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Abstract

Official statistics are increasingly being produced by integrating different data sources, which speeds up

production while reducing costs and alleviating the response burden on participants. A commonly used

approach is to integrate survey and administrative data by mass imputing a missing target variable in

administrative data based on a model trained on survey data.

Accuracy estimation of statistical output based on imputed data, however, remains an open problem,

and several approaches have been proposed. The design-based variance estimator by Scholtus and Daal-

mans (2021) is limited to estimating imputation-specific error in categorical target variables and cannot

estimate bias. The global mean squared error (GMSE) estimator (Alleva et al., 2021; Deliu et al., 2025)

can address these issues but may potentially undermine the extent of sampling error and be vulnerable

to model misspecification.

Both approaches require the derivation of formulae specific to parametric imputation models, which

can get computationally expensive. In this thesis, a new method is proposed upon adapting the misclassi-

fication error framework by van Delden et al. (2016) to evaluate the bias and variance of statistical output

based on an imputed categorical variable. This method will be termed the prediction error modelling

approach (PEM) and can provide fast estimates without access to a parametric model form.

This thesis aims to evaluate the robustness of the three approaches in estimating the bias and/or

variance of statistical output based on a mass-imputed categorical target variable.

A simulation study demonstrated that, under varying amounts of bias and variance, all estimators

remained robust in estimating the variance of population totals. Furthermore, the estimators remained

relatively robust even when their assumptions were violated. Meanwhile, PEM was the only approach

capable of estimating bias, albeit to a limited extent. The main results of the simulation study were

replicated in a case study based on the Dutch Educational Attainment file. However, a tendency was

observed for the design-based variance estimator to provide more conservative estimates. In addition,

PEM provided unreliable estimates in extremely small domains.

The study demonstrated that GMSE is a robust alternative to the design-based variance estima-

tor. On the other hand, it was shown that the accuracy of imputed estimates can be quantified using

the relatively simple PEM approach. Future research is encouraged to explore robustness under more

complex sampling designs and the estimation of non-sampling errors beyond imputation-specific errors.

Additionally, estimating bias remains an important challenge.
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Chapter 1

Introduction

National Statistical Institutes (NSIs) strive to produce high-quality official statistics that provide reliable

insights into the development and well-being of populations. The European Statistical Code of Practice

(CoP) defines quality in terms of five principles: relevance, accuracy and reliability, timeliness and punc-

tuality, coherence and comparability, accessibility and clarity (Eurostat, 2018). This thesis focuses on

evaluating the accuracy of statistical output.

Quantifying the accuracy of statistical output has become more complicated due to the increasing use

of multiple data sources in the production of official statistics (Ascari et al., 2020). Traditionally, popu-

lation means and totals, alongside their variances, have been estimated based on purposefully designed

probability surveys. Over time, official statistics has moved beyond using survey data to integrating

available data when estimating population parameters (Tillé et al., 2022). For example, several coun-

tries have abandoned dedicated census questionnaires, combining pre-existing surveys and administrative

records to describe the population instead (Daalmans, 2017; S. Falorsi, 2017; Lundy, 2022). Combining

available data sources enables a quicker production of statistics while reducing production costs and the

response burden. However, estimating population parameters based on multiple data sources introduces

additional errors in the estimates that traditional survey methods do not account for.

Mass imputation is a commonly used technique to estimate population totals based on integrated

sample and administrative data (De Waal et al., 2011). It involves imputing the target variable in the

population based on a model trained on sample data, resulting in a complete microdata file where the

totals can be estimated by simply counting the units. This technique is used by Statistics Netherlands

for the estimation of specific business statistics and, more recently, in the estimation of educational

attainment as part of the Dutch Virtual Population and Housing census (e.g., Daalmans, 2017; De Waal

and Daalmans, 2018). Mass imputation is also a key technique used in the Italian Permanent Census,

which can now be produced annually based on a system of integrated survey and administrative data,

replacing the previously decennial census survey (S. Falorsi, 2017).

Estimation of accuracy, or the bias and variance of imputed totals, hereby termed the mass-imputed

estimator, however, is a complex task due to the need to account for various sources of error that occur

during the process. Traditional methods in sampling theory only account for the error due to random

sampling of the units. In contrast, the mass-imputed estimator contains additional errors resulting from

the estimation of model parameters and the imputation process.

While standard methods, such as multiple imputation and bootstrapping, can be adapted for the

estimation of accuracy in this case, alternatives are sought to address the shortcomings of these methods,

including the creation of multiply imputed microdata files and the computational burden associated with

resampling (Scholtus & Daalmans, 2021). A faster but more methodologically complicated approach
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is to derive a formula for the mean squared error (MSE) of the mass-imputed estimator. Two kinds

of formulae have been discussed in the literature that estimate either the variance or the MSE of the

mass-imputed estimator (Alleva et al., 2021; Deliu et al., 2025; Scholtus & Daalmans, 2021). Due to

differences in the assumptions made in the deriving the formulae, each approach has its unique advantages

and disadvantages. Furthermore, the different approaches have not been compared, which makes it

unclear which methodological choices are best to adopt in practice and for further research regarding the

evaluation of the accuracy of the mass-imputed estimator.

Scholtus and Daalmans (2021) derived a formula to estimate the variance of the mass-imputed estima-

tor based on a categorical target variable. This approach, hereby termed Vdesign, is effective if detailed

information on the sampling design is available and all domain variables, or the subgroups where the

totals are estimated, and their interactions, are included in the imputation model. However, these con-

ditions can be challenging to fulfill in practice when sampling designs become complicated, imputation

models become large, and estimation proceeds across highly granular domain variables, such as all cities

in the Netherlands. When these conditions are not fulfilled, both the mass-imputed estimator and the

estimated variance can become biased. The second formula, first discussed in Alleva et al. (2021) and

further developed in Deliu et al. (2025), can address these issues. Their approach termed the global or

generalised mean squared error (GMSE), approximates the total effect of the bias and variance of the

mass-imputed estimator and can adapt to both numerical and categorical target variables. Furthermore,

GMSE represents a methodological approach that can be extended to account for errors beyond the

immediate imputation process, such as coverage and non-response errors affecting administrative records

and surveys. This is a significant advancement given that the methods have so far been developed under

the assumption that these errors are negligible.

However, simplifications are made during the derivation of GMSE that might not always hold well

in practice. Namely, it is assumed that the sampling design can be ignored when modelling the target

variable and that the imputation model is correctly specified with respect to the target variable. These

assumptions can be met with many commonly used sampling designs upon careful modelling. On the other

hand, GMSE might not adequately account for other commonly used sampling designs that oversample

certain groups of individuals. Furthermore, misspecification of the imputation model can occur easily

since, in practice, one never has access to all possible variables that influence the distribution of the target

variable. The variance formula by Scholtus and Daalmans (2021), on the other hand, accounts for all

kinds of sampling designs without assuming a correctly specified imputation model, thereby presenting

a good standard upon which to compare GMSE in the case where the bias is negligible.

A third approach to estimating the bias and variance of the mass-imputed estimator is proposed in

this thesis. Namely, the methodology developed by van Delden et al. (2016) to evaluate the effect of

misclassification error on the bias and variance of population totals can be adapted to evaluate the effect

of imputation error. This method has never been evaluated in this context before but promises to be a

fast and simple alternative to the other formulae that require complex unit-level matrix computations.

This approach, hereby termed the prediction error modelling approach (PEM), consists of estimating

the probabilities of correctly imputing the target variable in the population based on sample data. This

corresponds to a simple estimation of the proportion of true positives and negatives, which, unlike the

other two formulae, does not require access to the form of a parametric imputation model. The estimated

probabilities are dependent on the other sources of error and can be estimated while taking the sampling

design into account. In turn, this approach takes into account the same errors as GMSE and the

design-based approach.

This thesis aims to compare the robustness of the three approaches in evaluating the variance and, if

appropriate, the bias of the mass-imputed estimator based on a categorical target variable. Robustness
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hereby refers to the ability to correctly estimate the bias and/or variance of the mass-imputed estimator

under varying levels of either. The results of this study will contribute to the growing literature on

evaluating the accuracy of statistical output derived from integrated data.

Robustness will be evaluated in a simulation study using synthetic data. Specifically, the performance

of the different approaches is compared across various experimental conditions that induce changes in

bias and/or variance in the mass-imputed estimator due to different reasons that are likely to occur in

practice, but may violate the assumptions of an accuracy estimator to some extent. Furthermore, it will

be investigated if the results of the simulation study generalise to practice. For this, a case study will

be conducted using sample data from the Labour Force Survey (LFS) and administrative data from the

Dutch Educational Attainment file (EAF).

The remainder of the thesis is structured as follows. Chapter 2 provides the background regarding

the errors affecting the mass-imputed estimator and the existing approaches to quantify them. Chapter

3 outlines the novel PEM method. Sections 4 and 5 describe the methods and results of the simulation

and the case study respectively. Section 6 concludes with a discussion.
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Chapter 2

Background

The accuracy of estimates in official statistics is expressed as a function of sampling and non-sampling

error they contain (Eurostat, 2020). Non-sampling error refers to any error that arises from sources other

than the random variation introduced by selecting a sample according to a defined sampling design.

Estimates based on multiple data sources involve a complex production chain, which introduces error

from the individual data sources and integration strategies in the final statistic (Rocci et al., 2022;

Zhang, 2012). This section begins with an explanation of the errors that need to be quantified during

the evaluation of the accuracy of the mass-imputed estimator. It then proposes a suitable measure of

accuracy and discusses existing methods for approximating it.

2.1 Qualitative assessment of error in the mass-imputed esti-
mator

Error frameworks are commonly used tools that facilitate the quantitative evaluation of error by iden-

tifying all possible sources of error. A suitable framework for the mass-imputed estimator is the Total

Process Error Framework (TPE) described in Rocci et al. (2022), which builds on the seminal two-phase

framework by Zhang (2012). Table 1 outlines the adaptation of the TPE for the case of the mass-imputed

estimator.
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Table 1: Qualitative assessment of error in the mass-imputed estimator according to the Total Process
Error approach (Rocci et al., 2022)

Step Phase 1
Phase 2

Phase 2a Phase 2b

1 General quality assessment of
the sample and the adminis-
trative data source. Detection
and/or evaluation and/or cor-
rection of source-specific er-
ror.

2 Quality assessment of the
sample and the administra-
tive data source with respect
to target statistical product.
Comparison of suitable data
integration techniques. De-
termining integration-specific
error.

3 Quality assessment of the in-
tegrated data file. Evaluation
of cumulative error in the im-
puted data file.

The TPE evaluates error in statistical output based on integrated sources in a step-wise manner across

the different phases of integration. The purpose of the first phase in TPE is to evaluate the quality of the

data as it is affected by source-specific error. This phase enables to answer the question: “How well does

each source measure what they are supposed to measure?”. In the case of the mass-imputed estimator,

errors that need to be considered in this phase are specific to survey and administrative data. Common

non-sampling errors associated with these sources are coverage error, measurement error and processing

error (Zhang, 2012). Non-response error is also a growing issue affecting surveys (Beaumont, 2020).

The methods evaluated in this thesis simplify the error structure of the mass-imputed estimator

by ignoring the source-specific non-sampling errors. Instead, they focus on the errors arising from the

imputation procedure in phase 2. However, it is essential to note that, in practice, these errors cannot

be easily neglected, as demonstrated by the fact that even small coverage errors can have a significant

impact on population estimates (Meng, 2018). GMSE can incorporate these errors, but has not been

fully formalised in this regard.

The purpose of the second phase is to evaluate the error arising from the data integration process.

It consists of two phases. Phase 2a identifies the error that needs to be evaluated based on a chosen

integration strategy, while Phase 2b determines the cumulative error resulting from all the previous

steps.

Phase 2a deserves further attention since it is essential to acknowledge that alternative strategies for

integrating sample and administrative data without relying on mass imputation exist. These methods

enable avoiding imputation-specific errors, and methods for assessing their accuracy have been developed.

However, these alternative strategies have limitations in practice (De Waal et al., 2011, pp. 244–263; De

Waal, 2016). They involve reweighting survey units based on administrative data, which can lead to

unstable estimates in small domains, difficulties in combining survey weights with those in administrative
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data (for an example using weighted administrative data, see Linder et al., 2011), and ensuring numerical

consistency of cross-tabulations across several domains. Numerical consistency means that cross-classified

totals remain the same across different tabulations—for example, totals by gender and employment status

(e.g., employed/unemployed) are consistent whether estimated in a 2×2 or a more detailed, 5x2x2 table

(e.g., region x gender x employment status). Mass imputation yields numerically consistent estimates

by default, provided that the imputation model includes the relevant domain variables. On the other

hand, if alternative methods are viable, they can be more efficient. More importantly, they are better for

avoiding biased estimates in domains that were not included in the imputation model (Kooiman, 1998).

The non-sampling errors to be evaluated upon choosing mass imputation as an integration strategy

stem from the estimation of the imputation model and imputing units in the administrative data (Scholtus

& Daalmans, 2021). Estimation of the imputation model introduces model parameter error, which

describes the variability in the model parameters estimated from sample data. For generalized linear

models such as the multinomial regression model, this variability can be approximated by the negative

inverse of the information matrix (e.g., Agresti, 2013). Model parameter error introduces variability in

the predicted probabilities, which are a non-linear function of the model parameters (see Section 2.2 for

details).

The predicted probabilities can immediately be used as imputed values, resulting in non-integer totals

(e.g., Kim and Rao, 2012). This approach has the benefit of not introducing further errors in the mass-

imputed estimator. In contrast, imputation can proceed in a stochastic manner, whereby the imputed

value is drawn randomly based on the predicted probabilities. This approach was adopted during the

Dutch census mentioned earlier and will be chosen for imputation in the current study. This error will be

termed an imputation error. The benefit of stochastic imputation is that the imputed values will follow

the modelled distribution of the target variable instead of falling directly on the decision boundary.

Alternatively, non-parametric approaches such as random hot-deck imputation can be used, but these

can become computationally expensive for frequent use at NSIs (Scholtus & Pannekoek, 2015).

2.2 Quantitative assessment of error in the mass-imputed esti-
mator

Before formulating the quantitative assessment of accuracy of the mass-imputed estimator as a function

of sampling and imputation-specific non-sampling errors, the notation specific to the setup of the mass-

imputed estimator in the current thesis will be introduced.

2.2.1 Setup and notation

We consider a finite population U = {1, . . . , N} represented by the administrative dataset R with no

coverage error, so that each unit k ∈ U is recorded in R. A probability sample s ⊆ U has been obtained

by means of a known sampling design P . s has not been affected by selective non-response and can be

described by the vector of first-order inclusion probabilities πk = {π1, . . . , πN} and second-order inclusion

probabilities πk,l = {k, l = 1, . . . , N}, altogether defining the set of all possible samples S = {s1, . . . , s|S|}.
The inclusion probabilities determine the vector λ = {λ1, . . . , λN} characterising sample membership,

such that λk = 1 if k ∈ s, and λk = 0 otherwise.

For each k ∈ s, the values of a categorical target variable y = {yc,1, . . . , yc,k} are observed, where

yc,k ∈ {1, . . . , C} with each of the C classes being mutually exclusive. In addition, we observed for each

k ∈ s a set of covariates xk = {xk1, . . . , xkJ}. It is assumed that xk is also available for each k ∈ R, and
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that x contains no measurement error. Similarly to sample membership, each unit belongs to a domain

d with d ∈ {1, . . . , D}, so that the domain membership is represented by γd,k = 1 if unit k belongs to

domain d, and γd,k = 0 otherwise.

Two cases are considered regarding the target variable—namely, the multinomial and the binomial

case. The binomial case is a special case of the multinomial distribution, with C = 2 and yc,k ∈ {0, 1}.
We are interested in estimating the total number of units of each category of y in domain d within the

population U . Note that d may or may not be included among the covariates in xk.

The finite population parameter of interest is defined as

YUd,c =
∑
k∈U

γd,k yc,k. (2.1)

We want to estimate YUd,c
from R. Since y is not observed in R, we want to impute it. Therefore, we

have to estimate an imputation model for y. Since y is a categorical variable, the model can be defined

as:

yc,k = ỹc,k + ec,k,

ỹc,k = f(xk;ϑ),

f(xk;ϑm) =


1

1 +
∑C−1

j=1 exp(xT
k βj)

for c = C,

exp(xT
k βc)

1 +
∑C−1

j=1 exp(xT
k βj)

for c = 1, . . . , C − 1,

reducing to f(xk;ϑb) =
1

1 + exp(−xT
k β)

if C = 2.

(2.2)

In both cases, the error term ec,k is defined as:

ec,k =

1− ỹc,k with probability ỹc,k

−ỹc,k with probability 1− ỹc,k

so that yc,k ∈ {0, 1} with P (yc,k = 1 | ỹc,k) = ỹc,k.

The function f(xk;ϑm) describes a multinomial logistic regression with parameters ϑm = (βT
1 , . . . ,β

T
C−1)

T .

In the binomial case, f(xk;ϑb) describes a logistic regression with parameters ϑb = (β1, . . . , βJ)
T . Note

that in both cases, σ2
y,c,k = V (ec,k) = ỹc,k(1− ỹc,k), and Cov(ec,k, ec,r) = 0 for k ̸= r.

Sample data is used to estimate the model parameters ϑ. Let the vectors ϑ̂m = (β̂T
1 , . . . , β̂

T
C−1)

T

and ϑ̂b = (β̂1, . . . , β̂J)
T denote the estimated model parameters in the multinomial and binomial case,

respectively. For each person k ∈ R, the imputation model is used to draw a vector (ŷ1k, . . . , ŷCk) with

predicted probabilities (p̂1k, . . . , p̂Ck) such that exactly one of the values ŷc,k is 1 and the others are 0.

The imputed values can therefore be defined as:
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ŷc,k = p̂c,k + êc,k,

p̂c,k = f(xk; ϑ̂),

f(xk; ϑ̂m) =


1

1 +
∑C−1

j=1 exp(xT
k β̂j)

for c = C,

exp(xT
k β̂c)

1 +
∑C−1

j=1 exp(xT
k β̂j)

for c = 1, . . . , C − 1,

reducing to f(xk; ϑ̂b) =
1

1 + exp(−xT
k β̂)

if C = 2,

êc,k =

1− p̂c,k with probability p̂c,k,

−p̂c,k with probability 1− p̂c,k.

(2.3)

The resulting estimator for YUd,c
is:

ŶUd,c
=
∑
k∈R

γd,kŷc,k (2.4)

Note that in the following subsections, the domain and class subscripts d and c are sometimes omitted

to simplify notation.

2.2.2 MSE
(
ŶU

)
Estimators in survey methodology are often evaluated in terms of their variance since inclusion proba-

bilities enable the construction of unbiased estimates. However, estimators that involve modelling are

typically biased (Lohr, 2021, Chapter 4). Hence, an ideal measure of accuracy for the mass-imputed

estimator incorporates both bias and variance. The MSE of the mass-imputed estimator is formulated as

MSE
(
ŶU

)
= E

[
(ŶU − YU

)2
]

=
{
E
[
ŶU − YU

]}2

+Var
(
ŶU − YU

)
=
{
Bias

(
ŶU

)}2

+Var
(
ŶU − YU

)
. (2.5)

The bias and variance of an estimator describe the systematic deviation of the estimate from its

true value and variability around its expected value, respectively. The bias and variance are evaluated

in expectation based on the assumed distribution that generated the target variable. The assumptions

regarding the distribution of the target variable define the frame of inference, which affects how the

different sources of error in the mass-imputed estimator are quantified. In survey methodology, two types

of inference are commonly used—design-based and model-based inference (see Lohr, 2021 and Beaumont

and Haziza, 2022 for a recent comprehensive review). The design-based inference treats y as fixed, whereas

model-based inference treats it as random. The three approaches under comparison in this thesis differ

in their frames of inference. Vdesign reflects a design-based approach, while GMSE reflects a combination
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of design- and model-based approach. The new PEM approach will be formulated under design-based

assumptions.

Each frame of inference has its advantages and disadvantages when it comes to describing the accuracy

of statistical output. Specifically, the frame of inference can have a significant impact on the reliability

and accuracy of the output. The following subsections will provide further explanation and comparison

of the concepts. While design-based inference is the standard in the majority of official statistics, the

discussion begins with model-based inference since this aligns with the traditional frequentist framework.

Subsections 2.2.2.1 and 2.2.2.2 are primarily based on various chapters in Lohr (2021) and Beaumont and

Haziza (2022). Seminal work on the model-based approach can be found in Valliant et al. (2000).

2.2.2.1 Model-based inference

To estimate a population value, one needs to infer the unobserved values of y in the population from s.

Under the model-based approach, it is assumed that y in the finite population is randomly generated by

superpopulation M , so that y ∼ M . In the current setup, M = f(xk;ϑ) and VM (y) = σ2. The sampled

y are used to estimate ϑ to predict the unobserved y in the population.

The MSE of the mass-imputed estimator under model-based inference is defined as:

EM

[
(ŶU − YU )

2 | S = s
]
=
{
EM

[
ŶU − YU | S = s

]}2

+VM

(
ŶU − YU | S = s

)
(2.6)

Note that subscript M implicitly refers to conditioning on the obtained sample, which will be left out

from the notation of the following formulae.

In model-based inference, S is treated as fixed, while y varies according to VM (y) = σ2. If one assumes

that M can be perfectly described by a multinomial logistic regression model with parameter estimates

ϑ̂m =
(
β̂⊤
1 , . . . , β̂

⊤
C−1

)⊤
, then the bias is zero, and the VM

(
ŶUd

− YUd

)
corresponds to the combination

of model parameter error, imputation error, and model error. Model error refers to the variability of the

finite population total VM (YUd
), model parameter error refers to VM (ϑ̂) and imputation error reflects the

random drawing of integer values according to VM (e).

Overall, the model-based approach aligns well with the mass-imputation framework. However, it

relies on a strong assumption that the superpopulation is correctly estimated from the sample data.

While this assumption can be reasonable with careful modelling, it can become problematic during

periods of societal or structural change (Hansen et al., 1983). In such contexts, infrequently conducted

surveys may fail to capture current population characteristics, leading to misspecified models and, in

turn, unreliable estimates. Nevertheless, model-based approaches are key to inference in some areas

of official statistics—such as small area estimation (e.g., Rao & Molina, 2015) and when working with

non-probability data (e.g., Rao, 2021)—where traditional design-based methods become unreliable or

infeasible.

2.2.2.2 Design-based inference

Design-based inference, formally defined as randomization theory, treats y as fixed and S as random.

The unobserved values can be inferred based on πk and πk,l, which gives information on the values that

could have been observed had we obtained a different sample. Instead of y ∼ M , we have y ∼ P .

The MSE of the mass-imputed estimator under design-based inference is defined as

EP

[
ŶU − YU

]2
=
{
EP

[
ŶU − YU | y = yk

]}2
+ VP

(
ŶU − YU | y = yk

)
. (2.7)
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where subscript P refers to conditioning on the fixed y in the finite population.

According to the design-based approach, the imputation model is a working model leveraging the

relationships between y and xk without assuming that these are true on a superpopulation level. Put

differently, the imputation model is only a tool for predicting the missing values in the finite population,

not for simultaneous inference regarding y in the superpopulation. ϑ̂ describes the relationships between

y and xk according to P and can be estimated based on the pseudo-maximum likelihood approach

(Chambers & Skinner, 2003, pp. 22–26).

Bias according to the design-based approach occurs when the inclusion probabilities are not taken

into account when estimating the model parameters and estimation proceeds in domains not included

in the imputation model, hereby termed as external domains. Kim and Rao (2012) define the relative

design-bias of the mass-imputed estimator as

RB(ŶUd
) =

cov(γd,k, rk)

ŶUd

, (2.8)

where rk = yk−f(xk; ϑ̂) is the residual. Design-bias occurs for external domains due to residual correlation

with the domain variable. Typically, small bias can be ignored in practice, which presents when the

domain variable and the target variable are unrelated (Kim & Rao, 2012). Note that if the latter is

not the case, the mass-imputed estimator can be significantly biased from both the model-based and the

design-based perspective.

Since variance under the design-based approach is evaluated with respect to P , a misspecified impu-

tation model will not affect validity of the variance estimate. This is because it is not assumed that the

distribution of y given the imputation model corresponds to the actual distribution of y. Finally, under

negligible design-bias, VP

(
ŶU −YU ) consists of sampling error VP (YU ), model parameter error VP (ϑ̂) and

imputation error VP (e).

The design-based approach has the advantage that, even under model misspecification, confidence in-

tervals remain valid—ensuring that the true finite population value falls within the interval at the nominal

confidence level (Lohr, 2021, p. 438). In turn, assuming that there is no selective non-response affecting

the sample, inference is reliable even if the model is wrong. However, if the model is correct, design-

based variance estimates can be more conservative in comparison to model-based estimates (Beaumont

& Haziza, 2022).

2.2.2.3 Design- and model-based inference

Based on the preceding discussion, it can be hypothesised that perhaps the most robust estimates of

population values may be obtained by accounting for both the sampling and the model distribution of the

target variable. This idea underlies the concept of anticipated variance, which refers to the variance of an

estimator with respect to the joint distribution of M and P (Isaki & Fuller, 1982). Anticipated variance

was introduced to facilitate the development of sampling designs that acknowledge the relationships

between the target variable and covariates. Subsequent work has described algorithms capable of finding

the optimal inclusion probabilities to reduce the anticipated variance of the desired estimate (e.g., P. D.

Falorsi & Righi, 2015).

GMSE builds on the concept of anticipated variance to evaluate the MSE of the mass-imputed

estimator (Alleva et al., 2021). GMSE is defined as

EPEM

(
ŶU − YU

)2
. (2.9)
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Equation 2.9 evaluates sampling and model error, in addition to model parameter and imputation error

with respect to the joint distribution of P and M . The advantage of this approach is that it enables to

comprehensively evaluate errors in the mass-imputed estimator without ignoring any source of variability.

Furthermore, Alleva et al. (2021) propose that GMSE is suitable for evaluating source-specific errors

such as coverage and measurement error upon extending the concatenation of expectations with respect

to the additional error, e.g.

ENREPEM

(
ŶU − YU

)2
(2.10)

where ENR represents the expectation with respect to a distribution explaining non-response, which

could be summarized with a model.

However, simplifying assumptions are made during derivation of the exact equation for approximating

Equation 2.9, which might not guarantee robust estimation in several practical scenarios. These will be

discussed in the proceeding sections detailing how GMSE and the other two approaches propose to

approximate the MSE functions described above.

2.3 Existing approaches to approximate MSE(ŶU)

Common approaches to evaluating the accuracy of estimators based on complex functions in survey

methodology include Taylor linearisation and resampling or bootstrapping (Lohr, 2021, Chapter 7).

Linearisation-based methods estimate the function with small-order derivatives of its parameters. While

computationally efficient, deriving the linearised equation can become difficult and requires access to the

exact form of the imputation model. Furthermore, approximation by linearisation may not be effective

in small samples. Resampling-based approaches, on the other hand, generate an empirical distribution of

the estimator based on replicating the steps that affect its variability a large number of times. The bias

and variance of the estimator can then be assessed based on the empirical distribution. Resampling is

relatively easy and reliable, but it can incur an unacceptably large computational burden for statistical

offices that are interested in performing these computations on a daily basis.

Linearised equations for evaluating the variance component in Equation 2.7 and the MSE as defined

in Equation 2.9 have been derived by Scholtus and Daalmans (2021) for models satisfying Equations

2.2 defined earlier in Subsection 2.2.1, and by Alleva et al. (2021) (see also Deliu et al., 2025) for a

wide range of models. Design-based variance estimation of imputed population totals has also been

discussed in the context of combining several samples through mass imputation (e.g., Chipperfield et al.,

2012; Golini & Righi, 2024; Kim & Rao, 2012; Kim et al., 2021). However, because integrating sample

and administrative data differs from integrating two samples, the work is not directly applicable to the

mass-imputed estimator as defined in the current project.

2.3.1 Vdesign

In the case where design-bias in the mass-imputed estimator is negligible, Equation 2.7 reduces to the

variance component, which can be approximated according to the following equation:

Vdesign(ŶUd,c
) = E

{∑
k∈R

γd,kp̂c,k(1− p̂c,k)

}
+
∑
k∈R

∑
l∈R

γd,kγd,l cov{p̂c,k, p̂c,l}. (2.11)

derived by Scholtus and Daalmans (2021). They derived the formula using the law of total variance,
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expressing VP (ŶUd,c
− YUd,c

) as

EP

[
VP

(
ŶUd,c

− YUd,c
| S
)]

+ VP

[
EP

(
ŶUd,c

− YUd,c
| S
)]

. (2.12)

which simplifies to Equation 2.11 assuming that each unit is independently imputed, the target variable

follows the multinomial distribution, and that y is fixed. The first term of the equation represents the

average error of the mass-imputed estimator within different realisations of the sampling design, i.e.,

the variance not explained by the sampling design. This corresponds to imputation error under the

assumption that EP (ŷc,k | S) = p̂c,k and VP (ŷc,k | S) = p̂c,k(1 − p̂c,k). The second term reflects the

variability in error between the different realisations of the sampling design, i.e., the variance explained

by the sampling design. This corresponds to sampling error and model parameter error.

Equation 2.11 is consistent if the imputation model contains only categorical variables, the domain

variables, any variables used to define the sampling design and all higher-order interactions of these

variables. According to Scholtus and Daalmans (2021), the equation will hold reasonably well for large

samples if the imputation model contains the interactions of the domain variable and any variables used

to define the sampling design. Evaluating Equation 2.11 based on binomial and multinomial models is

described in Appendix B.

Scholtus and Daalmans (2021) compared the analytical approach described in Equation 2.11 to a

bootstrap approach using a simulation study. They found that both approaches were good in approx-

imating the simulated true variance of the mass imputed estimator, while the analytical approach was

slightly more precise and imposed far less computational burden. Interestingly, it was reported that the

analytical approach, in comparison to the bootstrap approach, underestimated variance in larger domains.

According to the authors, this was due to the omission of higher-order interactions, which created bias

in the cross-tabulated estimates, becoming more notable as the number of affected units grew. On the

other hand, modelling the interactions caused the analytical approach to severely overestimate variance

in smaller domains due to increased model parameter error.

It should be noted that Vdesign can be estimated based on multiple imputation (Rubin, 1987). However,

besides the burden of having to store the multiply imputed micro-data files, Scholtus and Daalmans (2021)

further explained that multiple imputation is undesirable to develop in the case of mass-imputation as it

is not broadly applicable to more complex population estimators since one can only evaluate the variance

of the multiple imputation estimator.

2.3.2 GMSE

Equation 2.9 for the evaluation of the MSE of the mass-imputed estimator was approximated in Alleva

et al. (2021) by

GMSE(ŶUd,c
) ≈ EP

[
VM

(
ŶUd,c

| λ
)]

+ VM

(
YUd,c

)
− 2 CovM

[
EP

(
ŶUd,c

| y
)
, YUd,c

]
. (2.13)

This expression results from simplifying the squared expression upon adding and subtracting the

mean:

EPEM

(
ŶUd,c

− YUd,c

)2
= EPEM

(
ŶUd,c

− EPEM

(
ŶUd,c

)
+ EPEM

(
ŶUd,c

)
− YUd,c

)2
. (2.14)
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The first and dominant component reflects the variability of the mass-imputed estimator as both y

and S are random. The second component refers to model error and the final term refers to the covariance

of the mass-imputed estimator and the true finite population total under the model distribution. It is

important to note that these components do not independently express the bias or variance. Bias and

variance are approximated upon jointly considering all the components.

Alleva et al. (2021) specify that Equation 2.13 reduces to

GMSE(ŶUd,c
) ≈ EP

[
VM

(
ŶUd,c

| λ
)]

− VM

(
YUd,c

)
(2.15)

when the mass-imputed estimator is design-unbiased, i.e., EP

(
ŶUd,c

| y
)
= YUd,c

. This follows from

CovM
(
YUd,c

, YUd,c

)
= VM

(
YUd,c

)
.

Equation 2.13 does not yet account for imputation error due to stochastic imputation and hence needs

to be extended as

GMSE(ŶUd,c
) ≈ GMSE(ŶUd,c

)Eq.2.15 +

N∑
k=1

γd,kỹc,k (1− ỹc,k) (2.16)

(Deliu et al., 2025).

GMSE is derived assuming that the estimated superpopulation parameters are unbiased. Recall

from Sections 2.2.2.2 and 2.2.2.1 that in this case, bias under the model-based approach is zero and

negligible under the design-based approach. This suggests that GMSE might, in practice, give estimates

that are very close to Vdesign. Larger differences may occur if the model is misspecified, leading to

an inaccurate accuracy estimate. However, since Equation 2.13 involves expectation over the sample

distribution, GMSE could remain robust. On the other hand, GMSE does not require that the model

is fitted according to the pseudo-maximum likelihood approach. This is done under the assumption that

the sampling design is ignorable, meaning that the distribution of the target variable is not influenced by

the sampling design (Sugden & Smith, 1984). This occurs when inclusion probabilities are close to 0 or

1. In fact, in that case, model parameter error under regular maximum likelihood and pseudo-maximum

likelihood-based approach converge (Chambers & Skinner, 2003, pp. 26). According to Alleva et al.

(2021), this is common enough in practice, thereby justifying the assumption.

The authors suggest using the dominant component as an upper bound for estimating GMSE in

practice, which will be adopted in the current thesis. They propose a four-step linearisation strategy to

evaluate this component, followed by a simplified two-step linearisation procedure for categorical outcomes

in a more recent publication (Deliu et al., 2025). See Appendix C for linearised forms of 2.13.

GMSE has been evaluated across two simulation studies by the authors (Alleva et al., 2021; Deliu et

al., 2025). Alleva et al. (2021) found that the linearised estimator for GMSE provided good approxima-

tions to the true simulated GMSE. It was also reported that the first component results in a downward

approximation of the simulated GMSE when the imputation model is design-biased. On the other hand,

it was found that approximation improves regardless of design bias if the domain size increases. Similar

findings were reported by (Deliu et al., 2025). Deliu et al. (2025) compared the upper bound and a

bootstrap approach whilst varying the population size. It was found that the linearised approach was less

precise in smaller domains and registries, regardless of design bias. Similarly to Scholtus and Daalmans

(2021), the bootstrap estimator was less precise and more computationally intensive.
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Chapter 3

Prediction error modelling approach

van Delden et al. (2016) (see also Burger et al., 2015 for earlier work on the topic) developed an approach to

evaluate the effect of misclassification errors in administrative data on population totals. Misclassification

error occurs when some categorical domain variable in the register contains measurement error. For

example, in their case study, the focus was on evaluating the effect of misclassifications in the type of

businesses on the total revenue estimated per business type.

The following sections outline the misclassification error approach and its adaptation to imputation

error under design-based inference.

3.1 Estimating the bias and variance of statistical output under
misclassification error

The misclassification error approach utilises the properties of the parametric bootstrap method (e.g.,

Tibshirani and Efron, 1993) to evaluate the bias and variance of a population total θ. A model is

assumed to describe the distribution of misclassification error. Repeated sampling for b = 1, . . . , B times

from that model produces the sampling distribution of the domain total as affected by misclassification

error. Bias and variance of the domain total can be assessed based on this sampling distribution by

B̂iasB(θ̂) = mB(θ̂)− θ̂,

V̂B(θ̂) =
1

B − 1

B∑
b=1

(
θ̂b −mB(θ̂)

)2
,

where mB(θ̂) =
1

B

B∑
b=1

θ̂b.

(3.1)

In this case, the model assumed is

pgh = P (ŝk = h | sk = g) (3.2)

where sk = g represents the true, but unknown, fixed domain category and ŝk = h represents the

observed, but random, domain category. The model thus describes the probabilities of observing domain

category h given true domain category g. The model can be summarised by a transition matrix P with

probabilities pgg on the main diagonal and pgh on the off-diagonals. P can be estimated from audit data,

that is, a sample where both g and h are observed.
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Furthermore, van Delden et al. (2016) showed that the bootstrap bias and variance of domain total θ̂

can equivalently be estimated by the following set of equations as B → ∞:

B̂ias(θ̂) =

N∑
k=1

(p̂hh − 1)âh,ktk +

H∑
g=1
g ̸=h

p̂ghâg,ktk

 ,

V̂ (θ̂) =

N∑
k=1

H∑
g=1

p̂gh(1− p̂gh)âg,kt
2
k

(3.3)

where âk = (â1k, . . . , âHk)
T is a vector of indicator variables such that âh,k = 1 if ŝk = h and 0 otherwise.

Here, tk is a numerical target variable.

3.2 Estimating the bias and variance of the mass-imputed esti-
mator under imputation error

To adapt the misclassification error approach to the case of imputation error, misclassification probabil-

ities can be modelled in the sense of imputation error. To this end, sample data is used to estimate the

model

pgh = P
(
ŷk = h | yk = g

)
, (g ∈ {1, . . . , C}, h ∈ {1, . . . , C}) (3.4)

where pgh is the prediction error probability. Below are shown the key steps for estimating the bias

and variance based on prediction error probabilities for the multinomial target variable. Full steps of

derivation of the formulae under the design-based inference are shown in Appendix D.

Let p̂c,k = P (ŷc,k = 1 | xk, s) be the predicted probability based on the imputation model. The bias

of the mass-imputed estimator can be expressed as follows:

EP

(
ŶUd,c

− YUd,c

)
= EP

{∑
k∈U

γd,k
(
ŷc,k − yc,k

)}
=
∑
k∈U

γd,k
{
EP (p̂c,k)− yc,k

}
(3.5)

under the assumption that EP

[
E(ŷc,k | s)

]
= EP (p̂c,k), resembling the deterministic imputation

approach. For the variance, we can write analogously to Scholtus and Daalmans (2021):

VP

(
ŶUd,c

− YUd,c

)
= VP

{∑
k∈U

γd,k
(
ŷc,k − yc,k

)}

= EP

{∑
k∈U

γd,k V
(
ŷc,k − yc,k | s

)}
+ VP

{∑
k∈U

γd,k
[
E(ŷc,k | s)− yc,k

]}

=
∑
k∈U

γd,k EP (p̂c,k)
{
1− EP (p̂c,k)

}
+ VP

(∑
k∈U

γd,kp̂c,k

)
−
∑
k∈U

γd,k VP (p̂c,k)

(3.6)

where the final term is negligible in practice.

In equations 3.5 and 3.6, assuming that unit-level probabilities can be well approximated by pgh,d or

the average probability of correctly imputing a unit in domain d from the sample, substituting pgh,d in

the equations results in the following approximation for design-based MSE
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PEMMSE

(
ŶUd,c

)
=
(
B̂ias

(
ŶUd,c

))2
+ V̂

(
ŶUd,c

)
where

B̂ias
(
ŶUd,c

)
≈ Ndc

(
pcc,dU − 1

)
+

C∑
g=1
g ̸=c

Ndgpgc,dU ,

V̂
(
ŶUd,c

)
≈ N

n

C∑
g=1

Ndgpgc,dU (1− pgc,dU )

(3.7)

with

Ndg =
∑
k∈U

γd,kyg,k

In the binomial case, the above formulae reduce to

B̂ias
(
ŶUd,c

)
≈ Nd1(p11,dU − 1) +Nd0(1− p00,dU ),

V̂
(
ŶUd,c

)
≈ N

n
[Nd1p11,dU (1− p11,dU ) +Nd0p00,dU (1− p00,dU )]

(3.8)

In practice, we can estimate pgh,d by

p̂gh,dS =

∑
k∈S γd,kwkyg,kp̂h,k∑

k∈S γd,kwkyg,k
(3.9)

where wk is the sampling weight. Note that these weights can be ignored under simple random

sampling.

The Nd terms can be estimated by

N̂dgU =
∑
k∈U

γd,kp̂g,k

In essence, PEM represents a simplification of Vdesign, whereby the complex covariance of unit-level

probabilities is replaced by estimating the variability of pgh. Covariance of the class-specific prediction

error probabilities as per Equation 3.4 is approximately zero since these are estimated from disjoint

subsets of the sample.

It is unclear whether the above assumptions prove reasonable in practice, resulting in a robust esti-

mate of MSE. The key difference between PEM and the other two estimators is that PEM simplifies the

complex error structure associated with model parameters and unit-level probabilities. This is instead

attempted to be captured though prediction error probabilities, which are dependent on this error struc-

ture, but it remains to be seen whether simplifying it in this manner is adequate. The key advantage

arising from this simplification is that the estimation of the probabilities does not need knowledge of

the imputation model form. Furthermore, the computation of the formulae is a simple sum, which is

very fast in comparison to the unit-level matrix multiplications needed for the computation of the other

approaches. However, alike the other approaches, it could be expected that a large sample size is im-

portant for the performance of PEM as this enables to estimate the prediction error probabilities more

accurately.
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Before proceeding with reporting from the simulation and case study, Table 2 summarising the key

characteristics of the three approaches under evaluation is provided to facilitate a quick comparison of

the different methods and their advantages and disadvantages.
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Table 2: Summary of the accuracy estimators

Estimator Vdesign GMSE PEM

Measure of accuracy Variance MSE Bias and variance

Frame of inference Design-based Design- and model-based Design-based

Errors Sampling error, model parameter
error, imputation error

Sampling error, model parameter
error, imputation error, model er-
ror

Imputation error

Method of estimation Linearization Linearization Aggregation

Advantages

• Directly evaluates multiple
errors

• Robust to misspecification of
the imputation model

• Approximates design-bias

• Directly evaluates multiple
errors

• Methodology extendable to
further errors

• If model-based conditions
hold, provides a simpler and
less conservative estimate
than Vdesign

• Does not require a paramet-
ric model form

• Fast

Disadvantages

• Ignores design-bias

• Requires knowledge of
second-order inclusion proba-
bilities

• Possibly more conservative
estimate

• Possibly oversimplifies com-
plex sampling designs

• Vulnerable to model misspec-
ification

• Directly evaluates only impu-
tation error

• Possibly oversimplifies the
error structure



Chapter 4

Simulation study

4.1 Methods

To evaluate the behaviour of the estimators under varying levels of bias and variance, a Monte Carlo

(MC) simulation study was conducted. The simulation design, inspired mainly by Alleva et al. (2021) and

Deliu et al. (2025), enables the evaluation of the performance of the accuracy estimators under both the

joint and the sampling distribution. The study was implemented in R version 4.4.0 (R Core Team, 2021)

using a modified version of the synthetic dataset Samplonia (Bethlehem, 2009, pp. 11–13), previously

used by Scholtus and Daalmans (2021). Details of the simulation flow, modifications to the dataset, and

experimental conditions are provided in subsections 4.1.1–4.1.5.

The link to all the code scripts for replication of the simulation study is provided in Appendix A.

Note that the code for the computation of GMSE was adapted from the materials provided in Deliu

et al. (2025).

4.1.1 Simulation procedure

Generation of the joint distribution can be summarised as follows:

Table 3: Simulation steps for the generation of the joint distibution

for each m ∈ M

Generate y according to ϑ (model error)

Record YUd

for each p ∈ P

Generate p using a probability sampling design (sampling error)

Estimate β̂ based on p (model parameter error)

Generate ŷc,k (imputation error)

Estimate ŶUd

Estimate the difference: ŶUd
− YUd

Compute Vdesign,GMSE,PEM

P and M were set at 100, consistent with the number of iterations used in previous studies (Alleva et
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al., 2021; Deliu et al., 2025; Scholtus & Daalmans, 2021). Note that the current simulation design implies

reversing the order of the expectations in comparison to Equation 2.9. However, given non-informative

sampling, this was not expected to affect on the results (Deliu et al., 2025). Furthermore, the current

simulation logic was also adopted in Alleva et al. (2021).

4.1.2 Benchmark estimators

Benchmark estimators for MSE, bias, and variance were computed from the two distributions and used

as the basis for comparing the three estimators. The benchmarks were computed as:

M̂SEdesign =
1

P

P∑
p=1

(
N∑

k=1

γd,kŷ
(p)
c,k −

N∑
k=1

γd,kyc,k

)2

(4.1)

M̂SEjoint =
1

M

M∑
m=1

 1

P

P∑
p=1

(
N∑

k=1

γd,kŷ
(p,m)
c,k −

N∑
k=1

γd,ky
(m)
c,k

)2
 (4.2)

For design-based benchmarks, the sampling distribution was based on a realisation of one finite

population, specifically m = 100. The benchmark estimators for bias and variance were defined similarly

upon evaluation of the average difference and the variance of the difference under the two distributions:

B̂iasdesign =
1

P

P∑
p=1

(
N∑

k=1

γd,kŷ
(p)
c,k −

N∑
k=1

γd,kyc,k

)
(4.3)

B̂iasjoint =
1

M

M∑
m=1

(
1

P

P∑
p=1

(
N∑

k=1

γd,kŷ
(p,m)
c,k −

N∑
k=1

γd,ky
(m)
c,k

))
(4.4)

V̂ardesign = VarP

(
N∑

k=1

γd,kŷc,k −
N∑

k=1

γd,kyc,k

)
(4.5)

V̂arjoint = VarMP

(
N∑

k=1

γd,kŷ
(p,m)
c,k −

N∑
k=1

γd,ky
(m)
c,k

)
(4.6)

4.1.3 Relative estimates

The coefficient of variation (CV), relative root mean squared error (RRMSE), and relative bias (RB)

are commonly used dimensionless measures to evaluate the size of the variance relative to the estimate,

defined as

CV(ŶRc,d
) =

√
V (ŶRc,d

)

E(ŶRc,d
)

(4.7)

RRMSE(ŶRc,d
) =

√
MSE(ŶRc,d

)

E(ŶRc,d
)

(4.8)
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RB(ŶRc,d
) =

Bias(ŶRc,d
)

E(ŶRc,d
)

(4.9)

Note that bias has a direction, indicating whether the mass-imputed estimator is larger (positive

sign) or smaller (negative sign) than the true total in expectation. Altogether, these measures were

adopted as benchmarks for the variance, MSE, and bias respectively. Recall that only PEM could

provide approximation to all three relative measures. Subsequently, the benchmark estimators were

approximated based on the the accuracy estimators as follows:

ĈVVdesign
(ŶRc,d

) =

√
Vdesign(ŶRc,d

)

E(ŶRc,d
)

(4.10)

ĈVVPEM(ŶRc,d
) =

√
PEMVar(ŶRc,d

)

E(ŶRc,d
)

(4.11)

̂RRMSEGMSE(ŶRc,d
) =

√
GMSE(ŶRc,d

)

E(ŶRc,d
)

(4.12)

̂RRMSEPEM(ŶRc,d
) =

√
PEMMSE(ŶRc,d

)

E(ŶRc,d
)

(4.13)

RBPEM(ŶRc,d
) =

PEMbias(ŶRc,d
)

E(ŶRc,d
)

(4.14)

Estimates 4.10 to 4.14 will hereby be referred to as component specific relative measures (CSRMs).

As common in practice, these were expressed as percentages.

4.1.4 The data

4.1.4.1 The target variable

The synthetic dataset Samplonia contains 6 variables, of which the level of education for the population

aged 15 years and older was used as the target variable - similarly to Scholtus and Daalmans (2021). The

level of education consists of 8 categories, C = {none,basic education,VMBO,havo/VWO,MBO,HBO,

WO-Bachelor,WO-Master}.
For computational reasons, the simulation study was carried out by recoding the multinomial edu-

cation variable as a binomial variable, with levels 0 = no higher education = {none, basic education,

VMBO, havo/VWO, MBO} and 1 = has higher education = {HBO, WO-Bachelor, WO-Master}.
The multinomial variable was nevertheless evaluated in a separate experimental condition upon re-
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coding the original variable into three categories:


1 = low educational level = {none,basic education}

2 = middle educational level = {VMBO,havo/VWO,MBO}

3 = high educational level = {HBO,WO-Bachelor,WO-Master}

.

However, due to computational reasons, only the sampling distribution of the recoded multinomial vari-

able was evaluated. To strengthen the evidence from this condition, the number of iterations was increased

to P = 1000.

4.1.4.2 The superpopulations

Two superpopulations were created that formed the basis of further modifications throughout the ex-

perimental conditions. The first superpopulation was defined by fitting a logistic regression model with

gender, age, and income as covariates to estimate its parameters. Age and income were included in the

model after preprocessing. Age was log-transformed to reduce skewness and subsequently centred and

scaled to have a mean of 0 and a standard deviation of 1. Income, originally a continuous variable, was

recoded into a three-level categorical variable with the categories low, middle, and high. The first super-

population was characterized by high model error since the covariates, while significantly related to the

target variable, did not explain much variance, as indicated by the AIC value (see Tables 4 and 5). The

second superpopulation was hence defined based on covariates with a stronger association with the target

variable. Since the original dataset did not contain such variables, two independent synthetic variables

were generated. First, a new three-level income variable was generated by sampling the categories with

replacement according to the vector of probabilities p = {0.1, 0.2, 0.7} if a person has higher education,

and p = {0.7, 0.2, 0.1} if the person does not have higher education. Similarly, a new four-level region

variable with levels {North, West, South, East} was generated with p = {0.15, 0.7, 0.1, 0.05} if y = 1,

and p = {0.05, 0.1, 0.7, 0.15} if y = 0. In addition, a quadratic effect of the transformed age variable

was included in the model. As indicated by a lower AIC value in superpopulation 2, these modifications

resulted in lower model error.

Logistic regression models were fitted on an enlarged version of the original Samplonia dataset, created

by multiplying the subset of individuals over 15 years old (745 rows) by 125 to approximate the size of

real-life administrative records better. In addition, the people with higher education were oversampled

to balance the two classes in the superpopulation. This step was motivated by the idea of establishing a

baseline condition whereby the estimation of the imputation model is easier. Therefore, the proportion

of people with higher education was increased from 0.34 to 0.5 upon sampling with replacement from the

rows of people with higher education, resulting in a final population size U = 122, 250. Estimating the

superpopulation parameters did not require extensive model fitting, as the goal was not prediction but

rather defining the distribution of the target variable. Summaries of the resulting superpopulations are

presented in Tables 4 and 5.

4.1.5 The experimental conditions

The experimental conditions were defined based on the strengths and limitations of the three estimators

outlined in Table 2, while taking practical relevance into account. Each condition was designed to
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Table 4: Model coefficients and summary statistics for superpopulation 1

Term Estimate Std. Error Statistic p-value
(Intercept) -0.6286 0.0134 -46.874 < 0.0001
genderF 0.5631 0.0150 37.558 < 0.0001
age 0.4279 0.0065 65.646 < 0.0001
incomeMiddle 1.0550 0.0175 60.189 < 0.0001
incomeHigh 0.6848 0.0195 35.129 < 0.0001
Model Fit Statistics
Deviance 161789
Null Deviance 169474.5
AIC 161799

Table 5: Model coefficients and summary statistics for superpopulation 2

Term Estimate Std. Error Statistic p-value
(Intercept) 1.1851 0.0329 35.998 < 0.0001
genderF 0.1343 0.0202 6.661 < 0.0001
age 0.2620 0.0107 24.572 < 0.0001
income synLow -3.8787 0.0266 -146.016 < 0.0001
income synMiddle -1.9049 0.0257 -74.086 < 0.0001
region synNorth 2.1565 0.0391 55.113 < 0.0001
region synSouth -0.8914 0.0318 -28.049 < 0.0001
region synWest 3.0354 0.0329 92.150 < 0.0001
I(ageˆ2) -0.4248 0.0110 -38.711 < 0.0001
Model Fit Statistics
Deviance 65330.9
Null Deviance 169474.5
AIC 65348.9

influence primarily the bias or the variance of the mass-imputed estimator. All experimental conditions

were evaluated across the two superpopulations, which enabled the evaluation of potential interactions

of increased bias or variance in different conditions with model error. In addition to the exploration

of independent effects of increased bias and variance, one condition was set up to explore the effects of

increased bias and variance.

The experiment focused on exploring the independent effects of the different conditions while changing

one key parameter relative to the baseline at a time. Sometimes, a few parameters had to be changed

simultaneously to keep another parameter fixed (for example, the condition “Small population”, see Table

7). While a full-factorial design would have enabled a more thorough examination of robustness, this was

not pursued due to the computational burden of M×P = 10, 000 simulation steps across a relatively large

population. Keeping the sample size large was hence prioritised over the exploration of interaction effects,

in the hope of producing fewer but more practical and robust findings. Furthermore, the interactions of

some conditions may have become challenging to define due to issues with model convergence, such as

estimating a large number of model parameters from a small sample.

4.1.5.1 The baseline condition

Changes in bias and variance were evaluated with respect to a baseline condition. Key parameters that

were modified across the experimental conditions are summarised in Table 6. The baseline condition was

designed to provide an ideal scenario where all estimators were most likely to approximate the benchmarks

well. First, a relatively large sample based on the standards in official statistics was drawn according

to simple random sampling without replacement (SRSWOR), which corresponds to an ignorable design.
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Second, the imputation model was defined using the same covariates as the superpopulation model,

resulting in negligible bias in the mass-imputed estimator. In addition, the mass-imputed estimator was

estimated in the domain of gender, which was roughly equally spread across the target variable. Since

gender was included in the set of covariates, it represented an internal domain.

Table 6: Parameters of the baseline condition

Parameter Notation Description
Sampling fraction n/N 0.05
Population size N 122,250
Sampling design (inclusion probabilities) π 0.05 (SRSWOR)

Imputation model parameters vs. Superpopulation parameters ϑ̂ = ϑ Equal, no bias
Target variable y {0, 1}
Domain size (has higher education) Nd1 ∼ 30, 000

4.1.5.2 Affecting the variance component

Changes in the variance component reflect variations in model error, sampling error, model parameter

error, and imputation error, all of which are interlinked. The cascade of effects begins with model error,

which affects the distribution of the target variable to which the sampling design is applied. The sample

size and design, in turn, affect model parameter error, which directly impacts imputation error. Therefore,

instead of attempting to increase any of these interconnected sources of error in isolation, the variance

conditions focused on increasing the total variance of the mass-imputed estimator by triggering the

cascade through several practical scenarios expected to challenge one or more of the accuracy estimators.

Five such conditions were defined.

4.1.5.2.1 Small sample size First, the sample size was reduced by decreasing the sampling fraction

from 5% to 1%. A smaller sample size increases the variability of the target variable across the samples

and the variability of the estimated model parameters. This was expected to have a negative impact on

all the estimators.

4.1.5.2.2 Small population Second, the population size was reduced while keeping the sampling

fraction fixed. This increased model error by increasing the variability of the target variable generated

from the superpopulation, which in turn impacted other errors. This condition was mainly expected to

negatively impact GMSE based on the results discussed in section 2.3.2.

4.1.5.2.3 Non-ignorable sampling Third, a negative impact on GMSE was expected upon vi-

olating the non-ignorable sampling assumption. In superpopulation 1, a stratified sample was drawn

using simple random sampling without replacement across strata defined by income, resulting in over-

sampling of the middle and higher income groups. This design reduces sampling error of survey-based

estimates by lowering variance within strata, typically chosen based on covariates strongly linked to the

target variable (e.g., Lohr, 2021, Chapter 3). The total sample size was kept fixed by redistributing the

sample across the strata according to fractions F = {0.2, 0.3, 0.5} with respect to the original sample

size. This results in inclusion probabilities π = {0.016, 0.068, 0.152}. In superpopulation 2, stratification

was done based on the synthetic region variable instead according to F = {0.4, 0.4, 0.1, 0.1}, resulting
in π = {0.197, 0.201, 0.013, 0.013}. In both superpopulations, the benchmark estimators were computed

according to a weighted imputation model, with Vdesign and PEM adjusted for the sampling design. The
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weights of the imputation model were defined as the inverse of the inclusion probabilities. GMSE, on the

other hand, was applied according to instructions with a non-weighted imputation model while taking

the correct inclusion probabilities into account.

4.1.5.2.4 Overparameterisation Fourth, based on the results reported in Section 2.3.1, a negative

impact on all estimators was expected when including noise variables in the imputation model alongside

the true population parameters. Additional variables in the imputation model that lack predictive power

have a small impact on the estimation of the true predictive variables due to affecting the likelihood surface

from which the model is estimated. In practice, one might want to include such variables or interactions

of the variables in the imputation model to completely eliminate design-bias. Variable province with 6

levels from the original dataset and a synthetic variable “random” with 4 levels generated according to

p = {0.25, 0.25, 0.25, 0.25} if y=1 or 0 were added to the imputation, but not superpopulation model.

4.1.5.2.5 Multinomial outcome Lastly, the superpopulation parameters were estimated using a

multinomial logistic regression model with a three-level target variable, as described in Section 4.1.4.

The same set of covariates was used otherwise, except for the superpopulation 2 where a synthetic gender

variable was introduced to reduce model error further. The synthetic gender variable was generated

according to p = {0.2, 0.8} if y = Low, p = {0.5, 0.5} if y = Middle and p = {0.8, 0.2} if y = High.

A multinomial logistic regression model requires estimating more parameters, which increases model

parameter error. Additionally, model error remained relatively high because the classes were not balanced,

resulting in some domain totals being much smaller than others. Altogether, all estimators were expected

to perform slightly worse than in the baseline condition.

4.1.5.3 Affecting the bias component

Three conditions were designed to examine the effects of model and design bias.

4.1.5.3.1 Model bias Model bias was examined across two levels of severity. In the first model bias

condition, the domain variable gender was omitted from the imputation model. This introduced a slight

bias in the mass-imputed estimator since, according to the superpopulation model, there were slightly

more males than females with higher education (see Appendix E). It was expected that the performance

of all estimators would worsen. To put PEM on equal standing with the other estimators, the prediction

error probabilities were not estimated domain-specifically, mimicking a scenario with a lack of access

to important covariates in the sample data. In the second model bias condition, the model bias was

increased further. This was achieved by redefining the superpopulation upon replacement of the original

gender variable with an independently generated synthetic gender variable that was defined according to

p = {0.6, 0.4} if y=1 and p = {0.4, 0.6} if y=0.

4.1.5.3.2 Design bias Design bias was examined by creating a synthetic variable, “random domain,”

that was generated independently of the covariates and the target variable based on a binomial draw with

p = {0.5, 0.5}. This was expected to have a mildly negative effect on Vdesign.

4.1.5.3.3 Affecting the bias and variance component The effect of increased bias and variance

was investigated by crossing the conditions of small sample size and large model bias.
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Table 7: Expected effects under different conditions

Main effect Condition Parameters Expected effects

Variance Small sample size n/N = 0.01
N = 122, 250
π = 0.05
β̂ = ϑ
y = {0, 1}
Nd1 ≈ 30, 000

Deterioration of all
estimators

Variance Small population size n/N = 0.05
N = 48, 900
π = 0.05
β̂ = ϑ
y = {0, 1}
Nd1 ≈ 12, 000

Deterioration of all
estimators, specifically
GMSE

Variance Non-ignorable sampling design n/N = 0.05
N = 122, 250
π = {0.016, 0.068, 0.152} (sup 1)
π = {0.197, 0.201, 0.013, 0.013} (sup 2)
β̂ = ϑ
y = {0, 1}
Nd1 ≈ 30, 000

Deterioration of GMSE

Variance Overparameterization n/N = 0.05
N = 122, 250
π = 0.05
β̂ ̸= ϑ
y = {0, 1}
Nd1 ≈ 30, 000

Deterioration of all
estimators

Variance Multinomial outcome n/N = 0.05
N = 122, 250
π = 0.05
β̂ = ϑ
y = {1, 2, 3}
Nd1 = [7304, 28693]

Deterioration of all
estimators

Bias Model bias (small) n/N = 0.05
N = 122, 250
π = 0.05
β̂ ̸= ϑ
y = {0, 1}
Nd1 ≈ 30, 000

Deterioration of all
estimators

Bias Model bias (large) n/N = 0.05
N = 122, 250
π = 0.05
β̂ ̸= ϑ
y = {0, 1}
Nd1 ≈ 30, 000

Deterioration of all
estimators

Bias Design bias n/N = 0.05
N = 122, 250
π = 0.05
β̂ ̸= ϑ
y = {0, 1}
Nd1 ≈ 30, 000

Deterioration of Vdesign
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4.2 Results

The following subsections present the results of the simulation study. To begin, a brief overview is

provided to outline the rationale behind the interpretation of the findings. The section then proceeds

to examine the behaviour of the benchmark estimators across the experimental conditions, followed by

an evaluation of the accuracy estimators. The section concludes with an interpretation of the overall

findings.

4.2.1 Rationale for performance evaluation

The following analysis aims to evaluate the performance of the accuracy estimators in estimating the

benchmark values across the experimental conditions. It is expected that in the baseline condition,

GMSE provides consistently good estimation of at least RRMSEjoint and Vdesign provides consistently

good approximation of CVdesign. For PEM to be considered an acceptable measure of accuracy, it should

provide a good approximation of RRMSEdesign, RBdesign, and CVdesign.

Ideal performance is reflected in the centring of the MC distribution of the accuracy estimators around

the benchmark value with minimal spread. Performance is acceptable if the mean of the distribution is

close to the benchmark. A large spreading of the distribution and divergence of the mean and the interior

quartiles from the benchmark value, however, suggests systematic under- or overestimation. While this

rationale corresponds to significance testing with respect to the benchmark value, the proceeding analysis

will utilize a series of boxplots instead. Formal testing in the current study is limited due to the need to

set a stringent correction on the p value, given the large number of tests required. Indeed, significance

testing in simulation studies of this kind is uncommon and has not been applied in the studies on which

the current simulation is based.

Since the aim of the thesis is to inform practice, it is also valuable to examine the performance when

translating percentages into real units. For example, the RRMSEdesign ranges from 1.3% to 24% in the

first superpopulation and 0.7% to 9% in the second superpopulation (see Tables 20 and 21 in F). This

represents a percentage of the domain total in the category ”has higher education”, suggesting that the

mass-imputed estimator is estimated with an accuracy of 210 people at best and 7,200 at worst, given

domain category totals of around 30,000 (see Appendix E). Consequently, differences of less than 1% or

approximately 300 people might be argued to be negligible in practice, as this is virtually close to the

lowest possible variance across the two superpopulations. In the condition with the multinomial target

variable, a similar interpretation applies. However, slightly larger differences are also acceptable due to

larger inherent variance from a more complicated model.

4.2.2 Change in benchmark estimators

Figure 1 presents changes in the benchmark estimators for the joint distribution across the different

experimental conditions. The condition with the multinomial target variable is presented separately in

Figure 4 and will be discussed in Subsection 4.2.4. The exact values for the benchmark and accuracy

estimators across all conditions are outlined in Tables 20 and 21 in Appendix F.

The estimators are virtually equivalent under both the joint and the sampling distributions across all

experimental conditions (see Appendix H for the plots based on the sampling distribution). This result

follows from the use of an ignorable sampling design throughout the simulation. In the condition with a

non-ignorable sampling design, the benchmarks were computed based on a weighted imputation model,
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which likely reduced any differences between the two distributions.

Figure 1 shows that across the variance conditions, the accuracy of the mass-imputed estimator was

influenced most by a reduction in sample size, followed by a reduction in population size and a non-

ignorable sampling design, with the latter having a more pronounced effect in the female subdomain

of superpopulation 1. This is likely due to a small interaction between gender and income, which was

neither modelled nor taken into account when specifying the strata. No further domain effects can be

observed across the variance conditions, which is to be expected given that the domain sizes were roughly

equal. Over-parameterisation of the imputation model did not affect the variance of the mass-imputed

estimator in superpopulation 1; however, it had a small effect in superpopulation 2. This is likely due

to the large inherent variability in the target variable in superpopulation 1, resulting in negligible noise

in the imputation model from the additional variables. In fact, RRMSEdesign even improved slightly in

comparison to the baseline in superpopulation 1 (see Table 20 in Appendix F). The pattern of increased

variance across the other variance conditions appears similar across the two superpopulations, indicating

no interaction between the different sources of increased variance and the variability of the target variable.

Across the bias conditions, RRMSE was most affected by model bias in both superpopulations.

The effect is pronounced in the female subdomain under large model bias condition, since the synthetic

gender variable created a larger male subdomain. The largest RRMSE can be observed in the interaction

condition across both superpopulations, suggesting that model bias and increased variance due to a small

sample size contribute additively to the MSE. However, as can be expected from the bias-variance tradeoff,

the increase in variance is slightly limited by a simultaneous increase in bias. This is indicated by a slightly

higher variance in the small sample condition.

4.2.3 Performance in the baseline condition

Figure 2 shows the performance of the accuracy estimators against RRMSEdesign and RRMSEjoint in

the baseline condition. The results are presented for the male subdomain, as the pattern is similar across

the female subdomain (see Figure 9 in Appendix I). According to expectations, Vdesign and GMSE

provide good approximations of the benchmark estimators under ideal conditions. Recall that GMSE

was computed according to its upper bound, which is reflected in a slight overestimation of RRMSEjoint.

This pattern is also more consistent across the joint distribution, which aligns with the definition of

GMSE, and in the slightly larger female subdomain (see Figure 9 Appendix I). On the other hand, PEM

is consistently overestimating the benchmark value. This behaviour is more pronounced across the joint

distribution and in superpopulation 2. The same pattern occurs for PEM(bias) in estimating RBdesign

(see Figure 3).

Vdesign and GMSE are both very precise estimators, which is reflected in little spread in their distri-

butions. PEM , on the other hand, is consistently the most variable estimator. Additionally, all accuracy

estimators exhibit greater variability across superpopulation 1, reflecting the larger inherent variability

of the target variable. The estimators are also more variable across the sampling distribution. This result

likely reflects stochastic noise that is reduced upon averaging over 100 populations.
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Figure 1: Change in CSRMs across the experimental conditions in superpopulation 1 (top) and 2 (bottom)
for the binomial target variable

Male Female

Bas
eli

ne

Sm
all

 sa
m

ple

Sm
all

 p
op

ula
tio

n

Non
-ig

no
ra

ble

Ove
rp

ar
am

et
er

iza
tio

n

Des
ign

 b
ias

M
od

el 
bia

s (
sm

all
)

M
od

el 
bia

s (
lar

ge
)

M
od

el 
bia

s (
lar

ge
) X

 sm
all

 sa
m

ple

Bas
eli

ne

Sm
all

 sa
m

ple

Sm
all

 p
op

ula
tio

n

Non
-ig

no
ra

ble

Ove
rp

ar
am

et
er

iza
tio

n

Des
ign

 b
ias

M
od

el 
bia

s (
sm

all
)

M
od

el 
bia

s (
lar

ge
)

M
od

el 
bia

s (
lar

ge
) X

 sm
all

 sa
m

ple

0

5

10

15

20

25

C
S

R
M

 (
%

) Estimate

Bias

MSE

Variance

Male Female

Bas
eli

ne

Sm
all

 sa
m

ple

Sm
all

 p
op

ula
tio

n

Non
-ig

no
ra

ble

Ove
rp

ar
am

et
er

iza
tio

n

Des
ign

 b
ias

M
od

el 
bia

s (
sm

all
)

M
od

el 
bia

s (
lar

ge
)

M
od

el 
bia

s (
lar

ge
) X

 sm
all

 sa
m

ple

Bas
eli

ne

Sm
all

 sa
m

ple

Sm
all

 p
op

ula
tio

n

Non
-ig

no
ra

ble

Ove
rp

ar
am

et
er

iza
tio

n

Des
ign

 b
ias

M
od

el 
bia

s (
sm

all
)

M
od

el 
bia

s (
lar

ge
)

M
od

el 
bia

s (
lar

ge
) X

 sm
all

 sa
m

ple

0.0

2.5

5.0

7.5

C
S

R
M

 (
%

) Estimate

Bias

Variance

MSE

Note: This figure indicates the change in benchmark estimators for the joint distribution across the
experimental conditions. The benchmark estimators can be distinguished by linetype. The conditions
are ordered starting with the baseline, followed by the variance, bias, and interaction conditions.
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Figure 2: Performance in the baseline condition for male subdomain across superpopulations 1 and 2
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Note. The panels show the distribution of the estimators in the baseline condition across the two superpopulations in the male subdomain. The solid orange
lines refer to RRMSEdesign in the sampling distribution and RRMSEjoint in the joint distribution.



Figure 3: Performance of PEM(bias) in the baseline condition for male subdomain across superpopulations 1 and 2.
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Note. The panels show the distribution of PEM (bias) in the baseline condition in the male subdomain. The solid lines refer to RBdesign in the sampling
distribution and RBjoint in the joint distribution. For clarity, the percentages are presented as absolute values.



4.2.4 Performance in the multinomial condition

Table 8: Distribution of education levels for superpopulations 1 and 2 in the multinomial condition

Gender Superpopulation 1 Superpopulation 2

Low Middle High Low Middle High

Male 9722 28693 19035 13664 27973 7769
Female 7304 27615 19381 3419 28047 30878

Table 8 presents the true population totals across the two superpopulations in the multinomial con-

dition. In superpopulation 1, the sizes of categories per domain increase in increments of 10,000, with

the category Middle being the largest, followed by High and Low. The target variable is spread similarly

across the two subdomains in superpopulation 1. In contrast, the introduction of the synthetic gender

variable in superpopulation 2 resulted in larger Male-Low and Female-High domains.

Figure 4 presents the performance of the accuracy estimators in the multinomial condition. Similarly

to the binomial condition, GMSE and PEM consistently overestimate the benchmark. Overestimation

of PEM is again pronounced in superpopulation 2. Similarly to the binomial baseline condition, PEM is

the most variable estimator. All estimators are prone to overestimation in smaller domains to a different

extent, whereas in the larger domains, differences between the estimators are greatly reduced.

Similarly to the binomial baseline condition, PEM is overestimating RBdesign (see Figure 5). Similarly

to its MSE component, this effect is more pronounced in smaller domains.
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Figure 4: Performance of the accuracy estimators in the multinomial condition in superpopulation 1 (top) and 2 (bottom)
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Note: The figure displays performance of the estimators across the superpopulations for each category of the
multinomial target variable. The solid orange line refers to RRMSEdesign.



Figure 5: Performance of PEM(bias) in the multinomial condition in superpopulation 1 (left) and 2
(right)
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Note: The figure displays performance of PEM (bias) across the superpopulations for each category of the
multinomial target variable. The solid line refers to RBdesign. For clarity, the percentages are presented
as absolute values.

4.2.5 Performance in the variance conditions

Figure 6 displays the performance of the accuracy estimators across the variance conditions in the male

subdomain. Across both superpopulations, the largest negative effect on all estimators is observed in the

condition of overparameterisation. Another expected effect is the deterioration of GMSE in the non-

ignorable sampling condition, while Vdesign appears to be the most robust estimator in this condition.

GMSE consistently underestimates the benchmark under a non-ignorable sampling design, with the

effect being diminished in superpopulation 2. Similarly to the baseline condition, PEM is prone to

overestimation.

Reductions in sample and population size have affected the variability of all accuracy estimators. In

the small sample size condition, GMSE appears to have been most negatively affected, as its distribution

now lies consistently at or below the benchmark line. On the other hand, Vdesign appears to be the most

robust estimator in this condition. Contrary to expectations, this pattern of results is reversed in the

small population condition, with Vdesign prone to overestimating the benchmark variance, while GMSE

appears to be unaffected. PEM also appears to be more negatively affected in the small population

condition in comparison to the small sample condition, suggesting a pattern of design-based estimators

being more vulnerable in this condition. The pattern, however, is diminished in superpopulation 2 and

in the female subdomain (see Figure 11 in Appendix I), suggesting an interaction with model error and

domain size.
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Figure 6: Performance of the estimators across the variance conditions with the binomial target variable in the male subdomain
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Note: The figures above show the performance of the estimators relative to benchmark RRMSEdesign and RRMSEjoint shown in solid orange line.



4.2.6 Performance in the bias and interaction conditions

Figure 7 shows the performance of the estimators in the bias and interaction conditions across the two

superpopulations in the male subdomain. Contrary to expectations, GMSE behaves virtually identically

to Vdesign in the design bias condition. In superpopulation 1, GMSE is underestimating the RRMSE

benchmarks, but provides a good approximation of CV benchmarks alongside Vdesign. In superpopulation

2, the pattern reverses, with Vdesign overestimating the CV benchmarks alongside GMSE. PEM is over-

estimating both components. Recall that domains were not taken into account during the computation of

PEM across the bias and interaction conditions, which appears to pronounce the systemic overestimation.

Vdesign and GMSE also perform very similarly in the conditions with increased model bias. PEM

continues to overestimate the variance component; however, it now provides a downwards approximation

of RB (see Table 20 and 21 Appendix F). The downwards estimation is relatively good in some conditions,

as the distribution of PEM lies close to the benchmark RRMSE values in superpopulation 2 and in

superpopulation 1 if the bias is small.

Under increased bias and variance, no estimator can estimate RRMSE well. Furthermore, all three

approaches consistently overestimate the variance component in the male subdomain, while GMSE and

Vdesign underestimate the variance component in the female subdomain (see Figure 12 in Appendix I).

This pattern of results indicates a complex interaction between domain size and bias. It appears that

as bias increases and domain size decreases, GMSE and Vdesign are more prone to underestimating the

variance component and vice versa. Recall that in the model bias (large) condition, the synthetic gender

variable introduced a smaller female subdomain.
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Figure 7: Performance of the estimators across bias and interaction conditions in the male subdomain
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Note: The figures above show the performance of the estimators relative to RRMSEdesign and RRMSEjoint (shown in solid orange line) and CVdesign and CVjoint (shown in dotted orange line).



4.2.7 Conclusions from the simulation study

Several expected patterns in performance were observed in the simulation study. First, it was shown

that under ideal circumstances, all estimators provided good or acceptable estimates of the benchmark

values. PEM was consistently the most variable estimator, which could be associated with its links to

bootstrap estimators. This corroborates the findings from previous studies, which show that bootstrap

estimators are more variable compared to linearised estimators (Deliu et al., 2025; Scholtus & Daalmans,

2021). Interestingly, a pattern of overestimation was observed for all components of PEM , which was

pronounced in superpopulation 2. This is most likely due to the behaviour of the function p(1−p), which

forms the key component of PEM (see Equation 3.7). This function reaches its maximum if p = 0.5.

Since averaging unit-level probabilities tends to move p closer to 0.5, PEM can be expected to provide

an upwardly biased accuracy estimate most of the time. This effect becomes more pronounced as the

prediction error probabilities approach 0 and 1 since the function changes more rapidly at extreme values.

For instance, replacing the unit-level probability p = 0.9 by p = 0.8 causes a larger change in the function

(0.09 vs 0.16) than replacing p = 0.6 by p = 0.5 (0.24 vs 0.25). This first case occurred in superpopulation

2, where the prediction error probabilities are generally above 0.8 or below 0.2, thereby explaining the

stronger overestimation observed in that setting.

The multinomial condition revealed a domain effect consistent with previous studies. Upon closer

examination of the results of Deliu et al. (2025), it can be observed that GMSE was prone to overesti-

mation in smaller domains (see Table 4, Deliu et al., 2025). This was observed for all estimators in the

current study. Interestingly, in the small sample condition, GMSE was underestimating the benchmark.

This suggests an interaction between sample size and domain size, whereby GMSE is more affected by

the reduction in sample size. Hence it is likely that the previous results by Deliu et al. (2025), whereby

the performance of GMSE improved upon increasing the population size, might be better explained by

increased sample size since the sampling fraction was kept constant in their study.

In contrast, the design-based estimators appear more affected by the reduction in domain size, given

that they overestimated more consistently in small domains and in the small population condition, but

not in the small sample condition. Altogether, it appears that the conservative nature of design-based

estimators becomes more pronounced in small domains, while the more liberal nature of GMSE leads to

vulnerability upon reduced sample size, possibly due to increased difficulty in learning the target-covariate

relationships from the data.

While the reduction in sample and population size primarily increased the variability of the estima-

tors, all estimators exhibited a systematic pattern of overestimation upon overparameterisation of the

imputation model. This finding is consistent with the results of Scholtus and Daalmans (2021) and sug-

gests that other accuracy estimators may be similarly affected. PEM appears to be the least affected

since its general tendency to overestimate did not seem pronounced in this condition. This is likely due

to PEM not explicitly evaluating model parameter error via an estimated variance-covariance matrix

like Vdesign and GMSE, suggesting that PEM is the most robust estimator under this condition.

Per expectations, GMSE demonstrated deteriorated performance under a non-ignorable sampling

design. However, this result could be partially attributed to the reversed order of expectations in the

simulation study in comparison to the definition of GMSE. Furthermore, the effect was greatly reduced

in superpopulation 2. On the other hand, design-based estimators were prone to slight overestimation in

this condition, suggesting that the robustness of all estimators was affected in this condition.

Contrary to expected effects, Vdesign and GMSE performed virtually identically across all conditions

with increased bias. While some similarity in performance was anticipated (as discussed in Section 2.3.2),
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the current findings suggest that the principal practical value of GMSE lies in variance estimation.

Notably, both estimators approximated the variance well under conditions of increased bias even though

the assumptions underlying both methods were violated. This suggests that the assumption of model-

unbiasedness for GMSE may not significantly impact its performance, likely because it retains the

ability to rely on its design-based inference component. Likewise, Vdesign appears robust to imputation

model misspecification from a design-based perspective. However, given that the interaction condition

showed accuracy estimators to be prone to overestimation under large model bias, it follows that, in

many practical applications, the linearised estimators are more likely to provide conservative variance

estimates, except if the domain size is small.

Surprisingly, PEM was the most robust estimator across all conditions with increased bias. This

suggests that PEM might present a simpler alternative to GMSE that circumvents the assumption of

no model bias. However, domain-specific estimation is important to prevent severe overestimation of the

variance.

Altogether, although systematic patterns emerged that demonstrate unique vulnerabilities of the

estimators, from a practical point of view, all estimators can be considered robust estimators of variance.
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Chapter 5

Case study

To strengthen the evidence for the robustness of the three estimators, it should be demonstrated that they

also perform comparably on a non-synthetic dataset. For this purpose, the estimators will be compared

in a case study using the EAF. The following subsections describe the dataset, methods and results of

the study.

5.1 Methods

5.1.1 The target variable

The target variable of this study is the mother’s educational level of primary school children in the EAF.

This choice is motivated by a project in collaboration between the Dutch Ministry of Education, Culture,

and Science and Statistics Netherlands, which seeks to reduce educational disadvantages by increasing

financial support to primary schools with more disadvantaged children (e.g., Posthumus et al., 2019). To

determine which schools should receive the support, Statistics Netherlands has developed an indicator

of educational disadvantage, which essentially reflects a linear regression model with several variables

reflecting the socio-economic background of children as input. Crucial variables are those describing

parental educational attainment, which even formed the sole basis of the weighing scheme for budgetary

allocation before Statistics Netherlands development. However, this information is missing for children

in specific subpopulations, for one or both parents, in the EAF. This is because the EAF is primarily

based on different sources of administrative data, which provide good coverage for young adults but have

under coverage for older people (Linder et al., 2011). Furthermore, administrative data is selective and

lacks information, for example, on people who obtained their education abroad or immigrated to the

Netherlands later in life. Where possible, these gaps are filled by linking administrative records with the

Dutch Labour Force Survey (LFS) (Linder et al., 2011). The annual Dutch Labour Force survey dates

back to 1987. It has been the basis for information on educational attainment in the Netherlands until

the creation of EAF, which enables the provision of more accurate estimates due to the steep decline

in response rates since the beginning of the millennium and generally large sampling errors in small

subpopulations.

The missing parental education is imputed based on a series of multinomial logistic regression models

according to the latest developments in the project (Statistics Netherlands, 2024). These models are

trained on the LFS data and applied sequentially so that first, the mother’s education is imputed based

on the subpopulation from LFS for whom both parental education is known. This can then be used

to impute education in other subpopulations. The remaining input variables are obtained from the

44



population registry and are fully observed. Therefore, the key source of uncertainty in the score for

educational disadvantage comes from the imputed educational attainment variables. In turn, it is possible

to transform the estimators under study so that it becomes possible to evaluate the accuracy of the

educational disadvantage scores. Although this is outside the scope of the current project, the estimators

will be applied to the relevant target variable to motivate such developments in the future.

5.1.2 Setup

The case study will be set up based on two imputation models used to impute the mother’s education

in the EAF. These imputation models correspond to those described in the latest report on the project

(Statistics Netherlands, 2024), with a few modifications outlined below. The primary distinction between

the two models is that the second model does not include the father’s education as a covariate, which is

strongly correlated with the mother’s education. This is because the second imputation model is used to

impute the mother’s education in a subpopulation where the father’s education is unknown; therefore,

using it as a covariate would involve assuming that father’s education in this group of children is similar

to the group where father’s education is known. For the case study, this presents a good opportunity

to evaluate the performance of the estimators with a worse imputation model that is potentially more

biased.

The focus is limited to the subgroup of children who are also registered in the population register.

The missingness pattern of parental education in this group of children can be described by distinguishing

between 4 subpopulations based on which parent’s educational attainment is known (see Table 9).

Table 9: Missingness pattern of parental education of Dutch children

Subpopulation Missingness pattern 0-27 years 0-12 years
A No information on parental education 15.5% 7.9%
B Mother’s education known 17.2% 13.2%
C Father’s education known 11.7% 7.8%
D Both parents’ education known 55.6% 71.1%

Note. Percentages refer to the extent of missing data in the subpopulation. Column headers 0-27 years
and 0-12 years refer to the age of the child. The table has been adapted from Statistics Netherlands
(2024).

This case study will focus on imputing mother’s education in subpopulations A and C. The imputation

model for subpopulation A does not include the father’s education. To align with the setup described

in Section 2.2.1, two ”populations” will be defined, which will be treated as population registers. The

first population is defined based on sample data (LFS data) from subpopulation D, where the mother’s

education is observed and the entire subpopulation C. Subsequently, sample data where both the mother’s

and father’s education is observed will be selected and treated as an SRSWOR from this population.

This is a simplification of the more complex sampling design used in LFS data, but it is reasonable

given that the same assumption is applied when comparing all estimators (Scholtus & Daalmans, 2021).

The assumption for the first population is, therefore, that the target variable distribution can be well

described by the mother’s and father’s education in subpopulation D. The second population is defined

similarly but uses subpopulation A instead of C as the basis. The sample data consists of all children

whose mothers’ education is known. Hence, it is assumed that the target variable can be well described

by the mother’s education in subpopulation D.

The inclusion probabilities refer to the fraction of sample data in either of the populations. These were
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πC = 88,107
762,859 ≈ 0.017 based on 88,107 units from a population of U = 762,859, and πA = 187,662

959,678 ≈ 0.037

based on 187,662 units from a population of U = 959,678, respectively.

5.1.3 Imputation models

Educational attainment in the EAF is a multinomial target variable with 8 categories. The training of the

imputation models is described extensively in the corresponding project report by Statistics Netherlands

(Statistics Netherlands, 2024; see also Posthumus et al., 2016). In short, a multinomial logistic regression

model was trained using stepwise selection based on a list of covariates that describe the demographic and

socio-economic status of the parents. Models for subpopulations A and C have the following covariates

in common:

• Income of the mother (21 levels)

• Country of origin (8 levels)

• Age of the mother

• Urbanisation level of the area of the household (6 levels)

• Civil status of the mother (4 levels)

• Type of economic activity of the mother (13 levels)

Initially, the imputation model for subgroup C was fitted separately for each level of the father’s

education. For the sake of simplicity, the current study included the father’s educational level as a

covariate in the imputation model for subpopulation C.

Further simplifications were made due to computational reasons. First, both mothers’ and fathers’

educational levels were recoded as a 3-level categorical variable with levels low, middle, and high. Second,

instead of using the 13-level categorical variable that describes the mother’s economic activity, a two-level

variable indicating whether the mother works or not was used. Finally, the numerical age variable was

standardized.

The imputation models were fitted on the sample data as described in the previous section without

sampling weights due to assumption of SRSWOR. Note that the sampling weights were taken into account

when estimating the accuracy estimators, an approach also applied throughout the simulation study.

The first imputation model fits the data better as expected due to the inclusion of father’s education, as

indicated by a higher R2
McFadden value (R2

McFadden = 0.163 vs R2
McFadden = 0.131). Pseudo-R-squared

has been computed according to McFadden’s formula (McFadden, 1972).

5.2 Results

Accuracy estimation was fourfold in both populations, focusing on comparing the performance in a mix

of large and small, internal and external domains. First, the estimates were obtained for the whole

population. Across both populations, the middle education level is the largest domain, followed by low

and high education (see Table 10). Performance in an internal domain was evaluated using the 21-category

mother’s income variable, which comprises a mix of small and large domains based on increasing levels

of income (see Table 13). Income is related to the target variable across both populations, as it can

be observed that the domains in the largest income classes are larger in the high education category.

Performance was also evaluated in external domains with different levels of granularity. The larger
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external domain (see Table 11) corresponds to the type of school the child is attending at the time of

measurement. This domain variable has nine levels, but the estimation focused on two levels - children

attending primary school and children attending special needs education. Across both populations, fewer

students attend schools providing special needs education. Overall, it appears that the target variable is

similarly distributed across the types of schools in both populations, suggesting that there is no strong

association between the type of school attended and the mother’s educational attainment, given the

covariates in the imputation model. The final, smaller external domain refers to the specific school that

the child is attending. Since there are well over 7,000 schools represented in the population, a selection

was made based on schools with the largest number of sampled units. Five schools were chosen, and the

corresponding imputed totals are presented in Table 12. The spread of the target variable is again similar

across both populations. No school appears to stand out based on a different spread of the target variable,

suggesting no strong relationships between the specific school and the mother’s educational level.

Table 10: Distribution of mother’s education levels in populations A and C

Population Low Middle High
A 241797 535498 182383
C 182669 430266 149924

Table 11: Distribution of education levels by school type for Populations A and C

School Type Population A Population C

Low Middle High Low Middle High

Primary school 34585 69308 20997 30820 74272 20477
Special needs 1087 1935 460 1185 2042 367

Table 12: Distribution of education levels by school for Populations A and C

School Population A Population C

Low Middle High Low Middle High

S1 70 155 18 24 41 2
S2 16 41 5 12 40 4
S3 43 73 9 20 60 7
S4 39 113 11 36 46 7
S5 63 177 13 26 57 6
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Table 13: Distribution of education levels by mother’s income level for Populations A and C

Income class Population A Population C

Low Middle High Low Middle High

1 8980 12856 4832 7235 9732 3551
2 14280 18475 5112 11078 13373 3640
3 25542 26915 8163 15471 17753 3705
4 9179 12955 2383 6266 9414 1607
5 15016 24131 3647 11351 18647 2830
6 10429 14788 2626 8345 13106 1808
7 13212 26283 3294 10162 21400 2881
8 13011 31647 4129 10324 25398 3634
9 12037 35550 4804 9663 29608 4033
10 10180 38287 5826 7594 31214 5460
11 8400 39647 7197 6777 34242 6631
12 6724 36022 8722 5581 30431 8185
13 5786 30889 9419 4385 26124 9021
14 4360 26689 10363 3772 22316 9920
15 3276 22545 10111 3094 19261 9260
16 2635 18322 11400 2193 16541 10566
17 2514 15546 11909 2121 13319 11258
18 1873 12386 12150 1550 10967 10794
19 1162 7755 12713 1029 7317 11253
20 839 4045 13934 793 4378 12887
unknown 72362 79765 29649 53885 55725 17000

5.2.1 The whole population

Based on the results of the simulation study, it is expected that both GMSE and Vdesign will provide an

estimate of the CV. Table 14 presents the CSRMs expressed as percentages based on all the estimators

computed for the whole population across the two populations. All accuracy estimators indicate that the

mass-imputed estimator is very precise, varying by less than 1% of the total. The effect of domain size

can also be observed, with the estimated variance being smallest in the largest middle category, followed

by the smaller low and high attainment categories.

While the estimators all indicate low variability, notable differences emerge between Vdesign and the

other two estimators. Interestingly, although Vdesign performed very similarly to GMSE across the

simulation study, its estimate is now 30-40% larger than GMSE. The differences are slightly smaller

in population C, suggesting that the assumed variability of the target variable could be driving some

of the differences. On the other hand, while PEM was more prone to overestimating the variance in

the simulation study, it is now performing extremely close to GMSE, especially in population C. These

differences, although unexpected, can partly be explained by the fact that both GMSE and PEM

simplify the design-based variance. The results also confirm that PEM performs better as the sample

and population size get larger.

Another reason for Vdesign providing a larger variance estimate is due to the vast number of parameters

in the imputation model (2x38 in subpopulation A and 2x40 in subpopulation C). Though GMSE was

also similarly affected in the simulation study, it could be that overparameterisation has a larger impact on

Vdesign due to having to take inclusion probabilities into account when estimating the model parameters

and their variance.

PEM indicates a relatively large bias component in the low education category in population A, and
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high education category in population C. This could be because there are more highly educated mothers

in the sample from population A, whereas the pattern is reversed in population C (22% vs 24% in the

low category and 19% vs 16% in the high category). Since this assumes a reversal of the distribution in

the target variable, it is likely the reason for the pattern observed in bias. Given that PEM was prone

to overestimating the bias in the simulation study, these values can be interpreted with a modest level of

confidence.

Table 14: CSRM (%) for mother’s education levels by based on the different accuracy estimators in
Populations A and C

Estimator Population A Population C

Low Middle High Low Middle High

Vdesign 0.607 0.295 0.666 0.741 0.382 0.828
GMSE 0.423 0.221 0.490 0.570 0.292 0.620
PEM (MSE) 12.164 5.141 1.146 0.823 4.219 12.788
PEM (bias) -12.157 5.137 1.036 0.570 4.209 -12.773
PEM (variance) 0.395 0.212 0.490 0.593 0.292 0.623

5.2.2 Internal domain - income class

Table 15 presents the results from the different estimators in the income domain for every fifth class. The

pattern of results is more similar to that observed in the simulation study, with Vdesign and GMSE giving

very similar estimates and PEM providing a slightly larger variance estimate. In many domains, GMSE

now provides a slightly larger estimate. Similarly to the simulation study, larger variance is observed in

smaller domains. It could be that the results in this domain are comparable to the simulation study due

to more similar domain sizes.

The bias estimates are of similar magnitude across the income domain as in the entire population,

with smaller domains exhibiting a more pronounced bias. The difference noted in the previous subsection

between the distributions of the target variable across the populations also has a slight effect, which is

to be expected given that income and educational attainment are related.
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Table 15: CSRMs (%) based on the different accuracy estimators for mother’s education level cross-
classified by income class (every 5th class) in subpopulations A and C.

Income Class Estimator Population A Population C

Low Middle High Low Middle High

1

Vdesign 2.258 1.629 3.374 2.708 2.217 4.971
GMSE 2.158 1.579 3.192 2.730 2.191 4.322
PEM (MSE) 4.454 5.741 8.840 2.819 7.377 20.768
PEM (bias) -3.452 5.346 -7.810 0.514 7.053 -20.377
PEM (variance) 2.815 2.093 4.141 2.772 2.162 4.013

5

Vdesign 1.650 1.059 3.975 2.090 1.370 5.549
GMSE 1.662 1.069 3.961 2.240 1.447 5.350
PEM (MSE) 3.582 2.766 6.508 5.985 1.538 18.910
PEM (bias) -2.860 2.387 -4.017 5.545 -0.602 -18.278
PEM (variance) 2.157 1.398 5.120 2.252 1.416 4.847

10

Vdesign 2.193 0.675 3.021 2.948 0.916 3.943
GMSE 2.265 0.700 3.117 3.157 0.931 3.710
PEM (MSE) 4.211 1.512 4.840 11.652 0.947 17.531
PEM (bias) -3.045 1.208 -2.620 11.199 0.284 -17.198
PEM (variance) 2.908 0.909 4.069 3.217 0.903 3.400

15

Vdesign 4.272 0.971 1.982 4.926 1.373 2.638
GMSE 4.312 1.015 2.081 5.160 1.331 2.485
PEM (MSE) 6.936 1.351 2.967 13.924 4.387 13.244
PEM (bias) -4.253 0.162 1.018 12.881 4.191 -13.021
PEM (variance) 5.479 1.342 2.787 5.288 1.298 2.424

20

Vdesign 8.426 3.275 1.017 10.229 4.163 1.459
GMSE 8.593 3.479 1.065 10.636 3.824 1.329
PEM (MSE) 12.574 4.635 1.460 33.431 15.132 7.030
PEM (bias) -6.435 0.238 0.318 31.319 14.594 -6.885
PEM (variance) 10.802 4.629 1.425 11.693 3.997 1.421

unknown

Vdesign 1.008 0.916 1.903 1.222 1.216 2.593
GMSE 0.721 0.664 1.308 0.942 0.948 2.038
PEM (MSE) 1.187 3.956 12.223 1.519 1.305 7.025
PEM (bias) 0.710 3.857 -12.110 1.181 0.912 -6.734
PEM (variance) 0.952 0.878 1.660 0.956 0.933 2.002

5.2.3 External domains

5.2.3.1 School type

Table 16 presents the results from the different estimators across the two populations in the external

domain ”school type”. Similarly to results from other domains, Vdesign provides a larger variance esti-

mate relative to GMSE. Interestingly, the estimates align better in the smaller special needs education

subdomain than in the larger primary education subdomain. Given that the bias in this condition is

relatively large, the smaller subdomain might reflect the results from the simulation study whereby larger

bias in small domains led to underestimation of variance by both GMSE and Vdesign.

PEM variance estimates are closely aligned with Vdesign in the larger subdomain in superpopulation

C. Note that the prediction error probabilities were estimated domain-specifically in this condition, which

highlights the importance of this action, as it appears to reduce the overestimation observed for external
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domains in the simulation study. Nevertheless, in the smaller subdomain, PEM is severely overestimating

the variance in comparison to the other estimators, suggesting that PEM becomes unreliable as the

domain size gets very small.

Table 16: CSRM (%) based on the different accuracy estimators for mother’s education level cross-
classified by school type in subpopulations A and C.

Population A Population C

Domain Estimator Low Middle High Low Middle High

Primary education (BO)

Vdesign 1.046 0.543 1.371 1.285 0.628 1.626
GMSE 0.708 0.388 0.938 0.864 0.423 1.077
PEM (MSE) 19.002 13.653 13.905 4.090 7.642 21.902
PEM (bias) -18.951 13.629 -13.772 -3.834 7.613 -21.842
PEM (variance) 1.394 0.806 1.910 1.422 0.668 1.615

Special needs (SBO)

Vdesign 2.557 1.503 4.386 2.404 1.485 4.691
GMSE 2.432 1.448 4.194 2.244 1.400 4.502
PEM (MSE) 21.261 15.460 20.094 9.910 8.933 24.075
PEM (bias) -19.788 14.687 -15.023 -7.193 7.893 -20.693
PEM (variance) 7.775 4.827 13.346 6.816 4.183 12.305

5.2.3.2 Specific schools

Table 17 presents the estimates in the external domain differentiating between specific schools. Results are

in line with those observed in the small external subdomain special needs education, whereby Vdesign and

GMSE are well aligned, whereas PEM is severely overestimating the variance. It is important to note

that this time, PEM was not estimated domain-specifically, since there was not enough sample data across

all categories of the target variable in all schools. Therefore, a significant amount of overestimation is

likely due to non domain-specific estimation. However, it can be concluded that PEM provides unreliable

estimates in extremely small domains.
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Table 17: CSRM (%) based on the different accuracy estimators for mother’s education level cross-
classified by five anonymous school indicators in subpopulations A and C.

School Type Estimator Population A Population C

Low Middle High Low Middle High

03HU

Vdesign 9.853 4.702 19.329 15.234 9.358 83.412
GMSE 9.848 4.700 19.324 15.246 9.364 83.391
PEM (MSE) 34.477 16.370 67.495 47.670 28.382 223.215
PEM (bias) 7.303 -3.785 4.191 6.568 -2.157 -34.595
PEM (variance) 33.695 15.926 67.365 47.216 28.299 220.518

03IK

Vdesign 21.265 8.866 38.204 26.501 8.463 40.423
GMSE 21.263 8.866 38.202 26.499 8.462 40.405
PEM (MSE) 75.662 30.731 122.734 92.565 27.680 104.185
PEM (bias) 13.670 -4.505 -6.897 34.185 -8.129 -21.266
PEM (variance) 74.412 30.399 122.540 86.021 26.460 101.992

04LD

Vdesign 12.054 7.374 29.509 20.556 7.280 31.167
GMSE 12.051 7.372 29.506 20.539 7.274 31.138
PEM (MSE) 39.762 24.531 96.598 67.610 22.252 78.937
PEM (bias) -5.611 3.634 -2.671 20.484 -3.241 -30.746
PEM (variance) 39.364 24.261 96.561 64.432 22.015 72.703

04QV

Vdesign 14.172 5.259 28.277 11.594 9.561 28.509
GMSE 14.168 5.258 28.275 11.593 9.560 28.493
PEM (MSE) 51.460 18.266 91.074 37.550 29.481 75.095
PEM (bias) 14.085 -3.717 -11.754 9.856 -5.022 -17.684
PEM (variance) 49.495 17.883 90.313 36.234 29.050 72.983

06JP

Vdesign 11.223 4.245 30.202 16.116 7.736 34.380
GMSE 11.219 4.243 30.196 16.108 7.732 34.362
PEM (MSE) 38.480 14.233 96.768 50.855 23.480 88.980
PEM (bias) 4.733 -0.397 -17.525 7.995 -0.903 -26.070
PEM (variance) 38.188 14.227 95.168 50.222 23.463 85.076

5.2.4 Computational complexity

As explained in the earlier sections, the key motivation for evaluating the performance of PEM is its

computational speed. Across the relatively large populations distinguished based on EAF data, PEM

provided results extremely fast in comparison to the other two approaches. Computation of GMSE

in the entire population took 2 hours for population A, while Vdesign took 20 minutes, and PEM took

approximately a second. This needs to be evaluated while considering two key points. First, the code

for GMSE is not the most optimal. It contains several nested loops and could be parallelized in parts.

Second, both Vdesign and GMSE contain computational bottlenecks, the main component of which comes

from the estimation of the variance-covariance matrix of the imputation model. This, however, needs to

be completed only once, and all domains of interest can be computed based on this much faster. Across

both internal and external domains, although Vdesign was faster than GMSE, all computations remained

under a minute. PEM remained around a second.
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Chapter 6

Discussion

The thesis aimed to evaluate the robustness of three different approaches in estimating the bias and/or

variance of the mass-imputed estimator. Two approaches from published literature and a novel, simpler

approach were compared in a simulation and a case study.

6.1 Key findings

The simulation study demonstrated that all estimators can be considered robust variance estimators.

Across several experimental conditions where the variance of the mass-imputed estimator increased while

bias remained negligible, the accuracy estimators approximated the true simulated variance well. This

was the case even when the conditions put the estimators in an unfavourable position due to the violation

of assumptions. Minor systematic deviations from the benchmark values were observed, which, though

practically negligible, are consistent with findings from previous research. Consistent with previous

studies examining the behaviour of Vdesign by Scholtus and Daalmans (2021) and GMSE by Alleva

et al. (2021) and Deliu et al. (2025), estimation was less precise in small domains. In small domains,

all estimators were more variable and prone to overestimation. A novel finding from the current study

is that the reverse is true if the bias increases, whereby estimators become prone to underestimation in

small domains. Another result consistent with Scholtus and Daalmans (2021) is that overparameterising

the imputation model by estimating parameters with little predictive power leads to overestimation of

variance, which was found to affect both Vdesign and GMSE, while PEM was the least affected given

that it does not directly estimate model parameter error.

For the first time, it was demonstrated that the novel PEM approach could be considered a robust

estimator of variance and bias, particularly in large domains and if the bias was not too large. It was

found that generally, PEM tends to overestimate both bias and variance due to relying on averaged unit-

level probabilities. This was pronounced if the estimated prediction error probabilities became closer to

0 and 1, as the variance function of multinomial variables is more sensitive to extreme probabilities. This

was also pronounced if the domains were not taken into account when estimating the prediction error

probabilities. This suggests that for the best performance of PEM , prediction error probabilities need

to be estimated domain-specifically. Furthermore, PEM can likely be improved in general by estimation

at even more granular levels, e.g., based on a combination of several domain variables.

Surprisingly, Vdesign and GMSE performed similarly even if the assumptions for Vdesign were not met

and the mass-imputed estimator was biased. This suggests that Vdesign is a more robust variance estimator

than thought. On the other hand, due to the assumptions made during derivation, GMSE appears to be

limited in estimating bias, leading to the estimation of practically negligible bias at best. Furthermore, a
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slight underestimation was observed under a non-ignorable sampling design, suggesting that, in practice,

Vdesign is a more appropriate choice in this case. However, it may yield a more conservative estimate.

Encouragingly, the results from the simulation study were mainly replicated in the case study. Minor

differences were observed in the pattern of the estimates provided by the three estimators compared to the

simulation study. In the simulation study, Vdesign provided consistently smaller estimates than GMSE

and PEM , while the reverse was true in the case study. This could be due to the latter two estimators

simplifying the effect of the sampling design on the variance estimate. Even though the sampling design

was ignorable in theory, Vdesign incorporates it in the estimation of model parameter error, leading to

larger standard errors of the parameters, which possibly resulted in a relatively larger variance estimate

in the case study since the imputation model was much more extensive in comparison to the simulation

study. On the other hand, the differences could partly be due to the simplified actual sampling design in

the case study.

A finding from the case study that was not investigated during the simulation study revealed that in

extremely small domains of less than 1000 units, PEM becomes unreliable due to a severe overestimation

of variance compared to the other two approaches. This suggests that PEM is not appropriate for

accuracy estimation in such domains. On the other hand, it presents a good alternative to the other

approaches in large domains, especially given that it is easier and much faster to compute. Furthermore, it

is likely that estimation in extremely small domains improves significantly if prediction error probabilities

can be estimated at a more granular level.

6.2 Strengths and Limitations

The current study is the first to compare different accuracy estimators for the mass-imputed estimator.

Furthermore, it is the first study to compare the estimators under suboptimal conditions, which can yet

be expected to occur in practice. Given that the comparison proceeded across a relatively large set of

experimental conditions defined based on realistic sample and population sizes, the results are a good

guide for choosing between accuracy estimators in practice.

Unfortunately, the study was not conducted under a full factorial experimental design primarily due

to computational reasons. For the same reason, the conditions were defined mostly in terms of one level,

which did not enable the analysis of the gradient of the effects when, for example, the sample size gets

incrementally smaller. As a result, it was tricky to disentangle some effects when analysing the behaviour

of the estimators. For example, it remains somewhat unclear why Vdesign overestimated the variance in

the case study. While the explanation provided above is plausible, several effects co-occur, such as the

large number of parameters and omission of key interactions from the imputation model. In addition,

several interesting extreme situations, such as non-ignorable sampling and small sample size, remained

unexplored. Future research is encouraged to explore the effects at a more incremental level using a full

factorial experimental design. Besides optimising the code for the estimators, the computational efficiency

of such an experiment can be increased by ignoring the joint distribution, given that all estimators are

essentially interested in estimation at the finite population level. Furthermore, there was limited evidence

that estimators differ beyond stochastic noise at the level of the joint distribution.

Another limitation is that the analysis of the simulation study was based on comparing the estimators

against the benchmark value. While informative, analysing the coverage rates of estimated confidence

intervals might provide more conclusive results in terms of the robustness of estimation with respect to

sampling or joint distribution. This type of analysis requires more simulation iterations and, therefore,

was not conducted in the current study. Future research is encouraged to explore this at the level of the

sampling distribution.

54



The final note concerns the evaluation of complex sampling designs. While the estimators were

investigated under stratified random sampling, the purpose was to test the robustness of the estimators

under non-ignorable sampling. Given that GMSE appears relatively robust under this condition, future

research could explore how GMSE behaves under more complex sampling designs, whereby Vdesign might

become cumbersome to compute.

6.3 Conclusion

The current study yielded encouraging results for the production of official statistics based on mass impu-

tation. The variance of the mass-imputed estimator can be reliably estimated using several approaches,

from which an optimal method can be chosen based on the specifics of the sample and the target variable.

Furthermore, several interesting directions for future research can be suggested based on the results. It

was established that GMSE is a robust estimator of imputation-specific errors; therefore, research can

now explore adapting it to other types of non-sampling errors. This suggestion also extends to PEM ,

which warrants further exploration due to its demonstrated speed and robustness as a fast alternative to

other approaches. In addition, PEM was the only approach that showed promise in estimating the bias

of the mass-imputed estimator, which remains an important challenge.
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Appendix A

Code

All the data and code to replicate the simulation study can be found from this GitHub link. Since the

case study has been carried out using confidential data, the relevant scripts can be requested privately.
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Appendix B

Details on estimating Vdesign for binomial and multinomial model

This appendix is based on notes provided by Dr. Sander Scholtus, used with permission.

B.1 Logistic regression

Given independent imputations, the first term in Equation 2.11 can be computed as is. The second term

referring to design-based covariance of predicted probabilities can be estimated upon first-order Taylor

series approximation of the logistic function 1
1+exp(−xT

k β)
(see Scholtus, 2018 and Scholtus and Daalmans,

2021 for details), resulting in

ˆcovP (p̂k, p̂l) = p̂k(1− p̂k)x
′
k(X

′∆̂wX)−1Γ̂(X′∆̂wX)−1xl p̂l(1− p̂l) (B.1)

where X ′∆̂wX is the information matrix of a weighted logistic regression model,

I = − ∂2ℓ

∂β ∂β′ =
∑
k∈s

p̂k(1− p̂k)wk xkx
′
k = X′∆wX (B.2)

with wk = 1/πk if k ∈ s and wk = 0 otherwise, and

Γ̂ =
∑
k∈S

∑
l∈S

πkl − πkπl

πkl
xk(yk − p̂k)(yl − p̂l)x

′
l

which is the standard Horvitz-Thompson estimator for var(
∑

k∈s wk(yk − pk)xk) (Särndal et al., 1992,

p.48).

B.2 Multinomial logistic regression

For a multinomial target variable, Equation B.1 takes a similar form, except that the information matrix

needs to now account for C − 1 sets of parameters (Agresti, 2013, Chapter 8). In addition, we need to

linearise the probabilities with respect to the softmax function.

The information matrix for a multinomial logistic regression model takes a block-form,

I =


I1,1 · · · I1,C−1

...
. . .

...

IC−1,1 · · · IC−1,C−1


where Ic,d = − ∂2ℓ

∂βc ∂βT
d

= XT∆c,dX, with

(∆c,d)jj =

p̂ck(1− p̂ck)wk if c = d

−p̂ckp̂dkwk if c ̸= d

62



First-order Taylor linearisation of the softmax function results in following expressions for the pre-

dicted probabilities:

p̂ck ≈ ỹck + ỹck(1− ỹck)x
T
k (β̂c − βc)−

C−1∑
d=1
d ̸=c

ỹckỹdk x
T
k (β̂d − βd), c = 1, . . . , C − 1,

p̂Ck ≈ ỹCk −
C−1∑
c=1

ỹCkỹck x
T
k (β̂c − βc)

the variances and covariances of which can be approximated by

var(p̂ck) ≈ var

(
C−1∑
d=1

(∆c,d)kk x
T
k (β̂d − βd)

)

=

C−1∑
d=1

C−1∑
d′=1

(∆c,d)kk x
T
k cov(β̂d, β̂d′)xk (∆c,d′)kk

=

C−1∑
d=1

C−1∑
d′=1

(∆c,d)kk x
T
k Vd,d′ xk (∆c,d′)kk

var(p̂Ck) ≈ var

(
C−1∑
d=1

ỹCkỹdk x
T
k (β̂d − βd)

)

=

C−1∑
d=1

C−1∑
d′=1

ỹCkỹdk x
T
k Vd,d′ xk ỹCkỹd′k

cov(p̂ck, p̂c′l) ≈ cov

(
C−1∑
d=1

(∆c,d)kk x
T
k (β̂d − βd),

C−1∑
d=1

(∆c′,d)ll x
T
l (β̂d − βd)

)

=

C−1∑
d=1

C−1∑
d′=1

(∆c,d)kk x
T
k Vd,d′ xl (∆c′,d′)ll

where Vd,d′ is the estimated covariance matrix of the pair of estimated parameter vectors β̂d and β̂d′ ,

which is derived using the information matrix I, similar to the binomial case. Note that if c and/or

c′ = C, then (∆c,d)kk and (∆c′,d′)kk should be replaced by −p̂Ckp̂dkwk and −p̂Ckp̂d′kwk respectively.
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Appendix C

Details on estimating GMSE for binomial and multinomial target

variables

C.1 Multinomial logistic regression

The two-step linearisation procedure is described in detail in Deliu et al. (2025). The notation below is

adapted for consistency with the current thesis.

The two-step linearisation proceeds by first linearising the mass-imputed estimator with respect to

the estimated model parameters under the model distribution and then linearising the estimated model

parameters with respect to their expected value under the sampling distribution, resulting in the following

expression for GMSE based in stochastic imputation:

GMSE(ŶUd,c
) = γT

d Fc

(
N∑
i=1

πkŪk∆c,dŪk

)
FT

c γd +

N∑
k=1

γd,kp̂c,k (1− p̂c,k) , for c = 1, . . . , C

where Fc is an N ×H matrix where H = C × J composed of the first-order derivatives of the softmax

function evaluated at the expected value of the model parameters, so that each element in Fc is

Fc,k =

xkj p̂ck(1− p̂ck), if c = c′

−xkj p̂ckp̂ck, if c ̸= c

Ūk is an H × C matrix equivalent to I−1Xk where Xk is an H × C matrix

Xk =



xk1 0 · · · 0
... · · · · · ·

...

xkJ · · · · · ·
...

0 · · · · · · 0
... · · · · · · xk1

... · · · · · ·
...

0
... 0 xkJ


∆c,d is a C × C variance-covariance matrix of Y with elements p̂ck(1 − p̂ck) on the main diagonal and

−p̂ckp̂dk on the off diagonals.
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C.2 Logistic regression

For logistic regression, Fc,k reduces to Fk = xk p̂k(1− p̂k), I reduces to Equation B.2 and the variance-

covariance matrix reduces to ∆ with elements p̂k(1− p̂k) on the main diagonal.
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Appendix D

Derivation of PEM

This appendix is based on notes provided by Dr. Sander Scholtus, used with permission.

D.1 Binary target variable

Recall from Section 2.2.1 that for each unit k we obtain a predicted probability p̂k = P (ŷk = 1 | xk, s).

Let pk present the true underlying probability. In what follows, conditioning on the auxiliary variables

xk is excluded to simplify notation, unless it is explicitly needed, but is supposed to be there throughout.

As a simplification, it is assumed that s is a SRSWOR. Additionally, let ŶUd
≈
∑

k∈s γd,kyk +∑
k∈U\s γd,kŷk, that is to say that we ignore the difference between imputing the entire population or

only the non-sampled part of the population, which is reasonable if the sampling fraction is small since

the finite population correction factor becomes negligible.

From a design-based point of view, the bias and variance of ŶUd
as an estimator of YUd

are:

EP (ŶUd
− YUd

) = EP

{∑
k∈U

γd,k(ŷk − yk)

}
;

VP (ŶUd
− YUd

) = VP

{∑
k∈U

γd,k(ŷk − yk)

}
.

For the bias, we can write:

EP (ŶUd
− YUd

) =
∑
k∈U

γd,k {EP (ŷk)− yk} =
∑
k∈U

γd,k {EP [E(ŷk | s)]− yk} ,

which yields

EP (ŶUd
− YUd

) =
∑
k∈U

γd,k {EP (p̂k)− yk} . (D.1)

For the variance, it follows analogously to Scholtus and Daalmans (2021) that

VP (ŶUd
− YUd

) = EP

{∑
k∈U

γd,k V(ŷk − yk | s)

}
+ VP

{∑
k∈U

γd,k [E(ŷk | s)− yk]

}

=
∑
k∈U

γd,k EP {p̂k(1− p̂k)}+ VP

(∑
k∈U

γd,kp̂k

)

=
∑
k∈U

γd,k

{
EP (p̂k)− [EP (p̂k)]

2 − VP (p̂k)
}
+ VP

(∑
k∈U

γd,kp̂k

)
.
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We write this as

VP (ŶUd
− YUd

) =
∑
k∈U

γd,k EP (p̂k) [1− EP (p̂k)] + VP

(∑
k∈U

γd,kp̂k

)
−
∑
k∈U

γd,k VP (p̂k). (D.2)

Below it will be shown that the final term is negligible in practice.

In Equations D.1 and D.2, we can replace all instances of p̂k by ykp̂k + (1 − yk)p̂k. In addition, assume

that it is reasonable to use the following approximation for all units in domain d:

p̂k = P (ŷk = 1 | xk, s) ≈ P (ŷk = 1 | yk, s) ≈

p11,ds if yk = 1

1− p00,ds if yk = 0
(D.3)

where

p11,ds =

∑
k∈s γd,k yk pk∑
k∈s γd,k yk

; p00,ds =

∑
k∈s γd,k (1− yk)(1− pk)∑

k∈s γd,k (1− yk)
. (D.4)

resulting in

p̂k = ykp̂k + (1− yk)p̂k ≈ yk p11,ds + (1− yk)(1− p00,ds). (D.5)

According to standard results from sampling theory (see, e.g., Särndal et al., 1992, Section 5.8 and

Exercise 5.34), it holds that

EP (p11,ds) ≈
∑

k∈U γd,k yk pk∑
k∈U γd,k yk

≡ p11,dU ,

EP (p00,ds) ≈
∑

k∈U γd,k (1− yk)(1− pk)∑
k∈U γd,k (1− yk)

≡ p00,dU ,

VP (p11,ds) ≈
N

Nd1
· 1
n

(
1− n

N

)
p11,dU (1− p11,dU ),

VP (p00,ds) ≈
N

Nd0
· 1
n

(
1− n

N

)
p00,dU (1− p00,dU ),

CP (p11,ds, p00,ds) ≈ 0.

(D.6)

where N and n denote the size of U and s. The covariance in the final line is approximately zero because

the two estimators are computed on disjoint subsets of sample s.

Using approximations D.5 and D.6, we obtain

EP (p̂k) ≈ yk EP (p11,ds) + (1− yk)EP (1− p00,ds) ≈ yk p11,dU + (1− yk)(1− p00,dU )
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and

VP

(∑
k∈U

γd,kp̂k

)
≈ VP

{∑
k∈U

γd,k [yk p11,ds + (1− yk)(1− p00,ds)]

}
= VP {Nd1 p11,ds +Nd0 (1− p00,ds)}

= N2
d1 VP (p11,ds) +N2

d0 VP (p00,ds)

+ 2Nd1Nd0 CP (p11,ds, p00,ds)

≈ N

n

(
1− n

N

)
{Nd1p11,dU (1− p11,dU ) +Nd0p00,dU (1− p00,dU )} .

Moreover,

VP (p̂k) ≈
N

n

(
1− n

N

){ 1

Nd1
yk p11,dU (1− p11,dU ) +

1

Nd0
(1− yk) p00,dU (1− p00,dU )

}
.

From the last two expressions it is clear that
∑

k∈U γd,k VP (p̂k) ≪ VP

(∑
k∈U γd,kp̂k

)
, which shows that

the final term in Equation D.2 may be ignored in practice.

Substituting the approximate results for the expected value and variance of p̂k into Equations D.1 and

D.2, we have for the following result for the bias

EP

(
ŶUd

−YUd

)
≈
∑
k∈U

γd,k
{
yk
(
p11,dU − 1

)
+ (1− yk)(1− p00,dU )

}
≈ Nd1 (p11,dU − 1)+Nd0 (1− p00,dU )

(D.7)

For Equation D.2 for the variance, it is seen that the first term
∑

k∈U γd,kEP (p̂k) {1− EP (p̂k)} may be

approximated by∑
k∈U

γd,k [ykp11,dU + (1− yk)(1− p00,dU )] {1− [ykp11,dU + (1− yk)(1− p00,dU )]}

= Nd1p11,dU (1− p11,dU ) +Nd0p00,dU (1− p00,dU )

where we used that y2k = yk, (1− yk)
2 = (1− yk), and yk(1− yk) = 0.

It follows that

VP

(
ŶUd

− YUd

)
≈ Nd1p11,dU (1− p11,dU ) +Nd0p00,dU (1− p00,dU )

+
N

n

(
1− n

N

)
{Nd1p11,dU (1− p11,dU ) +Nd0p00,dU (1− p00,dU )} .

Finally, using that 1 + N
n

(
1− n

N

)
= N

n , we obtain:

VP

(
ŶUd

− YUd

)
≈ N

n
{Nd1p11,dU (1− p11,dU ) +Nd0p00,dU (1− p00,dU )} . (D.8)

The above results could be generalized relatively easily to the case where the sampling design of s is more

complicated than SRSWOR. In the general case, D.4 should incorporate the inclusion weights wk = 1/πk
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of sample s:

p11,ds =

∑
k∈s γd,kwk yk pk∑
k∈s γd,kwk yk

; p00,ds =

∑
k∈s γd,kwk (1− yk)(1− pk)∑

k∈s γd,k wk(1− yk)
.

In Equation D.6, the variance formula based on SRSWOR should be replaced by the general variance

formula of a ratio of Horvitz-Thompson estimators, and the subsequent expressions need to be adjusted

accordingly.

To estimate the above bias and variance approximations in practice, the following approach seems at-

tractive. First, to estimate p11,ds and p00,ds, one could use

p̂11,ds =

∑
k∈s γd,kwk yk p̂k∑
k∈s γd,kwk yk

; p̂00,ds =

∑
k∈s γd,kwk (1− yk)(1− p̂k)∑

k∈s γd,k wk(1− yk)
.

In the case of simple random sampling, the weights wk = N/n may be left out. Next, formulas D.7 and

D.8 could be estimated by

ÊP

(
ŶUd

− YUd

)
= N̂d1U (p̂11,ds − 1) + N̂d0U (1− p̂00,ds) ,

V̂P

(
ŶUd

− YUd

)
=

N

n

{
N̂d1U p̂11,ds(1− p̂11,ds) + N̂d0U p̂00,ds(1− p̂00,ds)

}
,

with N̂d1U =
∑

k∈U γd,kp̂k, and N̂d0U =
∑

k∈U γd,k(1− p̂k).

In all of these expressions, p̂k could also be replaced by ŷk, but this would add additional noise due to

stochastic imputation of ŷk, potentially leading to less precise estimates in the case of p̂11,ds and p̂00,ds,

and even biased estimates in the case of N̂d1U and N̂d0U (van Delden et al., 2016). Alternatively, we

could estimate Nd1 and Nd0 in EquationsD.7 and D.8 directly from the sample by N̂d1s =
∑

k∈s γd,kwkyk

and N̂d0s =
∑

k∈s γd,kwkyk. This has the advantage that it does not rely on the imputation model being

correct, but also the disadvantage of being potentially inaccurate if the sample size is small.

D.2 Multinomial target variable

The approach can be extended to C ≥ 2. Introducing p̂c,k = P (ŷc,k = 1 | xk, s), we now obtain instead

of D.1 and D.2

EP

(
ŶUd,c − YUd,c

)
=
∑
k∈U

γd,k {EP (p̂c,k)− yc,k} (D.9)

and

VP

(
ŶUd,c − YUd,c

)
=
∑
k∈U

γd,k EP (p̂c,k) {1− EP (p̂c,k)}+VP

(∑
k∈U

γd,kp̂c,k

)
−
∑
k∈U

γd,k VP (p̂c,k) (D.10)

Approximation D.5 is now replaced by

p̂c,k =

C∑
g=1

yg,kp̂c,k ≈
C∑

g=1

yg,k pgc,ds (D.11)
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where for all combinations of g ∈ {1, . . . , C} and h ∈ {1, . . . , C}

pgh,ds =

∑
k∈S γd,k yg,k ph,k∑

k∈S γd,k yg,k
. (D.12)

Instead of D.6, we obtain

EP (pgh,ds) ≈
∑

k∈U γd,k yg,k ph,k∑
k∈U γd,k yg,k

≡ pgh,dU ,

VP (pgh,ds) ≈
N

Ndg
· 1
n

(
1− n

N

)
pgh,dU (1− pgh,dU ),

CP (pgh,dS , pg′h′,ds) ≈ 0 if g ̸= g′,

with Ndg =
∑
k∈U

γd,k yg,k.

(D.13)

Instead of D.1 and D.2 we obtain

EP

(
ŶUd,c − YUd,c

)
≈ Ndc (pcc,dU − 1) +

C∑
g=1
g ̸=c

Ndg pgc,dU (D.14)

VP

(
ŶUd,c − YUd,c

)
≈ N

n

C∑
g=1

Ndg pgc,dU (1− pgc,dU ) (D.15)

which can be estimated in practice by

ÊP

(
ŶUd,c − YUd,c

)
= N̂dcU (p̂cc,ds − 1) +

C∑
g=1
g ̸=c

N̂dgU p̂gc,ds,

V̂P

(
ŶUd,c − YUd,c

)
=

N

n

C∑
g=1

N̂dgU p̂gc,ds (1− p̂gc,ds) ,

(D.16)

with

p̂gh,ds =

∑
k∈s γd,kwkyg,kp̂h,k∑

k∈s γd,kwkyg,k
, N̂dgU =

∑
k∈U

γd,kp̂g,k.
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Appendix E

True and estimated domain sizes across superpopulation 1 and 2

Table 18: Domain sizes for binomial target variable for category ”has higher education” in
superpopulation 1

Condition Domain Distribution True total Mass-imputed estimator

Baseline

Male Joint 30 154.42 30 156.44

Sampling 30 100.00 30 100.35

Female Joint 30 961.23 30 965.78

Sampling 30 754.00 30 815.81

Small sample

Male Joint 30 168.02 30 179.52

Sampling 30 354 30 491.87

Female Joint 30 956.37 30 955.99

Sampling 31 076 31 165.25

Non-ignorable

Male Joint 30 163.53 30 160.17

Sampling 30 028 30 130.49

Female Joint 30 942.56 30 949.39

Sampling 30 684 30 517.57

Small population

Male Joint 12 069.28 12 068.32

Sampling 11 934 11 971.61

Female Joint 12 381.79 12 383.95

Sampling 12 480 12 418.34

Overparameterization

Male Joint 30 180.92 30 183.98

Sampling 30 202 30 258.56

Female Joint 30 960.72 30 953.10

Sampling 30 992 31 016.30

Design bias

A Joint 30 388.58 30 395.37

Sampling 30 372 30 364.34

B Joint 30 747.76 30 742.18

Sampling 30 654 30 705.62

Model bias (small)

Male Joint 30 165.11 32 757.35



Condition Domain Distribution True total Mass-imputed estimator

Sampling 30 206 32 730.56

Female Joint 30 944.87 28 363.50

Sampling 31 013 28 464.86

Model bias (large)

Male Joint 36 530.24 30 731.35

Sampling 36 475 30 676.31

Female Joint 24 614.01 30 404.74

Sampling 24 680 30 353.78

Model bias

(large)

x

small n

Male Joint 36 569.79 30 745.29

Sampling 36 618 31 120.68

Female Joint 24 591.00 30 418.50

Sampling 24 847 30 817.01

Table 19: Domain sizes for binomial target variable for category ”has higher education” in
superpopulation 2

Condition Domain Distribution True total Mass-imputed estimator

Baseline

Male Joint 30 154.42 30 156.44

Sampling 30 100 30 100.35

Female Joint 30 961.23 30 965.78

Sampling 30 754 30 815.81

Small sample

Male Joint 30 163.07 30 155.82

Sampling 30 354 30 187.12

Female Joint 30 953.59 30 952.74

Sampling 31 076 30 828.56

Non-ignorable

Male Joint 30 176.77 30 180.64

Sampling 30 102 30 009.65

Female Joint 30 948.79 30 948.71

Sampling 30 857 30 863.13

Small population

Male Joint 12 078.28 12 078.76

Sampling 12 089 12 087.54

Female Joint 12 374.18 12 373.56

Sampling 12 364 12 362.93

Overparameterization

Male Joint 30 174.23 30 170.0



Condition Domain Distribution True total Mass-imputed estimator

Sampling 30 026 30 022.46

Female Joint 30 962.10 30 959.4

Sampling 31 099 31 116.52

Design bias

Male Joint 30 388.58 30 395.37

Sampling 30 372 30 364.34

Female Joint 30 747.76 30 742.18

Sampling 30 654 30 705.62

Model bias (small)

Male Joint 30 162.08 30 492.80

Sampling 30 188 30 511.03

Female Joint 30 948.30 30 616.72

Sampling 31 033 30 651.17

Model bias (large)

Male Joint 36 539.05 34 487.37

Sampling 36 536 34 491.95

Female Joint 24 594.75 26 640.22

Sampling 24 579 26 669.45

Model bias

(large)

x

small n

Male Joint 36 547.23 34 474.56

Sampling 36 502 34 459.62

Female Joint 24 568.52 26 632.75

Sampling 24 590 26 570.60



Appendix F

CSRMs for benchmarks and accuracy estimators across the experimental conditions with the

binomial target variable

Table 20: CSRM (%) for Superpopulation 1

Condition Domain Distribution MSE Bias Variance Vdesign GMSE PEM (MSE) PEM (bias) PEM (variance)

Baseline

Male Joint 1.795 0.281 1.787 1.790 1.834 1.889 0.410 1.844

Sampling 1.887 -0.281 1.862 1.786 1.830 1.891 −0.317 1.847

Female Joint 1.714 0.175 1.705 1.717 1.759 1.811 0.397 1.767

Sampling 1.738 0.214 1.734 1.735 1.778 1.804 −0.336 1.760

Small sample

Male Joint 4.056 0.382 4.038 4.031 4.022 4.233 −0.948 4.125

Sampling 4.055 0.454 4.030 4.0 3.989 4.184 0.687 4.084

Female Joint 3.846 0.363 3.829 3.861 3.856 4.055 0.901 3.953

Sampling 3.900 0.287 3.890 3.842 3.835 4.018 −0.689 3.926

Small population

Male Joint 2.827 -0.278 2.811 2.835 2.902 2.990 0.655 2.917

Sampling 2.681 0.315 2.773 2.838 2.904 3.001 0.490 2.940

Female Joint 2.707 0.286 2.695 2.722 2.788 2.862 −0.620 2.793

Sampling 2.592 -0.494 2.791 2.682 2.748 2.855 −0.498 2.786



Condition Domain Distribution RRMSE RB CV Vdesign GMSE PEM (MSE) PEM (bias) PEM (variance)

Non-ignorable

Male Joint 2.102 -0.185 2.093 2.118 1.915 2.272 0.585 2.195

Sampling 2.003 -0.204 1.973 2.125 1.914 2.254 −0.462 2.184

Female Joint 2.971 0.286 2.956 2.936 2.798 3.037 0.605 2.976

Sampling 3.193 0.111 3.147 2.977 2.835 3.037 −0.508 2.976

Overparameterization

Male Joint 1.797 0.192 1.787 1.836 1.833 1.890 −0.413 1.843

Male Sampling 1.615 0.187 1.605 1.828 1.827 1.895 0.360 1.838

Female Joint 1.707 -0.189 1.697 1.759 1.757 1.811 0.400 1.767

Sampling 1.665 0.078 1.663 1.756 1.753 1.806 −0.318 1.763

Design bias

A Joint 1.315 -0.321 1.276 1.301 1.301 1.832 0.291 1.809

Sampling 1.384 -0.291 1.360 1.298 1.298 1.835 0.266 1.805

B Joint 1.304 0.302 1.269 1.299 1.299 1.825 −0.291 1.802

Sampling 1.496 0.684 1.249 1.295 1.295 1.826 −0.267 1.797

Model bias (small)

Male Joint 8.596 7.913 1.498 1.421 1.422 5.147 −4.858 1.700

Sampling 8.471 8.358 1.384 1.423 1.424 5.040 −4.739 1.702

Female Joint 8.461 -8.342 1.415 1.600 1.600 5.942 5.620 1.930

Sampling 8.325 -8.216 1.343 1.591 1.588 5.763 5.427 1.924

Model bias (large)

Male Joint 15.910 -15.874 1.066 1.300 1.230 2.015 −0.919 1.793

Sampling 15.931 -15.897 1.034 1.304 1.303 2.026 −0.901 1.797

Female Joint 23.581 23.528 1.581 1.317 1.317 2.041 0.925 1.820

Sampling 23.035 22.989 1.457 1.320 1.320 2.033 0.862 1.823

Model bias

(large)

x

small n

Male Joint 16.094 -15.925 2.329 2.800 2.796 4.149 −1.067 4.009



Condition Domain Distribution RRMSE RB CV Vdesign GMSE PEM (MSE) PEM (bias) PEM (variance)

Sampling 15.187 -15.013 2.296 2.768 2.763 4.089 −0.897 3.961

Female Joint 23.951 23.699 3.464 2.836 2.832 4.210 1.08 4.069

Sampling 24.256 24.027 3.322 2.802 2.798 4.148 0.910 4.016

Table 21: CSRM (%) for Superpopulation 2

Condition Domain Distribution RMSE RB CV Vdesign GMSE PEM (MSE) PEM (bias) PEM (variance)

Baseline

Male Joint 1.045 0.105 1.039 1.047 1.071 1.433 0.465 1.355

Sampling 1.090 -0.1701 1.070 1.050 1.067 1.422 0.361 1.354

Female Joint 1.010 -0.095 1.004 1.010 1.034 1.382 −0.448 1.307

Sampling 1.049 -0.044 1.028 1.009 1.030 1.376 0.357 1.301

Small sample

Male Joint 2.364 -0.244 2.351 2.351 2.337 3.196 −1.053 3.016

Sampling 2.379 0.090 2.377 2.353 2.325 3.130 −0.880 3.000

Female Joint 2.269 -0.235 2.257 2.271 2.257 3.078 −1.012 2.906

Sampling 2.232 -0.659 2.133 2.269 2.257 3.064 −0.805 2.902

Small population

Male Joint 1.665 0.177 1.657 1.661 1.697 3.196 0.732 3.017

Sampling 1.597 -0.012 1.597 1.670 1.703 2.242 0.540 2.137

Female Joint 1.604 -0.163 1.598 1.595 1.631 3.078 −0.710 2.907

Sampling 1.618 -0.009 1.616 1.599 1.639 2.156 0.536 2.052

Non-ignorable

Male Joint 1.811 -0.179 1.803 1.819 1.461 2.528 −0.674 2.436

Sampling 2.016 -0.298 2.012 1.817 1.460 2.487 0.459 2.423



Condition Domain Distribution RMSE RB CV Vdesign GMSE PEM (MSE) PEM (bias) PEM (variance)

Female Joint 1.775 -0.138 1.766 1.753 1.401 2.437 0.655 2.347

Sampling 1.753 0.187 1.746 1.749 1.398 2.414 −0.477 2.336

Overparameterization

Male Joint 1.357 -0.101 1.349 1.383 1.387 1.429 −0.460 1.352

Sampling 1.347 -0.006 1.347 1.391 1.397 1.427 0.340 1.361

Female Joint 1.325 -0.095 1.319 1.340 1.333 1.379 0.448 1.304

Sampling 1.287 0.097 1.286 1.339 1.329 1.367 −0.341 1.302

Design bias

A Joint 0.767 0.173 0.747 0.765 0.764 1.375 0.330 1.335

Sampling 0.717 -0.025 0.716 0.766 0.765 1.371 0.246 1.336

B Joint 0.762 -0.183 0.740 0.760 0.760 1.365 0.329 1.325

Sampling 0.725 0.168 0.715 0.761 0.761 1.359 −0.239 1.326

Model bias (small)

Male Joint 1.348 1.102 0.776 0.772 0.772 1.512 0.688 1.346

Sampling 1.334 1.070 0.780 0.772 0.771 1.512 0.648 1.342

Female Joint 1.306 -1.077 0.740 0.757 0.757 1.486 −0.686 1.318

Sampling 1.443 -1.230 0.754 0.756 0.755 1.465 −0.594 1.313

Model bias (large)

Male Joint 5.649 -5.615 0.619 0.678 0.677 3.972 −3.794 1.177

Sampling 5.628 -5.595 0.610 0.679 0.679 4.000 −3.821 1.181

Female Joint 8.369 8.318 0.924 0.883 0.882 5.132 4.899 1.530

Sampling 8.556 8.505 0.932 0.884 0.884 5.155 4.920 1.534

Model bias

(large)

x

small n

Male Joint 5.829 -5.666 1.367 1.461 1.453 4.603 −3.782 2.624

Sampling 5.756 -5.595 1.352 1.456 1.442 4.587 −3.758 2.604

Female Joint 8.668 8.424 2.043 1.903 1.892 5.953 4.880 3.410



Condition Domain Distribution RMSE RB CV Vdesign GMSE PEM (MSE) PEM (bias) PEM (variance)

Sampling 8.299 8.054 2.001 1.895 1.878 5.832 4.720 3.389



Appendix G

CSRMs for benchmark and accuracy estimators in the multino-

mial condition

Table 22: CSRM (%) in multinomial condition for superpopulation 1

Estimator Domain Low Middle High

RRMSE Male 3.865 1.865 2.523

Female 4.765 1.825 2.508

RB Male −0.0492 0.013 0.005

Female −0.166 0.103 −0.084

CV Male 3.865 1.865 2.523

Female 4.765 1.825 2.508

Vdesign Male 3.968 1.863 2.584

Female 4.769 1.879 2.514

GMSE Male 4.069 1.909 2.647

Female 4.881 1.925 2.574

PEM (MSE) Male 4.240 1.873 2.697

Female 4.957 1.892 2.625

PEM (bias) Male −0.998 −0.142 0.527

Female 0.923 −0.168 −0.515

PEM (variance) Male 4.121 1.868 2.645

Female 4.871 1.885 2.574



Table 23: CSRM (%) in multinomial condition for superpopulation 2

Estimator Domain Low Middle High

RRMSE Male 1.979 1.512 4.164

Female 5.547 1.861 1.598

RB Male 0.104 −0.023 −0.099

Female 0.064 −0.065 0.052

CV Male 1.977 1.511 4.162

Female 5.546 1.861 1.598

Vdesign Male 2.056 1.499 4.216

Female 5.488 1.828 1.584

GMSE Male 2.104 1.533 4.310

Female 5.627 1.872 1.622

PEM (MSE) Male 2.767 1.694 4.719

Female 7.044 2.051 1.832

PEM (bias) Male −0.941 0.481 1.316

Female −2.533 0.616 −0.562

PEM (variance) Male 2.602 1.624 4.532

Female 6.573 1.957 1.743



Appendix H

Benchmark estimators across the sampling distribution

Figure 8: Change in CSRMs across the experimental conditions in superpopulation 1 (top) and 2
(bottom)
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Note: This figure indicates the change in benchmark estimators for the sampling distribution across the
experimental conditions. The benchmark estimators can be distinguished by linetype. The conditions
are ordered starting with the baseline, followed by the variance, bias, and interaction conditions.



Appendix I

Simulation results for the female subdomain



Figure 9: Performance in the baseline condition for female subdomain across superpopulations 1 and 2
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Note. The panels show the distribution of the estimators in the baseline condition across the two superpopulations in the female subdomain. The solid
orange lines refer to RRMSEdesign in the sampling distribution and RRMSEjoint in the joint distribution.



Figure 10: Performance of PEM(bias) in the baseline condition for female subdomain across superpopulations 1 and 2.
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Note. The panels show the distribution of PEM (bias) in the baseline condition in the female subdomain. The solid lines refer to RBdesign and RBjoint



Figure 11: Performance of the accuracy estimators across the variance conditions in the female subdomain in superpopulations 1 and 2 with binomial target variable.
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Note: The figures above show the performance of the estimators relative to benchmark RRMSEdesign and RRMSEjoint shown in orange line.



Figure 12: Performance of the estimators across bias and interaction conditions in the female subdomain in superpopulations 1 and 2.
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Note: The figures above show the performance of the estimators relative to RRMSEdesign and RRMSEjoint (shown in solid orange line) and CVdesign and CVjoint (shown in dotted orange line).
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