1) alge-
bras.

Proof. See section 3.3 in [10] .

Next we define a simple Lie algebra.

25



26 Lie groups and algebras

Definition 2.2.29. A compact Lie algebra is said to be simple if it does not con-
tain any ideals. A compact Lie group is said to be semi-simple if it does not
contain an Abelian ideal.

The matrix Lie groups SU(n), SO(n), O(n) and U(n) are all semi-
simple, as can be seen in Example 1 on page 33 of [8].

Since simple Lie groups are relatively easy to work with it is convenient
to look at a decomposition of compact Lie algebras in terms of simple Lie
algebras. Fortunately, all compact Lie algebras can be decomposed into a
unique sum of simple Lie algebras and U(1) algebras.

Theorem 2.2.30. Any compact Lie algebra A can be uniquely represented as a
direct sum of a finite number of U(1) subalgebras and simple subalgebras.

Proof. See page 55 of [6]. The proof uses Theorem 1.51 in [8] and 2.2.28.

As pointed out earlier, compact Lie groups and algebras will be an im-
portant subject of study when considering non-abelian Gauge theory. For
this purpose, there is one more statement that we will use: we want to
know how many positive definite scalar products exist for a given com-
pact Lie group. This is given on page 55 [6].

Theorem 2.2.31. Suppose A is a simple Lie algebra. Then there exists only one
invariant (under the adjoint operator) positive-definite scalar product, up to mul-
tiplication with a positive number.
If B is a compact Lie group, then all invariant positive definite scalar products
are given by positive linear combinations of invariant positive definite scalar of the
simple Lie subalgebras as in Theorem 2.2.30. With positive linear combinations,
we mean linear combinations in which all coefficients are positive.

For matrix Lie algebras this positive definite scalar product is the trace,
see page 53 of [6]..

Corollary 2.2.32. Let G be a matrix Lie group with Lie group g. If G is compact
then the map

g× g → R/C

(A, B) 7→ −Tr(AB)
(2.55)

is a positive definite bilinear form which is invariant under the adjoint represen-
tation. If G is not compact, no such map exists.

By now we have gathered enough information on Lie groups and Lie
algebras to continue with homogeneous manifolds. This we will do in the
next section.
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2.3 Homogeneous manifolds 27

2.3 Homogeneous manifolds

On to the next interesting topic: Homogeneous manifolds. As you might
have guessed a homogeneous manifold is a differentiable manifold, but
we endow it with some extra structure. To be more precise, we let a Lie
group G act on our manifold in a smooth and transitive way.
This section is based on the theory discussed in Chapter 21 of [2].

Definition 2.3.1. An action of a group G on a set X is called transitive, if for
every x, y ∈ X there exists a g ∈ G such that g · x = y.

Definition 2.3.2. An action of a group G on a differentiable manifold M is called
smooth, if for all g ∈ G the map φg : M

∼=−→ M, p 7→ g · p, is a diffeomorphism
of M.

Definition 2.3.3. A homogeneous manifold is a differentiable manifold en-
dowed with a smooth and transitive action by a Lie group G. This space is some-
times also called a homogeneous space, or a homogeneous G-space to emphasise
the Lie group G.
Note that in this definition smoothness refers to the smoothness of an action not
of a mapping.

Let us again take a look at some examples.

• The action of Rn on itself. This is a homogeneous manifold, because
Rn is a Lie group and a differentiable manifold and it acts smoothly
and transitively on itself.

• The action of O(n) on Sn−1 for n ≥ 2.
This is a more interesting example and we will take a look at the
transitivity and the smoothness of the action of O(n) on Sn−1. First
note that the natural action of O(n) on Rn is smooth. The action of
O(n) on Rn is a linear map that preserves distances, thus a rotation,
and since rotations of Rn correspond to diffeomorphisms of Rn, we
conclude that the action of O(n) on Rn is a smooth action.

We define the map p : Rn → Sn−1, p(x) =
√

x2
1 + ... + x2

n. This is a

smooth map and we have Sn−1 = p−1(1), where 1 is a regular value
of the map p. Using the regular level set theorem, Corollary 8.10 in
[2], we find that Sn−1 is an embedded submanifold of Rn. This is
also explained in Example 8.11. Subsequently, the rotations of Sn−1

are also smooth maps, and thus the action of O(n) on Sn−1 is smooth.
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28 Lie groups and algebras

For transitivity we use that O(n) is the set of matrices whose columns
form an orthonormal basis of Rn. If we set p = (1, 0, ..., 0) ∈ Sn−1 to
be the north pole we are finished if for any x ∈ Sn−1 we can find a
matrix Ax ∈ O(n) such that Ax p = x, because then for y ∈ Sn−1 we
use Ay such that (Ax A−1

y )y = x with Ax A−1
y ∈ O(n).

Since x has unit norm, we can extend x to an orthonormal basis
(x, v2, ..., vn) of Rn. Then we find that

A =

 | | |
x v2 ... vn
| | |

 ∈ O(n) (2.56)

and Ax p = x. So O(n) acts transitively on Sn−1.

• The action of SO(n) on Sn−1 for n ≥ 2.
The action of SO(n) on Sn−1 is smooth because SO(n) ⊆ O(n). That
the action is also transitive follows from the previous example and
the fact that we can choose an orthonormal basis (x, v2, .., vn) such
that det Ax = +1. If the determinant of Ax is equal to −1, we can
simply replace v2 with −v2 to obtain A′

x ∈ SO(n).

Homogeneous manifolds can be constructed from Lie groups and can
even be characterised by them. Below we present and prove the homo-
geneous manifold construction theorem and the homogeneous manifold
characterisation theorem. The first theorem shows how to construct homo-
geneous manifolds as a quotient of a Lie group G and a closed subgroup
H ⊆ G of the Lie group and the second asserts that we can characterise
any homogeneous manifold by such a quotient.

Definition 2.3.4. A smooth map F : M → N between manifolds, is called a
smooth submersion if it’s differential is surjective at each point.

Theorem 2.3.5 (Homogeneous Manifold Construction Theorem). Let G be
a Lie group and H ⊆ G a closed subgroup. Then G/H is a topological manifold
of dimension dimG − dimH and has a unique smooth structure such that the
quotient map π : G → G/H is a smooth submersion. The regular left action of
G on G/H, defined through:

g1 · (g2H) = (g1 · g2)H ,

turns G/H into a homogeneous manifold over the Lie group G.
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This is a very nice result: if only we know a Lie group and a closed
subgroup, the theorem grants new homogeneous manifolds. This means
that homogeneous manifolds are not a rare sight, in fact, any Lie group
acting on itself is a homogeneous manifold over itself.

An important part of this theorem is to determine if the quotient G/H
of a Lie group with a closed subgroup is in fact a differentiable manifold.
It is not a priori clear that such a quotient will give us a Hausdorff and
second countable space as we need. We use a theorem that is a little more
general and states that the quotient M/G of a smooth manifold M with
a Lie group G is a differentiable manifold, if G acts smoothly, freely and
properly on M. It can be shown that we need G to act freely on M to ensure
that M/G is Hausdorff and we need G to act properly on M to ensure that
M/G is second countable.

Theorem 2.3.6 (Quotient manifold theorem). Suppose G is a Lie group acting
smoothly, freely and properly on a smooth manifold M. Then the quotient M/G is
a topological manifold of dimension dim M − dim G, which has a unique smooth
structure such that the quotient map π : M → M/G is a smooth submersion.

Proof. See Theorem 21.10 of [2].

The next theorem will help us in proving the existence, smoothness
and uniqueness of maps from quotient spaces that we need later on.

Theorem 2.3.7 (Passing smoothly to the quotient). Let M and N be smooth
manifolds and π : M → N a surjective smooth submersion. If P is a smooth
manifold and F : M → P is a smooth map that is constant on the fibres of π, then
there exists a unique smooth map F̃ : N → P such that F̃ ◦ π = F. This gives us
the following commutative diagram:

M

N P

F
π

F̃

Proof. See theorem 4.20 in [2].

Now we are ready to prove the homogeneous manifold construction
theorem.
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30 Lie groups and algebras

Proof (Homogeneous manifold construction theorem, Theorem 2.3.5). We want to
use our previous theorems. First we prove that G/H is a differentiable
manifold using Theorem 2.3.6. For this, note that the orbit space of the
right action of H on G is equal to the left coset space G/H. We need to
prove that G acts smoothly, freely and properly on M/G. The action of H
on G is:

• smooth
The action of H on G is a restriction of the left multiplication of G on
itself, so it is smooth.

• free
For g ∈ G h ∈ H we have: gh = g ⇒ h = e, because the action is
the restriction of the left multiplication of G on itself, which is a free
action.

• proper
For this we use Proposition 21.5(b) of [2]. Let (gi) ⊆ G be a con-
vergent sequence in G and (hi) ⊆ H a sequence in H such that
(gi · hi) ⊆ G is a convergent subsequence in G. We want to prove that
(hi) contains a convergent subsequence. By continuity of left multi-
plication we know that hi = g−1

i · (gihi) is a convergent sequence in
G. We have chosen H to be closed, and (hi) ⊆ H, so the sequence
also converges in H. We have found a subsequence of (hi) that con-
verges in H, so 21.5(b) of [2] gives us that the action of H on G is
proper.

Now we can use the quotient manifold theorem, Theorem 2.3.6, which
states that G/H is a topological manifold with a unique smooth structure
such that the quotient map π : G → G/H is a smooth submersion. Hence
G/H is a differentiable manifold.

IdG and π are smooth submersions and because products of smooth
submersions are again smooth submersions, we can construct a smooth
submersion IdG ×π : G×G → G×G/H. Further, we define m : G×G →
G as the multiplication map and θ : G × G/H → G/H as the action of G
on G/H. Now we consider the following diagram.

G × G G

G × G/H G/H

m

IdG × π

θ

π
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We want to use Theorem 2.3.7 to show that θ is smooth. For this we need
to check if π ◦ m is constant on the fibres of π. Let k1, k2 ∈ G and take
(g1, g2), ( f1, f2) ∈ (IdG × π)−1(k1, k2H). Then we have g1 = k1 = f1 by
the identity, and we need g2h = f2 for some h ∈ H. Plugging this into
m ◦ π we get:

π ◦ m(g1, g2) = π(g1g2) = (g1g2)H (2.57)

π ◦ m( f1, f2) = π ◦ m(g1, g2h) = π(g1g2h)
= (g1g2h)H = (g1g2)H

(2.58)

So by the uniqueness of the map in Theorem 2.3.7 we find that θ has to be
a smooth map. Note that the above also proves that θ is well-defined. Per
definition of θ we have:

θ(g1 · g2, g3H) = g1 · g2 · g3H = θ(g1, θ(g2, g3H)) (2.59)
θ(e, gH) = e · gH = gH, (2.60)

implying that θ defines a group action of G on G/H.
Finally we check that θ is transitive. Suppose g1H, g2H ∈ G/H. Define

g̃ = g2g−1
1 , then g̃ ∈ G and θ(g̃, g1H) = g2 · g−1

1 · g1 · H = g2H.

The homogeneous manifold construction theorem yields a homoge-
neous manifold for any given a Lie group with a closed subgroup. Ac-
tually the relation between this quotient and a homogeneous manifold is
even stronger: we can characterise every homogeneous G-space through
such a quotient of Lie groups. We will take a look at the homogeneous
manifold characterisation theorem to prove this, but we first need an extra
definition.

Definition 2.3.8. A map F : M → N between G-spaces M and N, is called
equivariant with respect to the G-actions, if for all g ∈ G we have:

F(g · p) = g · F(p), (2.61)

for left actions. For right actions we equivalently have: F(p · g) = F(p) · g.

Theorem 2.3.9 (Homogeneous Manifold Characterisation Theorem). Let
M be a homogeneous manifold over Lie group G, and p ∈ M any point on de
manifold. Then the isotropy group Gp := {g ∈ G : g · p = p} is a closed
subgroup of G and the map

F : G/Gp → M, gGp 7→ g · p (2.62)

is an equivariant diffeomorphism.
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This theorem states, that we can characterise any homogeneous man-
ifold as a quotient of Lie groups. This is nice, because there is a lot of
knowledge about quotients of groups which we can now use this to find
properties of homogeneous manifolds.

For the proof we need one more theorem.

Theorem 2.3.10. Let M and N be smooth manifolds, and let G be a Lie group.
Suppose F : M → N is a smooth map that is equivariant with respect to a tran-
sitive smooth G-action on M and a smooth G-action on N. Then F has constant
rank. If F is surjective it is a smooth submersion, if F is injective it is a smooth
immersion and if F is bijective it is a diffeomorphism.

Proof. See theorem 7.25 of [2].

Proof (Homogeneous manifold characterisation theorem, Theorem 2.3.9). For p ∈
M, the orbit map θ(p) : G → M, g 7→ g· is a smooth map, proposition 7.26
of [2]. Therefore Gp = (θ(p))−1({p}) is a closed set as inverse image of a
closed set under a continuous map. Cartan’s theorem, 2.1.2, gives us that
Gp is a Lie subgroup.

Now we prove that F is well-defined. Suppose g1H = g2H, then there
exists an h ∈ Gp such that g1h = g2. Then we find:

F(g2H) = g2 · p = g1 · h · p = g1 · p = F(g1H) (2.63)

Where we used that h · p = p for h ∈ Gp, so F is well-defined. Additionally,
for g, g′ ∈ G we have F(g′ · gH) = g′g · p = g′ · F(gH), so F is equivariant.

We will prove that F is smooth. Firstly, the projection π : G → G/Gp,
g 7→ gGp is a smooth submersion, Example 4.2 in [2]. Next, note that for
two elements g1, g2 ∈ π−1(g̃Gp) in the same fibre of π, there exists an
h ∈ Gp such that g1h = g2, so θ(p)(g2) = g1hp = g1p = θ(p)(g1). This
means θ(p) is constant on the fibres of π, so by Theorem 2.3.7 there exists a
unique smooth map F̃ such that F̃ ◦ π = θ(p). Since the map F we defined
earlier is such a map we conclude F = F̃ and thus F is smooth.

G

G/Gp M

θ(p)
π

F
Finally, F is also bijective. For injectivity, suppose F(g1Gp) = F(g2Gp), so
g1 · p = g2 · p. This means g−1

2 g1 · p = p, so g−1
2 g1 ∈ Gp and therefore
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g1Gp = g2Gp. For surjectivity, let q ∈ M. Since G acts transitively on M,
there exists a g ∈ G such that g · p = q, yielding F(gGp) = g · p = q.

Now Theorem 2.3.10 implies that F is an equivariant diffeomorphism.

Let us examine an example of a homogeneous manifold as a quotient of
Lie groups. We will consider the action of SO(3) on the manifold S2. We
want to use the homogeneous manifold characterisation theorem, Theo-
rem 2.3.9, to find the quotient to which S2 is diffeomorphic.

We take the north pole N = (0, 0, 1) ∈ S2 as fixed point on the sphere.
We want to find the isotropy group SO(3)N. Note that SO(3) acts on S2 by
rotating it. If we fix the north pole, the south pole is fixed also and the only
rotations that remain are rotations in the xy-plane. These rotations corre-
spond exactly to the group SO(2), so we find SO(3)N

∼= SO(2). The homo-
geneous manifold characterisation theorem concludes S2 ∼= SO(3)/SO(2).

This example can easily be generalised to higher dimensions where we
find Sn = SO(n + 1)/SO(n) for n ≥ 1. The specific example for n = 2 will
re-appear when we study symmetry breaking patterns. In chapter 6 we
will construct the vacuum manifold as a quotient of symmetry groups.

In the next chapter we will discuss homotopy theory, an important tool
to characterise topological spaces and consequently homogeneous mani-
folds.
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Chapter 3
Homotopy theory

Another important topic in the study of topological defects is that of ho-
motopy theory. Homotopy theory can be used to characterise topological
spaces. We will use this characterisation to better understand the types of
topological defects.

The first order homotopy group is also known as the fundamental
group π1(X, x0). The fundamental group detects ‘one dimensional holes’,
that is, holes in the space around which we cannot contract loops. We
will define higher order homotopy groups and use this to find ‘higher di-
mensional holes’, holes around which we cannot contract n-spheres, in a
topological space.

This section is based on the contents of Chapter 4 of Hatcher’s Alge-
braic topology [11]. All maps in this chapter will be assumed to be contin-
uous, unless otherwise stated.

3.1 Homotopy groups

To start with a definition of homotopy groups, we first need to look at a
few notational conventions. First of all we have the n dimensional unit
cube In = [0, 1]n. Then we define ∂In to be the boundary of In, this is the
set of points in In for which at least one of the coordinates is equal to 0
or 1. Lastly for X, Y topological spaces and A ⊆ X and B ⊆ Y the map
f : (X, A) → (Y, B), is a map f : X → Y, such that f (A) ⊆ B. This
notation can be extended to a map between any n-tuple, where each set is
contained in the former. Now we can take a look at homotopy groups.

Definition 3.1.1. Given a topological space X with a basepoint x0 ∈ X, we
define the nth homotopy group of X in x0 as the set of homotopy classes of

35



36 Homotopy theory

maps f : (In, ∂In) → (X, x0), where we only allow homotopies that satisfy
F(t, ∂In) = x0 for all t ∈ [0, 1]. That is:

πn(X, x0) := { f : (In, ∂In) → (X, x0)}/ ∼, (3.1)

where f , g : (In, ∂In) → (X, x0) are equivalent if and only if there exists a
homotopy F : I × (In, ∂In) → (X, x0) between f and g such that for all t ∈ I we
have F(t, ∂In) = x0. Such a homotopy is said to be a homotopy relative to ∂In.

To turn this set into a group we define an addition. For (X, x0) a
pointed topological space and f , g ∈ πn(X, x0), we have:

( f + g)(s1, s2, s3, ..., sn) :=

{
f (2s1, s2, s3, ..., sn), s1 ∈ [0, 1

2 ]

g(2s1 − 1, s2, s3, ..., sn), s1 ∈ [1
2 , 1].

(3.2)

Note that this definition generalises the definition of the concatenation of
paths in π1(X, x0). The addition on πn(X, x) turns this set into a group
with identity element the constant map cx0 : (In, ∂In) → (X, x0), s 7→ x0
for all s ∈ In and inverses − f (s1, s2, ..., sn) = f (1− s1, s2, ..., sn). We use the
additive notation, because for n ≥ 2 the group πn(X, x0) is abelian. This
can be seen inFigure 3.1.

Figure 3.1: With a homotopy as illustrated above, we can use the higher dimen-
sion change the order of two maps. Therefore πn(X, x0) is abelian for n ≥ 2. [11]

We can also define homotopy groups in an alternative way.

Definition 3.1.2. For a topological space X with basepoint x0 ∈ X and s0 ∈ Sn

we define the nth homotopy group of X in x0 as the set of homotopy classes of
maps f : (Sn, s0) → (X, x0), where we only allow homotopies that consistently
map s0 to x0, F(t, s0) = x0 for all t ∈ I. That is:

πn(X, x0) := { f : (Sn, s0) → (X, x0)}/ ∼

Where f , g : (Sn, s0) → (X, x0) are equivalent if and only if there exists a ho-
motopy F : I × (Sn, s0) → (X, x0) between f and g such that for all t we have
F(t, s0) = x0.
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3.1 Homotopy groups 37

Note that this definition is equivalent to the first definition, because
In/∂In ∼= Sn, ∂In/∂In ∼= s0 and also the homotopies that we allow can thus
be converted from homotopies F : I × (In, ∂In) → (X, x0), to homotopies
F : I × (Sn, s0) → (X, x0).

Before we look at some examples, we simplify the notation for homo-
topy groups of path connected spaces. As for the fundamental group, ho-
motopy groups of path connected spaces are independent of the chosen
base point. In this case the base point is sometimes omitted from the nota-
tion.

Lemma 3.1.3. If X is a path connected space and x0, x1 ∈ X are two points, then
the homotopy groups of X based in points x0 or x1 are isomorphic:

πn(X, x0) ≃ πn(X, x1).

Proof. For this we chose a path γ : I → X, with starting point γ(0) = x0
and end point γ(1) = x1. To each map f : (In, ∂In) → (X, x1) we can now
associate a new map γ f : (In, ∂In) → (X, x0). First we reduce the domain
of f to a smaller concentric cube in ⊆ In, we can then insert the map γ on
very segment between in and ∂In. This can be seen in Figure 3.2.

Figure 3.2: If X is path-connected, we can move any map f : (In, ∂In) → (X, x1)
with basepoint x1 to a new map γ f : (In, ∂In) → (X, x0) with basepoint x0 using
a path γ : I → X from x1 to x0.

A homotopy of f can thus be translated into a homotopy of γ f . Notice
that for n = 1 the notation γ f is a little misleading, because in this case we
have f ∈ π1(X, x1) and γ f = γ−1 ◦ f ◦ γ. For n ≥ 2 this is not a problem.

The action of paths γ, η on maps f , g has a few basic properties:

1. γ( f + g) ∼ γ f + γg

2. (γη) f ∼ γ(η f )

3. 1 f ∼ f
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38 Homotopy theory

An explicit formula for the first homotopy is:

H(t, s1, ..., sn) =

{
γ( f + 0) ((2 − t)s1 , s2, ..., sn) , s1 ∈ [0, 1

2 ]

γ(0 + g) ((2 − t)s1 + t − 1, s2, ..., sn) , s1 ∈ [1
2 , 1]

(3.3)

Consequently, we can define an isomorphism βγ : πn(X, x1) → πn(X, x0),
by βγ([ f ]) = [γ f ], where the three properties above ensure that βγ is in-
deed an isomorphism.

Let us take a look at some examples. First of all we consider π0. For
this we extend the definitions of In and ∂In to n = 0 with I0 = {0} and
∂I0 = ∅. The set of homotopy classes now indicates the path-components
of X. Thus any space X with n > 0 path connected components yields,
π0(X) ≃ Z/nZ and a path connected space has trivial zeroth homotopy
group.

For π1, we have the fundamental group. We will consider a circle S1

and give a short explanation for its fundamental group. We can assign to
each map f : (S1, s0) → (S1, 1) a winding number, that is, the number of
times f (S1) winds itself around the circle, were anti-clockwise rotations
are assigned a positive value and clockwise windings a negative value.
Using this assignment we note that any two maps with the same winding
number are homotopic relative to the base points. Thus π1(S1) ≃ Z. More
rigorously this can be shown using lifts, see [12].

For S2 we note that π1(S2) = 0, since any loop can be contracted to a
point, and thus all loops are homotopy equivalent. The same argument
holds for n > 1, it follows that π1(Sn) = 0.

Another accessible example is that of contractible spaces. A contractible
space X is path connected, so we have π0(X) = 0. More than that, any
map f : (Sn, s0) → (X, x0) can be contracted to a point, since the whole
space can bee contracted to a point. As a consequence, any two maps
f , g : (Sn, s0) → (X, x0) are homotopy equivalent via the constant map
and there is only one class of maps in each homotopy group, πn(X) = 0
for all n ∈ N.

Homotopy groups are generally hard to calculate. We will take a look
at a few theorems that will help us to determine some homotopy groups.

Theorem 3.1.4. A covering space projection p : (X̃, x̃0) → (X, x0) induces
isomorphisms

p∗ : πn(X̃, x̃0) → πn(X, x0), (3.4)

for all n ≥ 2.
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Proof. See Proposition 4.1 in [11].

Corollary 3.1.5. πn(X, x0) = 0 for n ≥ 2 if X has a contractible universal
cover.

Proof. Suppose X is a space with a contractible universal cover X̃. Then
for n ≥ 2 we find isomorphisms

p∗ : πn(X̃, x̃0) → πn(X, x0). (3.5)

Since the universal cover is contractible, we have πn(X̃, x̃0) = 0 and thus
the statement follows.

Let us examine some examples. For S1 we have a universal cover R, so
as before we indeed find, πn(S1) = 0 or n ≥ 2.

Suppose X is a topological graph, see definition 6.5.1 of [13], then X
admits a universal covering, and this universal covering is a topological
tree, Proposition 6.5.3(b) of [13]. A topological tree is contractible and thus
any topological graph has trivial homotopy groups for n ≥ 2. Topologi-
cal graphs include the circle S1 and the figure of eight, S1 ∧ S1. We find
πn(S1 ∧ S1) = 0 for n ≥ 2.

To be able to find more homotopy groups, we will examine homotopy
groups of product spaces. Homotopy groups turn out to work nicely with
product spaces.

Proposition 3.1.6. Let ΠαXα be a product of path connected spaces Xα, then
the homotopy groups of the product is isomorphic to the product of the homotopy
groups:

πn(ΠαXα) ≈ Παπn(Xα). (3.6)

Proof. See Proposition 4.2 in [11].

This proposition allows us to determine the homotopy groups of, for
example, the torus:

πn(T2) = πn(S1 × S1) = πn(S1)× πn(S1) (3.7)

=

{
Z2 if n = 1,
0 else .

(3.8)
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40 Homotopy theory

3.2 Relative homotopy groups

We will continue with a useful generalisation of homotopy groups, namely
the relative homotopy groups. We will use relative homotopy groups to
make a long exact sequence of homotopy groups, which will help us to
calculate more homotopy groups.

As above, for n > 1, we define In to be the n dimensional cube and
∂In to be the boundary of In. We now also define In−1 as the face of In

where sn = 0 and Jn−1 as the closure of all other faces, Jn−1 = In \ In−1.
For n = 1 we define ∂I = {0} and J0 = {1}. Now we can define relative
homotopy groups.

Definition 3.2.1. For a space X and A ⊆ X a subset with basepoint x0 ∈ A
and n ≥ 1, we define the relative homotopy groups πn(X, A, x0) as the set
of homotopy classes of maps f : (In, ∂In, Jn−1) → (X, A, x0), where homotopies
F : (In, ∂In, Jn−1)× I → (X, A, x0) need to satisfy both F(∂In × I) ⊆ A and
F(Jn−1 × I) = x0.
For n = 1 we obtain the homotopy classes of paths in X with starting point in A
and endpoint x0 ∈ A.

We do not define this for n = 0, because there is no evident way to
do this. As for (absolute) homotopy groups, we can reformulate this def-
inition using spheres instead of cubes. This is similar to Definition 3.1.2,
where we now replace the triple (In, ∂In, Jn−1) with the triple (Dn, Sn−1, s0),
which we obtain by contracting Jn−1 to a point.

We can define addition on the relative homotopy group completely
analogous to the absolute case, except that the coordinate sn is fixed, so
we can only define the addition in Equation 3.2 for n ≥ 2. This turns
πn(X, A, x0) into a group for n ≥ 2 and for n ≥ 3 this group is abelian,
because, once more, we have a ‘free’ dimension to change the order of
maps.

Let us introduce a useful formulation of what it means to be trivial as
an element of πn(X, A, x0).

Lemma 3.2.2 (Compression criterion). A map f : Dn, Sn−1, x0) corresponds
to the identity element of πn(X, A, x0) if and only if it is homotopic to a map
whose image is contained in A.

Proof. See page 343 in [11].

A continuous map f : (X, A, x0) → (Y, B, y0) induces maps f∗ : πn(X, A, x0) →
πn(Y, B, y0), which are homomorphisms for n ≥ 2. These induced maps
follow a few basic properties:
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1. ( f g)∗ = f∗g∗ ,

2. 1∗ = 1 ,

3. f ∗ = g∗ iff f ≃ g through a homotopy F : (X, A, x0)× I → (Y, B, y0).

3.3 A long exact sequence

As the long exact sequence for homology groups, we want to find a long
exact sequence for homotopy groups. This sequence will allow us to de-
termine more homotopy groups. We will be using the relative homotopy
groups to construct such a sequence.

Theorem 3.3.1. Let X be a space and A ⊆ X a subset with basepoint x0 ∈ A.
Then the following long sequence is exact.

· · · →πn(A, x0)
i∗−→ πn(X, x0)

j∗−→ πn(X, A, x0)
∂−→

∂−→πn−1(A, x0) · · · → π0(X, x0)
(3.9)

Where i and j are the inclusion maps, and ∂ is called the boundary map. The
boundary map ∂ arises from the restriction of maps (In, ∂In, jn−1) → (X, A, x0)
to In−1, or similarly from the the restriction of maps (Dn, Sn−1, s0) → (X, A, x0)
to Sn−1. The boundary map ∂ is a homomorphism for n > 1.

Proof. Following the proof of Theorem 4.3 in [11], we proof that for
x0 ∈ B ⊆ A ⊆ X the sequence

· · · →πn(A, B, x0)
i∗−→ πn(X, B, x0)

j∗−→ πn(X, A, x0)
∂−→

∂−→πn−1(A, B, x0) · · · → π1(X, A, x0)
(3.10)

is exact. To prove the statement in the theorem we then take B = {x0} and
we prove the last two steps separately. First, we prove exactness at each of
the three sets of homotopy groups.

Exactness at πn(X, B, x0). We need to prove that Im i∗ = ker j∗. For
this, we first note that j∗ ◦ i∗ ≡ 0 : πn(A, B, x0) → πn(X, A, x0) by the
compression criterion (3.2.2). This implies Imi∗ ⊆ ker j∗.

For the second inclusion, we take a map f : (In, ∂In, Jn−1) → (X, B, x0),
such that [ f ] ∈ ker j∗, that is [ f ] = 0 ∈ πn(X, A, x0). Using the compres-
sion criterion, we find that f is homotopic to a map g for which g(In) ⊆ A
holds. This implies i−1

∗ (g) ∈ πn(A, B, x0), so we find that [ f ] = [g] ∈ Im
i∗, which gives us the inclusion ker j∗ ⊆ Im i∗.
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42 Homotopy theory

Exactness at πn(X, A, x0). The first inclusion, Im j∗ ⊆ ker ∂ is again
clear when we notice that j∗ ◦ ∂ ≡ 0. For h : (In, ∂In, Jn−1) → (X, B, x0),
we have Im h|In−1 ⊆ B, which implies [h] = 0 ∈ πn−1(A, B, x0), by Theo-
rem 3.2.2.

The other direction is a bit harder. Let f : (In, ∂In, Jn−1) → (X, A, x0),
with [ f |In−1 ] = 0] ∈ πn(A, B, x0). Then f |In−1 ≃ g with Im g ⊆ B. Suppose
F is the homotopy relative to ∂In between f and g. Then we can combine
the maps F and f , notation: f ∗ F as seen in Figure 3.3 producing a map
f̃ : (In, ∂In, Jn−1) → (X, B, x0). We observe that f̃ ≃ f , for example with
the homotopy that tacks on an increasingly large part of the map F. This
gives us that [ f ] ∈ Im j∗.

Figure 3.3: Because f and F are both x0 for t = 0, 1 and have one ’border’ where
they are equal to f |In−1 , we can stick them together to form a new map f̃ = f ∗ F.

Exactness at πn(A, B, x0). Again we notice that ∂ ◦ i∗ = 0. Suppose h :
(In+1, ∂In+1, Jn) → (X, A, x0). Then h provides a homotopy relative to In

between h|In and the constant map cx0 . Therefore [ f |In ] = 0 ∈ πn(X, B, x0)
through Theorem 3.2.2.

For the other inclusion, we take a map f : (In, ∂In, Jn−1) → (A, B, x0),
[ f ] ∈ ker i∗ and F a nullhomotopy of f : (In, ∂In, Jn−1) × I → (A, B, x0)
relative to ∂In. Define g = F|In−1×I . We can illustrate the map F as seen
on the left in Figure 3.4, where the last two coordinates are drawn. On
the right you see a re-parametrisation of the last two coordinates, sn and
sn+1, to find F′|In×{0} = g ∗ f . This means that g ∗ f = F′|In×{0} ∈ Im ∂.
Following the argumentation in the previous step find that [ f ] = [g ∗ f ]
yielding [ f ] ∈ Im ∂.

It remains to prove exactness of the last two steps,

π1(X, x0)
j∗−→ π1(X, A, x0)

∂−→ π0(A, x0)
i∗−→ π0(X, x0). (3.11)

Exactness at π1(X, A, x0). For g : ({0}, {1}) → (A, x0) with [g] ∈
π0(A, x0), we have [g] = 0 if and only if g(0) ∈ Ux0 , where Ux0 is the

42



3.3 A long exact sequence 43

Figure 3.4: Left: F is a map from In × I → X, where we see the image of F at the
boundaries of sn+1 = 0, 1 and sn = 0, 1.
Right: We can re-parametrise F, to give g tacked onto f for sn+1 = 0.

path connected component of x0 in A. Take [ f ] ∈ π1(X, x0), with a repre-
sentative f : (I, {0, 1}) → (X, x0). Mapping [ f ] according to j∗ and ∂ we
find

(∂ ◦ j∗)[ f ] = ∂[ f̃ : (I, {0}, {1}) → (X, A, x0)]

= [ f ′ : ({0}, {1}) → (A, x0)],
(3.12)

where, for a representative of [ f ′], we have f ′(0) = f (0) = x0 ∈ Ux0 and
thus [ f ′] = 0 ∈ π0(A, x0). This proves Imj∗ ⊆ ker ∂.

Now suppose [ f ] ∈ ker ∂. Then f : (I, {0}, {1}) → (X, A, x0) and
f (0) ∈ Ux0 . We define a path γ : [0, 1] → Ux0 such that γ(0) = x0 and
γ(1) = f (0). We can concatenate γ and f and define f ∗ = γ ∗ f . We obtain
a map f ∗ : [0, 1] → X, with f ∗(0) = γ(0) = x0 and f ∗(1) = f (1) = x0,
which implies that [ f ∗] ∈ π1(X, x0). Further, the map F : I × I → X
which tacks on pieces of γ of increasing length in front of f is a homotopy
between f and f ∗ relative to {0}, because γ([0, 1]) ⊆ Ux0 . Hence, we have
j∗[ f ∗] = [ f ], and Imj∗ ⊇ ker ∂.

Exactness at π1(A, x0). Suppose [ f ] ∈ π1(X, A, x0), then a represen-
tative of this class is a map f : (I, {0}, {1}) → (X, A, x0), that is, it is a
path in X between a point in A and x0. Then i∗ ◦ ∂[ f ] yields a class [ f ′]
with f ′ : ({0}, {1}) → (X, x0), where f ′(0) = f (0) and f ′(1) = f (1) = x0.
Because f was a path, we know that f (0) and x0 are connected by a path,
hence f ′(0) is an element of the same path component as x0, thus [ f ′] =
0 ∈ π0(X, x0) and Im ∂ ⊆ ker i∗.

Define Vx0 as the path component of x0 in X. We take [ f ] ∈ ker i∗, this
implies f (0) ∈ Vx0 for all representatives of [ f ]. Since f (0) and x0 are in
the same path connected component we can define a path γ : [0, 1] → Vx0

such that γ(0) = f (0) ∈ A ∩ Vx0 and γ(1) = x0. Therefore we find [γ] ∈
π1(X, A, x0) and ∂[γ] = [ f ]. So we conclude Im ∂ ⊇ ker i∗ and we are
done.
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We will take a look at an example using this theorem. Suppose X is a
path connected space and define the cone over X,

CX =(X × I)/ ∼,
(x, t) ∼ (y, s) ⇐⇒ (x = y and t = s), or t = s = 0.

(3.13)

We can think of X as the subspace X × {1} ⊆ CX of the cone. We can now
write down part of the long exact sequence of the theorem,

πn(CX, x0)
j∗−→ πn(CX, X, x0)

∂−→ πn−1(X, x0)
i∗−→ πn−1(CX, x0). (3.14)

We also know that the cone CX is contractible and thus πn(CX) = 0 for
n ≥ 1, which gives us

0 → πn(CX, X, x0) → πn−1(X, x0) → 0, (3.15)

for n ≥ 2. We conclude that πn(CX, X, x0) ≃ πn−1(X, x0) for all n ≥ 2.
In section 6.2 we will be using homotopy groups to characterise topo-

logical defects and in section 6.3 we will look for the homotopy groups of
a physically interesting homogeneous manifold to explain which topolog-
ical defects might form. To find homotopy groups of a quotient, such as
homogeneous manifold, we need another long exact sequence, which we
discuss in the next section.

3.4 Fibrations and another long exact sequence

Earlier we discussed homogeneous manifolds. We will later find that such
manifolds are at the foundation of topological defects. In order to find
homotopy groups of homogeneous manifolds, we construct another long
exact sequence. First, we need some new definitions. Let us start with a
property of maps: the homotopy lifting property.

This section is based mainly on §4.2 of [11] and on parts of Chapter 2
in [14].

Definition 3.4.1. Let E, B and X be topological spaces. A map p : E → B has
the homotopy lifting property with respect to X if for any given homotopy
G : X × I → B and any lift g̃0 : X → E of g0 = G|X×{0}, there exists a
homotopy G̃ : X × I → E lifting G, such that g̃0 = G̃|X×{0}.

That is, we see that p has the homotopy lifting property with respect to X, if for
any G and g̃0 as before, there exists a G̃ such that the diagram below commutes.
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X E

X × I B

g̃0

ι0
G̃

G

p

A simple example of a pair (p, X) that has the homotopy lifting prop-
erty could be a projection map π with any space Y. Another example is
that of a covering map p : E → B, again with any space Y. Maps that
satisfy the homotopy lifting property with respect to all spaces X are said
to satisfy the homotopy lifting property. They are also called fibrations.

Definition 3.4.2. A fibration f : E → B is a map that satisfies the homotopy
lifting property with respect to all space X.

Let us check that a projection map is indeed a fibration. Take a projec-
tion π : B× F → B, a homotopy G : X × I → B and g̃0 : X → B× F the ini-
tial lift. We can write g̃0(x) = (G(x, 0), h(x)) for some map h : X → F, be-
cause g̃0 is a lift of G|X×{0}. Then we can define the lift G̃ : X × I → B × F
as G̃(x, t) = (G(x, t), h(x)), so the projection map π satisfies the homotopy
lifting property for any space X and is thus a fibration.

In example 2.2.1 and Theorem 2.3 in [14] it is shown that a covering
map is also a fibration.

Another definition that we will use is the homotopy lifting property
for a pair (X, A). This definition will be useful to prove the next theorem.

Definition 3.4.3. A map p : E → B has the homotopy lifting property for a
pair (X, A) if for any homotopy G : X × I → B, map g̃0 : X → E and lift
G̃A : A × I → E of G|A×I , we can extend G̃A : A × I → E to a lift of G,
G̃ : X × I → E, such that g̃0 = G̃|X×{0}.
In a commutative diagram this looks as follows.

X .

A × I E

.

X × I B

g̃0

ι0
G̃|A×I

j
G̃

G

p
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46 Homotopy theory

We take a look at the case where X = Dk. For this, we first introduce
one last property of maps: the lift extension property for a pair.

Definition 3.4.4. Let Z be a set and A ⊂ Z a subset. The map p : E → B has
the lift extension property for a pair (Z, A) if every map f : Z → B has a lift
f̃ : Z → E, which extends a given lift g̃ : A → Z of f |A.

The homotopy lifting property for a set X and the homotopy lifting
property for a pair (X, A) can both be seen as special cases of the lift ex-
tension property. The lift extension property for (X × I, X × {0} ∪ A × I),
corresponds to the homotopy lifting property for the pair (X, A), and the
lift extension property for the pair (X × I, X × {0}), corresponds to the
homotopy lifting property with respect to X.

Lemma 3.4.5. The homotopy lifting property with respect to Dk is equivalent to
the homotopy lifting property for the pair (Dk, ∂Dk).

Proof. I will only give an outline of the proof, for the full proof see page
376 of [11].

With the correspondence illustrated above we have that the homo-
topy lifting property with respect to Dk, is the same as the lift extension
property for the pair (X × I, X × {0}) and the homotopy lifting property
of the pair (Dk, ∂Dk) is the same as the lift extension property for the
pair (Dk × I, Dk × {0} ∪ ∂Dk × I). We see that (Dk × I, Dk × {0}) and
(Dk × I, Dk × {0} ∪ ∂Dk × I) are homeomorphic pairs. Using CW com-
plexes, as explained in [11], equivalence of the two extension properties
can be shown.

Maps that satisfy the homotopy lifting property for disks will give us
our next long exact sequence. Using the long exact sequence of Theo-
rem 3.3.1 we will present another long exact sequence, based on maps
satisfying the homotopy lifting property for lifts. We will be able to use
this sequence to find homotopy groups of quotient spaces.

Theorem 3.4.6. Suppose p : E → B has the homotopy lifting property with
respect to all disks Dk := {x ∈ Rk| ||x|| ≤ 1} with k ≥ 0. Let b0 ∈ B and
x0 ∈ F = p−1(b0) be base points.

Then the induced map p∗ : πn(E, F, x0) → πn(B, b0) is an isomorphism
for all n ≥ 1. For B path-connected this implies that there exists a long exact
sequence

· · · → πn(F, x0) → πn(E, x0)
p∗−→ πn(B, b0) →

πn−1(F, x0) → · · · →π0(E, x0) → 0.
(3.16)
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Proof. We need to show that p∗ is bijective.
Surjectivity: Take f : (In, ∂In) → (B, b0) with [ f ] ∈ πn(B, b0). p has

the relative homotopy lifting property for the pair (Dk, ∂Dk) ∼= (Ik, ∂Ik).
Furthermore, we can lift f |Jn−1 to E with the constant map cx0 . Note that
In−1 ⊆ Jn−1, so we can choose coordinates such that cx0 |In−1 can be con-
sidered as the initial homotopy g̃0. Now the homotopy lifting property for
a pair gives us that we can extend cx0 to a lift f̃ : In → E of f .

Since (p ◦ f̃ )(∂In) = f (∂In) = {b0}, we have f̃ (∂In) ⊆ p−1({b0}) = F.
Therefore we know that [ f̃ ] ∈ πn(E, F, x0). Finally, per definition of p∗ we
have p∗([ f̃ ]) = [p ◦ f̃ ] = [ f ], and thus p∗ is surjective.

Injectivity: For f̃0, f̃1 : (In, ∂In, Jn−1 → (E, F, x0) with p∗([ f̃0] = p∗([ f̃1]),
we know that there exists a homotopy G : (In × I, ∂In × I) → (E, F, x0) rel-
ative to ∂In between p ◦ f̃0 and p ◦ f̃1. We want to use the homotopy lifting
property. We take as our initial lift g̃0 = f̃0 and give a partial lift of G,

G̃A(x) =


f̃0 if x ∈ In × {0},
f̃1 if x ∈ In × {1},
cx0 if x ∈ Jn−1 × I.

(3.17)

Note that G̃A is a lift of G|A where G is taken as a map with domain In+1.
We rewrite A as follows.

A = In × {0, 1} ∪ Jn−1 × I (3.18)

= In × {0, 1} ∪ (∂In \ In−1)× I (3.19)
∼= ∂In+1 \ In = Jn (3.20)

Where we take the third step by permuting the last two coordinates. Now
we can use the homotopy lifting property, to extend G̃A to a lift G̃ of G on
In+1. Note that G̃ is a homotopy between f̃0 and f̃1, so we find [ f̃0] = [ f̃1]
and thus p∗ is injective.

To find the long exact sequence we use Theorem 3.3.1 for the pair (E, F).
Using the isomorphism p∗, we replace πn(E, F, x0) with πn(B, b0) to find
the sequence up to π0(E, x0).
We can put a 0 at the end of the sequence, because π0(F, x0) → π0(E, x0)
is a surjective map. B is path connected, so for any point x ∈ E we can
construct a path from x to F, as a lift of a path in B from p(x) to b0. There-
fore there is an element f0 ∈ F contained in each path component of E
and the class of the constant map [c f0 ] will be mapped to corresponding
path connected component in E. Thus π0(F, x0) → π0(E, x0) is a surjective
map.
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Next we will introduce the concept of a fibre bundle. A fibre bundle is
a topological space E with a projection map p : E → B, a fibre F and a base
space B, such that locally E is homeomorphic to the product space B × F.

Definition 3.4.7. Let F, B and E be topological spaces and p : E → B be a surjec-
tive continuous map such that for all b ∈ B there exists an open neighbourhood
b ∈ U ⊆ B whose inverse image in E is homeomorphic to U × F via the map
h : p−1(U) → U × F, for which we have p = π1 ◦ h. Here π1 is the projection
onto the first coordinate.

Then we call the space E together with the map p a fibre bundle with fibre F.
Further we call B the base space, E the total space and h the local trivialisa-
tion of the fibre bundle.

A fibre bundle structure is determined by the projection map p, but
it is often written as the short exact sequence F → E → B or as the tu-
ple (E, B, F, h). Fibre bundles help us to better understand the structure
of homogeneous manifolds and will therefore be useful in understanding
topological defects.

To get a better understanding of fibre bundles, we will discuss some
examples. They can also be found on pages 90 − 91 in [14] and on pages
377 − 379 in [11].

1. The projection map p : B × F → B induces a fibre bundle, known as
the product bundle, (B × F, B, F, p).

2. A fibre bundle with discrete fibre, is a covering space. The converse
is true for covering spaces whose fibres all have the same cardinality.
For instance, covering spaces over a connected base space are fibre
bundles.

3. A non-trivial example is that of the mobiüs band. We have a total
space E = I × [−1, 1]/ ∼, where (0, v) ∼ (1,−v), that is, E is the
mobiüs band. The projection map p : E → (I/ ∼) ∼= S1, with 0 ∼ 1
is defined as p(t, v) = t. We find fibres

p−1(t) = {t} × [−1, 1] ∼= [−1, 1]. (3.21)

By removing the lines at t1 = 1 or t2 = 1
2 from the mobiüs band,

we find two rectangles U1 and U2 that combined cover the whole
mobiüs band. Further we define li := (I/ ∼) \ {ti}, to notice

Ui = p−1(li) ∼= li × [−1, 1]. (3.22)

So the mobiüs band with the projection map p is indeed a fibre bun-
dle over S1 with fibre [−1, 1].
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4. We can combine two mobiüs bands to obtain a Klein bottle, a fibre
bundle with base space S1 and fibre S1. We set K = (E1 ⊔ E1)/ ∼∗,
where the equivalence relation is defined such that for (t, v)1 ∈ E1

and (s, w)2 ∈ E2 we have (t, 1)1 ∼∗ (t,−1)2. We define the projection
map q : K → S1, q((t, v)) = t and find fibres

q−1({t}) = {t} × [−1, 1] ∼= [−1, 1]/ ∼∗ ∼= S1. (3.23)

With similar arguments as for the mobiüs band, this becomes a fibre
bundle.

5. A differentiable n-manifold is the base space of a fibre bundle, namely
that of the tangent bundle with the projection map π : TM → M and
fibre Rn.

6. A Lie group G, with closed subgroup H and the emergent homoge-
neous manifold G/H can be seen as the fibre bundle (G, G/H, H, p),
where p is the projection p : G → G/H. Note that we indeed find
p−1(gH) = gH ∼= H, where the first gH refers to an element of G/H
while the second gH is seen as a subset of G.

7. Projective spaces also give rise to interesting fibre bundles. They are
specific examples of fibre bundles of Lie groups as in the example
above. Real projective spaces can be constructed as fibre bundles
Sn → RPn with fibre S0. In terms of Lie groups we have G = Sn and
H = {±1}.

Analogously we find complex projective spaces in the fibre bundles
S1 → S2n+1 → CPn, where CPn := S2n+1/ ∼ and

(z0, .., zn) ∼ λ(z0, .., zn) for al λ ∈ S1 ⊆ C. (3.24)

Note that S2n+1 is the unit sphere in Cn+1 with real dimension 2n +
1. This means that we indeed have n + 1 complex coordinates to
describe elements of S2n+1. In terms of fibre bundles of Lie groups,
this is an example where G = S2n+1, H = S1 and consequently the
complex projective space is the homogeneous manifold G/H.

To see that this is indeed a fibre bundle, we construct the homeomor-
phisms as in the definition. Define Ui := {[z0, ..., zn] | zi ̸= 0} ⊆ CPn,
and homeomorphisms

hi : p−1(Ui) → Ui × S1

(z0, ..., zn) 7→ ([z0, ..., zn],
zi

|zi|
).

(3.25)
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Note that hi is indeed a homeomorphism with inverse

h−1
i ([z0, ..., zn], λ) = λ|zi|z−1

i (z0, ..., zn). (3.26)

8. In the case of n = 1 this yields the Hopf bundle,

S1 → S3 → S2. (3.27)

The Hopf bundle is a very well known fibre bundle. More on the
Hopf bundle and the similarly defined second and third Hopf bun-
dles can be found in Examples 4.45, 4.46 and 4.47 of [11].

We will want to use the long exact sequence of Theorem 3.4.6 for the
example of fibre bundles H → G → G/H. The following theorem tells
us that we are warranted to do so. First we define paracompactness as on
page 9 of [2].

Definition 3.4.8. A collection of subsets X of M is said to be locally finite if for
each x ∈ M there is exists a neighbourhood that intersects at most finitely many
sets in X .
Given a cover U of a topological space M another cover V is called a refinement
of U if for every V ∈ V there exists an U ∈ U such that V ⊆ U.
A topological space M is called paracompact if every open cover of M admits an
open locally finite refinement.

Theorem 3.4.9. Fibre bundles over manifolds are fibrations.

Proof. Per definition of paracompactness, any open covering of a para-
compact space has a numerable refinement. Given a map p : E → B
and a numerable covering U of B such that for U ∈ U the map p|p−1(U) :
p−1(U) → U is a fibration, then p is a fibration. This follows from The-
orem 12 of [14]. Therefore, with Theorem 13 and corollary 14 in [14], we
can conclude that all fibre bundles over paracompact and Hausdorff base
spaces are fibrations. Since manifolds are paracompact by Theorem 1.15
of [11] and Hausdorff, fibre bundles over manifolds are fibrations.

This concludes our discussion of homotopy theory and with that also
the mathematical background needed to dive into the physics of topolog-
ical defects.
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Chapter 4
Field theory

With the mathematical background completed, it is time to move on to
the physical background. We will begin with an introduction in classical
field theory. This chapter is based on the contents of chapter 12 in [7] and
chapters 1 − 5 in [6].

4.1 Minkowski space and Lorentz invariance

In field theory we work in spacetime, that is the space around us with
time as a fourth coordinate. In this thesis will will not work with curved
space, so that mathematically the spacetime can can be considered as R4.
We will be working with the Minkowski metric. This metric on R4 defines
distances with respect to the four coordinates t, x, y and z which are often
denoted by x0, x1, x2 and x3. The Minkowski metric is the metric given by

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (4.1)

Before we continue, we introduce some convenient notation: the Einstein
summation convention. If in an expression the same index occurs twice
or more often in the same term, we will assume a summation over this
index. Unless otherwise stated, or clear from context, Roman indices,
such as i, j, will refer to the three coordinates of physical space, (x, y, z),
whereas Greek indices, such as µ, ν refer to all four coordinates of space-
time (t, x, y, z). We will also be using the convention of [6] to use only
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upper indices. For example, we have

xixi =
3

∑
i=1

(xi)2 = (x1)2 + (x2)2 + (x3)2, (4.2)

and

xµxµ =
3

∑
µ=0

(xµ)2 = (x0)2 + (x1)2 + (x2)2 + (x3)2. (4.3)

With this, we can concisely write down the spacetime interval between
two events:

s2 = ηµν∆xµ∆xν = (c∆t)2 − (∆x)2 − (∆y)2 − (∆z)2 . (4.4)

We call s2 the distance. For convenience we will work with units c = 1,
which yields

s2 = ηµν∆xµ∆xν = (∆t)2 − (∆x)2 − (∆y)2 − (∆z)2 . (4.5)

This flat construction of spacetime, R4 with the Minkowski metric,
is called Minkowski space, M. When we describe physical systems or
quantities, we want them to be invariant of the choice of coordinates in
Minkowski space. This means that all the equations and quantities that we
use, have to be invariant under coordinate transformations in Minkowski
space. We will look for transformations that leave the spacetime interval
in Equation 4.4 invariant. A simple transformation is translation, we can
shift al coordinates along a constant vector a ∈ M:

xµ′
= xµ + aµ. (4.6)

A more interesting transformation is one where we multiply xµ with a
matrix Λ ∈ Mat(4 × 4, R),

x′ = Λx. (4.7)

Now we have to check, for which matrices Λ we find the same distances
in the coordinate system of x as that of x′.

We need:

s2 = (∆x)⊤η(∆x) = (∆x′)⊤η(∆x′)

= (∆x)⊤Λ⊤ηΛ(∆x),
(4.8)
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4.1 Minkowski space and Lorentz invariance 53

which gives us

η = Λ⊤ηΛ. (4.9)

The matrices Λ that adhere to this relation are known as Lorentz matrices,
which form the Lorentz. There are three main types of transformations in
the Lorentz group.

• We have conventional rotations in space over an angle θ ∈ [0, 2π).
For example the rotation in the xy-plane:

Λ =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 . (4.10)

The rotational 2 × 2 sub-matrix can be in any pair of x, y, z coordi-
nates.

• We also have boosts, which can be thought of as rotations between
space and time, with parameter ϕ ∈ (−∞, ∞). For example, the
boost in the coordinates t and x:

Λ =


cosh ϕ − sinh ϕ 0 0
− sinh ϕ cosh ϕ 0 0

0 0 1 0
0 0 0 1

 . (4.11)

Again the boost can be in any pair of t with one of the spatial coor-
dinates x, y, z.

• Furthermore, we have discrete transformations that reverse the di-
rection of time of one or more spatial coordinates. For example, the
reversing of the time coordinate:

Λ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (4.12)

The Lorentz group is the group that consists of all transformations ob-
tained by multiplications of matrices corresponding to rotations, boosts
and coordinate reversals. It is a non-abelian group. The group containing
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all translations and Lorentz transformations is referred to as the Poincaré
group, which is also a non-abelian group. We will often consider equa-
tions or quantities that are invariant under the Lorentz transformations.
These are called Lorentz covariant. Scalars that are Lorentz covariant are
Lorentz scalars [15].

With one last notational convection we wrap up the prior knowledge
of field theory. We will be using the following notation for derivatives of
functions:

∂µ f =
d f
dxµ . (4.13)

In case of repeated indices this yields,

∂µ f ∂µ f =
3

∑
µ=0

(
d f
dxµ )

2. (4.14)

Again for Roman indices we only sum over the three coordinates of phys-
ical space.

4.2 From discrete to continuous

Field theories are mathematical models that describe physical concepts us-
ing fields. Fields are continuous maps from spacetime to some real or com-
plex vector space. Examples of fields include the temperature, which is a
real number given at each point in space time, the wind, which gives a real
three vector at each point in space time, and the electromagnetic field.

The basics of classical field theory can be derived from classical me-
chanics. For example, a string of countably infinite particles at a distance
a apart and connected through springs, becomes a continuous string in
the limit a → 0. This is the strategy we apply to find the first principles
in classical field theory. In [7], a very complete derivation of many such
principles is given. We will only be giving a very short overview of what
is covered there.

To go from classical mechanics to field theory, one of the first things to
change is the Lagrangian, which has to become a Lagrangian density. A
Lagrangian density of a field in its most general form is a function of field
variables ηρ, first derivatives of the field variable dηρ

dxµ = ∂µηρ and the four
parameters of spacetime x and t:

L = L (ηρ, ∂µηρ, x, t) = L (ηρ,
dηρ

dx
,

dηρ

dt
, x, t), (4.15)

54
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where ρ is an index that runs over all field variables. The field variables
ηρ can be thought of as generalised coordinates of the coordinates ηi in
classical mechanics.

By complete analogy of classical mechanics, we can derive the Euler-
Lagrange equations based on Hamilton’s principle using the variation of
the action with respect to the field variables. For the derivation we again
refer to [7]. The Euler-Lagrange equations are as follows:

d
dxν

(
∂L

∂ηρ,ν

)
− ∂L

∂ηρ
= 0. (4.16)

Using the Lagrangian density, also referred to simply as the Lagrangian,
we can look for the field equations of ηρ, the field analogue of the equa-
tions of motion.

4.2.1 The stress-energy tensor

Using the Lagrangian we can define the stress-energy tensor, also known
as the stress-energy-momentum or energy-momentum tensor. It is a useful
concept with a myriad of applications. In this section, we will explain
what the stress-energy tensor is and what information it contains.

Given a Lagrangian density L we define the stress-energy tensor as

Tµν =
∂L

∂ηρ,ν
ηρ,ν −L gµν . (4.17)

In this case gµν is the metric tensor. As we are working with Minkowski
space we will use gµν = ηµν.

Let us take a look at some of the most prevalent information contained
in the stress-energy tensor. For an extensive overview and the derivations
of all identifications see Section 12 − 3 of [7].

• The component T00 can be identified as the total energy density of
the model, and thus the total energy, R0, can be found by integration

Rµ =
∫

Tµ0dV. (4.18)

• Rµ, for µ = 0, 1, 2, 3 as defined as above, are known as the conserved

currents, because dRµ

dt = 0.

• The three vector with components Ti0 can be identified with the field
momentum density.
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• The three vectors T0 with components T0j represent the field energy
current density, whereas the three vectors Ti with components Tij
represent the current density of the field momentum density .

The most important component for us is T00, as we will try to find the
energy contained in topological defects.

4.3 Examples of field theories

We will discuss two field theories. We will begin with the simplest exam-
ple, that of a complex scalar field, and continue with the electromagnetic
field. The example of the electromagnetic field will be our first encounter
with gauge theory. Both examples are discussed in more detail in chapter
12 in [6] and chapters 1 and 2 in [6].

4.3.1 The complex scalar field

A complex scalar field is a function from Minkowski space to the complex
numbers, φ : M → C. It can either be expressed in terms of the real part
φ1(x) = 1√

2
Re{φ(x)} and the imaginary part φ2(x) = 1√

2
Im{φ(x)} or in

terms of the field itself φ and its complex conjugate φ∗.
We will take a look at the following Lagrangian,

L =
1
2

∂µ φ∗∂µ φ − 1
2

m2φ∗φ. (4.19)

This Lagrangian will give us only second-order differential equations for
the field equations, which makes it comprehensible, and it is indeed a
Lorentz scalar. With Noether’s theorem, which we will discuss in sec-
tion 4.4, this Lagrangian leads to an associated charge and current den-
sity. This makes it a physically interesting example to consider. In the
Lagrangian we can identify the kinetic term

LT(φ) =
1
2
(∂µ φ)2, (4.20)

and the potential term

V(φ) =
1
2

m2φ2. (4.21)
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Using the Euler-Lagrange equations for fields, Equation 4.16, we find the
second-order field equations for φ and φ∗

∂µ∂µ φ + m2φ = 0, (4.22)

∂µ∂µ φ∗ + m2φ∗ = 0. (4.23)

These equations are known as the Klein-Gordon(-Fock) equations. Their
solutions are wave equations as is derived in Section 12 − 6 of [7].

The Lagrangian above contains terms in the field of at most order 2,
φ† φ, and is thus quadratic in the field. If a Lagrangian is quadratic in the
fields, we call the fields it describes free or linear, because we find linear
equations for the fields. Higher order terms in the fields can occur in the
Lagrangian and are referred to as interaction terms or non-linear terms.
In this thesis, we will consider terms up to fourth order. Interacting fields
still have to be invariant under translations and Lorentz transformations.
This assumption is met when the Lagrangian of interaction (i.e. higher
order terms of the Lagrangian) is a Lorentz scalar.

When we consider a set of N independent complex scalar fields, de-
scribed using one Lagrangian, we will be using vector notation. For ex-
ample

L = ∂µ φ†∂µ φ − m2(φ† φ)− λ(φ† φ)2 (4.24)

describes a set of N complex scalar fields, where φ =

 φ1
...

φN

 is a vector of

N scalar complex fields and φ† is the Hermitian transpose of φ,

φ† = (φ∗
1 , · · · , φ∗

N) (4.25)

In the Lagrangian λ and m2 are real numbers, and if m2 > 0 we call m > 0
the mass of the field. The partial derivative ∂µ φ acts on all components of
φ separately.

4.3.2 The electromagnetic field

The electromagnetic field is probably the most familiar example of a field
theory. The electric- and magnetic field are described by Maxwell’s equa-
tions:

∇ · B = 0, ∇× E +
1
c

∂B
∂t

= 0, (4.26)

∇ · E = 4πρ, ∇× B − 1
c

∂E
∂t

=
4πj

c
. (4.27)
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In these expressions ρ is the total charge and j is the total current. We can
also express the electric and the magnetic field in the form of one antisym-
metric field strength tensor Fµν, such that:

Fµµ = 0, (4.28)
Fi0 = −F0i = Ei, (4.29)
Fij = εijkBk. (4.30)

Where we use the Einstein summation convention in the last line, and εijk
is the Levi-Civita symbol for three indices, Equation 2.39.

The field strength tensor, also known as the strength tensor or field
tensor, is a tensor that we will run into more often once we discuss gauge
theory. There, the electromagnetic example will be our guide line, which
we will use to generalise gauge theory to gauge fields that transform under
non-abelian Lie groups. In this process we will use the strength tensor as
it can be fitted into the format of Lie groups and Lie algebras nicely.

The field variables of the electromagnetic field are truly given by the
four-vector Aµ, where A0 is a scalar field and Ai is a three dimensional
vector potential of B. Then we have:

B = ∇× A, E = −∇A0 −
∂Ai

∂t
. (4.31)

In this context, the field tensor Fµν can be defined by Fµν = ∂µ Aν − ∂ν Aµ.
We can write Maxwell’s equations in a vacuum using the field tensor Fµν.
For the homogeneous Maxwell equations (Equation 4.26) we note that
they can be written as the following equations (four equations, since there
is no summation convention)

∂λFµν + ∂νFλµ + ∂µFνλ = 0. (4.32)

Substitution shows that these equations are trivial if we write them in
terms of the field variable Aµ. Therefore the homogeneous Maxwell equa-
tions should not be considered as the field equations. Equation 4.27 can
also be written in terms of the field tensor. For this we define jµ as the
four-vector consisting of the charge j0 = ρ and the current ji = ji. We then
find the four equations

∂νFµν =
4π jµ

c
. (4.33)

In a vacuum, without interactions with charges or currents, this reduces
to ∂νFµν = 0.
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These equations are also obtained using the Euler-Lagrange equations
for the following Lagrangian, which is thus known as the Lagrangian of
electrodynamics,

LA = −1
4

FµνFµν. (4.34)

The electromagnetic field does not have a unique description in terms
of the field variables Aµ. For any function α : M → C depending on the
spacetime coordinates, we can transform Aµ as follows:

Aµ(x) → A′
µ(x) = Aµ + ∂µα (4.35)

By equality of mixed partials, we find the exact same strength tensor Fµν

for A′
µ as for Aµ and therefore also the same action and energy. Thus the

transformation of Aµ leaves all observable, and thus all physical, quan-
tities invariant. Such a transformation is called an invariant transforma-
tion. An important distinction to make, is that between global transfor-
mations, which are independent of the spacetime coordinates, and gauge
transformations, which are local transformations, and thus dependent on
the spacetime coordinates. We will discuss both types of transformations
in more detail in chapter 5.

4.4 Noether’s theorem

An important theorem, that is most elegantly expressed in field theory,
is Noether’s theorem. It states that any symmetry or invariance implies
the conservation of a quantity. An example is the time invariance of a La-
grangian, which implies energy conservation. Another is when there is
no explicit dependence on a give space coordinates, which implies that
the corresponding momentum is conserved, Section 12 − 7 in [7]. In elec-
trodynamics, conservation of charge and current can be derived from the
invariance of field transformations which do not affect the spacetime co-
ordinates, see Section 2.8 in [6].

We will not go into the details of Noether’s theorem. For a comprehen-
sive explanation and derivation see Section 12 − 7 in [7] and for a more
to the point explanation focussed on our applications, see Section 12.8 in
[6]. For us it is sufficient to understand that symmetries of a system corre-
spond to conservations of a quantity in the system.
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Chapter 5
Gauge theory

In this chapter we will discuss symmetric models described by gauge the-
ories. We will explain what gauges are and subsequently discuss some ex-
amples. An important sub field of gauge theory that we will come across
is Yang-Milss theory. Yang-Mills theory is a small deviation from our prin-
ciple goal of understanding topological defects, but it is very instructive
and the two topics are deeply related. Again, electrodynamics will be an
important example.

5.1 Global symmetries

We saw before that the description of the electromagnetic field is not unique.
Analogously, the Lagrangian of any field can be invariant under a set of
symmetries. What we mean by this is that if we transform the field accord-
ing to the action of a certain group G, we want the Lagrangian to remain
the same. That is, if

φ′(x) = g · φ(x) for g ∈ G, (5.1)

then we want

L (φ′) = L (φ). (5.2)

We will later find that the group G needs to be a compact Lie group as
discussed in chapter 2.

A simple example can be seen using the Lagrangian

L = ∂µ φ†∂µ φ − m2(φ† φ)− λ(φ† φ)2. (5.3)
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62 Gauge theory

As before, φ =

 φ1
...

φN

 is a vector of N scalar complex fields and φ† is

the Hermitian transpose of φ. The partial derivative with respect to xµ,
∂µ, acts separately on all components of φ. It is clear to see that this
Lagrangian is invariant under transformations of the group U(1). Take
g = eiα where α ∈ R, such that φ′(x) = eiα φ(x) and correspondingly
(φ†)′(x) = e−iα φ†(x). Then we find, omitting the dependence on x,

(φ† φ)′ = e−iα φ†eiα φ = φ† φ. (5.4)

Note that for the kinetic term in the Lagrangian the same derivation holds,
because eiα is independent of the spacetime coordinate and thus it can be
pulled in front of the derivative to yield the same conclusion. Thus we find
that L is invariant under global transformations of the Lie group U(1).

This Lagrangian, however, also has a more interesting symmetry, namely
that of the special unitary group of N × N matrices SU(N). We now take
g = ω ∈ SU(N), such that

φ′(x) = ωφ(x), and (5.5)

(φ†)′(x) = φ†ω†(x). (5.6)

Using the fact that ω is a unitary matrix we again find

(φ† φ)′ = φ†ω†ωφ = φ† φ. (5.7)

Analogously, the kinetic term in the Lagrangian is also invariant under
SU(N) transformations.

These are both examples where the Lagrangian is invariant under global
transformations of a simple Lie group. Gauge theory is the theory that
considers local transformations, that is transformations that are dependent
on the spacetime. The important requirement in Gauge theory is that ob-
servable quantities, as well as actions and equations of motion should be
gauge invariant, that is, they should be invariant under the gauge trans-
formations. As in the examples above, invariant means that if we replace
the field variables φ(x) by transformed field variables φ′(x) = g(x)φ(x)
under an action of a certain group G, g(x) ∈ G for all x ∈ M, we obtain
the same quantity or equation. If the Lagrangian is gauge invariant, this
gives us a gauge invariant action, strength-tensor and field equations.

Effectively, gauge invariance is a way of implementing invariance in
the mathematical description of a system. For the same system one can use
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5.2 Yang-Mills theory 63

a set of descriptions, which are mathematically related via a Lie group, to
find the same physical quantities corresponding to the system. Sometimes
it is desirable to eliminate this mathematical freedom. In this case we can
choose a gauge condition to set the gauge. A gauge condition is an extra
condition we can put on our field variables, which is not gauge invari-
ant. There are many ways to do this, depending on the gauge invariance
considered. Some gauge conditions only eliminate part of the mathemati-
cal freedom, whereas others eliminate all gauge redundancy. In the case of
the electromagnetic field there are a few commonly used gauge conditions
that can be imposed on the field variables Aµ. These are the following

1. The coulomb gauge
divA = ∂i Ai = 0,

2. The Lorents gauge
∂µ Aµ = 0,

3. The zero gauge
A0 = 0.

5.2 Yang-Mills theory

The electromagnetic field is a well known example of a gauge theory. The
symmetry group of the electromagnetic field is U(1), an abelian group.
Chen Ning Yang and Robert Mills generalised gauge theory to non-abelian
groups [16]. This section aims to give a short introduction to Yang-Mills
theory and provides some examples of non-abelian symmetries. Here our
previous discussion of Lie groups and Lie algebras will be used. We will
first discuss an example with gauge group SU(N), subsequently we will
look at a more general statement.

5.2.1 Gauge invariance with SU(N)

Previously we saw global SU(N) invariance of the Lagrangian

L = ∂µ φ†∂µ φ − m2φ† φ − λ(φ† φ)2. (5.8)

We will now consider the gauge invariance of the special unitary group,
meaning that we will consider local transformations,

φ′(x) = ω(x)φ(x), (5.9)
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64 Gauge theory

where ω(x) ∈ SU(N) for all x ∈ M and the map ω : M → SU(N) has to
be C1.

We note that all the potential terms in de Lagrangian are still invariant
under this transformation by unity of the matrix ω(x). The kinetic term,
however, is not invariant any more. We have:

∂µ φ′(x) = ∂µ [ω(x)φ(x)] = ∂µω(x) · φ(x) + ω(x)∂µ φ(x). (5.10)

The derivative of ω gives us a problem, because it will not cancel with
the derivative of ω†. Luckily, there is a solution to this problem. We can
introduce a covariant derivative Dµ which will replace our conventional
derivative ∂µ. This covariant derivative will be dependent on the space-
time coordinates and we can define it as

∂µ φ(x) → Dµ(x)φ(x) :=
[
(∂µ + Aµ(x)

]
φ(x). (5.11)

Here Aµ is a vector field, that takes matrix values. Aµ is called the gauge-
field, and in case of a non-abelian group, such as SU(N), it is also known
as the Yang-Mills field. With this definition the covariant derivative is an
operator acting on the field φ.

The exact workings and a mathematical description of the covariant
derivative can be given using principle bundles and connections. Sadly
this is beyond the scope of this thesis, and we will simply accept the defi-
nition above. For those interested in the details of the covariant derivative,
we refer to chapter 6 of [17].

We want the covariant derivative to solve the problem of the kinetic
term of our Lagrangian, therefore it has to transform under our transfor-
mations as

(Dµ φ)′ = ωDµ φ. (5.12)

Note that we omitted the explicit dependence on x. In the rest of this sec-
tion the dependence on spacetime coordinates of φ, ω, Aµ and Dµ will be
assumed and will sometimes be implicit. Let us use the demanded trans-
formation relation of the covariant derivative, to find the transformation
relation of Aµ.

(Dµ φ)′ = ωDµ φ (5.13)

∂µ(ωφ) + A′
µωφ = ω∂µ φ + ωAµ φ (5.14)

∂µω · φ + A′
µωφ = ωAµ φ (5.15)
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Each term now contains a field φ on the right-hand side. Considering that
we want this relation to hold for all fields, we can leave out the field φ. We
then get an equality of operators. Using

∂µ(ωω−1) = ∂µ(I) = 0

= ∂µω · ω−1 + ω∂µω−1,
(5.16)

we find the transformation relation of the vector field Aµ:

A′
µ = ωAµω−1 + ω∂µω−1. (5.17)

This transformation relation will also tell us something about the struc-
ture of Aµ. As it turns out we need Aµ to be an element of the Lie algebra
of SU(N). For N = 2, we will prove that if Aµ takes values in the Lie
algebra, su(N), then A′

µ will also take values in su(N). This means that Aµ

taking values in su(2) results in a well-defined transformation.

Lemma 5.2.1. If Aµ(x) ∈ su(2) for all x ∈ M, then A′
µ(x) ∈ su(2) for all

x ∈ M. Where M is Minkowski space, i.e. R4 with the Minkowski metric.

Proof. Recall that for ω(x) ∈ SU(2) we can write ω =

(
α −β
β α

)
where

α(x), β(x) ∈ C and |α(x)|2 + |β(x)|2 = 1. First we take a look at the

ω∂µω−1 term. We find ω−1 = 1
det(ω)

(
α β
β α

)
. Since ω ∈ SU(2), we have

det(ω) = 1, consequently we find

ω∂µω−1 =

(
α∂µα + β∂µβ α∂µβ − β∂µα

β∂µα − α∂µβ β∂µβ + α∂µα

)
. (5.18)

If we now use

∂µ(αα + ββ) = ∂µ1 = 0, (5.19)

and commutativity in C, we see that

α∂µα + α∂µα + β∂µβ + β∂µβ = 0. (5.20)

Accordingly Tr(ω∂µω−1) = 0 and (ω∂µω−1)† = −ω∂µω−1, so
ω∂µω−1 ∈ su(2).
Next, let us take a look at the ωAµω−1 term. Once again, one can do
this as a linear algebra exercise. However, we can also take a look at
the adjoint representation for matrix Lie groups, Definition 2.2.21. This
yields ωAµω−1 =Ad(ω)(Aµ) and since the adjoint map maps elements
ω ∈ SU(2) to endomorphisms, we know that ωAµω−1 ∈ su(2).
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The term ω∂µω−1 ∈ su(2) foreshadows that many matrices in the Lie
algebra are reached. In fact, using SU(N) symmetries, the field Aµ takes
on exactly the values in su(N) [6].

We now know that the field Aµ takes on values in the Lie algebra of
SU(N), but we know nothing about its behaviour. That is why we will
construct a Lagrangian for the Yang-Mills field Aµ. Analogous to electro-
dynamics we want the Lagrangian to be of the form −1

4 FµνFµν. For this
to be defined, we first need to take a look at what the field strength ten-
sor looks like for general Lie groups. Motivated by electrodynamics we
will look for a strength tensor with the term ∂µ Aν − ∂ν Aµ. We want the
strength tensor to transform under the gauge transformations as it does in
electrodynamics, that is, according to the adjoint representation

Fµν(x) → F′
µν(x) = ω(x)Fµν(x)ω−1(x). (5.21)

Now we can check if Fµν = ∂µ Aν − ∂ν Aµ is a possibility, by simply
checking if it is invariant under the adjoint representation. Using the trans-
formation relation of Aµ we find

∂ν A′
µ = ∂ν(ω)Aµω−1 + ω∂ν(Aµω−1) + ωAµ∂νω−1

+ ∂ν(ω)∂µω−1 + ω∂ν∂µ(ω
−1),

(5.22)

and thus

∂µ A′
ν − ∂ν A′

µ = ω(∂µ Aν − ∂ν Aµ)ω
−1

∂µ(ω)Aνω−1 + ωAν∂µω−1

− ∂ν(ω)Aµω−1 − ωAµ∂νω−1

+ ∂µ(ω)∂νω−1 − ∂ν(ω)∂µω−1.

(5.23)

This quantity is not invariant under the adjoint representation, so we will
need to find a way to make it invariant. For this we use the fact that the
field takes values in the Lie algebra and we can thus take a look at the
bracket corresponding to matrix Lie algebras: the matrix commutator. Let
us take a look at how the commutator transforms. To write it concisely, we
use the following identities.

ω∂µ(ω
−1) · ω = −∂µ(ω) · ω−1ω = −∂µ(ω) (5.24)

ω∂µ(ω
−1) · ω∂ν(ω

−1) = −ωω−1∂µ(ω)∂ν(ω
−1) = ∂µ(ω)∂ν(ω

−1) (5.25)
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Then we find

[A′
µ, A′

ν] = ω[Aµ, Aν]ω
−1

+ ωAµ∂ν(ω
−1) + ∂ν(ω)Aµω−1

− ωAν∂µ(ω
−1)− ∂µ(ω)Aνω−1

− ∂µ(ω)∂ν(ω
−1) + ∂ν(ω)∂µ(ω

−1).

(5.26)

Combining these two identities yields an invariant quantity that we
define as the strength tensor, which then obeys Equation 5.21,

Fµν = ∂µ Aν − ∂ν Aµ + [Aµ, Aν]. (5.27)

We want the Lagrangian to be gauge-invariant and quadratic. With Corol-
lary 2.2.32 we find that the following Lagrangian fulfils these wishes:

LA =
1

2g2 TrFµνFµν. (5.28)

In this equation we have introduced the constant g2 > 0 for convenience
and we use a positive sign to ensure positive energy for fields with small
energy. Using Theorem 2.2.31, we find that, up to scalar multiplication,
this is the only possible Lagrangian that is quadratic, gauge-invariant, and
that gives a positive energy for small fields.

It is important to note that Aµ is a self-interacting field, because the
Lagrangian contains terms of third and fourth order in the field Aµ. These
terms are of the form Tr(∂µ Aν · Aµ Aν) and Tr(Aµ Aν Aµ Aν).

To explain the positive sign and the introduction of the factor g, it is
useful to look at the decomposition of the field Aµ in terms of real fields.
For simplicity we will work with SU(2), instead of a general N. The gen-
eral case is completely analogous, but requires more generators of the Lie
algebra. In the case SU(2), a Lie group of dimension 3, we obtain 3 real
fields, one for each generator of the Lie algebra su(2):

Aµ(x) = −ig
τa

2
Aa

µ(x). (5.29)

In this equation the three real fields Aa
µ(x) correspond to the three (Hermi-

tian) generators τa

2 of su(2) and the same factor g as above is introduced
for convenience. We also can rewrite the strength tensor in terms of this
decomposition:

Fµν(x) = −ig
τa

2
Fa

µν(x). (5.30)
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Now we use Equation 5.27 to find,

Fµν = −ig
τa

2

(
∂µ Aa

ν − ∂ν Aa
µ

)
− g2Aa

µ Ab
νiεabc τc

2

= −ig
τa

2

(
∂µ Aa

ν − ∂ν Aa
µ + gεabc Ab

µ Ac
ν

)
,

(5.31)

resulting in a decomposition of Fµν in three real components:

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + gεabc Ab

µ Ac
ν. (5.32)

Where εabc is the Levi-Civita symbol, which emerges from the commuta-
tion of the generators τa

2 of the Lie algebra. As such, the structure constants
of the group SU(2) appear in this equation. Note also that we use the Ein-
stein summation convention for repeating indices. Let us again consider
the Lagrangian for the gauge field Aµ and express it in terms of the real
components of the strength tensor:

LA =
1

2g2 TrFµνFµν =
1

2g2 Tr(−ig
τa

2
Fa

µν − ig
τb

2
Fb

µν)

=
1

2g2 (−ig)2Fa
µνFb

µνTr(
τa

2
τb

2
) = −1

4
Fa

µνFa
µν.

(5.33)

Here we have used that Tr(τaτb) = 0 for a ̸= b and Tr(τaτa) = 2.
To explain the choice of sign and introduction of the factor g we look

at small perturbations of the field about the state Aa
µ = 0 for a = 1, 2, 3.

Using the small field approximation we can neglect all third and fourth
order terms in the field. We then find

LA = −1
4

Fa
µνFa

µν = −1
4
(∂µ Aa

ν − ∂ν Aa
µ + gεabc Ab

µ Ac
ν)

2, (5.34)

LA ≈ L
(2)
A = −1

4
(∂µ Aa

ν − ∂ν Aa
µ)

2

= −1
2
(∂µ Aa

ν∂µ Aa
ν − ∂ν Aa

µ∂µ Aa
ν).

(5.35)

This equation displays the sum of three Lagrangian of the form of the La-
grangian of electrodynamics, Equation 4.34. This correspondence explains
the sign and the introduction of the factor g.

Lastly, if we look back at the Lagrangian for the scalar field, we find:

Lφ = (Dµ φ)†(Dµ φ)− V(φ, φ†), (5.36)
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where we have

Dµ φ = (∂µ + Aµ)φ = (∂µ − ig
τa

2
Aa

µ)φ. (5.37)

We note that in both Lagrangians the factor g appears only in terms of or-
der three or four in the fields. It is thus only present in interaction terms
of the Lagrangians, therefore we call the factor g the gauge-coupling con-
stant.

5.2.2 Local U(1) symmetries: The electromagnetic field re-
visited

Even though U(1) is an abelian group, it is useful to consider the formal-
ism introduced above. This allows us to consider the difference between
local and global U(1) symmetries and results in a nice link to electrody-
namics.

We consider the Lagrangian

L = ∂µ φ†∂µ φ − m2φ† φ, (5.38)

where φ is a complex scalar field, and demand local U(1) symmetry,

φ′(x) = eiα(x)φ(x) (5.39)

Then we obtain a covariant derivative

Dµ(x) = ∂µ + Aµ(x), (5.40)

where Aµ takes values in u(1) ≃ R and is a scalar field. This implies
that Aµ is precisely the four-vector field that we have in electrodynamics.
Indeed, the variational principle on the total Lagrangian with respect to
Aµ gives us exactly the non-trivial Maxwell’s equations.

5.2.3 Gauge invariance generalised to compact Lie groups

The derivations in the previous section can be generalised to any compact
Lie group. First we will generalise it to simple Lie groups. Since compact
Lie groups can be written as a products of simple Lie groups and U(1)
terms, see Theorem 2.2.30, we can then generalise to arbitrary compact Lie
groups.
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Gauge theory for simple Lie groups

For a gauge field Aµ corresponding to a simple Lie group G, we find that
that Aµ takes values in the Lie algebra of G. We write

Aµ(x) = gta Aa
µ(x), (5.41)

where ta are generators of Lie(G) = g, g ∈ G and Aa
µ are real vector fields.

Note that a takes on dim G = dim g values.
We define the strength tensor similarly to the strength tensor for SU(N)

symmetries, see Equation 5.27. Fµν also takes values in g. Using this we
find the same transformation relations as before:

Aµ → A′
µ = ωAµω−1 + ω∂µ(ω

−1) (5.42)

Fµν(x) → F′
µν(x) = ω(x)Fµν(x)ω−1(x). (5.43)

By Theorem 2.2.32, the only quadratic invariant is then TrFµνFµν, yield-
ing the following Lagrangian:

LA =
1

2g2 TrFµνFµν. (5.44)

This is also were the need for a compact Lie group comes into play. If the
Lie group were not compact, by Theorem 2.2.24 there might not exist a
positive bilinear form on the Lie algebra. The problem with this is that the
absence of a lower bound of the kinetic term Lagrangian would also imply
an absence of a lower bound on the energy.

With a similar derivation as above we can express Fµν in terms of real
coefficients:

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + gCabc Ab

µ Ac
ν. (5.45)

In this general form, the structure constants Cabc of the Lie group G emerge
from the commutator. We can write Fµν as in Equation 5.30.

Combining the Lagrangian of the original matter field φ and the Gauge
field, we find the total Lagrangian of our system,

L = Lφ +LA = (Dµ φ)†(Dµ φ)− V(φ) +
1

2g2 TrFµνFµν

= (Dµ φ)†(Dµ φ)− V(φ)− 1
4

Fa
µνFa

µν.
(5.46)
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Gauge theory for compact Lie groups

Now that we have found the gauge-field for arbitrary simple Lie groups,
we can take a look at compact Lie groups. A compact Lie group can be
written as a product of simple Lie groups and U(1) factors, Theorem 2.2.30.
Using the framework of simple Lie groups, we find the gauge field for each
of these components, each with it’s own coupling constant. The combina-
tion of these gauge-fields results a single Lagrangian for the original field.
Let us look at an example.

Suppose we have a set of m · n complex scalar fields φiα, where
i = 1, . . . , m and α = 1, . . . , n. We want SU(m)× SU(n) symmetry, that is,
for (ω(x), Ω(x)) ∈ SU(m)× SU(n) acting on φiα we have the following
transformation,

φ′
iα(x) = ωij(x)Ωαβ(x)φjβ(x). (5.47)

This means that ω(x) ∈ SU(m) acts on the first coordinate of φiα in the
usual sense and Ω(x) ∈ SU(n) on the second. For global SU(m)× SU(n)
invariance we have the invariant Lagrangian

L = ∂µ φ∗
iα∂µ φiα − m̃2φ∗

iα φiα − λ(φ∗
iα φiα)

2, (5.48)

where m̃ indicates the mass of the field. We first introduce the gauge field
for the group SU(m), which we express in terms of the real fields Aa

µ,

Aµ(x) = −igta Aa
µ(x). (5.49)

Here ta are the (Hermitian) generators of su(m). They act only on the first
coordinate of φiα, which we can indicate by writing (ta)ij. The constant g
is the coupling constant for the gauge field of group SU(m).

Similarly for SU(n) we find:

Bµ(x) = −ihspBb
µ(x) (5.50)

where sp or (sp)αβ are the generators of su(n), acting only on the second
coordinate of φiα. We have an independent coupling constant h for this
group. To find the covariant derivative for this Lagrangian, let us first
write down the complete expression for the partial derivative:

∂µ φiα = δ
j
i δ

β
α ∂µ φjβ. (5.51)

The covariant derivative combines the influence of the gauge-fields Aµ

and Bµ,

(Dµ φ)iα = (δ
j
i δ

β
α ∂µ − igδ

β
α ta

ij A
a
µ − igδ

j
i s

p
αβBp

µ)φjβ (5.52)

= ∂µ φiα + (Aµ)ij φjα + (Bµ)αβ φiβ. (5.53)
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We now find the strength tensor for both fields,

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + gCabc Ab

µ Ac
ν, (5.54)

Gp
µν = ∂µBp

ν − ∂νBp
µ + hDpgrBq

µBr
ν. (5.55)

In this equation, Cabc are the structure constants of the group SU(m) and
Dpqr are the structure constants of SU(n). With the strength tensors, we
can find the gauge-invariant Lagrangian of the model. As expected, we
find

L =(Dµ φ)∗iα(Dµ φ)iα − m̃2φ∗
iα φiα − λ(φ∗

iα φiα)
2

− 1
4

Fa
µνFa

µν −
1
4

Gp
µνGp

µν.
(5.56)

This rounds up our discussion of the example of gauge symmetry with
the compact Lie group SU(m)× SU(n). Any product of simple Lie groups
and U(1) terms gives a similar derivation with a number of gauge-groups
with each their own coupling constant and structure constants. An im-
portant observation, is that in some physical systems we do not need to
generalise all global symmetries of a simple Lie group to a global symme-
try. If this is not necessary we can save ourselves a lot of work by using
the easier global symmetry.

5.3 Implications of Yang-Mills theory

Yang-Mills theory is a very influential theory, with implications mainly for
the standard model of particle physics. It has generalised the concept of
the electromagnetic force, where a local symmetry is associated to a force
in nature. One profound consequence was the addition of elementary par-
ticles to the standard model [18]. With Yang-Mills theory the three bosons
carrying the weak nuclear force can be explained as generators of the Lie
algebra su(2). Similarly, the Yang-Mills theory of gauge group SU(3), re-
sponsible for the strong nuclear force, explains why we have 8 gluons;
they are results of the 8 generators of su(3), see Part 3, Section 69 in [19].

Additionally, symmetry breaking is used to explain the breaking of the
electroweak force in the early universe to the electromagnetic force and the
weak nuclear force. In this symmetry breaking phase transition the three
bosons mediating the weak force, W± and Z, acquired mass while the pho-
ton remained massless. There are theories assuming the unification of the
electroweak and the strong force in even earlier stages of the expanding
and cooling universe [20]. We will further explore these so called grand
unified theories in section 6.3.
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Chapter 6
Topological defects in symmetry
breaking phase transitions

By now we have accumulated enough ground work in homotopy theory
and field theory to delve into the subjects of symmetry breaking and topo-
logical defects. The symmetries in the Lagrangian can be spontaneously
broken when ground states are not symmetric. The breaking of a symme-
try proves a phase transition. In this chapter we will study phase transi-
tions caused by spontaneous symmetry breaking which may result in the
formation of topological defects. We will conclude with an example of a
grand unified theory, where we will use homotopy groups of the vacuum
manifold to determine the types of topological defects that may form.

6.1 Symmetry breaking

Symmetries of a system are said to be spontaneously broken if the ground
states of the system are not invariant under the gauge transformations.
In this chapter we will describe the mechanism of spontaneous symmetry
breaking, using the symmetries of the previous section. This section is
based on chapter 5 of [6].

6.1.1 Spontaneous symmetry breaking in the global U(1)
model

We again take a look at the Lagrangian

L = ∂µ φ∗∂µ φ − m2φ∗φ − λ(φ∗φ)2 − c. (6.1)

73



74 Topological defects in symmetry breaking phase transitions

We added the constant c, to be able to choose the minimal energy equal to
0. Again φ is a scalar complex field, and we can write φ = 1√

2
(φ1 + iφ2),

with corresponding Lagrangian

L =
1
2

∂µ φi∂µ φi −
m2

2
φi φi −

λ

4
(φi φi)

2 − c. (6.2)

We know that this Lagrangian has global U(1) invariance,

φ′ = eiα φ, (6.3)

where α ∈ R is fixed. We can also write this invariance in terms of φi:

φ′
1 = cos(α)φ1 − sin(α)φ2 (6.4)

φ′
2 = sin(α)φ1 + cos(α)φ2 (6.5)

We want to find the ground state of our field. For this we consider the
energy functional

E =
∫

∂µ φ∗∂µ φ + V(φ) d3x, (6.6)

V(φ) = m2φ∗φ + λ(φ∗φ)2 + c, (6.7)

where we integrate over real space, µ = 1, 2, 3.
For minimal energy we clearly need φ to be constant, that is φ(x) = φ0.

For the value of φ0 we need to minimize the potential. If m2 ≥ 0 we find
that φ0 = 0. The field φ ≡ 0 is clearly invariant under transformations of
U(1). In this case the symmetry is not broken.

If m2 < 0, we get a so called ‘Mexican hat shaped’ potential, see Fig-
ure 6.1 . The minima are located on a circle around the central axis, at fixed
values of |φ|. This means all ground states are of the form

φ(x) = eiα φ0√
2

, (6.8)

where the factor
√

2 is added for convenience later. These ground states
are not invariant under actions of U(1), generally eiα φ0√

2
̸= eiβeiα φ0√

2
, and so

they are said to break the symmetry.
We want to find φ0, using the minima of the potential, which by use of

rotational symmetry we conveniently express in terms of |φ|:

V(|φ|) = m2|φ|2 + λ|φ|4 + c (6.9)
∂V(|φ|)

∂|φ| = 2m2|φ|+ 4λ|φ|3 = 0 (6.10)

|φ| = 0 ∨ |φ| =
√

−2m2

4λ
. (6.11)
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6.1 Symmetry breaking 75

Figure 6.1: For m2 < 0, the potential of Equation 6.7 has the shape of a Mexican
hat. The minima are positioned on a circle around the origin with radius φ0 and
we see a local maximum at φi = 0, i = 1, 2. [6]

It is clear that |φ| = 0 is a maximum of the potential, so the second option
will be our minimum. If we define µ2 = −m2 > 0, µ > 0, we find φ0 with
Equation 6.8,

|φ| =
√

µ2

2λ
=

1√
2

µ√
λ

(6.12)

φ0 =
µ√
λ

. (6.13)

Our next goal will be to find the Lagrangian of perturbations around
around a chosen ground state. Perturbations are small deviations to the
ground state. We choose a ground state φ⃗(0) = (φ1, φ2) = (φ0, 0), similarly
φ(x) = φ0√

2
. Perturbations around this ground state can be given using

φ1(x) = φ0 + χ(x) (6.14)
φ2(x) = θ(x). (6.15)

This we can fill in in the Lagrangian, Equation 6.2, to obtain

Lχ,θ =
1
2
[
∂µχ(x)

]2
+

1
2
[
∂µθ(x)

]2
+

µ2

2

[
(

µ√
λ
+ χ(x))2 + θ(x)2

]
− λ

4

[
(

µ√
λ
+ χ(x))2 + θ(x)2

]2

+
µ4

4λ
,
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76 Topological defects in symmetry breaking phase transitions

where we have chosen c = µ4

4λ , such that the energy of the ground state
is equal to zero. We again restrict this Lagrangian to second order in the
perturbations χ and θ:

L
(2)

χ,θ =
1
2
[
∂µχ(x)

]2
+

1
2
[
∂µθ(x)

]2 − µ2χ2. (6.16)

In this approximation we note that the only quadratic term in the fields is
µ2χ2, which means that χ is a massive field with mass mχ =

√
2µ and θ

is a massless field. This massless field is known as the Nambu-Goldstone
field and it corresponds to the Nambu-Golstone Boson.

There have been particles found of which the Nambu-Golstone bosons
are very accurate descriptions, namely the π± and π0 mesons. However,
these particles have a non-zero mass, due to more (small) terms in the
Lagrangian that were not considered in this example.

6.1.2 Partial breaking of global SO(3) symmetry

At this stage it is time to look at a more extensive example. We will discuss
the model of a Lagrangian with SO(3) symmetry. This symmetry will not
be completely broken in the ground state, but instead there is a remaining
symmetry of SO(2). This will present us with a nice link back to homoge-
neous manifolds.

Let us consider the symmetries of the following Lagrangian,

L =
1
2

∂µ φa∂µ φa − V(φ), (6.17)

where φa for a = 1, 2, 3 are three real fields and

V(φ) = −µ2

2
φa φa +

λ

4
(φa φa)2 +

µ2

4λ
. (6.18)

We have again chosen the constant factor such that the energy of the ground
states will be equal to zero and we assume µ2 > 0. If we write φ for
the vector of the three components φa, we find that this Lagrangian has a
global SO(3) symmetry. For ω ∈ SO(3) we have:

(φ⊤φ)′ = φ⊤ω⊤ωφ = φ⊤φ. (6.19)

As in the previous section we will try to find the ground state of this La-
grangian. The kinetic term shows that minimal energy is obtained, when
the field is homogeneous, so the ground state will be a field of the form

φa(x)φa(x) = |φ(x)|2 = φ2
0. (6.20)
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A similar derivation as seen in the previous section to minimise the poten-
tial yields

φ0 =
µ√
λ

. (6.21)

Thus, we find that the set of ground states is a sphere of radius φ0. The set
of ground states is called the classical vacuum, or the vacuum manifold
M. For the Lagrangian in Equation 6.17 we obtain M ∼= S2.

We choose the point φ⃗(0) = (0, 0, φ0) on this sphere as our fixed ground
state for further calculation. We will show that, contrary to the previous
example, in this case the symmetry SO(3) is not completely broken. For
ω̃ ∈ SO(2) we can write

ω̃ =

(
cos(α) − sin(α)
sin(α) + cos(α)

)
. (6.22)

Now we set

ω =

(
ω̃ 0
0 1

)
∈ SO(3)

and find

φ′ = ωφ =

(
ω̃ 0
0 1

)
φ =

cos(α)φ1 − sin(α)φ2

sin(α)φ1 + cos(α)φ2

φ3

 . (6.23)

So indeed φ⃗(0) = (0, 0, φ0) is invariant under the (non-trivial) transforma-
tions of SO(2).

To construct the Lagrangian of perturbations around the ground state,
we introduce three fields of perturbations, θ1, θ2 and χ, such that

φ1(x) = θ1(x), (6.24)

φ2(x) = θ2(x), (6.25)

φ3(x) = φ0 + χ(x). (6.26)

We find the potential of the model,

V =− µ2

2

[
(θ1)2 + (θ2)2

]
− µ2

4
(φ0 + χ)2

+
λ

4

[
(θ1)2 + (θ2)2 + (φ0 + χ)2)

]
+

µ4

4λ

(6.27)
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and the kinetic term of the Lagrangian,

Lkin =
1
2
(∂µθ1)2 +

1
2
(∂µθ2)2 +

1
2
(∂µχ)2. (6.28)

It is now clear that the Lagrangian of perturbations also has the SO(2)
symmetry in the terms θ1 and θ2, but not the full SO(3) symmetry due to
the (φ0 + χ)2 term.

Taking the quadratic approximation we find:

L (2) =
1
2
(∂µθ1)2 +

1
2
(∂µθ2)2 +

1
2
(∂µχ)2 − µ2χ2. (6.29)

Once more, we find that the field χ is massive with mass
√

2µ, while the
fields θ1 and θ2 are massless, because there is no second order contribu-
tion of them in the Lagrangian. In other words, θ1 and θ2 correspond to
massless Nambu-Goldstone bosons. In general, “Whenever a continuous
global symmetry is spontaneously broken, massless Goldstone bosons ap-
pear. Their number is equal to the dimension of the vacuum manifold”
[1]. Indeed, in this example we have a vacuum manifold, M ∼= S2, of
dimension 2 and we found 2 Nambu-Goldstone bosons.

Now, as you may have noticed, we have seen three differentiable man-
ifolds in this example, namely the Lie group SO(3), the closed subgroup
SO(2) and the vacuum manifold, the sphere S2. If we take the quotient of
the symmetry group of the Lagrangian, with the symmetries that are con-
served in the ground state of our model, we find the homogeneous mani-
fold of possible ground states, the vacuum manifold. As in Theorem 2.3.9
we have:

SO(3)/SO(2) ∼= S2. (6.30)

As a rule, the vacuum manifold is a homogeneous manifold and can be
described as the quotient of the original symmetries, the Lie group G, and
the remaining symmetries, the Lie subgroup H ⊆ G. In the next section
we will present topological defects and see that they are characterised by
the homotopy groups of their (homogeneous) vacuum manifold.

6.2 Topological defects

At last, let us dive into the definition of a topological defect. A topolog-
ical defect is an excitation of a field that is preserved by the topological
structure of the field. In other words, it is a state of matter that cannot
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6.2 Topological defects 79

continuously be transformed into the ground state, due to topological ob-
structions.

Topological defects emerge during symmetry breaking phase transi-
tions. We will clarify this process based on [20] and Sections 2.1 and 2.2 of
[1]. Consequently, we will discuss three examples of topological defects:
domain walls, strings and monopoles based on [1]. The differences be-
tween these topological defects can be characterised using the homotopy
groups of the vacuum manifold.

6.2.1 Phase transitions

A phase transition is a transition from one state or phase of a model to
another. The simplest examples are transitions between a solid, liquid and
gaseous state of for example water. During a phase transition the Gibbs
free energy, G, changes significantly and abruptly, that is, there is a deriva-
tive of the Gibbs function that is discontinuous [20]. As a consequence, pa-
rameters that are derived from the Gibbs free energy experience a sudden
change as well.

In the phase transition from liquid water to water vapour, ‘gaseous
water’, the significant change of G results in a jump in the density of the
water, while the temperature only changes marginally. In some metals
there is a phase transition between a superconducting state and a regular
state, in this case we observe a big difference in the conductivity. Another
example would be the phase transition from a ferromagnet such as iron,
to a paramagnet, which happens at the critical temperature known as the
Curie temperature TC.

Phase transitions are generally classified by their order. A phase tran-
sition is called a first-order phase transition if the first differential of the
Gibbs function is discontinuous. In thermodynamics the step size of a
discontinuous first derivative is called the latent heat. More generally, the
first order differential of the Gibbs function that is discontinuous is known
as the order of the phase transition. If a phase transition has a continuous
first derivative, and is thus a phase transition of higher order, it is known
as a continuous phase transition.

The water to gas example is a first-order phase transition, because the
density, which is a first derivative of the Gibbs free energy, changes dis-
continuously. The phase transition of a ferromagnet that becomes para-
magnetic is a continuous phase transition. The magnetization, which is a
first differential of the Gibbs function changes fast, but continuously.

Another classification is that of symmetry breaking phase transitions.
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80 Topological defects in symmetry breaking phase transitions

When a symmetry breaks, the model equivalently transitions to a differ-
ent state. The phase transition of (liquid) water to ice is an example of a
symmetry breaking phase transition. Liquid water has continuous trans-
lational symmetry, where as the crystal structure of ice only has discrete
translational symmetry, only translations by a lattice vector are invariant
transformations. The breaking of the continuous symmetry corresponds
to the transition from liquid to solid.

The phase transitions between ferromagnetic and paramagnetic com-
prises a breaking of the rotational symmetry of the magnetic moments in
a paramagnetic material, that breaks so that the moments align in a ferro
magnetic material. Lastly, in Equation 2.7 and remark on page 113 of [1]
we see that the transition between superconducting and regular states of
metal is described by the breaking of U(1) symmetry.

It is important to note, that in many cases symmetry is restored above a
certain temperature, for example in the ice to water phase transition and in
the ferromagnetic state to paramagnetic state transition. Above a critical
temperature the kinetic energy becomes significant enough to overrule the
broken symmetry caused by potential terms. Below the critical tempera-
ture, the potential term become important and the symmetry is broken.

When spontaneous symmetry breaking occurs simultaneously at dif-
ferent places, this might result in fields that are not minimal. For example,
if a model has a rotational symmetry that breaks, the field has to pick a
direction at each point in space, but when this happens at various points
in space simultaneously, the field will not be homogeneous, and thus not
minimal. If for example, the field makes a full rotation along a given curve,
it costs a lot of energy to break the ”circle” and therefore the field, although
not of minimal energy, will be stable. We will explain this example in more
detail in section 6.2.2.

In short, during a symmetry breaking phase transition non-trivial con-
figurations may form. Usually these are unstable, as they are not constant
and thus do not correspond to minimal energy. However, in some cases
these non-trivial configurations can survive due to topological obstruc-
tions. Such non-trivial configurations are what we call topological defects.

6.2.2 Examples of topological defects

We will take a look at domain walls, strings and monopoles, following
section 2.4 of [1]. We will see that they are characterised by the topology
of the vacuum manifold, specifically by the zeroth, first, second homotopy
groups.
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Domain walls

Let us take a look at system with a real scalar field and Lagrangian

L =
1
2

∂µ φ∂µ φ − V(φ), (6.31)

V(φ) =
λ

4
(φ2 − η2)2. (6.32)

For φ to be in the ground state we need φ to be constant. Minimising the
potential we conclude that the vacuum manifold is M = {±η}. At high
temperatures, T ≫ η, we need to add corrections to the Lagrangian of the
form T2φ2, in which case the vacuum manifold would simply consist of
the trivial state, MT≫η = {0}. When the temperature drops, we find two
possible ground states.

Two points in space x, y ∈ R3 that are far apart, may fall into another
ground state. Therefore the values φ(x) = −η and φ(y) = η, for |x − y| ≫
1 are independent. To prevent divergence of the ∂i φ terms of the energy,
the field φ needs to be continuous. But this means that there is a point z
such that φ(z) = 0, which is a local maximum of the energy. This transition
from −η to η is a domain wall.

As an example we will explicitly construct a domain wall of a static
planar solution, that is φ only depends on the x coordinate. The Euler-
Lagrange equation, Equation 4.16, yields

□φ − ∂V
∂φ

= 0. (6.33)

For a static planar domain wall this can be simplified to

∂2φ

∂x2 = λφ(φ2 − η2). (6.34)

In section 2.4 of [1], we find that this equation is solved by

φ(x) = η tanh(

√
λ

2
ηx)

= η
e
√

λ
2 ηx − e−

√
λ
2 ηx

e
√

λ
2 ηx + e−

√
λ
2

,
(6.35)

which you can check by direct calculation. Hence we have found the so-
lution of a static and planar domain wall in our model. The field φ decays
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exponentially fast and we can approximate the width of the domain wall
by η−2.

To find more information about the domain wall we construct the stress-
energy tensor,

Tµν =
∂L

∂ηρ,ν
gρ,µ − ηµνL

=
∂L

∂(∂ν φ)
∂µ φ − gµνL

= ∂ν φ∂µ φ − gµνL ,

(6.36)

where g is the metric, which in our case is the Minkowski metric, gµν =
ηµν, not to be confused with the field variables ηρ.

In section A.1 we derive the stress-energy tensor of our model,

Tµν =


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

 λ

2
η4sech(η

√
λ

2
x). (6.37)

We conclude with the total energy of the domain wall. For this we
need to integrate the energy density, T00. The calculations can be found in
subsection A.1.1 and yield

σ =
∫ ∞

−∞
T00dx =

2
√

2
3

√
λη3. (6.38)

T00 approaches 0 exponentially fast, thus for scales |x| > 1
η , we can

approximate the energy in the domain wall as a delta function with height
σ, the total energy of the wall,

Tµν ≈ σδ(x)


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

 . (6.39)

We have seen that a vacuum manifold M = {±η} can result in a structure
that forces the field to take on the value zero at some point in space. This
is an energy maximum which results in a domain wall, a topological de-
fect. More generally, when the vacuum manifold is disconnected we find
a domain wall between different connected components with similar ar-
guments. For a static planar solution we have found the φ and the energy
contained in the wall.
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Strings

In this example we will be using some more homotopy. In [21] you can
find a physicist explanation of homotopy. We also use some of the expla-
nations there to clarify parts of this section.

We examine a similar model as above, only this time we will consider
a complex scalar field and thus the Lagrangian becomes

L =
1
2

∂µ φ∂µ φ − V(φ). (6.40)

This Lagrangian has U(1) symmetry. We find constant ground states for
|φ| = η, and thus M = S1

η
∼= S1. With Sn

R we denote the n-sphere of radius
R.

The total U(1) symmetry is broken, because for α ∈ R φ = eiα φ if and
only if α ∈ 2πZ. At high temperatures T ≫ η symmetry is restored due to
correctional terms of the form T2|φ|2, which gives us symmetrical ground
states, MT≫η = {0}. When the temperature drops, φ randomly chooses
values ηeiα with α ∈ R. At points in space separated by large distances,
the values to which it drops are unrelated.

Let us consider a closed curve in space γ : [0, 1] → R3, γ(0) = γ(1).
We can compose the curve with our field φ, to obtain a curve

Γ = φ ◦ γ : [0, 1] → S1
η. (6.41)

As φ falls in to the vacuum manifold, it may happen that Γ winds around
the circle S1

η a number of times corresponding to a winding number n ̸= 0.
In this case we can write Γ(t) = ηeiα(t), where α(1) = α(0) + 2πn.

Remember that we started with a loop γ in space. If we continuously
shrink γ to a point, the winding number of Γ cannot change, since we are
working with continuous maps and the winding number is discrete and
it only changes stepwise. If we completely shrink the curve, we find a
constant curve, for all t ∈ [0, 1] we have Γ(t) = φ̃. A constant curve has a
winding number n = 0.

Continuously shrinking our curve, corresponds to a homotopy between
the original curve and the constant curve. The change in winding number
means that the two curves are not homotopic. This means that our homo-
topy, the shrinking of the original curve, must be ill-defined at some point
in the interior in space of our original curve. We conclude that there must
be a singularity in the field. A singularity can be explained by a point in
space x ∈ R3 for which φ(x) = 0.

Yet again, we find that a topological structure may cause the field φ
to leave the vacuum manifold and take on the value 0 which is a local
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maximum for the energy. For this defect to deteriorate, it would have to
untwist, which means the whole interior of the loop would have to move
through zero to obtain a zero winding number.

In three dimensional space, shrinking the loop can be done along var-
ious surfaces. Along all these surfaces the argumentation of above holds,
and thus in all these surfaces φ takes on a the value 0 somewhere. These
points will line up to minimise the energy needed, creating a string. We
can move the surface inside our ring around like a soap bubble, and stretch
it infinitely, as long as it stays smooth. This implies that the string cannot
end: either the string is a closed loop, or it is infinite.

We again look for an exact solution. We saw already that the deriva-
tions for the domain wall were quite cumbersome and for the string they
we will even more so. Therefore, we restrict ourselves to a static, infi-
nite and straight string along the z-direction. Still, not all calculations
will allow algebraic solutions. For an infinite straight string along the z-
direction, we have rotational symmetry in the xy-plane, so we use cylin-
drical coordinates ρ =

√
x2 + y2 and tan(θ) = y

x . We look for an ansatz for
φ(ρ, θ). We will decompose φ(ρ, θ), an element of C, into a modulus and
a phase factor. Because of rotational symmetry, the modulus of φ(ρ, θ) can
only be dependent on ρ, similarly the phase of φ(ρ, θ) is directly related to
θ. With this in mind, we choose the following ansatz,

φ(ρ, θ) = η fs(ρη)einθ. (6.42)

Plugging this into the field equation Equation 6.33, we obtain:

f ′′s +
1
v

f ′s −
n2

v2 fs −
λ

2
fs( f 2

s − 1) = 0. (6.43)

For the full derivation, see section A.2. Numerically it is possible to find a
solution to this differential equation with boundary conditions fs(0) = 0
and fs(ρθ) → 1, for ρθ → ∞. The most important properties for us are

fs ∼ 1 −O(
1
v2 ) for

√
λρη ≫ 1, and (6.44)

fs ∼ O(
1
vn ) for

√
λρη ≪ 1. (6.45)

From Equation 6.36 we can determine the stress-energy tensor for the
string. We obtain, with a similar derivation as for the stress-energy tensor
of the static planar domain wall,

T00 = −Tzz (6.46)

= −λη4

2

[
f ′2 − 1

2
( f 2 − 1) +

n2

λη2ρ2 f 2
]

. (6.47)
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And for all other components we have,

Tµν = 0. (6.48)

Now we can find the energy per unit length of a cross section of the
string. Taking a cross section of the string with radius R, yields, as in
Equation 2.46 in [1],

µ(R) = 2π
∫ R

0
T00ρdρ ∼ πη2 ln(

√
ληR). (6.49)

Note that the energy diverges for R → ∞. This is because the term n2

λη2ρ2 f 2

decays only in the order 1
ρ2 . In reality, there is an upper cut-off for this

integral caused by either the curvature of the string or by a neighbouring
string.

Similar to the domain wall, we found a topological obstruction for the
field to stay in the ground state: at some point we have φ = 0. This is
a local maximum of the energy which creates a topological defect. The
specific structure causing the defect, creates a line in space where φ = 0,
this is a string.

Local strings We can also take a look at strings formed by a Lagrangian
that has a gauge symmetry, or in other words a local symmetry. We will
discuss the Abelian Higgs model known as the Nielson-Olesen or Abrikosov
vortex. This model uses the Lagrangian density of scalar electrodynamics,
where we include the gauge field, and the potential remains the same as
above, Equation 6.32,

L = (∂µ + ieAµ)φ∗(∂µ − ieAµ)φ − λ

4
(|φ|2 − η2)2 − 1

4
FµνFµν. (6.50)

Following the same procedure as for the global string it is possible to
choose ansatz’s for φ as well as for Aµ. We will not be performing the
(numerical) derivations, as they are not illuminating for our purposes. In
section 2.4.2.2 of [1] you can find them.

An interesting result is that local strings have a finite energy per unit
length, and thus the problem of the divergence of energy is solved when
considering local strings.

Monopoles

The last type of topological defect that we explore is a monopole. For
this we consider a three-component scalar field φi, i = 1, 2, 3, with a La-
grangian that is symmetric under transformations of the Lie group O(3).
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We have

L =
1
2

∂µ φi∂µ φi − V(φ), (6.51)

where again

V(φ) =
λ

4
(|φ|2 − η2)2, (6.52)

with |φ|2 = ∑3
i=1(φi)

2.
For the vacuum manifold we find M = S2

η a sphere with radius η. Note
that again at high temperature the corrections of the form T2φ2 will give
us a vacuum manifold MT≫η = {0}. When temperature drops the field
falls into the new vacuum manifold, and the values it takes are unrelated
for points far apart.

We will give a similar argument as in section 6.2.2. Suppose that f :
S2 → R3 is a maps a sphere into real space. We define

F = φ ◦ f : S2 → M = S2
η. (6.53)

It is possible that the values φ takes around this sphere have a non-zero
winding number. Where in this case the winding number is the amount of
times the sphere is fully covered, counted with orientation. The winding
number still has to be an integer value. Note that any set of maps φ ◦ f
with the same winding number is equal to a class in the homotopy group
π2(S2),

{F = φ ◦ f |F has winding number n ∈ Z} ∈ π2(S2). (6.54)

We can continuously shrink the image of f to a point p, giving a ho-
motopy between f and the continuous map cp. You can visualise this as
a balloon deflating, f is the map that sends S2 tot he surface of the bal-
loon. In this analogy, F gives the field values at the surface of the balloon.
Shrinking f to a point also yields a homotopy between F and the constant
map cp ◦ φ.

The map φ ◦ cp has winding number zero, therefore, if we started with a
non-zero winding number of map F, there needs to be a singularity in φ to
account for the change in winding number. The homotopy we constructed
cannot exist, and this can only be explained if φ is ill-defined at some point
in space. This singularity is again a point in space x for which φ(x) = 0.
The local maximum in the energy given by φ = 0, is what we call the
monopole.
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6.2 Topological defects 87

Let us take look at an example of a static and spherically symmetric
monopole located at the origin, x= 0. This gives us the boundary condi-
tions φ(0) = 0 and limr→∞ |φ(r)| = η. We start with the ansatz

φi = η fm(r)
xi

r
, (6.55)

which displays the full rotational symmetry, as it is only dependent on the
radius. Further, we want the field to vanish at infinity, hence the factor 1

r
Using Equation 4.16 we find, see Appendix A,

f ′′m +
2
s

f ′m − 2
s2 fm − fm( f 2

m − 1) = 0, (6.56)

where s =
√

ληr. This equation can again be solved numerically and in
the limits we find,

fm ∼ s(
1
v2 ) for s ≪ 1, and (6.57)

| fm − 1| ∼ 1
s2 for s ≫ 1. (6.58)

Using the energy stress tensor and integrating over T00 we can approxi-
mate the total energy in a ball of radius R around the monopole. Following
[1], we obtain the relation

E(R) = 4π
∫ R

0
T00r2dr ∝ R for

√
ληR ≫ 1. (6.59)

The first thing to notice about this result is that it diverges. As in the exam-
ple for the strings an upper cut-off is provided the distance to the nearest
anti-monopole. An anti-monopole is a monopole with negative magnetic
charge [22]. The divergence is also a lot faster than the divergence for
strings. This long range behaviour is at the origin of the long range inter-
actions of global monopoles and strings.

Again, the structure of the vacuum manifold, forces the field φ to take
on the value zero. The energy this requires results in topological defect,
which for this structure is a monopole, as the maximum is only attained in
one point in space.

Local monopoles We will consider an example of a local monopole, specif-
ically we will discuss the ’t Hooft Polyakov monopole. [23, 24]
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88 Topological defects in symmetry breaking phase transitions

We begin with our Lagrangian in Equation 6.51, to which we want to
add the gauge field to ensure local invariance with the SO(3) group. Using
Equation 5.46 we construct the Lagrangian for this system,

L = (Dµ φ)†(Dµ φ)− V(φ)− FµνFµν. (6.60)

Where we have

(Dµ φ)†(Dµ φ) = (∂µ φa + ieεabc Ab
µ φc)(∂µ φa − ieεabc(A⊤)b

µ φc), (6.61)

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ − εabc Ab

µac
ν, (6.62)

and Aa
µ is defined such that

Aµ = Aa
µ Ia (6.63)

where Ia are the standard generators of so(3).
We can again plug-in well chosen ansatz’s for φa and Aa

i , which can
be numerically solved. Using these ansatz’s it can also be shown that the
energy of the local monopole is finite,

E =
∫

Hd3x = −
∫

L d3x ∼ 4π

e
(1 − λ

e2 ). (6.64)

Further results can be found using the the approximation rmV ≫ 1, result-
ing in the magnetic field on the ’t Hooft Polyakov monopole

Ba
i =

1
2

εijkFa
ik ≈

r̂i r̂a

er2 , (6.65)

and the magnetic charge of the monopole

emag =
1

4π

∫
S2

R

R2dΩBa
i Ba

i = e−1. (6.66)

Hence, this monopole represents a charge and the surrounding mag-
netic field, something physicists have been studying for centuries. Being
able to describe electronic charges and magnetic fields as a topological de-
fect illustrates how omnipresent topological defects are. This universality
makes topological defects a powerful framework in particle physic and
high energy physics, especially since it is not limited to classical field the-
ory but also applies to quantum field theory. [25]
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6.2 Topological defects 89

6.2.3 Homotopy groups of topological defects

In the examples above we have seen that there is a clear relation between
the homotopy groups of the vacuum manifold and the formation of topo-
logical defects. For a disconnected vacuum manifold we found domain
walls, for ”one-dimensional holes” we found strings, and for ”two di-
mensional holes” we found monopoles. These three categories are exactly
those of the first three homotopy groups. If the vacuum manifold is dis-
connected, it has a non-trivial homotopy group π0(M), the existence of
”one-dimensional holes”, or loops, correspond to the non-triviality of the
fundamental group of M and ”two dimensional holes”, or spheres, corre-
spond to a non-trivial second homotopy group π2(M).

We conclude the following

If π0(M) ̸={0} domain walls emerge. (6.67)
If π1(M) ̸={0} strings emerge. (6.68)
If π2(M) ̸={0} monopoles emerge. (6.69)

Naturally the question pops up, what happens for the higher homo-
topy groups? A reasonable suggestion, is to increase the dimension of the
vacuum manifold by including a time coordinate. In the four dimensional
space time we might be able to find topological defects, that is field config-
urations on a vacuum manifold M with π3(M) ̸= {0}, with a non-zero
winding number. Topological defects of this form have been studied and
are called instantons [26].

Remarkably, in the three dimensional space we have studied so far,
there is also a configuration we can study, yielding non trivial third homo-
topy groups. If we have a field variable that is asymptotically constant, we
can take a look at R3 ∪{∞} ∼= S3. The field configuration φ : S3 → M may
give us non-trivial structures wrapping around the three-sphere. Such a
structure is known as a texture. It has been shown that textures can only
exists as non static solutions. We will not dive into this, but for those in-
terested we recommend Section 2.4.4 of [1].

There are also theories of spacetime consisting of many more dimen-
sions than the four mentioned here. In these theories even higher orders
of homotopy groups can be studied, and provoke topological defects of
these higher orders. In section 6.3 we will touch upon this subject.
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90 Topological defects in symmetry breaking phase transitions

6.3 Grand unified theory

In 1979 the Nobel Prize in Physics “was awarded jointly to Sheldon Lee
Glashow, Abdus Salam and Steven Weinberg ”for their contributions to
the theory of the unified weak and electromagnetic interaction between el-
ementary particles, including, inter alia, the prediction of the weak neutral
current” [27]. The unification of the electromagnetic and weak interactions
solved problem of the inability to normalise the weak interactions using
gauge-theory [28]. Essentially Glashow, Salam and Weinberg predicted
that at high enough temperatures the electromagnetic interactions and the
weak interactions are the same. This has been experimentally observed
[29], expanding the already significant success of the theory.

As the strong interaction is now known as a Gauge theory of SU(3),
a reasonable question to ask is whether this unification extends to a uni-
fied electronuclear interaction. Various theoretical candidates for these so
called Grand Unified theories have been conjectured, but none have been
observed in experiments.

We will consider the Georgi-Glashow model. [30] This model suggests
the gauge group SU(5) as the initial symmetry group, which breaks down
to the symmetry groups of the electromagnetic interaction, U(1), the weak
interaction, SU(2), and the strong interaction, SU(3). We will take a look
at the symmetry breaking phase transitions and determine the topological
defects that may emerge.

If we take a look at the SU(5) gauge group as a candidate we need
the product group S := U(1) × SU(2) × SU(3), to be isomorphic to a
subgroup of SU(5).

However, we actually need to work with the true gauge group H =
S/Z6 of the standard model. The quotient with Z6 arises from the spin
requirements on the elementary particles that this gauge group generates.
[31]

Let us define a map from S into SU(5),

φ : U(1)× SU(2)× SU(3) → SU(2 × SU(3) ⊆ SU(5)

(α, g, h) 7→
(

α3g
α−2h

)
.

(6.70)
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We check that this is a well-defined map,

det
(

α3g
α−2h

)
= det(α3g) · det(α−2h)

= (α3)2 det g · (α−2)3 det h = det g · det h = 1,
(6.71)

(
α3g

α−2h

)†

=

(
(α3g)†

(α−2h)†

)
=

(
g†(α3)†

h†(α−2)†

)
=

(
g−1α−3

h−1α2

)
=

(
α3g

α−2h

)−1

.

(6.72)

So φ((α, g, h)) ∈ SU(5).
We now look for the kernel of φ.

ker(φ) = {(α, g, h) ∈ S|
(

α3g
α−2h

)
= I5} (6.73)

= {(α, g, h) ∈ S|α3g = I2, α−2h = I3} (6.74)

We want to rewrite α3g = I2 as g = α−3 I2, but we still need g ∈ SU(2),
this means det g = det(α−3 I2) = (α−3)2 = 1, and thus α−6 = 1. Similarly
for h = α2 I3, we find α6 = 1. This yields,

ker(φ) = {(α, α−3 I2, α2 I3)|α ∈ C, α6 = 1} (6.75)
∼= Z6 (6.76)

Using the isomorphism theorem for groups, we find the kernel,

H := (U(1)× SU(2)× SU(3)) /Z6
∼= SU(2 × SU(3) ⊆ SU(5). (6.77)

We will try to explain which topological defects occur when we assume
the symmetry breaking of SU(5) to H. For this we determine which of the
first three homotopy groups of M = SU(5)/H are non-trivial.

First we gather the homotopy groups of U(1), SU(2), SU(3) an SU(5).
They are described in Appendix A, Section 6 paragraph VI of [32]. We
also know that Z6 is a discrete group with 6 points, i.e. 6 path connected
components. We use Theorem 3.1.6 to determine the homotopy groups of
P. These homotopy groups are summarised in Table 6.1.

With these homotopy groups, we can construct the long exact sequence
of Theorem 3.4.6. We start with a long exact sequence based on the pro-
jection map p : S → H = S/Z6. The space Z6 is not path connected,
however, we can still use the sequence in Theorem 3.4.6, except for the last
step, as can be seen in the proof. Luckily, we will not need the last step.
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92 Topological defects in symmetry breaking phase transitions

Z6 U(1) SU(2) SU(3) SU(5)
π0 Z6 0 0 0 0
π1 0 Z 0 0 0
π2 0 0 0 0 0
π3 0 0 Z Z Z

π4 0 0 Z2 0 0
Table 6.1: These are the homotopy groups that we will be using as found in Ap-
pendix A, Section 6 paragraph VI of [32]. The large quantity of zero’s will give
us easier exact sequences.

We will leave out the basepoint for all connected spaces. Let us calcu-
late πn(H), n = 0, 1, 2, 3. For n > 0 we use sequences of the form

πn(Z6, z0) → πn(S) → πn(H) → πn−1(Z6, z0) → πn−1(P), (6.78)

π0(H) We know that S is connected as a product of connected spaces. There-
fore H = S/Z6 is also connected and we have

π0(H) = 0. (6.79)

π1(H) We use the exact sequence and fill in the known homotopy groups,

0 → Z → π1(H) → Z6 → 0. (6.80)

Since ker(Z → π1(H)) = Im(0 → Z) = 0, we find that Z maps
injectively to π1(H). This means that

π1(H) ⊇ Z. (6.81)

Working out the exact homotopy group requires explicit construc-
tion of the maps in the sequence and it turns out that we do not need
this for our conclusions. Therefore, we will make do with this result.

π2(H) Using the exact sequence we find,

0 → π2(H) → 0. (6.82)

With this we conclude,

π2(H) = 0. (6.83)
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6.3 Grand unified theory 93

π3(H) The exact sequence is given by

0 → Z2 → π2(H) → 0. (6.84)

With this we find

π3(H) ∼= Z2. (6.85)

Now that we have found these, we will continue with the homotopy
groups of SU(5)/H, using the same long exact sequence. Note that we are
allowed to do this as we are looking at a fibre bundle of manifolds, and
thus at a fibration. In this case the last step of Theorem 3.4.6 holds because
H is path connected. For n > 0 we will use,

πn(H) → πn(SU(5)) → πn(SU(5)/H) →
→πn−1(H) → πn−1(SU(5)).

(6.86)

π0(SU(5)/H) We know that SU(5) is connected and therefore SU(5)/H is also con-
nected. Hence we find:

π0(SU(5)/H) = 0. (6.87)

A trivial π0(SU(5)/H) means that we will not find domain walls as
a result of this symmetry breaking pattern.

π1(SU(5)/H) With the exact sequence we find,

0 → π1(SU(5)/H) → 0, (6.88)

yielding

π1(SU(5)/H) = 0. (6.89)

Due to a trivial fundamental group of SU(5)/H we can also exclude
the possibility of strings in this model.

π2(SU(5)/H) The exact sequence results in

0 → π2(SU(5)/H) → π1(H) → 0. (6.90)

With this we find

π2(SU(5)/H) ∼= π1(H) ̸= 0. (6.91)

We do not know the exact nature of the homotopy group π2(SU(5)/H),
but knowing that it is non-trivial is enough to conclude that monopoles
can form.
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94 Topological defects in symmetry breaking phase transitions

π3(SU(5)/H) The exact sequence becomes as follows

0 → π4(SU(5)/H) → Z2 → Z → π3(SU(5)/H) → 0. (6.92)

Since Z → π3(SU(5)/H) has to be surjective, we can conclude that
π3(SU(5)) ⊆ Z. But this does not tell us anything about being trivial
or not. We have to take a look at the explicit maps to find out if
structures can form. Specifically we need to determine the image of
the map Z2 → Z.

We will not construct the explicit maps between π3(H) → π3(SU(5)).
Sadly, this means that we cannot complete our characterisation. We
do not know if textures may form in the symmetry breaking pattern
of the grand unified theory from SU(5) to H.

Using the Georgi-Glashow model, we have seen how grand unified
theories try to combine the symmetries of the electromagnetic- and the nu-
clear interactions. Having found the homotopy groups, we conclude that
neither domain walls nor strings can form in the grand unified theory with
symmetry breaking pattern SU(5) → U(1)× SU(2)× SU(3). Monopoles
can form and on the formation of textures we remain inconclusive.

The absence of strings causes physicists researching cosmic string pro-
duction in grand unified theories, to appeal to other gauge groups. An-
other often discussed model uses the SO(10) group, but many more initial
symmetry groups can be put forward [19].

Apart from the electromagnetic and nuclear interactions, there is an-
other fundamental force of nature: gravity. Gravity does not fit in the
models of the grand unified theory [28]. A model that entails the electro-
magnetic and nuclear interactions as well as gravity is yet another quest of
many theoretical physicists. A model comprehending both gravity and a
grand unified theory is humbly called a theory of everything and remains
to be found [33] .
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Chapter 7
Conclusion

In this thesis we have explored topological defects with a mathematical
perspective. We have learned a lot about Lie groups, Lie algebras, homo-
topy theory, gauge theory and symmetry breaking. In the final chapter we
were able to give an explanation of topological defects and three insightful
examples to substantiate the explanation.

One of the main challenges of this thesis was to find a topic that con-
tained enough interesting mathematics, preferably in the direction of dif-
ferential geometry and algebraic topology, while also bearing physical rel-
evance. The subject of topological defect fitted these requirements accu-
rately.

Despite the amount of theory already discussed in this thesis, there are
still a number of topics that I would like to learn more about. The most
substantial of all being the mathematical frame work underlying the co-
variant derivate used in non-abelian gauge theory. The theory needed to
describe this is covered in graduate courses such as differentiable mani-
folds.

Another open question is the third homotopy group of SU(5)/H, and
thereby the appearance of textures during this hypothesised symmetry
breaking phase transition.

Furthermore, compact and simple Lie groups could have been studied
in more depth. We have had to accept a lot of theorems, to use in Yang-
Mills theory, while not understanding their proofs. This is also theory that
can be acquired in a graduate course in Lie groups.

There are also questions, that not only remain unanswered in this the-
sis, but that to this date have not been solved. For example, the question if
there exists a grand unified theory that accurately describes the unification
of the electromagnetic and nuclear forces.
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Chapter 8
Last words and acknowledgements

I really liked working on this thesis. It consisted of both the mathematics
that I am interested in, while also giving a real life application of the ab-
stract subjects. The topics I learned about will hopefully be recurring in
my masters of mathematics. Even though I have decided to do a masters
in mathematics, this thesis showed me that I do actually really like physics
as well. As a result I might try to implement a bit of theoretical physics in
my masters.

Looking back, I very much underestimated the fraction of work I would
spend on the theoretical background. In final product this is also seen, as
the ground work takes up most of the thesis. One consequence of the
extensive background I researched is that the thesis developed into a sub-
stantial work that was a lot longer then anticipated. Still I have decided
not to exclude parts or sections, since the theory discussed is all employed.
I found that I prefer to give a more comprehensive explanation that my
fellow-students can understand than to skip over details for conciseness.

A turning point of the thesis came after I finished most of the theo-
retical background when both Yang-Mills theory and topological defects
presented themselves as feasible objectives. I chose for topological defects
as I had become intrigued by the importance of topological structures in
physics. Further, I assumed that I may still come across the theoretical
framework of Yang-Mills theory during courses in my master of mathe-
matics, for example in the master maths course Differentiable manifolds.

I would like to express thanks to my supervisors Federica Paqsquotto
and Subodh Patil for their help during this thesis. Federica has helped
me with my many questions, lots of feedback and an always open door,
thank you for all your advise and for reassuring me when I was stressed
out. Subodh provided me with the subject and physical background of
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this thesis which shaped this thesis to a project of my liking, thank you for
your calm guiding during this project. Finally, I want to thank my friends
and family for the (lunch) breaks that took care of my sanity for the past
few months.
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Appendix A
Calculations on topological defects

This appendix contains some of the computations of subsection 6.2.2.

A.1 Stress-energy tensor of the domain wall ex-
ample

We calculate the stress-energy tensor of a static planar domain wall.
The first observation to make is that for this model ∂x φ is the only par-

tial derivative that is unequal to zero, this will cancel out a lot of terms.
Further more ηµν is either 0 if µ ̸= ν, 1 is µ = ν = 0 and −1 otherwise.
Further more we need to remember that ∂i φ∂i φ comes with a minus sign
in the Minkowski metric. Let us first take a look at T00.

T00 = −∂t φ∂t φ − 1 ·
(
−1

2
∂µ φ∂µ φ − V(φ)

)
(A.1)

= 0 +
1
2

∂x φ∂x φ +
λ

4
(φ2 − η2)2 (A.2)

Now filling in φ = η tanh(
√

λ
2 ηx) we find,

T00 =
1
2

(
∂xη tanh(

√
λ

2
ηx)

)2

+
λ

4

[η tanh(

√
λ

2
ηx)

]2

− η2

2

(A.3)

=
1
2

η2

(
∂x tanh(

√
λ

2
ηx)

)2

+
λ

4
η4

(
tanh2(

√
λ

2
ηx)− 1

)2

. (A.4)
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100 Calculations on topological defects

Now we use the identity tanh2(x)− 1 = sech2(x), and take the derivative
of the hyperbolic tangent, ∂x tanh(ax) = a sech2(ax). The function sech is
the hyperbolic secant.

This gives us

T00 =
1
2

η2

(√
λ

2
η sech2(

√
λ

2
ηx)

)2

+
λ

4
η4

(
sech2(

√
λ

2
ηx)

)2

(A.5)

=
λ

2
η4 sech4(

√
λ

2
ηx). (A.6)

For Tyy Tzz we see that we get a nearly equivalent derivation, only the
ηµν value changes from 1 to −1, and thus we find,

Tyy = Tzz = −T00 (A.7)

For Txx we find, that −ηµνL gives us the same value as for Tyy. Only

for Txx the first term ∂µ φ∂ν φ is nonzero. We find ∂x φ∂x φ = λ
2 η4sech4(

√
λ
2 ηx)

simlier to the first term in Equation A.5. This give us

Txx = ∂x φ∂x φ −L (φ)

=
λ

2
η4sech4(

√
λ

2
ηx)− λ

2
η4sech4(

√
λ

2
ηx) = 0.

(A.8)

Finally for all non-diagonal terms, µ ̸= ν we note that ηµν = 0, and
because only ∂x φ ̸= 0 we also see ∂µ φ∂ν φ = 0 for µ ̸= ν. Hence, for µ ̸= ν
we find Tµν = 0 and therefore

Tµν =


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

 λ

2
η4sech(η

√
λ

2
x). (A.9)

A.1.1 The total energy in the domain wall

To calculate the total energy in the domain wall, first note that

d
dx

tanh(ax) =a sech2(ax), (A.10)

d
dx

tanh2(ax) =2 tanh(ax) · a sech2(ax), (A.11)

d
dx

tanh(ax)(tanh2(ax)− 3) =− 3a sech4(ax). (A.12)
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A.2 Ordinary differential equation in terms of fs 101

For the last line we use that 1 − tanh2(ax) = sech2(ax). We thus find the
intergral ∫ ∞

−∞
sech4(ax)dx =

− tanh(ax)(tanh2(ax)− 3)
3a

. (A.13)

The integral of T00 can now be calculated,

σ =
∫ ∞

−∞
T00dx =

λ

2
η4
∫ ∞

−∞
sech4(

√
λ

2
ηx)dx (A.14)

=
λ
2 η4

−3
√

λ
2 η

[
tanh(

√
λ

2
ηx)(tanh2(

√
λ

2
ηx)− 3)

]∞

−∞

(A.15)

= −
√

λ

2
η3 1

3
[−4] =

2
√

2
3

√
λη3, (A.16)

is the total energy of the domain wall.

A.2 Ordinary differential equation in terms of fs

We rewrite the Euler-Lagrange equation of a static infinite straight string
along the z-direction, with the ansatz given in Equation 6.42. We use

∑
µ=x,y

∂µρ∂µθ = 0, (A.17)

∑
µ=x,y

∂µ∂µθ = 0, (A.18)

∑
µ=x,y

∂µ∂µρ =
1
ρ

, (A.19)

∑
µ=x,y

∂µθ∂µθ =
1
ρ2 , (A.20)

∑
µ=x,y

∂µρ∂µρ = 1. (A.21)

Then we write

□φ = □
(

η fs(ρη)einθ
)

(A.22)

= η ∑
µ=x,y

∂µ∂µ
(

fs(ρη)einθ
)

. (A.23)
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102 Calculations on topological defects

Using the product rule we find

□φ = einθ{ f ′′s (ρη) · [(∂µρη)2]+

f ′s(ρη) · [∂µ∂µ(ρη) + 2∂µ(ρη)∂µ(inθ)]+

fs(ρη) · [−n2(∂µθ)2 + ∂µ∂µ(inθ)] }
(A.24)

With the above mentioned identities we can simplify this to

□φ = einθ{ f ′′s (ρη) · [η2]+

f ′s(ρη) · [η
ρ
+ 0]+

fs(ρη) · [−n2

ρ2 + 0}.

(A.25)

For the second part of Equation 6.33 we have,

∂V
∂φ

=
∂

∂φ
(

λ

4
(|φ|2 − η2)2 (A.26)

=
λ

2
φ(|φ|2 − η2). (A.27)

Now we fill in our ansatz of φ. We use that the norm of the exponential
term is equal to 1 and we gather the η terms in front:

∂V
∂φ

=
λ

2
η3einθ fs( f 2

s − 1). (A.28)

We also gather the η terms in Equation A.25 and plug these in into
Equation 6.33,

η3einθ

(
f ′′s +

1
v

f ′s −
n2

v2 fs −
λ

2
fs( f 2

s − 1)
)
= 0. (A.29)

Finally we note that η3einθ ̸= 0 and we find the wanted expression.
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