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Abstract

Graphs are powerful mathematical objects for modelling the interaction and evolution of complex physical
systems and networks. While these objects are comprised of a set of vertices with a corresponding set
of connecting edges, it is more mathematically convenient to represent them in matrix form, for example
with an adjacency matrix with binary entries indicating the presence of an edge connecting a given pair of
vertices. These structures can be further encoded with assumptions of randomness, where the probability
of connection between any two vertices in the graph is a random variable, giving rise to random graphs,
which themselves can be further delineated between homogeneous and inhomogeneous random graphs.
Homogeneous random graphs have a uniform probability of connection across all edges, and are classically
known as Erdös-Rényi Random Graphs. In contrast, inhomogeneous random graphs have edge specific
probabilities of connection, which can be dependent on the two vertices a given edge connects. This work
focuses on the latter delineation of random graphs, specifically looking at the asymptotic behaviour of
the distribution of eigenvalues, which we refer to as the empirical spectral distribution, of the normalized
Laplacian matrix of these graphs. The normalized Laplacian matrix can intuitively be viewed as a matrix
describing how well-connected a given node is relative to the rest of the graph, with its eigenvalues then
being akin to the stationary distribution of a random walk on the graph.

This feature of the empirical spectral distribution of the normalized Laplacian matrix makes it a
valuable mathematical object to use in a variety of statistical and machine learning applications. One of
those applications is in centrality measures that describe how well-connected a vertex or set of vertices is to
the rest of the graph, such as PageRank, which was originally designed to measure the relative importance
of a webpage as a function of how connected that webpage is to others [34]. The empirical spectral
distribution is also valuable in graph-based learning problems, such as in graphical neural networks, which
rely on the vector of eigenvalues as a key input in learning the underlying structure or node features of
a graph [30]. While there are many other uses for the spectral components of the normalized Laplacian
matrix, this work will focus on the two aforementioned applications.

This thesis proves the convergence of the empirical spectral distribution of the normalized Laplacian
matrix of an inhomogeneous random graph to a deterministic limiting measure, which was previously
defined by [6], as the number of the vertices in the graph tends to infinity. In the process of completing
this proof, several inequalities governing the behaviour of the expected connectedness of the vertices of the
graph are also proven. These inequalities can then be extended to approximation of PageRank, as in a
real world setting, the true PageRank vector is unknown, and so must instead be estimated. We evaluate
an approximation based upon the connectedness of a given vertex relative to the total number of edges
in a graph and prove that this methodology is in fact asymptotically close to the true PageRank vector.
Finally, we provide a novel mathematically motivated eigenvalue correction strategy for graphical neural
networks that aims to improve model performance by diversifying the range of potential values produced.
When tested on well-connected real world datasets, this method yields significantly better model accuracy
against existing correction strategies and models that do not perform any correction.

While these results are generalizable for a number of commonly used inhomogeneous network models,
such as the Chung-Lu model, we operate under the assumption of a well-connected graph where an edge
path can be drawn between any two vertices, which we refer to as “dense”. As such, these results are
not applicable for “sparse” graphs which potentially have isolated communities. Proving these asymptotic
results for more widely generalizable classes of inhomogeneous graphs, such as kernel-based random graphs,
remains an open question.
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Chapter 1
Introduction

This thesis analyzes the spectral behavior of the normalized Laplacian matrix of both homo-
geneous and inhomogeneous random graphs. Beginning with a theoretical perspective, the
methods and results derived from the first two chapters will then be applied to a centrality
measure, PageRank, and then to graphical neural networks in the final two chapters.

1.1 Graphs and Summary Matrices

1.1.1 Graphs as Mathematical Objects

Real world systems are oftentimes comprised of individual elements interacting with each other, with
examples of these systems including gas particles in a vacuum, users in a social network [1], and global
trade between countries [21]. Graph structures, also referred to as networks, are useful tools in the
mathematical representation of these systems, and are widely used in statistical physics, biology, and
computer science. In this section, we will explore some fundamentals of the analysis of graphs.

A graph is composed of two sets of objects: vertices and edges. Vertices are the individual elements
within a graph, also known as nodes, and edges denote the connection between these vertices. Graphs
are highly flexible structures, and so there can exist graphs with self-loops, where a vertex is connected to
itself. These representations can also encode directions, leading to the distinction between directed and
undirected graphs. Whereas directed graphs have edges with an orientation from one node to another,
undirected graphs have no such information encoded in their edge set. In this work, we will focus on the
latter category of graphs. We visualize a simple example of a graph below in Figure 1.

1 2

34

Figure 1: An undirected graph with 4 vertices.

This can be represented mathematically as G := (V,E), where G is the graph, V is the set of
vertices, and E is the set of edges. The graph in Figure 1 would have V = {1, 2, 3, 4} and E =
{(1, 2), (1, 3), (1, 4), (3, 4)}. An adjacency matrix summarizes the connection between the vertices in a
graph, with an entry in the matrix being binary to represent the existence of an edge,

A(i, j) :=

{
1, (i, j) ∈ E
0, (i, j) /∈ E.

Note that for undirected graphs, this produces a symmetric matrix, where A(i, j) = A(j, i), and a
self-loop connecting A(i, i) to itself would yield a 1 on the diagonal. The adjacency matrix of the graph
in Figure 1 would be,

A =


0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

 .

To represent how well-connected an individual vertex is, we can calculate the degree of that vertex,
which is the number of other vertices that are connected to it. Finding the degree of all nodes in a graph

4



CHAPTER 1. INTRODUCTION 5

with N vertices produces a vector of length N , which we denote as d, where each entry is calculated as
follows, assuming there are no self-loops,

di =

N∑
j ̸=i

A(i, j),

and so the degree matrix is then defined as D = diag(d1, . . . ,dN ), with 0 in all off-diagonal entries.
Figure 1 has a degree vector, d = (3, 1, 2, 2). The Laplacian matrix is defined as L̃ := D − A, and can
be interpreted as the matrix form of the discrete Laplacian operator [31]. While we do not discuss the
Laplacian matrix in this work, we refer readers to [25] for more discussion on the behavior of these matrices.
This thesis will instead focus on the normalized Laplacian matrix, which is defined,

L = I−D−1/2AD−1/2, (1.1)

where I is the identity matrix and D−1/2(i, i) = 1√
D(i,i)

if di is non-zero, and 0 otherwise. Figure 1

produces a normalized Laplacian matrix as follows,

L =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


1√
3

0 0 0

0 1 0 0
0 0 1√

2
0

0 0 0 1√
2



0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0




1√
3

0 0 0

0 1 0 0
0 0 1√

2
0

0 0 0 1√
2

 .

For a graph with no self-loops, diag(L) = 1, and off-diagonal entries are the proportionate connectivity
of an individual vertex relative to the rest of the graph.

1.1.2 Spectral Analysis of Graphs

The spectral quantities of a graph G are the eigenvalues and eigenvectors of one of the graph matrices, such
as its adjacency, Laplacian, or normalized Laplacian matrix. These quantities prove to be easier objects
to work with in describing the behavior of graphs, particularly as the number of vertices grows to infinity.
We denote the ordered eigenvalues of a matrix of size N ,

λ1 ≥ λ2 ≥ · · · ≥ λN ,

with corresponding eigenvectors u1,u2, . . . ,uN . A useful result relying on these quantities is the Perron-
Frobenius theorem, which states that if G is a connected graph where all nodes are connected to one
another, then there is a clear leading eigenvalue of magnitude greater than the trailing eigenvalue, that is,
λ1 > λ2 and λ1 ≥ −λN , and this leading eigenvalue has a strictly positive eigenvector [44].

Another useful result from spectral analysis is spectral decomposition, which allows a Hermitian matrix,
also referred to as a self-adjoint matrix, to be expressed as,

A = UΛUT ,

where U is a unitary matrix with the eigenvectors as the columns, and Λ := diag(λ1, . . . , λN ). In order for
a matrix to be Hermitian, it must satisfy that it is equivalent to its conjugate transpose,

A = AT ,

where AT is the conjugate transpose. As graph matrices have real entries as byproducts of the adjacency
matrix, this is then equivalent to requiring a symmetric matrix. A is symmetric, and as the identity
and degree matrices are both diagonal, both the Laplacian and normalized Laplacian matrices are also
symmetric, thus allowing for spectral decomposition of L̃ and L. As its entries are normalized with respect
to the adjacency matrix, the normalized Laplacian and its spectra are often used to communicate the
probability of connection between vertices, such as for random walks or centrality measures [2], the latter
of which will be discussed later.

1.2 Random Graphs

1.2.1 The Erdös-Rényi Random Graph Model

Graphs with fixed edges are useful mathematical tools, but real world physical systems follow probabilistic
behavior. For example, whether an illness spreads between individuals is a probabilistic event, and similarly
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the likelihood of two arbitrary users on a social media network to connect is a random event when viewed
at scale. The study of these random graphs thus extends the usefulness of graphical models in representing
complex settings.

The Erdös-Rényi random graph (ERRG) as described in [17] is the simplest random graph model.
In this thesis we will address the ERRG model of the form GN (N, pN ), where the produced graph is
parameterized by N vertices with a connection probability between any two of these vertices given as a
Bernoulli random variable with probability pN , Ber(pN ). Moving forward, we will include the subscript N
in the notation of G and p to note that the behavior of both the graph and its connection probability are
contingent on the value of N . This relationship between N and pN in controlling the overall connectivity
of GN provides two overarching regimes for ERRG models:

1. Dense: A graph where NpN →∞ as pN → 0 or pN is held as a constant is considered dense, as the
average degree of the graph grows proportionately with N , the size of the graph [45].

2. Sparse: Conversely, if a graph has that pN → 0 but NpN → λ ∈ (0,∞), the graph is within the
sparse regime, as the average degree does not grow proportionately with N , thus leading to isolated
individual or neighborhoods of nodes [45].

Additionally, we have that in order for an ERRG to be well-connected, it must satisfy that NpN >
log(N). Figure 2 illustrates this difference using simulated graphs. This is an assumption that we will rely
on throughout the thesis.

(a) Dense regime ERRG with pN = 0.10, NpN = 10. (b) Sparse regime ERRG with pN = 0.03, NpN = 3.

Figure 2: Visualizations of a dense and sparse ERRG, both simulated with N = 100, log(N) ≈ 4.61. The
dense regime has one large connected component while the sparse regime has several isolated vertices.

The ERRG model can be further extended by removing the assumption of a homogeneous or uniform
pN across all edges, allowing the model to represent more real world systems that are often highly non-
uniform. An inhomogeneous ERRG instead has a probability dependent on the two vertices it connects,
defined as pij = εNf

(
i
N ,

j
N

)
, where f : [0, 1]2 → [0,∞) is a bounded, Riemann integral function, that is,

continuous almost everywhere, and εN is a scaling constant dependent on N ensuring that pij is bounded
as a probability [12]. As such, the behavior of the graph becomes dependent on that of f . This family of
graphs includes well known models such as Stochastic Block models [27], and Chung-Lu models [11].

1.2.2 Random Matrix Theory

A relevant field of study in mathematics is that of random matrix theory, which seeks to analyze the
behavior of matrices with entries each being a random variable. It is evident that graph matrices, such
as the adjacency matrix, of random graphs must themselves be random. As such, we will use tools from
random matrices to aid in the analysis of random graphs, specifically in the spectral analysis of these
objects. These include results and methods for studying the distribution of eigenvalues of a matrix and
the behavior of the largest eigenvalue. The empirical spectral distribution (ESD) will be used heavily to
describe the observed eigenvalue behavior of a random graph, and is the primary object of analysis for
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existing results from random matrix theory that seek to determine the limiting behavior of the ESD as
the graph size grows to ∞, N → ∞. Defining this formally, let δx(·) being the Dirac delta function with
a mass of 1 at a value x, and λi being the i-th eigenvalue of a matrix MN of dimension N ×N , we define
its ESD as follows,

ESD (MN ) (·) = 1

N

N∑
i=1

δλi(MN )(·). (1.2)

Of course, if MN is a random matrix, then ESD (MN ) (·) is a random measure. Additionally, let d be
a metric on a space M1(R). Convergence of ESD (MN ) to a limiting measure, µ, weakly in probability
can be defined then as follows, for ε > 0,

P (d(ESD (MN ) , µ) ≥ ε)→ 0, N →∞. (1.3)

This convergence to a limiting measure will be stated as limN→∞ ESD (MN ) = µ, weakly in probability.
Figure 3 illustrates how the ESD of the adjacency and normalized Laplacian matrices behave with respect
to the dense and sparse regimes. In the dense regime, the ESD of a homogeneous AN , as outlined in [43],
and an appropriately centered homogeneous LN , as proven in [29], converge weakly almost surely to the
semicircle law, µsc, the density of which is:

µsc(dx) =
1

2π

√
4− x21|x|≤2 dx. (1.4)

While the semicircle law is a universal limiting measure in the homogeneous regime for ERRG models,
it is itself a special case of a more general limiting measure in the inhomogeneous regime dependent on
the behavior of f in pij := εNf

(
i
N ,

j
N

)
, as µsc can be recovered by fixing f

(
i
N ,

j
N

)
= 1 uniformly across

all edges [12]. This then motivates a more general definition of a limiting measure encompassing both
homogeneous and inhomogeneous ERRG models, which as discussed in [6] and [12], is a deterministic,
compactly supported, and symmetric measure, µf . The convergence of both ESD (AN ) and a centered

ESD(L̃N ) to a deterministic limit, µf , weakly in probability, was proven in [7]. In this thesis, we will
consider an extension of this result for LN .

(a) ESD (AN ), p ≈ 0.06 (Dense). (b) ESD (LN ), p ≈ 0.06 (Dense). (c) ESD (AN ), p = 5e−5 (Sparse).

Figure 3: Comparison of the empirical spectral distributions of AN in both dense and sparse regimes and
LN in the dense regime, N = 10, 000.

1.3 PageRank and Random Graphs

1.3.1 Centrality Measures and the Normalized Laplacian

A key statistic in network analysis for computer science and statistics is how well-connected an individual
vertex is relative to the remainder of the graph beyond first order connections, that is, how central a vertex
is to a community of other vertices, up to and including the remainder of the graph. Understanding the
centrality measure of a graph is critical in reputation systems, machine learning, and graph partitioning
[1]. This gives rise to the category of centrality measures which are solutions to the eigenvalue problem,

xM = λx,

for some input row vector x and a matrix M [1]. In the context of random graphs, M is typically taken
to be the adjacency matrix or a matrix derived from it, such as the normalized Laplacian matrix.

One such use case for these centrality measures is the in the analysis of internet traffic between web
pages, which motivates the measure PageRank [34], which represents the probability of a walk from a
starting vertex to a connected vertex with probability α, and the chance to restart this walk from a
randomly selected node in the graph with probability 1−α [1]. The Perron-Frobenius theorem surrounding
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the magnitude of the leading eigenvalue in a connected graph is another such centrality measure, but in
this work we will focus on the analysis of PageRank. A PageRank vector π, can thus be interpreted as
the stationary distribution of a random walk under these conditions, and furthermore is the solution to,

π = απPN + (1− α)v,

where PN is the unsymmetrized normalized Laplacian, PN := D−1
N AN and v is a vector of uniformly

distributed probabilities corresponding to all N vertices in GN . Note that for α = 1, π is the stationary
measure of the Markov chain defined by PN . This definition also yields a Personalized PageRank statistic,
as v can be restricted to a subset of VN , which allows for measures of centrality relative to a specific
subgraph. In this context, v is then referred to as the personalization distribution [1].

It is evident then, that PageRank relies on the information surrounding vertex connectivity encoded
in the normalized Laplacian to inform its random walk process. As such, understanding the behavior of
LN for the underlying graph is critical in understanding the subsequent behavior of PageRank and its
approximations. As it is not possible to have an explicit form for π in real-world settings, approximations
have been proposed, such as using the degree vector normalized by the volume of the graph, vol(GN ) =∑N

i=1 di, in its place [2],

π =
αd

vol(GN )
+ (1− α)v. (1.5)

[2] proves that substituting the PageRank vector with the simple random walk, d/ vol(GN ), provides an
approximation where the distance in total variation between the two vectors is of the order of magnitude
o(1) as N → ∞. This was demonstrated in their paper to hold for both the Chung-Lu and Stochastic
Block Model settings by showing that these families of graphs adhere to certain conditions that allow
for this closeness in distance to hold. As such, the behavior of PageRank in inhomogeneous regimes has
been studied empirically in a number of studies [38], and under some specific regimes [2], but analysis of
PageRank in a generalized inhomogeneous setting has not been done. In this work, we will focus on this
more generalized setting with respect to the conditions and volume based approximation laid out in [2].

1.4 Neural Networks and the Normalized Laplacian

1.4.1 Graph Neural Networks

Graph neural networks are a class of convolutional neural networks that approach learning problems on
graph-like structures, such as citation networks [48]. These datasets are thus composed of vertex and edge
sets that can be represented in standard graph form, G = (V,E) with V being the set of vertices and E
being the set of edges. In this context, a graph of size N can be represented by its binary adjacency matrix,
A ∈ RN×N , and its matrix of node features, X ∈ RN×d, for d being the length of the node features. As
such, we can define the normalized Laplacian matrix of this graph-like structure as, L = I−D−1/2AD−1/2.
We can thus define a neural network accepting a graph as an input as a graph neural network, f(X,A).
This work will focus specifically on spectral graph neural networks, which map node features, X, to the
Fourier domain to perform filtering or attenuation before transforming the output back to the spatial
domain.

To begin, we provide a mathematical definition for graph neural networks (GNNs) and how messages
are passed between the layers of these structures. Intuitively, GNNs produce outputs at the individual
node level by aggregating information from neighboring nodes, with the number of layers in a neural
network dictating how many neighbors away from the vertex to select from (i.e. how many “hops” away
from which to start collecting information). Let xn denote the output vector of the n-th node in G,
1 ≤ n ≤ N and ne[n] be the neighborhood around node n. We also define the behavior of the other nodes
in ne[n] as xne[n] being the corresponding node features and ene[n] being the edge states surrounding n.
We introduce a differentiable, permutation invariant, aggregating function over ne[n],

⊕
, such as a sum

or mean, and differentiable functions ϕ and ψ over corresponding appropriate domains. Thus, the message
passing function at each layer, xn, can be defined as follows, with the 0-th layer typically being the original
input vector x [30]:

x(k)
n = ϕ(k)

(
x(k−1)
n ,

⊕
ψ(k)

(
x(k−1)
n ,x

(k−1)
ne[n] , ene[n]

))
, (1.6)

where k is the specific layer number, 1 ≤ k ≤ K for K being the total number of layers in a network. Given
their respective purposes, ϕ is often referred to as the update function, as in an update of xn between
layer k − 1 and k, and ψ is referred to as the message function, passing information from the other nodes
in ne[n] to the node of interest, n [22]. In this way, by summing across all K layers, a final output can
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be created corresponding to all N nodes. We note here that this final summation is also potentially a
learnable process as we will discuss later.

1.4.2 Graph Convolutional Networks and Signal Filters

We provide a more specific definition for graph convolutional networks (GCNs) that rely on convolving
input signals with filters to produce the relevant output vector, effectively using convolutions to perform
both the update and message functions. A convolution is defined for two integrable functions, f, g : R→ R,
as follows:

(f ⋆ g)(t) =

∫ ∞

−∞
f(τ)g(t− τ)dτ. (1.7)

This is the product of the two functions, including a reflection about an axis and a shift by a factor
of τ . However, as GCNs, and neural networks more broadly, take matrices as inputs, we instead use the
discrete definition of the above to represent summations across the grid of these matrices [22]. Thus, for
the matrices f, g : Z→ R, we instead sum across all Z to produce a single dimensional convolution:

(f ⋆ g)(t) =
∑
m∈Z

f(m)g(t−m). (1.8)

Extending this definition to two dimensions, as is done in practice for matrices in GCNs, we arrive
at the following definition for convolution of a matrix by a filter of equal or smaller dimensions, where
the domain of the matrix is [H] × [W ], and the filter is of the size Hdim(f) ×W dim(f). For notational
consistency, we replace the function g with the filter ω [22]. Thus, the convolution of f by the filter ω can
be expressed as follows over the domain of ω:

(f ⋆ ω)(x, y) =

Hdim(f)∑
v=1

Wdim(f)∑
w=1

ω(v, w)f(x− v, y − w). (1.9)

Having now established a mathematical definition for a convolution, we can integrate this into our earlier
definition of GNNs from (1.6). Let ϕ(k) be a general activation function, such as ReLU(·) = max(0, ·),
and

⊕
ψ(k)(·) be D̃

−1/2
ÃD̃

−1/2
(·)(k−1)W(k−1), for Ã = A+ IN being the adjacency matrix of the input

graph with self-connections imposed, and D̃ being the degree matrix of Ã. Additionally, W(k−1) is a
learnable weight matrix for a given k-th layer, where its entries are trainable parameters that are adjusted
during the GCN’s training process such that a loss function is minimized. We also note that the filter
function, ω, is also learnable for specific implementations of GCNs, in that they also rely on a learnable
parameter or vector of parameters which control how aggregation across or within layers is handled. These
are also adjusted during the GCN training process, and we will look at some of these implementations in
more detail later on. Thus, by using summary information given by the graph’s normalized uncentered
Laplacian matrix, we can encode the information required for the behavior of a neighborhood around a

node n, x
(k−1)
ne[n] and ene[n]. Thus, a GCN’s propagation function for each layer can be expressed as:

H(k) = σ
(
D̃

−1/2
ÃD̃

−1/2
H(l−1)W(l−1)

)
, (1.10)

where H(0) = X, the initial matrix of node feature vectors [30]. The propagation function uses a form
of the normalized Laplacian as the normalization process is helpful in computation given that it is a real
symmetric positive definite matrix, thus having N many orthonormal eigenvectors and real non-negative
eigenvalues [13]. As such, this presents a useful starting point for spectral functions which operate on

the spectral components of L = I −D−1/2AD−1/2 = UΛUT , where U = [u0, . . . , uN−1] ∈ RN×N is the
matrix of eigenvectors and Λ = diag(λ0, . . . , λN−1) is a vector of the corresponding ordered eigenvalues.
Transformation to a domain other than that of the original graph is necessary for computing filters, as
transformations such as translations and reflections, as outlined in (1.7), are not meaningful in the space of
a graph. Thus, signals x ∈ RN are transformed to the Fourier domain x̂ = UTx where the transformations
required for filtering can be done, after which the signals are transformed back to the graph domain,
via x = U x̂ [42]. Let hθ(Λ) be a function of the eigenvalues of L parameterized by a vector of possibly
learnable weights, θ, of size K, and ϕ(k) be defined as in (1.6). The full process of applying a filter to a
graph signal x, can be expressed as the following convolution,

hθ(Λ) ⋆ x = Uhθ(Λ)U
Tx = U

K∑
k=0

θkϕ
(k)(Λ)UTx. (1.11)
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However, the direct calculation of this expression is expensive, with the multiplication of U by the
filter h and the input signal x being O(N2) in terms of computation time. Thus, there are many alter-
native approximations of this computation, such as Chebyshev polynomials, that significantly reduce the
computational load of applying these filters [23]. Specifically, they seek to approximate the application of
the filter on the vector of eigenvalues. We will evaluate the performance of some of these filters in a later
part of this work. As stated by Theorem 4.1 of [46], the performance of a GCN is fundamentally limited
by the number of unique eigenvalues in Λ, as filter functions will produce the same output for equivalent
eigenvalues. Thus, in settings where the spectra of the graph has high multiplicities, as is seen in real world
datasets [33], strategies that reduce these multiplicities can improve GCN performance. Existing methods
to perform these reductions are limited, with a uniform correction strategy done across the interval [0, 2]
as proposed by [33] showing notable performance improvements when using polynomial filters on dense
networks. However, this method assumes convergence of the spectra of the normalized Laplacian to the
semicircular law [29, 10], which holds theoretically only for the homogeneous setting [7]. Thus, in this
work we will provide an empirical degree driven correction methodology that is more broadly applicable to
both homogeneous and inhomogeneous regimes. The code for the computational results and figures seen
in this work can be found at the following GitHub repository: https://github.com/colinsyyip/Normalized-
Laplacian-ESD.

https://github.com/colinsyyip/Normalized-Laplacian-ESD
https://github.com/colinsyyip/Normalized-Laplacian-ESD


Chapter 2
The Normalized Laplacian in the

Erdös-Rényi Regime

In this section, we will outline and prove the convergence of the empirical spectral distribution
(ESD) of the normalized Laplacian matrix to the semicircular law in a homogeneous setting,
where the probability of connection between any two nodes in a graph is governed by the same
probability.

2.1 Notation

Let GN = (V,E) be an Erdös-Rényi Random Graph (ERRG) with V = [N ] = {1, 2, . . . , N}, and E being
the set of edges, which are given by any two vertices being connected with a probability pN , which is
independent of other vertices. We represent its adjacency matrix, AN as an N×N matrix with its entries,
{AN (i, j); 1 ≤ i < j ≤ N,N ≥ 2}, being independent random variables such that P(AN (i, j) = 1) =
pN = 1 − P(AN (i, j) = 0) for p ∈ (0, 1). This is a symmetric matrix, as having node i connected to
node j also implies, so we have that AN (i, j) = AN (j, i), and we additionally impose that AN (i, i) = 0.
Setting the diagonal of AN to be 0 imposes no self-loops on GN . The degree matrix of AN is defined as
DN := diag(d1, . . . ,dN ), where each di =

∑N
j ̸=i AN (i, j) is the degree of vector i. Let IN be the identity

matrix of size N ×N , and from here we can define the normalized Laplacian matrix as follows:

LN = IN −D
−1/2
N AND

−1/2
N . (2.1)

Additionally, let the centered and scaled normalized Laplacian of AN be defined,

BN :=

√
NpN
1− pN

(IN − LN ), (2.2)

and assume that sup{pN ;N ≥ 2} < 1. We define the spectral measure of BN as follows,

ESD (BN ) :=
1

N

N∑
i=1

δλi(BN ). (2.3)

Finally, we define an approximation between two sequences, an and bn, an ≈ bn, as follows for some
constants c1 and c2,

c1 ≤ lim inf
an
bn
≤ lim sup

an
bn
≤ c2, (2.4)

which we also extend to inequalities, a ≲ b,

lim sup
an
bn
≤ c2. (2.5)

We are now in a position to state our first theorem regarding the spectral behavior of the normalized
Laplacian matrix of GN .

2.2 Convergence of the ESD of the Normalized Laplacian

We will first state the overarching theorem regarding the convergent behavior of LN for an ERRG and
then outline our strategy for proving this statement, including the intuition of the supporting lemmas that
must be proven as well.

11



CHAPTER 2. THE NORMALIZED LAPLACIAN IN THE ERDÖS-RÉNYI REGIME 12

Theorem 2.2.1. [29] If GN is well-connected, that is, if Np/ log(N)→∞ as N →∞, then we have that:

lim
N→∞

ESD (BN ) = µsc, (2.6)

weakly in probability, where µsc is the semicircle law as defined in (1.4).

To aid in the proof, we establish some tools. Let the bounded Lipschitz distance between two probability
measures, µ and ν on R be:

dBL(µ, ν) = sup{|
∫
fdµ−

∫
fdν| : ∥f∥∞ + ∥f∥L ≤ 1}, (2.7)

where ∥f∥∞ is the infinity norm and ∥f∥L = supx̸=y
|f(x)−f(y)|

|x−y| . Additionally, we introduce the Hoffman-

Wielandt inequality.

Lemma 2.2.1. [3] For M1 and M2 being Hermitian matrices of equal dimension, the cubed bounded
Lipschitz distance between their spectral measures can be bounded by the normalized trace of their squared
differences,

d3BL(ESD (M1) ,ESD (M2)) ≤
1

N
Tr
(
(M1 −M2)

2
)
. (2.8)

We first define how the deviations of the entries of GN behave in the ERRG regime and extend this
to the behavior of the degrees of the graph, showing that it is possible to approximate the behavior of a
node’s degree with its expected value. This is critical, as AN and DN are dependent, given that the latter
is calculated directly from the adjacency matrix. Thus, “decoupling” DN from the entry-level behavior
of AN by using a fixed degree breaks this dependency. We then use that when scaled by an appropriate
normalizing constant, AN converges to µsc [15]. Tying these two convergences together completes the
proof for (2.6).

2.3 Bounded Deviations of Homogeneous Graphs

We evaluate the node level behavior of a given AN (i, j) in GN by generalizing to any Binomial random
variable parameterized by N and p, Bin(N, p).

Lemma 2.3.1. Let ϵ1, . . . , ϵN be i.i.d random variables with P(ϵi = 1) = 1−P(ϵi = 0) = p ∈ (0, 1). Then:

P

(∣∣∣∣∣
∑N

i=1 ϵi
Np

− 1

∣∣∣∣∣ ≥ δ
)
≤ 2 exp

(
− (Np)δ2

4

)
(2.9)

for all N ≥ 1, and for all δ ∈ (0, 1).

In order to prove this statement, we will use the relative error Chernoff bound [14]. For X =
∑N

i=1 Xi

being a sum of independent random variables, Xi, the upper tail bound is:

P(X ≥ (1 + δ)E[X]) ≤ exp

(
−δ

2E[X]

2 + δ

)
, (2.10)

and the lower tail bound is:

P(X ≤ (1− δ)E[X]) ≤ exp

(
−δ

2E[X]

2

)
. (2.11)

Proof of Lemma 2.3.1:
Let X =

∑N
i=1 ϵi. As each ϵi is an independent Bernoulli random variable, X is a binomial random

variable and thus, E[X] = Np. We now assess P
(∣∣∣ X

Np − 1
∣∣∣ ≥ δ), knowing that the tail behavior of the

binomial distribution is symmetric. To begin, we can decompose the absolute value into the corresponding
sides of the deviation from Np by a factor of 1± δ,

P
(∣∣∣∣ XNp − 1

∣∣∣∣ ≥ δ) ≤ P (X ≥ (1 + δ)Np) + P (X ≤ (1− δ)Np) .

We can thus substitute the first individual tail probability into the upper tail bound, (2.10) and do
the same for the latter tail probability, using the lower tail bound, (2.11). Additionally, δ is an error
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term, so we take this to be small, with the 2 in the denominator of the upper tail bound dominating the
contribution. As such, the earlier decomposition yields the following final symmetric bound,

P
(∣∣∣∣ XNp − 1

∣∣∣∣ ≥ δ) ≤ P (X ≥ (1 + δ)Np) + P (X ≤ (1− δ)Np)

≤ exp

(
−δ

2Np

2 + δ

)
+ exp

(
−δ

2Np

2

)
≤ 2 exp

(
−δ

2Np

2

)
.

This is precisely the inequality laid out in (2.9), so we have completed the proof. ■
Lemma 2.3.1 states that the deviation of a binomial variable from its expected value is a function of N

and p, and can be quantified uniformly on both tails by the above bound. The deviation from the mean is
thus finite and vanishing as Np→∞. We can now use this to explicitly bound the degrees of GN , which
are also binomial random variables as the sum of individual Ber(pN ) entries.

2.4 Degree Bounds for Homogeneous Graphs

There are three degree properties which we seek to bound in this section to ensure that GN has relatively
well-behaved nodes, where the degree of the i-th node is di :=

∑N
j ̸=i AN (i, j). The first property is the

maximum degree deviation of the graph,

aN := max
1≤i≤N

{|di − (N − 1)pN |}. (2.12)

Ensuring that this deviation has vanishing probability relative to an error term δ guarantees that the
graph remains relatively uniform as N →∞. The second property concerns the minimum degree of GN ,

bN := min
1≤i≤N

{di}, (2.13)

which converges with the expected degree asN →∞, again to ensure that there is uniform behavior, similar
to the convergence of aN . Finally, we look to prove the convergence of the total number of connections
in the graph to N2pN , which is to say that the graph is well-connected with the connection probability
between any two nodes being pN . Having provided some intuition, we formally state our next lemma.

Lemma 2.4.1. If NpN/ log(N)→∞ as N →∞, then:

aN
NpN

→ 0,
bN
NpN

→ 1,
1

N2pN

∑
1≤i̸=j≤N

AN (i, j)→ 1, almost surely. (2.14)

Proving this statement will also rely upon Lemma 2.3.1 and the Borel-Cantelli lemma [4], which we
restate. Let {Ei}1≤i denote a set of events and the series of the probabilities of these events occurring is
finite,

∞∑
i=1

P (Ei) <∞.

The probability of infinitely many occurrences of Ei is thus 0,

P
(
lim sup
i→∞

Ei

)
= P

 ∞⋂
i=1

∞⋃
j=i

Ej

 = 0.

Intuitively, for a sequence of events, if the summed probability of all events occurring is finite, then the
probability that an infinitely long sequence of these events occur is 0. The lim sup can be interpreted as
the set of events where infinitely many of the sequences occur.
Proof of Lemma 2.4.1:

Looking first at aN

NpN
→ 0, we apply the result bounding deviations in Binomial variables from (2.9),

where the expected value of the degree is (N − 1)pN , in conjunction with a union bound to account for
taking a maximum over N terms, absorbing the leading 2 from (2.9) into N ,
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P (aN ≥ δ(N − 1)pN ) = P

(
max

1≤i≤N

∣∣∣∣∣
∑N

j=1 AN (i, j)

(N − 1)pN
− 1

∣∣∣∣∣ ≥ δ
)

≲ N exp

(
−δ

2(N − 1)pN
4

)
.

Moving the leading N into the exponential as log(N) allows us to then use that NpN

logN → ∞. We can

then introduce an error ϵ representing the gap in the ratio between NpN ad log(N), NpN > ϵ log(N). We
choose ϵ = 8

δ2 , and substitute this into the above inequality,

N exp

(
−δ

2(N − 1)pN
4

)
≈ exp

(
log(N)− δ2NpN

4

)
≤ exp

(
− 8

δ2
log(N)

δ2

4

)
= N−2.

As such, P (aN ≥ δ(N − 1)pN ) is finite and vanishing at a rate of N−2, interpretable as stating that
the event that the deviation exceeds δ is finite. This allows us to apply the Borel-Cantelli lemma to imply
that aN

(N−1)pN
→ 0 a.s., thus proving the first convergence in (2.14).

We now look at the second convergence, bN
NpN

→ 1, beginning by rearranging the statement of conver-
gence: ∣∣∣∣ bN

(N − 1)pN
− 1

∣∣∣∣ = ∣∣∣∣min1≤i≤n{di}
(N − 1)pN

− 1

∣∣∣∣ = ∣∣∣∣min1≤i≤N{di − (N − 1)pN}
(N − 1)pN

∣∣∣∣ .
Note that this is now of the form of the definition of aN , and so we can bound this from above by the

result we have just proven for aN

(N−1)pN
→ 0,∣∣∣∣min1≤i≤N{di − (N − 1)pN}

(N − 1)pN

∣∣∣∣ ≤ ∣∣∣∣max1≤i≤N{di − (N − 1)pN}
(N − 1)pN

∣∣∣∣ = aN
NpN

a.s.→ 0,

which then implies bN
(N−1)pN

a.s.→ 1, thus proving the second convergence.

Looking finally at the third convergence, 1
N2pN

∑N
1≤i̸=j≤N AN (i, j) → 1, we can apply the symmetry

of AN , and instead show that:

2

N(N − 1)pN

∑
1≤i̸=j≤N

AN (i, j)→ 1,

as we can group the upper and lower triangles of the matrix and omit the diagonal entries. Applying (2.9)
from above, we have that:

P

∣∣∣∣∣∣ 2

N(N − 1)pN

∑
1≤i̸=j≤N

AN (i, j)− 1

∣∣∣∣∣∣ ≥ δ
 ≤ 2 exp

(
−N(N − 1)pNδ

2

4

)
.

Applying the same approach as for the first convergence, we now set the gap term ϵ = 8
Nδ2 in NpN >

ϵ log(N) to account for the total degree across N2 entries as opposed to the maxima, which then yields
the same bound of N−2 for the right-hand side of the above expression,

2 exp

(
−N(N − 1)pNδ

2

4

)
≲ exp

(
−NpN

(
Nδ2

4
− log(2)

NpN

))
≤ exp

(
− 8

Nδ2
log(N)

(
Nδ2

4

))
= N−2.

We have thus shown that
∑∞

N=1 P
(∣∣∣ 2

N(N−1)pN

∑
1≤i̸=j≤N AN (i, j)− 1

∣∣∣ ≥ δ) is finite, and so we again

apply the Borel-Cantelli lemma to show convergence to 1, a.s. As such, we have proven all three conver-
gences regarding the behavior of degree deviations, the minimum degree, and the total degree of GN as
laid out in (2.14). ■

Having shown that in the setting laid out at the beginning of this section, that the degree behavior
of AN will be well-behaved, we will restate Theorem 3 from [15] and its Corollary before completing the
proof. The result states that the spectral measure of an ERRG converges to µsc given that it is centered
by the expectation of its entries and scaled by a function of the variance of its entries.

Lemma 2.4.2. Let ωN be an N × N matrix where ωN (i, j) := (AN (i, j) − µN )/σN for all i, j,N where
µN = E[AN (i, j)] and σ2

N = Var(AN (i, j)). Assume that

max
1≤i<j≤N

E
[
(ωN (i, j))

2
1

(
|ωN (i, j)| ≥ ε

√
N
)]
→ 0
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as N →∞ for some ϵ > 0. We additionally define its spectral distribution,

ESD

(
AN − µNJN√

NσN

)
=

1

N

N∑
i=1

δλi(·), (2.15)

for λi(·) being the eigenvalues of AN−µNJN√
NσN

and JN being an N × N matrix of all 1s. Under the same

setting as before, we assert that ESD
(

AN−µNJN√
NσN

)
converges to the semicircular law,

lim
N→∞

ESD

(
AN − µNJN√

NσN

)
= µsc, (2.16)

weakly, almost surely.

The assumption in this statement can be interpreted as stating that the variance of the deviations that
exceed a given error, dependent on

√
N , vanishes, implying that excessively large deviations will vanish as

N →∞ for a sufficiently large N . Note that this is similar to the Lindeberg condition for the Lindeberg-
Feller central limit theorem [4]. Having these well-behaved deviations ensures that we can show convergent

behavior between ESD
(

AN−µNJN√
NσN

)
and µsc without mass escaping. Note that for a homogeneous ERRG,

µN = pN and σN =
√
pN (1− pN ), with σN arising from the properties of the Bernoulli distribution. This

thus leads to the following corollary [15].

Corollary 2.4.1. For αN := (NpN (1 − pN ))1/2 → ∞ as N → ∞, the empirical spectral distribution of
AN/αN , ESD (AN/αN ), converges weakly to the semicircular law µsc, almost surely,

lim
N→∞

ESD (AN/αN ) = µsc. (2.17)

Having stated these results concerning convergence under proper scaling, we can now complete the
proof of the overarching theorem.

2.5 Proof of Theorem 2.2.1

Having established all the various supporting results, we can now directly prove (2.6). To do so, we will
use the triangle inequality and the following set-up to prove that limN→∞ ESD (BN ) = µsc weakly in
probability,

dBL(ESD (BN ) , µsc) ≤ dBL

(
ESD (BN ) ,ESD

(
B̂N

))
+ dBL

(
ESD

(
B̂N

)
, µsc

)
, (2.18)

where B̂N =
√

NpN

1−pN
(I − L̂N ) and L̂N = IN − (NpN )−1AN being the “decoupled” matrices for BN and

LN , respectively. We then seek to show that both components on the right-hand side of the inequality
converge to 0, thus yielding that ESD (BN ) converges to µsc. To begin, we set up Lemma 2.2.1 for the

first term, dBL

(
(ESD (BN ) ,ESD

(
B̂N

))
:

d3BL

(
ESD (BN ) ,ESD

(
B̂N

))
≤ 1

N
Tr
(
(BN − B̂N )2

)
. (2.19)

We assess this by first expanding and simplifying the definitions of BN and B̂N ,

1

N
Tr
(
(BN − B̂N )2

)
=

1

N
Tr

(
NpN
1− pN

(L̂N − LN )2
)

=
NpN

N(1− pN )

N∑
i,j=1

((L̂N − LN )(i, j))2,

the final equality arising from the element-wise expansion of the trace. We use the (i, j) notation to denote

the entry-wise value of a given matrix. Looking at the squared difference between L̂N and LN within the
summation, we plug in the definitions of the non-decoupled and decoupled variations of the normalized
Laplacian matrix,
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((L̂N − LN )(i, j))2 = ((1− (Np)−1AN )− (1−D
−1/2
N AND

−1/2
N ))2(i, j)

=

(
1√
di

AN (i, j)
1√
dj

− 1

NpN
AN (i, j)

)2

= A2
N (i, j)

(
1√

di

√
dj

− 1

NpN

)2

.

Of course, AN is a binary matrix, taking either 1 or 0 as the entry values. As such, in the event that
the (i, j)-th entry is 0, this term does not contribute to the resulting summation, so we can ignore those
cases. However, if the entry takes the value 1, we can reduce A2

N (i, j) = AN (i, j). Additionally, we can

use the inequality |
√
x − √y|2 ≤ |x−y|2√

y to simplify the degree terms in the brackets, letting NpN =
√
y

and
√
di

√
dj =

√
x. This yields the following:

A2
N (i, j)

(
1√

di

√
dj

− 1

NpN

)2

= AN (i, j)
(NpN −

√
di

√
dj)

2

N2p2Ndidj
≤ A(i, j)

|didj −N2p2N |2

N4p4Ndidj
.

Observe that we can provide a bound on any given degree using (2.4.1) as follows:

di ≤ |di + E[di]| − E[di] ≤ aN +NpN + δ.

This bound states that any individual degree deviations will be near the maximum given deviation as
denoted by aN , with a reasonably close error term δ. We can now insert this bound into the numerator of
our earlier statement,

A(i, j)
|didj −N2p2N |2

N4p4Ndidj
≲ A(i, j)

|(NpN + aN )(NpN + aN )−N2p2|2

N4p4Ndidj
= A(i, j)

|2aNpNN + a2N |2

N4p4Ndidj
.

This decoupling from the individual node degrees, di, thus allows us to bound the element-wise differ-
ence between LN and L̂N by applying the bounds derived in Lemma 2.3.1. We now do the same for the
degree terms in the denominator using bN , observing that any di ≥ bN = min1≤i≤N{di},

A(i, j)
|2aNpNN + a2N |2

N4p4Ndidj
≤ A(i, j)

|2aNpNN + a2N |2

N4p4Nb
2
N

≤ A(i, j)
4a2Np

2
NN

2 + 2a4N
N4p4Nb

2
N

.

The final inequality arises from the identity (x + y)2 ≤ 2x2 + 2y2. Having now re-expressed this
difference without any reference to an individual di, we can evaluate the original trace of the difference
between BN and B̂N ,

NpN
N(1− pN )

N∑
i,j=1

((L̂N − LN )(i, j))2 ≤ NpN
N(1− pN )

4a2Np
2
NN

2 + 2a4N
N4p4Nb

2
N

N∑
i,j=1

A(i, j).

We can now apply Lemma 2.4.1, using the result that bN ≈ Np, given that bN
NpN

→ 1 as N → ∞.

Additionally, note that AN is composed of approximately N2 entries, each of which is a Bernoulli random
variable with expectation pN . We can thus rearrange to find a normalizing constant that removes this
term from the statement, leaving us with a purely deterministic bound.

NpN
N(1− pN )

4a2Np
2
NN

2 + 2a4N
N4p4Nb

2
N

N∑
i,j=1

A(i, j) =
NpN

N(1− pN )

4a2Np
2
NN

2 + 2a4N
N4p4N (NpN )2

N∑
i,j=1

A(i, j)

=
NpN

N(1− pN )

4a2Np
2
NN

2 + 2a4N
N4p5N

∑N
i,j=1 A(i, j)

N2pN

≈ 4

1− pN

[
a2N

N2p2N
+

a4N
2N4p4N

]
.

The first convergence from Lemma 2.4.1, aN

NpN
→ 0 as NpN →∞, can now be applied to the fractions

in the brackets, thus showing that this final quantity goes to 0, almost surely. We have thus shown that the
normalized difference in the trace on the right-hand side of the initial Hoffman-Wielandt inequality from
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(2.19) goes to 0, which then yields that the squared bounded Lipschitz distance of the spectral measures

of BN and B̂N also goes to 0,

d3BL

(
ESD (BN ) ,ESD

(
B̂N

))
≤ 1

N
Tr
(
(BN − B̂N )2

)
a.s.→ 0.

By extension this states that dBL

(
ESD (BN ) ,ESD

(
B̂N

))
→ 0, which can be interpreted as stating

that using the decoupled B̂N in place of BN is admissible. We now look to prove that the second distance
measure in (2.18) also goes to 0, which then completes the proof. To do so, we can inspect the definition

of B̂N to verify it is of the form of (2.17),

B̂N =

√
NpN
1− pN

(IN − L̂N ) =

√
NpN
1− pN

(
1

NpN
AN

)
=

AN√
NpN (1− pN )

.

As per the statement of the Corollary, we see that AN is normalized by αN :=
√
NpN (1− pN ), and

as such we can directly apply the result to state that,

lim
N→∞

ESD
(
B̂N

)
= lim

N→∞
ESD (AN/αN ) = µsc, weakly in probability.

Thus, the BL distance between the two spectral measures also goes to 0, as is required to demonstrate
that the right-hand side of (2.18) goes to 0. This then completes the proof in the homogeneous ERRG
setting. ■

We have now established a baseline result for the convergent behavior of the ESD of a homogeneous
random graph, that is, a graph with a connection probability pN uniform across all pairs of nodes. It is
useful to frame this as one case of a more generalized inhomogeneous class of random graphs, where the
connection probability between nodes is a function of the nodes themselves, and so a uniform connection
probability pN is simply a constant function. This will be discussed in the next chapter.



Chapter 3
The Normalized Laplacian in the

Inhomogeneous Regime

In this section, we will first provide some additional notation for the inhomogeneous setting
before stating our main result for the convergence of the ESD of the normalized Laplacian to
a deterministic measure and its proof.

3.1 Set-Up

We continue to use the graph in prior section defined as GN = (V,E) of size N . However, we re-define the
connection probability as follows. Let f : [0, 1]2 → [0,∞), where f is bounded and Riemann integrable.
The probability of connection between two vertices is,

pij = εNf

(
i

N
,
j

N

)
,

where εN ∈ R+ is a tuning parameter, and because f is bounded and εN → 0, εNf
(

i
N ,

j
N

)
≤ 1. Thus,

any entry in the matrix AN is a Bernoulli random variable:

AN (i, j) = Ber

(
εNf

(
i

N
,
j

N

))
.

Additionally, we assume that f can be decomposed multiplicatively into two composite relatively simple
polynomial functions, such that f(x, y) = r(x)r(y), r(x) ∈ R. Finally, we introduce a general measure, µf

which is non-random and compactly supported on R [7]. We will provide a more robust definition of this
measure later on in the section. The remainder of the definitions from the prior chapter, such as for the
descriptive matrices of GN , remain the same. Additionally, we note that many of the following calculations
will follow the same steps for a general f .

3.2 Convergence of ESD (B) to µf

We first state Theorem 2 before briefly discussing the differences in approaching the proof in this regime
as opposed to the homogeneous regime in the previous section. Additionally, we will calculate an explicit
form for the normalized expected value of a randomly drawn vertex, which will then be used to find an

appropriate scaling constant, which in Theorem 2.2.1 was taken to be
√

NpN

1−pN
.

Theorem 3.2.1. Let the centered and scaled normalized Laplacian of AN be defined as BN := γN (IN−LN )

for an appropriate scaling constant, γN :=
√

NεN
1−εN

∈ R. If NεN ≫ log(N), N → ∞, εN → 0, such that

there exists a non-random and compactly supported measure, µf , on R,

lim
N→∞

ESD (BN ) = µf , (3.1)

weakly in probability.

We will see that in order to prove this convergence of ESD (BN ) to µf , that the proof will broadly
follow the same structure as in the homogeneous setting by first bounding element-wise variance, bounding
the degree behavior of the graph to ensure a well-behaved object, and finally using these to show that
the spectra of the scaled normalized Laplacian converges to µf . However, in this final step, there will be
multiple perturbations that need to be applied prior to a statement of final convergence, like was done in
the final proof of Theorem 2.2.1. To start, we evaluate an explicit form for the normalized expectation of
a randomly selected vertex of GN .

18
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Lemma 3.2.1. For uN being uniformly drawn from vertices in AN ,

lim
N→∞

E[duN
]

NεN
=

(∫ 1

0

r(x) dx

)2

=

∫
[0,1]2

f(x, y)dxdy. (3.2)

The proof of this statement is relies on the properties of the Bernoulli random variable.
Proof of Lemma 3.2.1: We start by defining E[duN

] for a uniformly drawn uN , with the probability of
drawing a specific node i being denoted P(u = i) = 1

N ,

1

NεN
E[duN

] =
1

NεN

N∑
i=1

E[di]P(u = i) =
1

N2εN

N∑
i=1

∑
1≤j ̸=i≤N

E[AN (i, j)].

Each entry of AN is a Bernoulli random variable, so its expectation is the probability of an edge at that
index, which is pij = εNf

(
i
N ,

j
N

)
. We can additionally use the multiplicative structure of f to decompose

it to the product of r,

1

N2εN

N∑
i=1

∑
1≤j ̸=i≤N

E[AN (i, j)] =
1

N2

N∑
i=1

∑
1≤j ̸=i≤N

f

(
i

N
,
j

N

)

=
1

N2

N∑
i=1

∑
1≤j ̸=i≤N

r

(
i

N

)
r

(
j

N

)
→
∫
[0,1]2

f(x, y)dxdy.

With the last convergence from f being Riemann integrable and as such, r also being Riemann inte-
grable. We can thus split the denominator of the leading fraction to yield two Riemann sums of r, thus
providing the integrals in (3.2) as N → ∞. This thus provides a convenient definition of the expectation
of a normalized drawn entry. ■

Note that the above argument can be made for any general continuous function f . We can also impose

that r(x) close to r(y) by a factor of o(1). Let m := supx∈[0,1] r(x) and m1 :=
∫ 1

0
r(x)dx ≤ m. Additionally,

let m2 :=
∫ 1

0
r2(x)dx be the second moment of r(x). We can express the above statement then as,

E[duN
] = NεN

(∫ 1

0

r(x)

)2

=NεN

(∑N
i=1 r(i/N)

N

∑N
j=1 r(j/N)

N

)

≤εN
N

 N∑
i=1

m

N∑
j=1

m


=NεNm

2(1 + o(1)).

(3.3)

We are now able to provide an explicit form for γN . As a scaling constant, we know that,

γN :=
E[di]√
Var[di]

.

As established above, E[di] = εNr(
i
N )
∑

1≤j ̸=i≤N r( j
N ). We thus look to evaluate Var[di], using that the

individual AN (i, j) entries are independent Bernoulli random variables, Ber(pij), with variance pij(1−pij)

Var[di] =
∑

1≤j ̸=i≤N

Var[AN (i, j)] =
∑

1≤j ̸=i≤N

εNf

(
i

N
,
j

N

)[
1− εNf

(
i

N
,
j

N

)]
.

We can then expand this expression and use that r and m2 are both bounded to provide a final form
for the variance as N →∞,
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∑
1≤j ̸=i≤N

εNf

(
i

N
,
j

N

)[
1− εNf

(
i

N
,
j

N

)]

=εNr

(
i

N

) ∑
1≤j ̸=i≤N

r

(
j

N

)
− εNr

(
i

N

) ∑
1≤j ̸=i≤N

r

(
j

N

)2


≈NεNr(
i

N
)[m1 − εNr(

i

N
)m2] ≈ NεNr

(
i

N

)
m1.

Substituting this final expression into γN := E[di]√
Var[di]

, we arrive at the scaling constant for BN :

E[di]√
Var[di]

=
NεNr(i/N)

∑
i≤j ̸=i≤N r(j/N)√

NεNr(i/N)m1

=

√
NεNr(i/N)

∑
i≤j ̸=i≤N r(j/N)

√
m1

≈
√
NεN .

Thus, we now have an appropriate scaling constant that ensures that the mass of ESD (BN ) accumulates
to the correct shape. Incorrect scaling would result in overly diffuse or potentially skewed asymptotic
distributions of this ESD. Having now established these fundamental properties of an inhomogeneous GN ,
we can begin assessing the behavior of its degree matrix.

3.3 Degree Bounds for Inhomogeneous Graphs

As in Lemma 2.4.1, we seek to bound the maximal degree deviation, the minimum degree, and the total
degree of GN to enable the decoupling process in later parts of the proof. However, as connection behavior
in the graph is no longer a consistent pN throughout, the calculations become slightly more involved. To
begin, we restate aN and bN for the inhomogeneous setting,

aN := max
1≤i≤N

{|di − E[di]|}, bN := min
1≤i≤N

{di}, (3.4)

where E[di] = NεNr(i/N)
∑

i≤j ̸=i≤N r(j/N) ≲ NεNmm1.

Lemma 3.3.1. If NεN/ log(N)→∞ as N →∞, then:

aN
NεN

→ 0,
bN
NεN

→ 1,
1

N2mm1εN

∑
1≤i̸=j≤N

AN (i, j)→ 1, (3.5)

almost surely.

We will use a slightly different form of the Chernoff bound from Theorem 2.21 of [45] for this proof
compared to the bounds used for the homogeneous setting, as we no longer assume symmetric tail behavior
in the inhomogeneous case. These tail bounds are defined as follows for an error term t ∈ R and X =∑N

i=1Xi being the sum of independent Bernoulli random variables, starting first with the upper tail,

P (X ≥ E[X] + t) ≤ exp

(
− t2

2(E[X] + t/3)

)
, (3.6)

and the lower tail,

P (X ≤ E[X]− t) ≤ exp

(
− t2

2E[X]

)
. (3.7)

Proof of Lemma 3.3.1:
Let t in the above Chernoff bound be defined as t = δNεNN . Starting with aN

NεN

a.s.→ 0, it is useful to

state the convergence we are assessing,
∣∣∣ aN

NεN

∣∣∣ → 0, explicitly as a probability in line with the upper tail

Chernoff bound:

P
(
max1≤i≤N{di − E[di]}

NεN
≥ δN

)
= P

(
max

1≤i≤N
{di} ≥ E[di] +NεNδN

)
.
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This is now in the form of the left-hand side of (3.6), which we can now apply to bound the upper tail
behavior for an arbitrary di, additionally using the upper bound on the expectation of a given degree,

P (di ≥ E[di] +NεNδN ) ≤ exp

(
− δ2Nε

2
NN

2

2(Nmm1εN + δNεN
3 )

)
≤ exp

(
− δ2NεNN

2(mm1 + δN/3)

)
.

We now let the relative gap between NεN and log(N) to be NεN > (2mm1 + 2δN/3)
3 logN

δ2N
, and use

that to again bound above,

exp

(
− δ2NεNN

2(mm1 + δN/3)

)
≤ exp

(
− δ2N
2(mm1 + δN/3)

3(2mm1 + 2δN/3) logN

δ2N

)
= exp(−3 logN).

We can now extend this to max1≤i≤n{di} by applying a union bound, yielding the final behavior of
the upper tail probability of this convergence,

P
(

max
1≤i≤N

{di} ≥ E[di] +NεNδN

)
≤ N · P (di ≥ E[di] +NεNδN ) ≤ N ·N−3 = N−2.

Thus, the upper tail probability is finitely bounded, and so now we look to prove the finiteness of the
lower tail using the same process. To begin, we first rearrange the convergence to fit the lower tail Chernoff
bound, noting that we are now assessing the undershoot of an arbitrary degree relative to E[di]:

P
(
max1≤i≤N{di − E[di]}

NεN
≤ −δN

)
= P

(
max

1≤i≤N
{di} ≤ E[di]−NεNδN

)
.

Again, we use the gap between NεN and log(N), letting NεN > 3 log(N)(2mm1/δ
2). Using this

inequality in (3.7) as well as a union bound as above to handle the max, we have then,

P
(

max
1≤i≤N

{di} ≤ E[di]−NεNδN
)
≤ N exp

(
− δ2NN

2ε2N
2Nmm1εN

)
≤ N exp

(
− δ2N
2mm1

3 logN(2mm1)

δ2N

)
= N exp(−3 log(N))

= N−2.

Having now shown the finiteness of both tails, with the upper tail converging at a rate 6(mm1+δN/3)
δ2N

and

the lower tail converging at a rate 6mm1

δ2N
, we can now make a state that the probability of aN

NεN
exceeding

an error δ is finite,

P
(
max1≤i≤N |di − E[di]|

NεN
≥ δN

)
≤ NP(|di − E[di]| ≥ δNNεN ) ≤ N−2.

This then allows us to apply the Borel-Cantelli lemma, which then yields the final convergence that
aN

NεN

a.s.→ 0. The proof of bN
NεN

a.s.→ 1 follows similarly, with the same application of the Chernoff bounds for
each tail individually. Starting with the upper tail, we do a similar rearrangement in order to apply (3.6),

P
(

bN
NεN

− 1 ≥ δN
)

= P
(

min
1≤i≤N

{di} ≥ NεNδN +NεN

)
≤

N∑
i=1

P (di ≥ NεNδN +NεN ) .

Using the appropriate tail bound and having that NεN > log(N) 6(mm1+δN/3)
δ2N

, we arrive at a statement

of finiteness for the upper tail,
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N∑
i=1

P (di ≥ NεNδN +NεN ) ≤
N∑
i=1

exp

(
− N2ε2Nδ

2
N

2(Nmm1εN + δNεNN/3)

)

≤
N∑
i=1

exp

(
− NεNδ

2
N

2(mm1 + δN/3)

6 logN(mm1 + δN/3)

δ2N

)
= N exp(−3 log(N))

= N−2.

We repeat the process again for the lower tail using a gap between NεN and log(N) of 3
(

2mm1

δ2N

)
. Here

we shorten the calculation for brevity, as it is the same as the prior calculations, again using (3.7),

P
(

bN
NεN

− 1 ≤ δN
)
≤

N∑
i=1

P (di ≤ NεN −NεNδN ) ≤ N exp

(
−NεNδ

2
N

2mm1

)
≤ N−2.

Thus, both tails are finite and converge to a value of 1, allowing us to apply the Borel-Cantelli lemma
to arrive at our final statement for this convergence,

P
(∣∣∣∣ bNNεN

− 1

∣∣∣∣ ≥ δN) ≤ N−2, which implies
bN
NεN

a.s.→ 1.

Finally, we prove the convergence of the total degree of AN ,∑
1≤i̸=j≤N AN (i, j)

N2mm1εN

a.s.→ 1,

where we look first at the upper tail. We restate the event that we are looking to assess the probability
of, rearranging as before to apply (3.6),

P
(∑

1≤i̸=j≤N AN (i, j)

εNmm1N2
− 1 ≥ δN

)
= P

 ∑
1≤i̸=j≤N

AN (i, j) ≥ εNmm1N
2 + δNεNmm1N

2

 .

Applying the bound and having NεN > 2 log(N) 2(1+δN/3)
δ2NNm2 , we arrive at a finite upper bound,

P

 ∑
1≤i̸=j≤N

AN (i, j) ≥ εNmm1N
2 + δNεNmm1N

2

 ≤ exp

(
− δ2Nε

2
N (mm1)

2N4

2 (N2mm1εN + δNεNmm1N2/3)

)

≤ exp

(
− δ2Nmm1N

2(1 + δN/3)

4 log(N)(1 + δN/3)

δ2NNmm1

)
= N−2.

We do the same for the lower tail after rearrangement, applying (3.7) and having that εNN > 4 log(N)
δ2NNmm1

,

which again yields a finite bound,

P

∑
i̸=j

AN (i, j) ≤ εNmm1N
2 − δNεNmm1N

2

 ≤ exp

(
−δ

2
Nε

2
N (mm1)

2N4

2εNmm1N2

)

≤ exp

(
−4 log(N)(δ2NNmm1)

2(δ2NNmm1)

)
= N−2.

Having now shown that both lower tails are finitely bounded, we can bound the entire probability from
above:

P
(∣∣∣∣
∑

i̸=j AN (i, j)

εNmm1N2
− 1

∣∣∣∣ ≥ δ) ≤ N−2,
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thus satisfying the requirements for the Borel-Cantelli lemma, which in turn completes the proof for the
convergence of the total degree of AN : ∑

i̸=j AN (i, j)

εNmm1N2

a.s.→ 1.

As such, we have used the Chernoff bounds as defined in [45] and the Borel-Cantelli lemma to show
that the three convergences outlined in the statement of this lemma indeed hold, almost surely. ■

We note that the degree properties have varying rates of convergence across their corresponding tails.
These rates are a function of N , the size of the graph, but also of m, which is the behavior of r, and by
extension, f , which implies that the well-behaved nature of the degrees of GN are highly dependent on the
underlying connection function. Having now equipped ourselves with useful tools with which to decouple
the empirical degree matrix using a fixed degree matrix, we move to proving that perturbations of the
summary matrices do not change the validity of the overall convergence to µf . We again note that this
computation goes through for any general bounded and continuous f .

3.4 Approximation by Perturbation of AN

The structure of this section of the proof will be to show that through a series of convergences, slight
perturbations of the matrix AN do not change the convergent spectral measure. We will arrive at a final
perturbed matrix such that we can then show convergence of the moments of the perturbed matrix to the
moments of µf by a method of moments approach. We first recall from 3.2.1 that BN :=

√
NεN (IN−LN ),

and so its decoupled counterpart for L̂N := (NεN )−1AN is,

B̂N :=
√
NεN (IN − L̂N ). (3.8)

The overarching triangle inequality, similar to that used in the homogeneous case, that we bound is as
follows:

dBL(ESD (BN ) , µf ) ≤ dBL

(
ESD (BN ) ,ESD

(
B̂N

))
+ dBL

(
ESD

(
B̂N

)
, µf

)
. (3.9)

To begin, we show that the spectra of the decoupled B̂N converges to the spectra of the original BN .

Lemma 3.4.1. The spectra of the decoupled B̂N converges weakly in probability to the spectra of BN ,

dBL

(
ESD (BN ) ,ESD

(
B̂N

))
→ 0. (3.10)

We will again use Lemma 2.2.1 to aid in bounding the distance between these two measures from above
by showing that the difference in the normalized trace between these two matrices goes to 0.
Proof of Lemma 3.4.1:

To begin, we restate Lemma 2.2.1,

d3BL

(
ESD (BN ) ,ESD

(
B̂N

))
≤ 1

N
Tr
(
(BN − B̂N )2

)
. (3.11)

As before, we will seek to show the right-hand side of the expression can be bounded such that it
goes to 0. Rearranging, we again arrive at the trace of the squared difference between the empirical and
uncoupled normalized Laplacian matrices,

tr
(
(BN − B̂N )2

)
= tr

((√
NεN

(
L̂N − LN

))2)
=
NεN
N

N∑
i,j=1

(
(L̂N − LN )(i, j)

)2
.

This again puts in a position to evaluate the difference between the normalized Laplacian and its
uncoupled counterpart, using the inequalities established in Lemma 3.3.1 to bound this distance as a
function of NεN . To begin, we re-express the two element-wise forms of the matrices in terms of the
adjacency matrix, AN ,

(
(L̂N − LN )(i, j)

)2
=

(
AN

(
1√
di

1√
dj

− (NεN )−1

))2

(i, j).
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However, as the statement in the latter inner bracket is in isolation of a specific set of entry indices
(i, j), we can pull AN out of the squared brackets, applying that the entries of AN are binary to have that
A2

N = AN ,

(
AN (i, j)

(
1√
di

1√
dj

− (NεN )−1

))2

= AN (i, j)

(
NεN −

√
didj

)2
N2ε2Ndidj

.

We can then bound the final quantity from above by applying the identity |
√
x − √y|2 ≤ |x−y|2√

y , for

x = (NεN )2

N2ε2Ndidj
and y =

(
√

didj)
2

N2ε2Ndidj
. Additionally, we use the absolute value to swap the order of the degree

terms and N2ε2N . However, working with di and dj is still difficult, as they are still dependent on the
behavior of AN , so we now seek to use the convergence inequalities from Lemma 3.3.1 to bound them
with quantities independent of the adjacency. For notational convenience, we focus on the degree fraction
in the next two calculations, holding AN (i, j) to be fixed for now,

(
NεN −

√
didj

)2
N2ε2Ndidj

≤ |didj −N2ε2N |2

N4ε4Ndidj
≤ |(NεN + aN )(NεN + aN )−N2ε2N |2

N4ε4Ndidj
.

The final inequality in the numerator above is an application of the first inequality from Lemma 3.3.1,
which states that any degree deviation from the expected degree, NεN , is at most aN . We then apply the
second inequality in Lemma 3.3.1 to decouple the denominator, which states the minimum degree scales
like NεN as N →∞,

|(NεN + aN )(NεN + aN )−N2ε2N |2

N4ε4Ndidj
≤ |N

2ε2N + 2NεNaN + a2N −N2ε2N |2

N4ε4Nb
2
N

≈ 4N2ε2Na
2
N + 2a4N

N6ε6N
.

We have thus arrived at a bounding constant independent of any specific matrix index (i, j), which we
can now plug back into the normalized trace stated above:

NεN
N

N∑
i,j=1

(
(L̂N − LN )(i, j)

)2
≤ NεN

N

4N2ε2Na
2
N + 2a4N

N6ε6N

N∑
i,j=1

AN (i, j).

However, as there are no self-loops in GN , the diagonal terms of AN (i, j) where i = j do not contribute
the final summation, so we can more specifically index the sum as

∑
1≤i̸=j≤N AN (i, j).

NεN
N

4N2ε2Na
2
N + 2a4N

N6ε6N

N∑
i,j=1

AN (i, j) =
4N2ε2Na

2
N + 2a4N

N6ε5N

∑
1≤i̸=j≤N

AN (i, j).

This then puts us in a position to apply the final convergence concerning the total degree of the graph

from Lemma 3.3.1,
∑

1≤i̸=j≤N AN (i,j)

N2mm1εN

a.s.→ 1,

4N2ε2Na
2
N + 2a4N

N6ε5N

∑
1≤i̸=j≤N

AN (i, j) ≈ 4N2ε2Na
2
N + 2a4N

N6ε5N
N2mm1εN =

mm1(4N
2ε2N + 2a2N )

N2ε2N

a2N
N2ε2N

.

However, as established in the first convergence of Lemma 3.3.1, aN

NεN
→ 0, and thus this entire quantity

goes to 0, almost surely, N →∞. Therefore, we have proven that,

d3BL

(
ESD (BN ) ,ESD

(
B̂N

))
≤ tr

(
(BN − B̂N )2

)
≤ mm1(4N

2ε2N + 2a2N )

N2ε2N

a2N
N2ε2N

a.s.→ 0,

which satisfies the initial lemma, thus stating that the use of the decoupled B̂N in place of BN does not
change the spectral behavior, as N →∞. ■

Having now decoupled the normalized Laplacian from the degree matrix, we now show that the spec-
tra of B̂N is unaffected by another perturbation, namely by instead using the spectral measure of the
normalized and centered adjacency matrix,

A0
N :=

AN − E[AN ]√
NεN (1− εN )

. (3.12)
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Lemma 3.4.2. The distance between the spectra of A0
N := AN−E[AN ]√

NεN
and B̂N :=

√
NεN
1−ε (IN − L̂N )

converges to 0 weakly in probability,

lim
N→∞

dBL

(
ESD

(
A0

N

)
,ESD

(
B̂N

))
= 0. (3.13)

The structure of this proof relies on setting up Lemma 2.2.1 to bound the difference in the normalized
trace of the two matrices and then using the definitions of the two matrices to arrive at a result which
goes to 0 as NεN →∞.
Proof of Lemma 3.4.2:

To begin, we set up Lemma 2.2.1 for A0
N and B̂N ,

d3BL

(
ESD

(
A0

N

)
,ESD

(
B̂N

))
≤ tr

(
(A0

N − B̂N )2
)
.

Note that B̂N can be expressed as the following, for easier use later on:

B̂N :=
√
NεN

(
IN −

(
IN −

AN

NεN

))
=

AN√
NεN

.

We now look to simplify the quantity in the normalized trace in order to arrive at a quantity more
conducive to being worked as a summation. Using that εN → 0,

A0
N − B̂N =

AN − E[AN ]√
NεN (1− εN )

− AN√
NεN

≈ −E[AN ]√
NεN

.

Substituting this condensed definition back into the original statement from the right-hand side of the
initial Hoffman-Wielandt inequality and expanding the definition of the normalized trace, we arrive at the
following statement:

tr
(
(A0

N − B̂N )2
)
=

1

N

N∑
i,j=1

[
E[AN (i, j)]√

NεN

]2
=

∑N
i=1

∑N
j ̸=i E[AN (i, j)]2

N2εN
.

The summation is split into two, with the outer summation accounting for all i-th row in the matrix,
and the inner summation accounting for all j-th column terms, omitting the scenario where i = j, as those
entries are 0, and thus non-contributing. Substituting in that E[AN (i, j)] = εNf

(
i
N ,

j
N

)
by virtue of being

a Bernoulli random variable, we can then use the approximation given in (3.3),

∑N
i=1

∑N
j ̸=i E[AN (i, j)]2

N2εN
=

∑N
i=1

∑N
j ̸=i ε

2
Nf
(

i
N ,

j
N

)2
N2εN

≤ ε2N (1 + o(1))m4

N2εN
≈ εNm4(1 + o(1)).

Of course, as NεN →∞, as defined in our setting, and N →∞, then we can take that εN → 0 while
m being bounded, which then allows us to take this final quantity to go to 0,

d3BL

(
ESD

(
A0

N

)
,ESD

(
B̂N

))
≤ tr

(
(A0

N − B̂N )2
)
= εNm

4(1 + o(1))→ 0. ■

From this, we have shown that yet another small change to the underlying matrix does not fundamen-
tally change the resulting behavior of the spectral measure. We continue with this approach by showing
that a Gaussianized A0

N , which we will denote as Ag
N , is equivalent in spectral behavior to the above

defined A0
N . For Xij

iid∼ N(0, 1) being a class of standard normal random variables, Ag
N is defined as,

Ag
N (i, j) =


√

εNf( i
N , j

N )(1−εNf( i
N , j

N ))

N(1−εN ) Xij , i < j

0, i = j

(3.14)

Gaussianization allows us to characterize the behavior of the variation of the expected values of indi-
vidual entries of AN , critically showing that assuming a matrix with finite variance does not change the
underlying spectral properties. This then gives way to the last perturbation prior to defining the final con-
vergent measure, µf . This is an application of the general result from [8], in using a matrix with standard
normal entries to establish a point from which the variance statement of Ag

N can be further simplified.
First, in order to validate the use of Ag

N , we will use the Stieltjes transform of a measure as our analytical
tool. This transform uniquely characterizes a measure [4], µ, and for z ∈ C+,ℑ(z) > 0,
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Sµ(z) :=

∫
R

1

x− z
µ(dz). (3.15)

Lemma 3.4.3. Let h : R→ R be a function which is thrice differentiable:

max
0≤j≤3

sup
x∈R
|h(j)(x)| <∞

Thus for SA0
N
(z) and SAg

N
being the Stieltjes transforms of A0

N and Ag
N , respectively,

lim
N→∞

|E[h(ℜ(SA0
N
(z)))− h(ℜ(SAg

N
(z)))]| = 0, (3.16)

lim
N→∞

|E[h(ℑ(SA0
N
(z)))− h(ℑ(SAg

N
(z)))]| = 0. (3.17)

The central claim of the lemma is that the distance in expectation between the transforms of the
measures of the two matrices goes to 0 as a function of h. It is also important to note that the normalized
trace of the resolvent of a matrix M, tr((M − zI)−1), converges in probability to the Stieltjes transform
of its spectral measure [35], and thus,

SESD(M)(z) =
1

N
Tr((M− zI)−1) =

1

N

N∑
i=1

1

λi − z
.

As such, the proof will seek to show that this quantity converges between the two matrices, in both the
real and imaginary planes, via Stieltjes transform. The motivation behind the use of Stieltjes transform as
the analytical tool of choice is that first, the Stieltjes transform of a measure is analytic on C+, and that
secondly, by showing that two the transform of the two measures converge in the limit ∀z ∈ C+, we can
conclude weak convergence of the two measures [43]. Thus, the Stieltjes transform of a measure a powerful
tool, as it is a more convenient object to work than the measure itself.
Proof of Lemma 3.4.3:

We introduce a function, ϕ : Rn → C, n = N(N−1)
2 , as shorthand for the resolvent of the centered and

Gaussianized matrices, respectively,

ϕ0(x) = tr(A0
N (x)− zI)−1

ϕg(x) = tr(Ag
N (x)− zI)−1.

These can be intuitively be considered to be the distance of a complex variable, z, from the spectra of
A0

N and Ag
N , with x := {xij}1≤i≤j≤N referring to a matrix such that AN (xij) yields the (i, j)-th element

of AN . Thus, we look to evaluate the behavior of these deviations by evaluating its derivatives, which is
a similar approach to the proof approach of using the Lindeberg condition in proving the Central Limit
Theorem. This is the same approach as in [8], where the result involves taking the derivative of ϕ. We
must first define the upper bound behavior of the first three derivatives of ϕ for a general ϕ, irrespective
of being ϕ0 or ϕg. We start with the first derivative, ∂

∂xij
ϕ, reminding that the derivative of a matrix is

its element-wise derivative,

∂ϕ

∂xij
=

∂

∂xij
tr
(
(AN (x)− zI)−1

)
= tr

(
∂

∂xij
(AN (x)− zI)−1

)
= −tr

(
∂AN (x)

∂xij
(AN (x)− zI)−2

)
.

The final derivation is done by applying chain rule to the derivative within the trace. Let K =
(AN − zI)−1, for notational simplicity. The first derivative of ϕ is thus,

∂ϕ(x)

∂xij
= −tr

(
∂AN (x)

∂xij
K2

)
.

Note that the eigenvalues of (AN−zI)−1 are upper-bounded by |ℑ(z)|−1, for AN being binary, and the
derivative of AN has eigenvalues bounded N−1/2 given that

√
N dominates the denominator of the scaling

constant of both Ag
N and A0

N for NεN →∞. These are then applied through the following identity for two
matrices B,C of dimension N , where max{∥BC∥, ∥CB∥} ≤ max1≤i≤N |λi|∥C∥, λi being the eigenvalues
of B. In conjunction with the Cauchy-Schwarz inequality for matrices, this then yields,

1

N

∥∥∥∥Tr(∂AN (x)

∂xij
(AN (x)− zI)−2

)∥∥∥∥
∞
≤ 1

N

1√
N

2

|ℑ(z)|−2
=

2

N3/2|ℑ(z)|−2
,
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This same approach can be taken for the higher order derivatives, first calculating the derivative and
then bounding from above using its infinity norm. We thus move to calculate the second derivative as
follows,

∂2ϕ(x)

∂x2ij
=

∂2

∂x2ij
tr(K1) = − 1

N

∂

∂xij
Tr

(
∂AN (x)

∂xij
K2

)
= − 2

N
Tr

(
∂AN (x)

∂xij

[
−2K2 ∂AN (x)

∂xij
K

])
,

using a similar expansion via chain rule as done in the first derivative. We can now bound this from above
using its infinity norm and the Cauchy-Schwarz inequality:

∥∥∥∥∥∂2ϕ(x)∂x2ij

∥∥∥∥∥
∞

=

∥∥∥∥ 2

N
Tr

(
∂AN (x)

∂xij
K
∂AN (x)

∂xij
K2

)∥∥∥∥
∞
≤ 2

N

∥∥∥∥∂AN (x)

∂xij

∥∥∥∥
∞

∥∥∥∥K∂AN (x)

∂xij
K2

∥∥∥∥
∞
.

As established, we can bound
∥∥∥∂AN (x)

∂xij

∥∥∥
∞
≤ N−1/2 and ∥K∥∞ ≤ |ℑ(z)|−1, and by applying these

individual bounds and the properties of the infinity norm of matrices, we get that,

2

N

∥∥∥∥∂AN (x)

∂xij

∥∥∥∥
∞

∥∥∥∥K∂AN (x)

∂xij
K2

∥∥∥∥
∞
≤ 4

N

1√
N

1√
N

1

|ℑ(z)|3
=

4

N2|ℑ(z)|3
,

again with a constant 2 contributed by the symmetry of the matrix. The upper bound of the final derivative
can then be calculated using the same approach. We start by plugging in the previous result for the second
derivative and then applying the product rule,

∂3ϕ(x)

∂x3ij
=

2

N
Tr

(
∂

∂xij

[
∂AN (x)

∂xij
K

]
∂AN (x)

∂xij
K2 +

∂AN (x)

∂xij
K

∂

∂xij

[
∂AN (x)

∂xij

∂AN (x)

∂xij
K2

])
,

after which via applying chain rule to the various components in the brackets we have,

2

N
Tr

(
−3∂AN (x)

∂xij
K
∂AN (x)

∂xij
K
∂AN (x)

∂xij
K2

)
= − 6

N
Tr

(
∂AN (x)

∂xij
K
∂AN (x)

∂xij
K
∂AN (x)

∂xij
K2

)
.

We then finally assess its infinity norm and apply the previously mentioned bounds over the individual
components, first splitting the larger expression into individual component norms,

∥∥∥∥∥∂3ϕ(x)∂x3ij

∥∥∥∥∥
∞

=

∥∥∥∥ 6

N
Tr

(
∂AN (x)

∂xij
K
∂AN (x)

∂xij
K
∂AN (x)

∂xij
K2

)∥∥∥∥
∞

≤ 6

N

∥∥∥∥∂AN (x)

∂xij

∥∥∥∥
∞

∥∥∥∥∂AN (x)

∂xij

∥∥∥∥
∞
∥K∥∞

∥∥∥∥∂AN (x)

∂xij
K2

∥∥∥∥
∞
,

and then bounding the individual components accordingly,

6

N

∥∥∥∥∂AN (x)

∂xij

∥∥∥∥
∞

∥∥∥∥∂AN (x)

∂xij

∥∥∥∥
∞
∥K∥∞

∥∥∥∥∂AN (x)

∂xij
K2

∥∥∥∥
∞
≤ 6

N

1√
N

1√
N
|ℑ(z)|−1|ℑ(z)|−3 1√

N
2

=
12

N5/2
|ℑ(z)|−4.

Having now bounded all three derivatives, we provide some summary values across these derivatives,
which in themselves act as bounds on the behavior across higher order derivatives,
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λ1(ϕ) =

∥∥∥∥∥ ∂2

∂x2ij
ϕ

∥∥∥∥∥
∞

≤ 2

N3/2|ℑ(z)|−2
,

λ2(ϕ) = sup

{∥∥∥∥ ∂

∂xij
ϕ

∥∥∥∥2
∞
,

∥∥∥∥∥ ∂2

∂x2ij
ϕ

∥∥∥∥∥
∞

}
≤ 4max{ℑ(z)−4,ℑ(z)−3}

N2
,

λ3(ϕ) = sup


∥∥∥∥ ∂

∂xij
ϕ

∥∥∥∥3
∞
,

∥∥∥∥∥ ∂2

∂x2ij
ϕ

∥∥∥∥∥
2

∞

,

∥∥∥∥∥ ∂3

∂x3ij
ϕ

∥∥∥∥∥
∞

 ≤ 12max{ℑ(z)−6,ℑ(z)−5}
N5/2

.

To aid in bounding the distance in expectation between the two matrices, we introduce two more terms
for notational clarity that represent the real components of the normalized trace of the two respective
resolvents,

U = ℜ
(

1

N
Tr(A0

N − zI)−1

)
= ℜ(SA0

N
(z))

V = ℜ
(

1

N
Tr(Ag

N − zI)
−1

)
= ℜ(SAg

N
(z)).

We are now in a position to apply Theorem 1.1 from [8], which provides a bound for the maximum
difference between these two quantities, with {λr(ϕ)}1≤r≤3 being the maximum influence of a single point
of difference on ϕ. This is thus conditional on λ2 and λ3 being sufficiently small, implying that the higher
order fluctuations are well-behaved, similar to the requirement for Lindeberg’s argument for proof of the
Central Limit Theorem. For C1(h) = ∥h′∥∞ + ∥h′′∥∞, C2(h) =

1
6∥g

′∥∞ + 1
2∥g

′′∥∞ + 1
6∥g

′′′∥∞, and L > 0,
the bounding value is thus,

|E[h(U)− h(V )]| ≤C1(h)λ2(ϕ)

N∑
i̸=j

[
E[A0

N (i, j)21{|A0
N (i,j)|>L}] + E[Ag

N (i, j)21{|Ag
N (i,j)|>L}]

]

+ C2(h)λ3(ϕ)

N∑
i̸=j

[
E[A0

N (i, j)31{|A0
N (i,j)|≤L}] + E[Ag

N (i, j)31{|Ag
N (i,j)|≤L}]

]
.

We thus look to bound the right-hand side of this statement to 0. To do this, we approach A0
N and Ag

N

independently. We start by seeking to bound E[A0
N (i, j)21{|A0

N (i,j)|>L}], noting that the expectation of an
indicator function is interpretable as a probability via the Dirac delta function definition of a probability
density. Thus, the latter half of the term becomes a centered Bernoulli random variable, and as such via
the definition of A0

N can take at most a value of 2. So for L > 2, this quantity goes to 0,

N∑
i̸=j

E[A0
N (i, j)21{|A0

N (i,j)|>L}] = 0.

We now move to the second term, E[Ag
N (i, j)21{|Ag

N (i,j)|>L}], which we can approach using the Cauchy-
Schwarz inequality and Markov’s inequality. We first use Cauchy-Schwarz to decompose the statement
into an expectation and a probability,

N∑
i̸=j

[
E[Ag

N (i.j)21{|Ag
N (i,j)|>L}]

]
≤

N∑
i̸=j

√
E[Ag

N (i, j)4]P(|Ag
N (i, j)| > L),

from which we evaluate the expectation by using the definition of Ag
N in (3.14),

E[Ag
N (i, j)4] =

E
[(
εNf

(
i
N ,

j
N

) (
1− εNf

(
i
N ,

j
N

))
Xij

)2]
N2(1− εN )2

.

Taking εN → 0 for NεN → ∞ as N → ∞ and because f is bounded, we can then simplify this
expression further, as (1− εN )→ 1 and similarly (1− εNf(·))→ 1,
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E
[(
εNf

(
i
N ,

j
N

) (
1− εNf

(
i
N ,

j
N

)))2]
N2(1− εN )2

=
E
[(
εNf

(
i
N ,

j
N

))2]
N2

= O(N−2).

This then yields that the expectation of Ag
N goes to 0 at a rate of O(N−2). Now, to evaluate the

probability, we use Markov’s inequality,

P(|Ag
N (i, j)| > L) = P

∣∣∣∣∣∣
√
εNf

(
i
N ,

j
N

) (
1− εNf

(
i
N ,

j
N

))
N(1− εN )

Xij

∣∣∣∣∣∣ > L

 ≤ εNf
(

i
N ,

j
N

)
NL2

.

Thus, we again use that f is bounded and take N → ∞ to have that this term is O(N−1L−2). Com-
bining these two quantities, we have that the Gaussianized term in the first component of the summation
is bounded,

√
E[Ag

N (i, j)4]P(|Ag
N (i, j)| > L) ≤

√
O(N−2)O(N−1L−2) = O(N−3/2L−1).

In order to evaluate the higher moments in the latter half of the inequality, we make use of the fact
that for a random variable X, E

[
|X|31{|X|≤L}

]
≤ LE

[
X2
]
, which gives us that,

N∑
i̸=j

[
E[A0

N (i, j)31{|A0
N (i,j)|≤L}] + E[Ag

N (i, j)31{|Ag
N (i,j)|≤L}]

]
≤ L

N∑
i̸=j

[
E[A0

N (i, j)2] + E[Ag
N (i, j)2]

]
.

Observe however, that both Var[A0
N (i, j)] and Var[A0

N (i, j)] are less than εNf
(

i
N ,

j
N

)
, by definition.

We can thus upper bound this as follows,

L

N∑
i̸=j

[
E[A0

N (i, j)2] + E[Ag
N (i, j)2]

]
≤ 2L

N∑
i̸=j

εNf

(
i

N
,
j

N

)
= O(LN).

Thus, for a sufficient L, we can then see that the right-hand side of the initial inequality indeed goes
to 0,

C1(h)λ2(ϕ)

N∑
i̸=j

[
E[A0

N (i, j)21{|A0
N (i,j)|>L}] + E[Ag

N (i, j)21{|Ag
N (i,j)|>L}]

]

+ C2(h)λ3(ϕ)

N∑
i̸=j

[
E[A0

N (i, j)31{|A0
N (i,j)|≤L}] + E[Ag

N (i, j)31{|Ag
N (i,j)|≤L}]

]
=C1(h)O(N−2)O(N−3/2L−1) + C2(h)O(N−5/2)O(LN)

=C1(h)O(N−7/2) + C2(h)O(N−3/2L).

As h and its three derivates are bounded by definition, C1 and C2 are by extension also bounded.
We can also select an L such that N−3/2L → 0. Thus, this entire quantity goes to 0 at their respective
rates dependent on N , yielding then that the difference in expectation between the two test functions
parameterized by U and V are is indeed vanishing,

|E[h(U)− h(V )]| → 0, N →∞.

This thus satisfies the first statement set out at the beginning of the proof of the lemma for the real
plane. To complete the proof, we can see that for the statement for the imaginary part,

lim
N→∞

|E[h(ℑ(SA0
N
(z)))− h(ℑ(SAg

N
(z)))]| = 0,

that the same methods can be applied directly, as the deviations in the imaginary follow the same behavior
as in the real. Thus, by extending the above steps to this statement, we can verify the above.

Having shown that the real and imaginary components of SAH
n
(z) and SA0

N
(z) are convergent, and

given that the Stieltje’s transform of these matrices uniquely characterize their spectral measures, we
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can conclude that given these two individual convergences, the spectra of these two matrices do indeed
converge, as N →∞. ■

We have thus shown that the spectra of the Gaussianized adjacency matrix, Ag
N , is a valid approxima-

tion for the spectra of the centered and scaled adjacency matrix A0
N . Continuing along this track, we now

look to show that the behavior of the spectra is dominated by its leading order variance, still operating
using a Gaussianized AN .

Lemma 3.4.4. Let AN be an N ×N matrix defined as:

AN (i, j) =

√
f
(

i
N ,

j
N

)
N

Xi∧j,i∨j , 1 ≤ i, j,≤ N (3.18)

The spectral measure of this matrix and that of the previously defined Gaussianized matrix Ag
N converge

to one another,
lim

N→∞
dBL

(
ESD (Ag

N ) ,ESD
(
AN

))
= 0, in probability. (3.19)

The proof of this lemma follows the structure of setting up Lemma 2.2.1, which we will then use to
bound the distance in expectation between these two measures by expanding the normalized trace. As
both matrices are scaled by standard normal variables Xij , they each have a mean of 0 for all entries. We
thus focus on the behavior of their respective variances.
Proof of Lemma 3.4.4:

To begin, we apply Lemma 2.2.1 to show the closeness of these measures. The inequality is set up as
follows given that the differences between the two matrices are independent, thus allowing us to move the
expectation within the summation,

E
[
d3BL

(
ESD (Ag

N ) ,ESD
(
AN

))]
≤ E

[
tr
(
(Ag

N −AN )2
)]

=
1

N

N∑
i=1

N∑
j ̸=i

E
[
(Ag

N −AN )2(i, j)
]
.

We consider only the entries where i ̸= j, as the diagonal of both matrices are defined to be 0, so they
do not contribute to the resulting final values. We thus inspect the difference, Ag

N −AN ,

(Ag
N −AN )(i, j) =

√εNf
(

i
N ,

j
N

) (
1− εNf

(
i
N ,

j
N

))
N(1− εN )

Xij −

√
f
(

i
N ,

j
N

)
N

Xij

2

=
X2

ijf
(

i
N ,

j
N

)
N

√εN
(
1− εNf

(
i
N ,

j
N

))
1− εN

− 1

2

.

Plugging this quantity back into the initial expectation, E[X2
ij ] = 1 asXij is a standard normal variable,

and so we can remove the expectation as the remaining terms are dependent on the indexes i and j,

1

N

N∑
i=1

N∑
j ̸=i

E
[
(Ag

N −AN )2
]
=

1

N2

N∑
i=1

N∑
j ̸=i

f

(
i

N
,
j

N

)√εN
(
1− εNf

(
i
N ,

j
N

))
1− εN

− 1

2

.

Taking εN → 0 and noting that for x being bounded as a probability that (
√
1− x− 1)2 ≤ |x|, we can

simplify this statement further,

1

N2

N∑
i=1

N∑
j ̸=i

f

(
i

N
,
j

N

)√εN
(
1− εNf

(
i
N ,

j
N

))
1− εN

− 1

2

≈ 1

N2

N∑
i=1

N∑
j ̸=i

f

(
i

N
,
j

N

)(√
εN

(
1− εNf

(
i

N
,
j

N

))
− 1

)2

≤ εN
N2

N∑
i=1

N∑
j ̸=i

f

(
i

N
,
j

N

)(∣∣∣∣f ( i

N
,
j

N

)∣∣∣∣) = O(εN ).
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Given that f
(

i
N ,

j
N

)
is bounded, the final quantity then goes to 0 as εN → 0 while N → ∞. Finally,

by Lemma 2.2.1, we have shown that:

E
[
d3BL

(
ESD (Ag

N ) ,ESD
(
AN

))]
≤ E

[
tr(Ag

N −AN )2)
]
→ 0,

and by Markov’s inequality, for a δ > 0,

P
(
dBL

(
ESD (Ag

N ) ,ESD
(
AN

))
> δ
)
≤

E[dBL

(
ESD (Ag

N ) ,ESD
(
AN

))
]

δ2
→ 0. ■

Thus, by focusing only on the leading order variance in place of Ag
N , we have shown that there is no

impact on the resulting spectra. AN is now the final matrix with which we will show convergence to µf .
Prior to showing this convergence, we will describe the characteristics of µf in more detail and then make
the traditional combinatorial arguments for convergence from random matrix theory.

3.5 Characterization of µf

In this section, we will establish some combinatorial results that will be used to both better define µf

and later to show the convergence of AN to this measure. We first introduce some additional notational
elements. Wick’s formula will be used to assist in counting the contributions of the elements of a matrix to
its spectra [47]. Let Y1, . . . , Yp be independent standard Gaussian random variables, and let x1, . . . , xn ∈
{Y1, . . . , Yp} be a subset of those random variables. Wick’s formula is given as:

E [x1 . . . xn] =
∑

π∈P2(N)

Eπ [x1, . . . , xn] :=
∑

π∈P2(n)

∏
(r,s)∈π

Cov(xr, xs) =
∑

π∈P2(n)

∏
(r,s)∈π

E [xr, xs] , (3.20)

for π being a pairing of [n] = {1, 2, . . . , n}. A pairing is defined as a disjoint pair, so groups of size 2, of
[n], with the set of all pairings, P2(n) being formally defined as,

P2(n) := {π : π pairings of [n]}.

Note that for an odd value of n, P2(n) = 0, as it is not possible to create a set of disjoint pairs without
having an atom left over, and thus the set cannot be characterized only by pairings. We also introduce
the cyclic permutation operator, γ, which is the shift by 1 modulo 2k for k ∈ N, k ≥ 1, such that the
(2k + 1)-th element becomes the first element in the set [3]. This cyclic permutation can be applied to π,
which can be interpreted as a walk along the graph created by the individual combinations of π ∈ P2(n).
To illustrate, let N = 4, so we are looking to work on the pairings between the elements of [n] = {1, 2, 3, 4}.
For example, take π1 ∈ P2(4),

• • • •
1 2 3 4

.

This yields the pairs (1 2)(3 4), which we can then notate as follows, with each vertical alignment in
the right-hand side matrix given by the two corresponding nodes in a pairing. In other words, the first
row is one pair element, and the second row is the other connected element,

π1 = (1 2) (3 4) =

(
1 2 3 4
2 1 4 3

)
.

We can now see how applying a cyclic permutation changes this matrix. A shift by 1 mod 2k can
be applied by first creating the γ permutation matrix, as can be seen below, which takes and shifts the
bottom register of a matrix of indexes by 1,

(
1 2 3 4
1 2 3 4

)
1 mod 4
=⇒ γ =

(
1 2 3 4
2 3 4 1

)
.

This re-indexed permutation can then be multiplied by the initial pairing, π1, with the multiplication
being applied by following the index pairs from π1 to the index pairs in γ. For example, we find the new
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connection pair of 1 by taking 1 → 2, as defined in π1, and then taking 2 → 3 from γ, thus yielding that
1→ 3 in γπ1. This yields a new matrix as can be seen below,

γπ1 =

(
1 2 3 4
2 3 4 1

)(
1 2 3 4
2 1 4 3

)
=

(
1 2 3 4
3 2 1 4

)
. (3.21)

This produces one connected pair (1 3), and two atoms which are self-connected, (2) and (4). Thus,
π1 ∈ P2(4) has a contribution of 3 elements: a pair and 2 singletons. We count the number of these
elements to assess the contribution of a given π ∈ P2(2k) towards the spectra of matrix for its 2k-th
moment. Additionally, we define a subset of these pairs, namely, the set of non-crossing pairs, NC2(2k),
on P2(2k), which we will illustrate by assessing all the combinations of P2(4). Having defined π1 above,
we illustrate π2 and π3,

π2 :

• • • •
1 2 3 4

,

π3 :

• • • •
1 2 3 4

.

Note that π1 and π2 do not exhibit crossing pairs as the pairings between indexes can be drawn without
having their connectors overlap, whereas there is no way to draw π3 without intersecting the connecting
lines. Following our earlier steps for applying γ across the index sets of these pairs, we can find the
contributions of each π,

γπ2 =

(
1 2 3 4
2 3 4 1

)(
1 2 3 4
4 3 2 1

)
=

(
1 2 3 4
1 4 3 2

)
= (1)(2 4)(3),

γπ3 =

(
1 2 3 4
2 3 4 1

)(
1 2 3 4
3 4 1 2

)
=

(
1 2 3 4
4 1 2 3

)
= (4 1 2 3).

The NC2(4) pairings each produce 3 components after permutation by γ, whereas the crossing pair
produces only 1. This then motivates our first result in this section, which establishes an upper bound of
the number of contributions from crossing pairs possible for a given π ∈ P2(2k). Prior to stating our next
lemma, we formally define NC2(2k) as follows:

NC2(2k) := {π ∈ P2(2k)|π is non-crossing}. (3.22)

Lemma 3.5.1. The number of components contributed by a modulo 1 shift, γ, of a pairing π ∈ NC2(2k),
is #γπ = k + 1, for # being the counting of components in each γπ. If π ∈ P2(2k) is crossing, then #
γπ < k + 1.

Proof of Lemma 3.5.1:
Let (i, i+ 1) be a pair in π that corresponds to an entry in γπ. Walking through the permutation, we

see the following steps, as illustrated earlier for P2(4),

i+ 1
π−→ i

γ−→ i+ 1,

and similarly,

i
π−→ i+ 1

γ−→ i+ 2.

This provides at least 2 components in γπ: a singleton, (i + 1); and a pairing, (. . . , i, i + 2, . . . ). We
now seek to prove # γπ = k + 1 if π is non-crossing, NC2. We remove the pair (i, i + 1) to produce
another pair set, π̃. As such, the component (i + 1) drops out and the point i in (. . . , i, i + 2, . . . ) must
be removed. This reduces the total number of indexes, 2k, by 2, and subsequently reduces # γπ by 1 as
(i + 1) no longer contributes. As seen in the example for P2(4), these individual components that drop
out only occur for pairs that do not cross, as crossing pairs do not produce atoms. However, this is not
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to say that π ∈ NC2(2k) contribute only 1, as they will contribute as many atoms as possible, but will
result in an irreducible crossing component which will produce one large final component. We continue
this removal of pairs until π̃ has only 2 points remaining:

π̃ :

• •
i i′

.

Applying the permutation given by γ to this final set,

γπ̃ =

(
i i′

i′ i

)(
i i′

i′ i

)
=

(
i i′

i i′

)
= (i)(i′),

we have that # γπ̃ = 2. Of course, there can be at most k − 1 removals of 2 points per removal from the
starting count of 2k points such that π̃ remains non-empty, and each reduction of pairs leads to a removal
of 1 component from γπ. As such, counting these removals and adding the final 2 components yields our
result,

#γπ = (k − 1) · 1 + 2 = k + 1.

Looking now at π ∈ P2(2k) where π /∈ NC2(2k), we similarly execute this removal process until no
longer possible. The key difference is when a crossing pair is in π̃, in which case each π can only produce
atoms until it is irreducible with 2 or more indexes remaining, thus yielding,

#γπ ≤ k < k + 1,

which shows the maximal contribution of the case where there are crossing pairs is k. ■
We now introduce a graphical form for this cyclic permutation, upon which counting of edges will be

done.

Definition 3.5.1. Let Gγπ = (Vγπ, Eγπ), which is the graph for which γπ walks. To illustrate, we use the
case of P2(4). We take π1, where γπ1 = (1 3)(2)(4), as discussed in (3.21), to produce the following Gγπ1

:

1, 3

2 4

Note that the cyclic walk above follows the ordering of the indexes: 1 = 3→ 2, 2→ 1 = 3, 1 = 3→ 4,
4 → 1 = 3. “Gluing” these directed edges together produces the undirected edges in the corresponding
graph. This directed structure is actually a rooted planar tree, and walking up the corresponding sides of
each branch starting and ending at the root is the count of contribution that we are seeking from each π.
Finally, we define a function τπ, which maps {1, 2, . . . , 2k} to {1, 2, . . . , k+1}, satisfying i ∈ Vτπ(i), 1 ≤ i ≤
2k, where Vτπ(i) is the Kreweras complement of π [6].

Now that we have defined the objects we will be counting and established the difference between crossing
and non-crossing pairs from a combinatorial lens, we can define µf , which does not have an explicit form,
but has characterizable even moments [6].

Lemma 3.5.2. Let there be a function f : [0, 1]2 → R, a mapping τπ, and Gγπ = (Vγπ, Eγπ) be the graph
upon which the permutation walks. The odd moments of µf are zero, and the even moments of µf are
defined as follows,

m2k :=

∫
R
x2kµf (dx) =

∑
π∈NC2(2k)

∫
[0,1]k+1

∏
(u,v)∈Eγπ

f(xτπ(u), xτπ(v)), (3.23)

and furthermore, m2k satisfies Carleman’s condition,

lim sup
k→∞

m
1/(2k)
k <∞. (3.24)
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Proof of Lemma 3.5.2:
We first note that

∑
π∈NC2(2k)

and
∏

(u,v)∈Eγπ
are equivalent to enumerating all components from all

π ∈ NC2(2k) via Lemma 3.5.1. Thus, if f(·) = 1, this quantity could be bounded above by #NC2(2k).
However, for a more general f , we use the integral over k+ 1 unit squares,

∫
(0,1)k+1 for each contribution.

Thus, assuming only f being bounded, we bound using the infinity norm of f,M := ∥f∥∞, which is counted
at most k times, yielding fk. However, mk is taken to the 1

2k -th power, so,

m
1/(2k)
k ≤ ∥f∥∞ (#NC2(2k))

1/(2k) =M(#NC2(2k))
1/(2k).

We note that #NC2(2k) is a factorial quantity characterized by the Catalan numbers, Ck = 1
k+1

(
2k
k

)
[12]. Expanding the binomial coefficient of the Catalan numbers and applying Stirling’s approximation

[19], k! ≈
√
2πk

(
k
e

)k
, we arrive at a more workable approximation of this quantity,

1

k + 1

(
2k

k

)
=

1

k + 1

(
2k!

(k!)2

)
≈ 1

k + 1

√
4πk22k

2πk
≈ 4k

k3/2
√
π
,

with the final approximation as k →∞ absorbing the leading fraction into the latter. Plugging this back
into the inequality above in place of #NC2(2n), we arrive at our result, given thatM <∞ as f is bounded,

m
1/(2k)
k ≤M(#NC2(2k))

1/(2k) ≈M
(

4k

k3/2
√
π

)1/(2k)

=
2M

k3/4kπ1/4k
→ 2M,

again as k →∞. ■
We note that given f is bounded, we have then that µf is also compactly supported, implying that all

of its moments exist and are finite, thus making it a mathematically useful measure to show convergence
to for a general class of matrices. Having now proved the finiteness of the even moments of µf , we can now
show that the moments of the spectral measure ESD

(
AN

)
converge to and are characterized uniquely by

that of µf using a combinatorial approach.

Lemma 3.5.3. The spectral measure of the leading order variance matrix ESD
(
AN

)
converges to the

non-zero probability measure µf ,

lim
N→∞

ESD
(
AN

)
= µf , (3.25)

weakly in probability. Furthermore, µf characterizes this convergent measure uniquely.

The proof of this claim will rely on expressing the spectral measure of AN as a combinatorial quantity
for all even moments, which we then show is equivalent to the definition of µf from (3.23).
Proof of Lemma 3.5.3:

We use Wick’s theorem to characterize the even moments of the expectation of the trace of AN ,
E[tr(AN )2k]. To help illustrate, we use the second moment, k = 1, to demonstrate how this counting
occurs,

E
[
tr
(
(AN )2

)]
= E

 1

N

N∑
i1,i2=1

AN (i1, i2)AN (i2, i1)

 =
1

N

N∑
i1,i2=1

E
[
AN (i1, i2)

2
]
.

The final equality arises as the indexes of AN are undirected, so a connection from i2 to i1 is equivalent
to a connection from i1 to i2 in terms of the resulting variance. We can thus collapse these indexes together

into one term. The variance of AN (i, j) is
f( i

N , j
N )

N , as defined in (3.18), which we can use to reintroduce
our dependence on f into the equation,

1

N

N∑
i1,i2=1

E
[
AN (i1, i2)

2
]
=

1

N

N∑
i1,i2=1

f
(

i
N ,

j
N

)
N

=
1

N2

N∑
i1,i2=1

f

(
i1
N
,
i2
N

)
.

Given f is Riemann integrable, we can thus state that as N →∞, the summation can be expressed as
a double integral over the two respective indexes of f , for x = i1

N , y = i2
N ,
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1

N2

N∑
i=1

f

(
i1
N
,
i2
N

)
=

1

N

N∑
i1=1

1

N

N∑
i2=1

f

(
i1
N
,
i2
N

)
≈
∫ 1

0

∫ 1

0

f(x, y) dx dy.

We now extend this to even moments beyond the second moment where k = 1, by generalizing for all
2k moments using 3.20,

E
[
tr
(
(AN )2k

)]
=

1

Nk+1

N∑
i1,...,i2k=1

∑
π∈P2(2k)

∏
(r,s)∈π

E
[
AN (ir, is)AN (is, ir)

]
,

where the second summation over π ∈ P2(2k) is not visible in the case of k = 1 as there is only one possible
pair from i1 to i2. However, as established prior, we count only the components generated by applying the
cyclic permutation γ to a given π. As such, for a given index element ir, it is only counted if the element

contributes in γπ(r), which is then scaled by
√
f
(
ir
N ,

is
N

)
in order to yield the correct total contribution

of f ,

1

Nk+1

N∑
i1,...,i2k=1

∑
π∈P2(2k)

∏
(r,s)∈π

E
[
AN (ir, is)AN (is, ir)

]
=

1

Nk+1

N∑
i1,...,i2k=1

∑
π∈P2(2k)

∏
(r,s)∈π

δ(
ir=γπ(r)

)√f ( ir
N
,
is
N

)
.

δ is the Dirac delta function representing the contributions of a specific combination of nodes within
a given π, and γ is constant over π. We can in fact upper bound this statement by specifying that we
count only the π ∈ NC2(2k). Recalling from Lemma 3.5.1 that π ∈ NC2(2k) produces k + 1 components
and π /∈ NC2(2k) produces at most k components, we first re-express the prior expression in slightly more
compact notation, with the enumeration of the sum across individual indexes in a π summarized as N#γπ

and the effect of
√
f
(
ir
N ,

is
N

)
summarized in a constant c,

1

Nk+1

∑
π/∈NC2(2k)

N∑
i1,...,i2k=1

∏
(r,s)∈π

[
δ(

ir=γπ(r)
)√f ( ir

N
,
is
N

)]
≈ 1

Nk+1

∑
π/∈NC2(2k)

cN#γπ.

The contribution of π /∈ NC2(2k) is thus bounded as follows given that #γπ ≤ k,

1

Nk+1

∑
π/∈NC2(2k)

cN#γπ ≤ 1

Nk+1

∑
π/∈NC2(2k)

cNk → 0,

as N → ∞, and the leading normalizing constant outpaces the quantity in the summation. Ergo, pairs
which include crossing elements do not contribute in the limit to the total number of components counted,
leading to the narrowing of contributing pairs to just those from π ∈ NC2(2k). We will again use 2k = 4
to illustrate how this contribution arises specifically for non-crossing pairs. Specifically, we will focus on
π1, with γπ1 = (1 3) (2) (4). For simplicity, we use i1, . . . , i4 to correspond to each point,

E
[
tr
(
(AN )4

)]
=

1

N3

∑
π∈NC2(4)

∑
i1,...,i4=1

√
f

(
i1
N
,
i2
N

)
f

(
i2
N
,
i1
N

)
f

(
i3
N
,
i4
N

)
f

(
i4
N
,
i3
N

)
.

As (1, 3) indicates i1 = i3 in the connection of the individual elements, all pairs of the form (i, i + 1)
are re-indexed accordingly. We then simplify the above statement by collapsing the indexes if they share
an edge on a walk on Gγπ,
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1

N3

∑
π∈NC2(4)

∑
i1,i2=i3,i4=1

√
f

(
i1
N
,
i2
N

)
f

(
i2
N
,
i1
N

)
f

(
i3
N
,
i4
N

)
f

(
i4
N
,
i3
N

)

≈ 1

N3

∑
π∈NC2(4)

∑
i1,i2,i4=1

f

(
i1
N
,
i2
N

)
f

(
i1
N
,
i4
N

)

≈
∑

π∈NC2(4)

∫∫∫
f(x, y)f(x, z)dxdydz,

with the final substitution being x = i1
N , y = i2

N , z = i4
N . As before, this result extends for all values of 2k,

leading to the following generalized result,

E
[
tr
(
(AN )2k

)]
=

1

Nk+1

∑
π∈NC2(2k)

N∑
i1,...,i2k=1

∏
(r,s)∈π

[
δ(

ir=iγπ(r)

)√f ( ir
N
,
is
N

)]

=
∑

π∈NC2(2k)

∫
[0,1]k+1

∏
(r,s)∈π

f
(xr
N
,
xs
N

)
dx1 . . . dxk+1.

Again, in the homogeneous setting where f(x, y) = 1, this would provide the Catalan numbers, which
characterize the moments of the semicircle distribution [12]. In the inhomogeneous setting, we identify
that limN→∞ E

[
tr(AN )2k

]
is in fact equivalent to mk from (3.23), and so,

lim
N→∞

E
[
tr(AN )2k

]
→ m2k.

Having then defined in Lemma 3.5.2 that mk is the even moments of µf , we have thus shown that in
the limit, the spectral measure of AN is indeed characterized by µf . In order to prove the unique nature
of this limiting characterization, we will rely on Carleman’s condition, which assesses if a measure on R
with finite moments, a, satisfies,

∞∑
k=1

a
−1/(2k)
2k = +∞.

If a measure meets the above condition, that any other measure that has the same moments must also

then be the same measure [16]. As highlighted in the proof of Lemma 3.5.2, m
1/(2k)
k is bounded above by

MCk, for Ck being the Catalan numbers, which do indeed satisfy Carleman’s condition. Thus, the limiting
measure of E

[
tr(AN )2k

]
must be unique, then implying that µf is indeed the unique limiting measure for

this quantity. As such, by showing this convergence in the limit, we have shown that,

lim
N→∞

ESD
(
AN

)
= µf ,

weakly in probability. ■

3.6 Proof of Theorem 3.2.1

Having now gathered all the requisite supporting results, we can now work backwards to prove the initial
theorem (3.1), using several perturbations of the initial matrix BN . We have shown from (3.19) that
limN→∞ dBL

(
ESD (Ag

N ) ,ESD
(
AN

))
= 0, in probability. We can extend this assertion using Lemma 3.5.3

to state that:

lim
N→∞

ESD (Ag
N ) = µf ,

weakly in probability. Similarly, as we have proven in Lemma 3.4.3,
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lim
N→∞

∣∣∣E [h(ℜ(SAg
N
(z)))− h(ℜ(SA0

N
(z)))

]∣∣∣ = 0.

And so, by SAg
N
(z) being the resolvent of Ag

N ,

lim
N→∞

E
[
h(ℜ(SAg

N
(z)))

]
= h

(∫
R

1

x− z
µf (dx)

)
,

with the above equality in expectation concluding that this is then equivalent to,

lim
N→∞

E
[
h(ℜ(SA0

N
(z)))

]
= h

(∫
R

1

x− z
µf (dx)

)
,

in probability. The right-hand side is now a deterministic quantity, and because h is thrice differentiable
by definition, we have that:

lim
N→∞

ℜ(SA0
N
(z)) =

∫
R

1

x− z
µf (dx),

in probability. These equivalences similarly hold for the imaginary part, as we also demonstrated synony-
mous behaviour between both the real and imaginary components of the transform of these measures,

lim
n→∞

∣∣∣E [h(ℑ(SAg
N
(z)))− h(ℑ(SA0

N
(z)))

]∣∣∣ = 0.

Using the above logic that was applied to the real plane, the following statements are then also equal:

lim
n→∞

E
[
h(ℑ(SAg

N
(z)))

]
= h

(∫
R

1

x− z
µf (dx)

)
⇐⇒ lim

n→∞
E
[
h(ℑ(SA0

N
(z)))

]
= h

(∫
R

1

x− z
µf (dx)

)
⇐⇒ lim

n→∞
ℑ(SA0

N
(z)) =

∫
R

1

x− z
µf (dx).

And so, having shown convergence to the Stieltjes transform of µf in both the real and imaginary
parts, we can thus state:

lim
N→∞

ESD
(
A0

N

)
= µf

weakly in probability. We have also shown that dBL

(
ESD

(
A0

N

)
,ESD

(
B̂N

))
→ 0 in (3.13), which then

yields,

dBL

(
ESD

(
B̂N

)
, µf

)
→ 0,

weakly in probability, thus completing the initial triangle inequality we initially set up in (3.9),

dBL(ESD (BN ) , µf ) ≤ dBL

(
ESD (BN ) ,ESD

(
B̂N

))
+ dBL

(
ESD

(
B̂N

)
, µf

)
→ 0,

weakly in probability. This then concludes the proof that,

lim
N→∞

ESD (BN ) = µf ,

weakly in probability. ■
We have now shown that with appropriate scaling and centering, the spectral measure of the normalized
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Laplacian in a general inhomogeneous case indeed converges weakly to the measure defined in [6] and [12],
µf . The next sections will focus on applying this result and the methods used in its proof first in the
context of a centrality measure, PageRank, and secondly on graphical neural networks. Both of these
applications rely on the normalized Laplacian to describe the connectedness of nodes in GN .



Chapter 4
PageRank Approximation in the

Inhomogeneous Regime

In this section we apply the methods and results derived in the prior chapter to extend the use
of PageRank approximation by average graph volume to inhomogeneous random graphs.

4.1 Notation

PageRank and the broader family of centrality measures are useful descriptive tools for conveying the
connectedness of a graph or a subset of vertices within a graph. However, these measures cannot be
expressed in an explicit form empirically, and as such, approximations must be used. This section will focus
specifically on the approximation of PageRank using the degrees and volume of a graph in a generalized
inhomogeneous setting. We continue to carry forward the above setting where pij = εNf

(
i
N ,

j
N

)
=

εNr
(

i
N

)
r
(

j
N

)
, with f , and by extension r : [0, 1] → [0,∞), being Riemann integrable and bounded.

Finally, we will denote the PageRank vector as πN , and a preference vector v. v is also a probability
vector, playing a role such that it balances against P as follows, for a damping factor α ∈ (0, 1),

P̃ = αP+ (1− α)v1T , (4.1)

where 1 is a vector of ones. P̃ is then the stochastic transition matrix of a modified Markov chain, which
over multiple iterations of the calculation of PageRank would yield a dominating eigenvector of P̃, which
is equivalently its stationary distribution [24]. We denote this vector as πN as follows,

πN = P̃πN ,

or, equivalently when α < 1,

πN = (1− α)[I− αP]−1v. (4.2)

The approximation of πN using the volume of a graph, as defined earlier in (1.5), is given as:

πN =
αd

vol(GN )
+ (1− α)v.

In order to assess the validity of this approximation, we use total variation distance, which for two
discrete probability distributions p = {pi}i≥0 and q = {qi}i≥0 is defined to be:

dTV (p,q) =
1

2

∑
i

|pi − qi| . (4.3)

Finally, an event, E, will hold with high probability (w.h.p), if there exists a C such that P[E] ≥
1−O(c−m) for an m > 0, ∀c > C.

4.2 PageRank Approximation in General Inhomogeneous Graphs

Prior to stating the main result of this chapter, we first require two conditions regarding the behavior of the
graph, such that the degrees of the graph are reasonably well-behaved while the underlying structure still
exhibits some level of centrality across its nodes. Formally then, let GN satisfy the following conditions:

1. The maximum and minimum degrees, dmax and dmin, are both finite and somewhat close. That is,
dmax ≤ Kdmin for a constant K > 0 not dependent on N .

39
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2. The remaining eigenvalues beyond the leading eigenvalue of QN := IN − LN = D
−1/2
N AND

−1/2
N are

vanishingly small,

max{|λ2(QN )|, |λN (QN )|} ≤ 2√
NεNδ

,

with high probability, for δ being the infinimum of r(x), δ := infx∈[0,1] r(x). We denote λi(QN ) as
λi, unless otherwise stated. This is equivalent to stating that the spectral gap, 1−max{|λ2|, |λN |},
is bounded away from 0 [2].

Theorem 4.2.1. Let ∥v∥2 = O(1/
√
N). Under the assumptions pij = εNf

(
i
N ,

j
N

)
and NεN ≫ (log(N))ξ,

ξ > 6, and additionally that the graph GN satisfies conditions (1) and (2), the PageRank measure of this
graph, πN , can be approximated in total variation by πN , as defined in (1.5),

dTV (πN ,πN ) ≤ K√
NεN

= o(1),w.h.p, (4.4)

as N →∞.

[2] proved that under the above conditions that (4.4) holds for Chung-Lu and Stochastic Block inho-
mogeneous graphs. We will approach this problem for a more general class of inhomogeneous graphs and
additionally validate that convergence rate is dependent on the average degree of the graph via

√
NεN .

In order to prove this theorem, we must first validate that the general inhomogeneous random graphs
in our setting meet the two conditions, with the final proof following as a result. As such, we begin by
individually assessing these two claims, starting with the behavior of the minimum and maximum degrees.
We additionally impose the assumption that NεN ≫ (log(N))ξ, for a ξ ≥ 1, thus ensuring a minimal
degree of connectivity in the graph. As a reminder, we have already proved that the maximum degree
deviations from the expected degree disappear asymptotically in Lemma 3.3.1, but we will restate it here
for convenience:

max
1≤ i≤N

∣∣∣∣di − E[di]

NεN

∣∣∣∣→ 0,

as N → ∞, almost surely. Similarly, we have proved that the minimum degree is convergent to the
expected degree,

min
1≤i≤N

(
di

NεN

)
→ 1,

N → ∞. We have thus already addressed the well-behaved nature of the degrees of GN with respect to
the average degree asymptotically. In the following two sections we show that GN satisfies (1) and (2),
first focusing on (1).

4.3 Relative Degree Bounds on an Inhomogeneous Graph

As mentioned in the prior section, we require that a graph meet the sufficient condition that dmax ≤ Kdmin

for the result to hold. This leads to our first lemma concerning PageRank.

Lemma 4.3.1. If for a graph GN where the connection probability is given pij = εNr
(

i
N

)
r
(

j
N

)
and

NεN ≫ (log(N))ξ for ξ ≥ 1, then,

dmax

dmin
≤ K, (4.5)

for a K > 1 and not dependent on N .

The proof seeks to show that the probability dmax

dmin
> K goes to 0 as N → ∞. This probability can

be decomposed into the intersect of two events, the event that dmax ≥ Kdmin and the behaviour of dmin

relative to δ̃NεN for some δ̃ > 0.
Proof of Lemma 4.3.1:

To start, we illustrate the decomposition of the probability of the event in interest, namely that the
ratio between the maximum and minimum degrees exceeds an arbitrary K,

P(dmax ≥ Kdmin) = P(dmax ≥ Kdmin,dmin ≥ δ̃NεN ) + P(dmax ≥ Kdmin,dmin < δ̃NεN ). (4.6)
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We assess the probability of the two intersected events individually. First, looking at P(dmax ≥
Kdmin,dmin ≥ δ̃NεN ), we note that the intersect in the latter half of the probability is the more restrictive
condition on dmin as K is arbitrary. We can thus use this to more accurately bound the probability of this
intersection, with dmin being replaced by the more restrictive δ̃NεN in the first inequality,

P(dmax ≥ Kdmin,dmin ≥ δ̃NεN ) ≤ P(dmax ≥ Kδ̃NεN ) ≤
N∑
i=1

P(di ≥ Kδ̃NεN ).

Having now replaced dmax with a union bound over all di, we can rearrange the inequality in the
probability and apply that E[di] = εNr(i/N)

∑N
j ̸=i r(j/N) which yields then NεNδ

2 ≤ E[di] ≤ NεNm
2,

for δ := infx∈[0,1] r(x) and m := supx∈[0,1] r(x). As such, we must pick a δ̃ < δ where K > δ
δ̃
> 1 and that

K > m2

δ2 > 1, so,

N∑
i=1

P(di ≥ Kδ̃NεN ) =

N∑
i=1

P(di − E[di] ≥ Kδ̃NεN − E[di]) ≤
N∑
i=1

P(di ≥ E[di] +NεN (Kδ̃ −m2))

We see that we are now in a position to apply an upper tail Chernoff bound to this probability, as
described in [45],

N∑
i=1

P(di ≥ E[di] +NεN (Kδ̃ − δ)) ≤
N∑
i=1

exp

(
− (Kδ̃ −m2)2N2ε2N
2(NεN + (Kδ̃ −m2)NεN/3)

)
.

In order to simplify the denominator, we can bound from above by using 4(Kδ̃−m2)NεN , asKδ̃−m2 >

1. Note that NεN ≫ (log(N))ξ, so we specify that NεN > 12 logξ(N)

Kδ̃−m2
and simplify accordingly,

N∑
i=1

exp

(
− (Kδ̃ −m2)2N2ε2N
2(NεN + (Kδ̃ −m2)NεN/3)

)
≤

N∑
i=1

exp

(
− (Kδ̃ −m2)2N2ε2N

4(Kδ̃ −m2)NεN

)

≤ N exp

(
− (Kδ̃ −m2)

4

12 logξ(N)

(Kδ̃ −m2)

)
= N−2 → 0.

We have thus shown that the probability that the maximum degree is greater than the minimum degree
scaled by any constant is vanishing. We now assess the second probability, P(dmax ≥ Kdmin,dmin <
δ̃NεN ), and rearrange to apply a lower tail Chernoff bound, as in [45]. Focusing here on the latter half of
the second probability, namely that the minimum degree is less than our slightly scaled expected degree
where δ > δ̃,

P(dmin < δ̃NεN ) = P(dmin ≤ E[di]− (E[di]− δ̃NεN )) ≤ P(dmin ≤ E[di]−NεN (δ − δ̃)).

Note that δ− δ̃ > 0, and so the term NεN (δ− δ̃) is a valid positive error term for the Chernoff bound.
Applying the lower tail bound:

P(dmin ≤ E[di]−NεN (δ − δ̃)) ≤
N∑
i=1

P(di ≤ E[di]−NεN (δ − δ̃)) ≤ N exp

(
− (δ − δ̃)2N2ε2

2NεN

)
.

We bound NεN from below by NεN > 6 logξ(N)

(δ−δ̃)2
to achieve our result,

N exp

(
− (δ − δ̃)2N2ε2

2NεN

)
= N exp

(
− (δ − δ̃)2NεN

2

)
≤ N exp

(
− (δ − δ̃)2

2

6 logξ(N)

(δ − δ̃)2

)
→ 0.

Finally, via (4.6) we have our result that P
(

dmax

dmin
< K

)
→ 1. ■

This proves that the degrees of our inhomogeneous graph are well-behaved and somewhat close, thus
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satisfying the first condition underpinning Theorem 4.2.1. We now look to prove the second condition
regarding the behavior of the spectral gap and that the eigenvalues beyond the leading one are vanishing.

4.4 Characterizing the Spectral Gap

Similar to our previous results which interact with the degree behavior of GN , we look to work with the ex-
pected degree instead of the actual degree matrix in assessing spectral behavior. To that end, we introduce
a slightly reworked form of the normalized and centered adjacency matrix. Let w := (E[d1], . . . ,E[dN ])
be a vector of expected degrees and WN := diag(w) be a diagonal matrix of expected degrees as in [10].
Additionally, let the following be a row vector:

χN :=

(√
r(1/N)∑N
i=1 r(i/N)

, . . . ,

√
r(N/N)∑N
i=1 r(i/N)

)
.

We use these to define the normalized and centered adjacency matrix, CN := W
−1/2
N ANW

−1/2
N −χT

NχN

[10]. Observe that this can also be rewritten as follows in order to better see this centering and scaling in
action,

CN = W
−1/2
N ANW

−1/2
N − χT

NχN =
AN (i, j)− εNr(i/N)r(j/N)√

εNr(i/N)
∑

i′ ̸=i r(i
′/N)

√
εNr(j/N)

∑
j′ ̸=j r(j

′/N)

= W
−1/2
N (AN − E[AN ])W

−1/2
N .

The last equality is via the definition of E[AN (i, j)] = εNf
(

i
N ,

j
N

)
= εNr

(
i
N

)
r
(

j
N

)
. In the following

lemma that assesses the behaviour of the leading eigenvalue, we will use this readjusted form as it is more
conducive to element-wise operations [20].

Lemma 4.4.1. Let GN be as described above and let NεN ≫ (log(N))ξ, ξ > 6. Then we have,

∥CN∥2 ≤ (1 + o(1))
2√
NεNδ

, (4.7)

for δ being the infinimum of r(x).

In order to bound the leading eigenvalue of CN , we first state the quantities that we will be working
with. For an integer k, via properties of the trace:

E
[
λ1(CN )2k

]
≤

N∑
i=1

E
[
λi(CN )2k

]
= E

[
Tr(C2k)

]
. (4.8)

To bound E[Tr(C2k)] then, we will again turn to combinatorial arguments to define and quantify the
spectral behavior of a random matrix. This is a similar argument to that made in (3.25), albeit adjusted
to bound just the leading eigenvalue. To restate, this argument has two components. First, determining
the contribution of a step in a valid walk of length 2k across the complete graph defined in size by N , such
that each edge is walked with multiplicity of at least 2 to be considered valid, and second, the enumeration
of these steps and walks. Additionally, k can now potentially be dependent on N .
Proof of Lemma 4.4.1:

We start by determining the contribution per step in a valid walk. This quantity is defined by the
expectation of an entry in CN in its m-th moment, for a general integer m. To start, we define the
distribution of an entry CN (i, j), where wi is the i-th element in w,

CN (i, j) =

{
1√
wi

(1− εNr(i/N)r(j/N)) 1√
wj
, with probability pij = εNr(i/N)r(j/N),

1√
wj

(−εNr(i/N)r(j/N)) 1√
wj
, with probability qij = 1− pij .

(4.9)

We can thus calculate the expectation of CN for a moment m by multiplying the outcomes by their
corresponding supports, which in turn can then be bounded as the numerator is of the form |p(1− p)m +
(1− p)(−p)m|, which is less than or equal to p itself. Thus, for m ≥ 2,

|E[Cm
N (i, j)]| =

∣∣∣∣p (q)m + (q)(−p)m

(wiwj)m/2

∣∣∣∣ ≤ εNr(i/N)r(j/N)

(wiwj)m/2
.
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From here, we substitute in the definition of wi.

εNNr(i/N)r(j/N)

(wiwj)m/2
=

εNr(i/N)r(j/N)(
εNr(i/N)

∑
i′ ̸=i r(i

′/N)εNr(j/N)
∑

j′ ̸=j r(j
′/N)

)m/2
,

and apply that r(x) is also Riemann integrable as f(x, y) is Riemann integrable, so we can group the
integrals of r(x),

εNr(i/N)r(j/N)(
εNr(i/N)

∑
i′ ̸=i r(i

′/N)εNr(j/N)
∑

j′ ̸=j r(j
′/N)

)m/2
≈ εN(

NεN
∫ 1

0
r(x)dx

)m (
r
(

i
N

)
r
(

j
N

))m
2 −1

,

as N →∞. As δ is the infinimum of r(x), we can then upper bound this using δ, which then provides an
index independent bound on E[Cm

N (i, j)],

εN(
NεN

∫ 1

0
r(x)dx

)m (
r
(

i
N

)
r
(

j
N

))m
2 −1

≤ εN(
NεN

∫ 1

0
r(x)dx

)m
δm−2

.

As such, for any given moment m, the expected contribution of an edge can be bounded,

|E[Cm
N (i, j)]| ≤ εN

[(
NεN

∫ 1

0

r(x)dx

)m

δm−2

]−1

. (4.10)

It is important to reiterate that in using a combinatorial approach to quantify these moments that
only edges that are walked at least twice contribute, as this is equivalent to counting only the connected
nodes in the graph of a cyclic walk, such as in the example given in Definition 3.5.1. This graph can be
represented as a rooted planar tree, for which a walk is invalid if each edge is not walked once on the walk
away from the root and again back towards the root, leading to only edges walked twice being considered,
and only “good” walks comprised of these “good” edges being counted in totality. In order to have a
walk only of edges walked with a multiplicity of at least 2, let l be the number of unique edges in a valid
walk, e1, . . . , el be the edges walked, and Wl,k be the set of all good walks. The maximal contribution of a
component across these walks can be expressed by directly using (4.10) where the indexes (i, j) are given
from the two sides of an edge eh, eh(1) and eh(2),

l∏
h=1

∣∣∣E [C2k
N (eh(1), eh(2))

]∣∣∣ ≤ l∏
h=1

εN(
NεN

∫ 1

0
r(x)dx

)2k
δ2k−2

,

after which the product can be re-expressed as a power over all terms given that it no longer has a relevant
index. Thus, the overall contribution of a good walk is bounded by,

l∏
h=1

εN(
NεN

∫ 1

0
r(x)dx

)2k
δ2k−2

= εlNδ
2l

l∏
h=1

1(
NεN

∫ 1

0
r(x)dxδ

)2k =
εlN(

NεN
∫ 1

0
r(x)dx

)2k
δ2k−2l

,

as an edge can be walked at most 2k times for a walk of 2k length. Given that this counting characterizes
Tr(C2k

N ), we can then bound the expected trace of CN in any even 2k-th moment as the above quantity
scaled by the total number of good walks, |Wl,k|,

E
[
Tr(C2k

N )
]
≤

k∑
l=0

|Wl,k|
εlN(

NεN
∫ 1

0
r(x)dx

)2k
δ2k−2l

. (4.11)

Of course, we must quantify this enumeration, |Wl,k|, and derive an upper bound for it. To do so, we
will rely on the following result from Füredi and Komlós [20], which states for all l < N ,

|Wl,k| ≤ N(N − 1) . . . (N − l)
(
2k

2l

)(
2l

l

)
1

l + 1
(l + 1)4(k−l) ≤ N l+14l

(
2k

2l

)
(l + 1)4(k−l),

with the last inequality having shown to be a cleaner form of the initial result which can be used with no
impact on the final result [10]. We now use this quantity to directly bound the inequality from (4.11) from
above,
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E
[
Tr(C2k)

]
≤

k∑
l=0

|Wl,k|
εlN(

NεN
∫ 1

0
r(x)dx

)2k
δ2k−2l

≤
k∑

l=0

εlNN
l+14l

(
2k
2l

)
(l + 1)4(k−l)(

NεN
∫ 1

0
r(x)dx

)2k
δ2k−2l

. (4.12)

For convenience of notation, we define S(N, k, l) to be the quantity in the summation for a given edge
count l,

S(N, k, l) :=
εlNN

l+14l
(
2k
2l

)
(l + 1)4(k−l)(

NεN
∫ 1

0
r(x)dx

)2k
δ2k−2l

.

We now look to prove that this sum is dominated by its leading term, the k-th summand given as
S(N, k, k). In order to do so, we will see that for any l ≤ k − 1, that S(N, k, l)/S(N, k, k) is vanishing,
thus implying that S(N, k, k) dominates the entire sum. Setting up this ratio and performing some
simplification,

S(N, k, l)

S(N, k, k)
=
εlNN

l+14l
(
2k
2l

)
(l + 1)4(k−l)(

NεN
∫ 1

0
r(x)dx

)2k
δ2k−2l

(
NεN

∫ 1

0
r(x)dx

)2k
δ2k−2k

εkNN
k+14k

(
2k
2k

)
(k + 1)4(k−k)

=
εlNN

l+14l
(
2k
2l

)
(l + 1)4(k−l)

δ2k−2lεkNN
k+14k

.

From here, we rearrange the expression to express as many terms as bases for the power l − k, and
we use the identity

(
2k
2l

)
≤ 2k2(k−l) to bound with a simpler form. Additionally, we use that l + 1 ≤ k to

group the latter two terms, given our initial restriction on l,

εlNN
l+14l

(
2k
2l

)
(l + 1)4(k−l)

δ2k−2lεkNN
k+14k

≤
(
4εNNδ

2
)l−k

2k2(k−l)(l + 1)4(k−l) ≤ 2

(
4εNNδ

2

k6

)l−k

.

We can thus express a bound on S(N, k, l) in terms of a factor of S(N, k, k) by rearranging the initial
ratio,

S(N, k, l) ≤ 2

(
4εNNδ

2

k6

)l−k

S(N, k, k).

We choose k = g(N) log(N), where g(N) is an arbitrarily slowly growing function of N such that
log(N)≫ g(N). Using then that NεN ≫ (log(N))ξ, ξ > 6, we have that,

(
4εNNδ

2

k6

)l−k

≤

(
4δ2 logξ(N)

g6(N) log6(N)

)l−k

≤

(
4δ2 logξ−6(N)

g6(N)

)l−k

.

As l − k ≤ −1, we can then state that S(N, k, l) is a vanishingly small portion of S(N, k, k). This can
thus be absorbed within the sum in (4.11) as (1 + o(1)) multiplied by the leading term,

E[Tr(C2k)] ≤
k∑

l=0

S(N, k, l) ≤ (1 + o(1))S(N, k, k).

Substituting back in the initial definition of S(N, k, k), we arrive at a bound expressed in terms of our
graph properties,

(1 + o(1))S(N, k, k) = (1 + o(1))
N(4εNN)k(

NεN
∫ 1

0
r(x)dx

)2k = (1 + o(1))N

(
2

√
NεN

∫ 1

0
r(x)dx

)2k

.

We can also use that
∫ 1

0
r(x)dx ≥ δ, by definition. Thus, this expression can be simplified again, as

follows,

E
[
Tr(C2k

N )
]
≤ (1 + o(1))N

(
2

√
NεN

∫ 1

0
r(x)dx

)2k

≤ (1 + o(1))N

(
2√
NεNδ

)2k

. (4.13)

Having now determined the convergent value of the expectation of the trace of C for an even moment
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2k, we now apply Markov’s inequality to prove convergence for the leading eigenvalue, λ1(C
2k
N ), as an

extension of (4.8). For an error term ∆ dependent on N and using the bound found in (4.13):

P

(
λ1(C

2k
N ) ≥ (1 + ∆)2k

(
2√
NεNδ

)2k
)
≤ E[λ1(C2k

N )]

(1 + ∆)2k
(

2√
NεNδ

)2k ≤ (1 + o(1))N
(

2√
NεNδ

)2k
(1 + ∆)2k

(
2√

NεNδ

)2k
=

(1 + o(1))N

(1 + ∆)2k
.

As k is of the order of log(N) and ∆ is vanishing with N , this final quantity can be reduced as follows
to show that this probability is o(1),

(1 + o(1))N

(1 + ∆)2k
≈ N

(1 + ∆)2k
= exp (log(N)− 2k(1 + ∆)) ≤ exp(− log(N)) = N−1.

We have thus shown that the probability the leading eigenvalue of the 2k-th moment of CN exceeds
the bound defined in (4.13) is vanishing as a function of N , thus completing the proof that |λ1(CN )| ≤
(1 + o(1)) 2√

NεNδ
, almost surely. ■

Having now shown the behaviour of the leading eigenvalue, we can examine the behaviour of the
remaining eigenvalues to determine the overall behaviour of the spectra and quantify the spectral gap.

Lemma 4.4.2. Let there be a graph satisfying NεN ≫ (log(N))ξ, ξ ≥ 6. For P being a Markov matrix,

max(λ2(P),−λN (P)) ≤ 2√
NεNδ

, (4.14)

with high probability.

The approach to proving this statement is similar to the prior proof in bounding the degree of normalized
adjacency matrices. We will first show that replacing DN with its expectation, WN is valid, and then
bound the subsequent replaced statement using Lemma 4.3.1.
Proof of Lemma 4.4.2:

To start, we would like to show that the deviation between the empirical degree and the expected degree

is vanishing with respect to their L2-norm where for a matrix X ∈ RN×N , ∥X∥2 =
√
max1≤i≤N λi(X

TX),

∥QN −W
−1/2
N ANW

−1/2
N ∥2 = o(1), w.h.p,

recalling that QN := D
−1/2
N AND

−1/2
N . To do so, observe that the following rearrangement of the above

can use (3.5) to yield, almost surely:

∥W−1/2
N D

1/2
N − IN∥2 = max

1≤i≤N

∣∣∣∣∣
√

Di

wi
− 1

∣∣∣∣∣ ≤ max
1≤i≤N

∣∣∣∣∣
√

Di

εNr(i/N)
∑

j ̸=i r(j/N)
− 1

∣∣∣∣∣ = o(1). (4.15)

Additionally, given that P is the unsymmetrized version of Q, and both are stochastic matrices with a
maximum eigenvalue of 1, it is clear that,

∥QN∥2 = max
1≤i≤N

|λi(QN )| = max
1≤i≤N

|λi(PN )| = 1. (4.16)

With these two equivalences established, we can now approach the convergence in L2 of QN and

W
−1/2
N ANW

−1/2
N directly, first by manipulating to create another instance of QN in the difference,

∥QN −W
−1/2
N ANW

−1/2
N ∥2 = ∥QN −W

−1/2
N D

1/2
N D

−1/2
N AND

−1/2
N D

1/2
N W

−1/2
N ∥2

= ∥QN −W
−1/2
N D

1/2
N QND

1/2
N W

−1/2
N ∥2.

We additionally introduce −W−1/2
N D

1/2
N QN +W

−1/2
N D

1/2
N QN into the equation above,
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∥QN −W
−1/2
N D

1/2
N QND

1/2
N W

−1/2
N ∥2 = ∥QN −W

−1/2
N D

1/2
N QN +W

−1/2
N D

1/2
N QN−

W
−1/2
N D

1/2
N QND

1/2
N W

−1/2
N ∥2.

We can now factor out some common terms and group this one large norm into separate norms by
applying the triangle inequality of norms followed by the submultiplicativity of matrix norms.

∥QN −W
−1/2
N D

1/2
N QN +W

−1/2
N D

1/2
N QN −W

−1/2
N D

1/2
N QND

1/2
N W

−1/2
N ∥2

=∥(IN −W
−1/2
N D

1/2
N )QN∥2 + ∥W−1/2

N D
1/2
N QN (I−D

1/2
N W

−1/2
N )∥2

≤∥(IN −W
−1/2
N D

1/2
N )∥2∥QN∥2 + ∥W−1/2

N D
1/2
N ∥2∥QN∥2∥IN −D

1/2
N W

−1/2
N ∥2.

(4.17)

Observe that we can now apply (4.15) and (4.16) in combination with the triangle identity for norms,

∥W−1/2
N D

1/2
N ∥2 ≤ ∥IN∥2 + ∥W

−1/2
N D

1/2
N − IN∥2 = 1 + o(1) a.s., again by the above observation and the

straightforward result that ∥IN∥2 = 1. Putting these results together, we get that, almost surely,

∥(IN −W
−1/2
N D

1/2
N )∥2∥QN∥2 + ∥W−1/2

N D
1/2
N ∥2∥QN∥2∥IN −D

1/2
N W

−1/2
N ∥2 = o(1).

We can now apply the identity for the spectra of square Hermitian matrices where for A,B ∈ Rn×n,
|λi(A +B) − λi(A)| ≤ ∥B∥2, where i are the indexes of the ordered eigenvalues. This provides a bound
for the eigenvalue-wise difference between the two matrices,

|λi(QN )− λi(W−1/2
N ANW

−1/2
N )| ≤ ∥QN −W

−1/2
N ANW

−1/2
N ∥2 = o(1).

As such, we have proven that a substitution of DN by WN makes a negligible difference in L2 and
that by extension the spectra of the two matrices are also close. We now seek to show that normalizing
the adjacency matrix by WN yields vanishingly small eigenvalues beyond the largest one. To do so, we
first observe that χT

NχN yields one a rank-one matrix, and as such λi(χ
T
NχN ) = 0 for i ≥ 2. Thus, for

i ≥ 2:

|λi(W−1/2
N ANW

−1/2
N )| = |λi(W−1/2

N ANW
−1/2
N )− λi(χT

NχN )|.

Again, applying the identity for square Hermitian matrices and subsequently using the result from
(4.7), we can bound all remaining eigenvalues,

|λi(W−1/2
N ANW

−1/2
N )− λi(χT

NχN )| ≤ ∥W−1/2
N ANW

−1/2
N − χT

NχN∥2 ≤
2√
NεNδ

.

Having now established that both the spectra of QN and the spectra of W
−1/2
N ANW

−1/2
N are close,

and additionally that the spectra of the latter for λi, i ≥ 2 are at most 2√
NεNδ

, we can combine these

results to state that the eigenvalues of QN beyond the leading eigenvalue must also be of the order:

max
i≥2
|λi(QN )| ≤ 2√

NεNδ
, w.h.p.

Finally, as max(λ2(PN ),−λN (PN )) = maxi≥2 |λi(QN )| given that the two are the symmetrized and
unsymmetrized counterparts of the same matrix, we have that, w.h.p.,

max(λ2(PN ),−λN (PN )) ≤ 2√
NεNδ

. ■

Remark 4.4.1. The bound derived in Lemma 4.4.2 is both the upper and lower bound for the behaviour
of the spectral gap. We can see this through a straightforward manipulation of ESD (PN ),

ESD (PN ) = ESD
(
D−1

N AN

)
≈ ESD

(
D

−1/2
N AND

−1/2
N

)
≈ 1√

NεN
ESD

(
AN − E[AN ]√

NεN

)
. (4.18)

ESD
(

AN−E[AN ]√
NεN

)
recovers the semicircle law which is bounded strictly to [−2, 2] [43], thus yielding that

the bounds of ESD (PN ) are approximately
(
− 2√

NεN
, 2√

NεN

)
, as in Lemma 4.4.2. In fact, due to the

strictness of the bound from the semicircle law, this in turn is an optimal bound for the spectral gap.
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4.5 Proof of Theorem 4.2.1

We have now shown that in our setting for inhomogeneous random graphs with connection probabilities
pij = εNf

(
i
N ,

j
N

)
that we meet the two criteria required in Theorem 4.2.1. Namely, that:

1. dmax ≤ Kdmin,K > 0, as shown in the proof of Lemma 4.3.1.

2. max{|λ2|, |λN |} ≤ 2√
NεNδ

, as shown in the proof of Lemma 4.4.2.

Thus, we can now complete the proof of the theorem.
Proof of Theorem 4.2.1:
We first note that α as defined in (4.1) is a dampening parameter, and when set to 0 or 1 the theorem

can be seen to hold with minimal manipulation. This is illustrated below.
α = 0:

We restate the definition of P̃N prior to substitution of α = 0,

P̃N = αPN + (1− α)v1T = v1T .

Using this definition of P̃N in that of πN then gives,

πN = P̃NπN = v1TπN = v.

The final equality arises as v1T = 1 given that v is a probability vector. πN , the approximation of
πN , is thus, for α = 0:

πN =
αd

vol(GN )
+ (1− α)v = v.

Clearly then, as both πN and πN are equal to v, the theorem holds.
α = 1:

Plugging this into P̃N , we simply have:

P̃N = αPN + (1− α)v1T = PN ,

which when placed into the definition of πN , simply yields πN = PNπN . Again, we can recalculate πN to
provide πN = d

vol(GN ) . In the case of a connected graph, such as when NεN ≫ log(N) as in this setting,

this is equivalent to PN := AND−1
N , and thus the theorem holds.

0 < α < 1:
We now look to assess the more complicated scenario where 0 < α < 1. To begin, we decompose QN =

D
−1/2
N AND

−1/2
N into its spectral components for 1 = λ1 ≥ · · · ≥ λN being the eigenvalues corresponding

to the eigenvectors {ui}Ni=1, ui ∈ RN , ∥ui∥2 = 1,

QN = λ1u1u
T
1 +

N∑
i=2

λiuiu
T
i = u1u

T
1 +

N∑
i=2

λiuiu
T
i .

We then substitute this decomposition into the resolvent definition of πN :

πN = (1− α)D1/2
N [IN − αQN ]

−1
D

−1/2
N v = (1− α)D1/2

N

[
u1u

T
1

1− α
+

N∑
i=1

uiu
T
i

1− αλi

]
D

−1/2
N v.

Expanding the quantity in the brackets by multiplying in (IN−α) at each entry i for each corresponding
orthogonal eigenvectors uiu

T
i yields a separated leading eigenvector quantity and a remaining spectral

quantity,

(1−α)D1/2
N

[
u1u

T
1

1− α
+

N∑
i=1

uiu
T
i

1− αλi

]
D

−1/2
N v = D

1/2
N u1u

T
1 D

−1/2
N v+(1−α)D1/2

N

N∑
i=2

(1−αλi)−1uiu
T
i D

−1/2
N v.

Having now rearranged the initial form of πN , we introduce the error between πN and πN ,

∆ = πN − πN .
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Performing similar manipulations to π as we have done for π provides a form that is easier to work
with when evaluating the error in terms of total variation. Using that v is a probability vector, we can
thus expand the approximation,

πN = α
d

vol(GN )
+ (1− α)v = α

DN11Tv

vol(GN )
+ (1− α)v = α

DN11Tv

vol(GN )
+ (1− α)D1/2

N D
−1/2
N v.

πN can thus be expressed in terms of ui with an additional factor:

πN =α
DN11Tv

vol(GN )
+ (1− α)D1/2

N D
−1/2
N v

=αD
1/2
N

D
1/2
N 1√

vol(GN )

1TD
1/2
N√

vol(GN )
D

−1/2
N v+ (1− α)D1/2

N D
−1/2
N v.

We note that the Perron-Frobenius theorem allows us to express the leading eigenvector as,

u1 =
D1/21√
1TDN1

D
1/2
N 1√

vol(GN )
,

which then can be used in the prior expression to express the first quantity in terms of the eigenvectors of
the leading eigenvalue,

πN =αD
1/2
N

D
1/2
N 1√

vol(GN )

1TD
1/2
N√

vol(GN )
D

−1/2
N v+ (1− α)D1/2

N D
−1/2
N v

=αD
1/2
N u1u

T
1 D

−1/2
N v+ (1− α)D1/2

N D
−1/2
N v.

Having now rearranged the original PageRank measure and its approximation in terms of their eigen-
vector decompositions while accounting for the necessary degree normalization, we can evaluate the error
∆, directly,

∆ = πN − πN = D
1/2
N u1u

T
1 D

−1/2
N v+ (1− α)D1/2

N

N∑
i=2

(1− αλi)−1uiu
T
i D

−1/2
N v

− αD1/2
N u1u

T
1 D

−1/2
N v− (1− α)D1/2

N D
−1/2
N v

= (1− α)D1/2
N

((
N∑
i=2

uiu
T
i

1− αλi

)
− IN + u1u

T
1

)
D

−1/2
N v.

As ui form an orthonormal basis,
∑N

i uiu
T
i = IN , and so removing the leading eigenvector readjusts

the starting index the summation across the remaining eigenvectors. Thus, we can rewrite purely in terms
of the trailing eigenvectors, as follows :

∆ =(1− α)D1/2
N

(
N∑
i=2

(
uiu

T
i

1− αλi

)
− IN + u1u

T
1

)
D

−1/2
N v

=(1− α)D1/2
N

((
N∑
i=2

uiu
T
i

1− αλi

)
−

(
N∑
i=2

uiu
T
i

))
D

−1/2
N v

=(1− α)D1/2
N

(
N∑
i=2

uiu
T
i

(
αλi

1− αλi

))
D

−1/2
N v.

We look to bound the error across all remaining eigenvectors, and to do so, we will use the L1 norm.
Thus, applying the Cauchy-Schwarz inequality for the L1 norm, where for a vector x ∈ RN , ∥x∥1 ≤√
N∥x∥2, and additionally normalizing by 1− α, we have,
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∥∆∥1
1− α

≤
√
N
∥∆∥2
1− α

.

Expanding ∥∆∥2 via its simplified form above and using the submultiplicativity of matrix norms, we
have,

∥∆∥1
1− α

≤ ∥D1/2
N ∥2

∥∥∥∥∥
N∑
i=2

uiu
T
i

(
αλi

1− αλi

)∥∥∥∥∥
2

∥D−1/2
N ∥2∥v∥2 =

√
N

√
dmax

dmin
max
i>1

∣∣∣∣ αλi
1− αλi

∣∣∣∣ ∥v∥2.
The last equality arises from taking the L2-norm over the diagonalized degree vector, which yields

either dmax or dmin. The summation can now be bounded, as the L2-norm of a symmetric matrix is
bounded above by its maximum eigenvalue. We now apply the second property regarding the spectral gap,
max{|λ2|, |λN |} ≤ 2√

NεNδ
to state that any λi = o(1) w.h.p. ∀i > 1. Additionally, as the spectral gap is

bounded away from 0, as established in the proof of Lemma 4.4.2, there is a constant C, |1 − αλi| > C,
and as assumed earlier, ∥v∥2 = O(1/

√
N). This yields the following upper bound,

√
N

√
dmax

dmin
max
i>1

∣∣∣∣ αλi
1− αλi

∣∣∣∣ ∥v∥2 ≤ C
√

dmax

dmin
max{|λ2|, |λN |},

Having now established that the ratio between the maximum and minimum degree is bounded by a
constant K w.h.p via the first property, and that max{|λ2|, |λN |} ≤ 2√

NεNδ
w.h.p via the second, the final

inequality can be expressed as,

∥∆∥1 ≤ C
√

dmax

dmin
max{|λ2|, |λN |} ≤ CK

2√
NεNδ

=
K√
NεN

,

w.h.p, absorbing the constants into K. And as such the initial theorem holds given the definition of dTV

as an L1 distance measure between two probability vectors,

dTV (πN ,πN ) =
K√
NεN

= o(1), w.h.p, as N →∞. ■

This result thus shows that the approximation method using the volume of GN in place of directly
calculating the PageRank measure as proposed by [2] can be extended beyond both the Chung-Lu and
Stochastic Block settings in their initial work to all generalized inhomogeneous graphs, contingent on the
graph being well-connected such that NεN ≫ log6(N). Additionally, we have quantified that the error, as
measured by dTV , is not only o(1), but vanishes at a rate governed by

√
NεN , again supporting that we

require a well-connected graph for this approximation to hold. Finally, we note that this final bound in
distance between the two vectors is tight, as δ can be selected to have no dependence on r(i/N). We now
move to our final result concerning graphical neural networks.



Chapter 5
Degree Based Eigenvalue Correction

This section will discuss the filter functions that have been selected for testing, including
definitions of how these filters produce a final prediction vector for classification. We then
discuss our implementation of these filters, the eigenvalue correction strategies assessed, and
how the datasets were masked for training. Finally, we will define how the performance of these
filters was assessed.

5.1 Selected Polynomial Spectral Filters

GNNs are powerful predictive tools when applied to real-world networks, but are fundamentally dependent
on the spectral behavior of the graph upon which they operate. This is evident when inspecting the formal
definition of the application of a spectral filter function, hθ, as in (1.11). However, polynomial methods
to approximate hθ have outputs limited by the diversity of eigenvalues being passed through them as
these functions will produce the same output for identical eigenvalues, reducing the potential diversity
of information provided by the filter. Thus, applying spectral filters in GNNs to data yields suboptimal
results in scenarios where there are eigenvalues with multiplicities greater than 1 [33]. This issue of high
multiplicity is particularly prevalent in real-world datasets where there are typically a bulk of eigenvalues
seen near 1 for L = I−D−1/2AD−1/2, as can be seen in Figure 4, thus reducing the expressive power of
the final resulting network.
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Figure 4: Eigenvalue distributions of the normalized Laplacian matrix, L, of real-world graph datasets.
Note that the distributions have concentration of mass near 1, indicating a large number of unconnected
nodes.

There is a wide range of learnable polynomial filter functions for spectral GNNs that approximate the
behavior of signal filters, such as low-pass, high-pass, or band filters. We have selected three learnable
filters with which to assess the performance of various eigenvalue correction strategies, as learnable filters
are more responsive to the complexities of inhomogeneous real-world data [33]. As a reminder, these filters
are used as an approximation of the full computation Uh(Λ)UT where h : [0, 2]→ [0, 1] is a filter function,
and so we can express polynomial filters that adhere to this form as follows, for Z being the final fully
convolved signal, X ∈ RN×d being the input signal, W being a weight matrix, and K being the number
of layers in the GNN:

Z = h(Uh(Λ)UT )XW = U

K∑
k=0

hk(Λ)U
TXW. (5.1)

The selected filters for comparison are in line with those tested in [33], with additional depth on their
methodology from their corresponding papers [9, 26, 46].

50
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5.1.0.1 Generalized PageRank

PageRank measures offer means to quantify the connectivity of individual nodes in a graph, with traditional
PageRank measures using heuristically chosen weights for each length of random walk [32]. We note that
we will switch from the notation used in the prior chapter for PageRank to remain in line with the literature
surrounding the use of PageRank in the context of learning problems [33]. Let s be a starting seed node,
such that s ∈ V , and that there exists an arbitrary node v ∈ V , such that s ̸= v. The PageRank score for
v is then the summed landing probabilities across all random walks of length k that begin on s and end
on v,

pr(γ, x(0)) =

∞∑
k=0

γkx
(k)
v , γ = {γk}k≥0, (5.2)

where γ ∈ RK is the vector of non-negative weights for each random walk length and x(0) is the initial
distribution, x : V → [0, 1], where

∑
v∈V xv = 1 so xv is the probability of a vertex v. In PageRank

measures such as Personalized PageRank, γ is selected as a fixed value, such as γk = (1−α)αk, α ∈ (0, 1)[28].
In contrast, application of Generalized PageRank (GPR) in polynomial graph filters sets γ to be a vector
of learnable parameters for the model, and so in learning the optimal GPR weights to best represent the
underlying graph structure an optimal polynomial graph filter is also learned [9]. Integrating this with the
full filtering process described in (5.1), hk(·) can be replaced by pr(·) in (5.2):

Z = Upr(γ,Λ)UTXW = U
K∑

k=0

diag
(
γkΛ

k
)
UTXW. (5.3)

Note that in passing Λ to pr(·), pr operates element-wise across the vector, where pr(γ,Λ) yields

pr(γ, λi) =
∑K

k=0 γkλ
k
i for each λi. Additionally, applying GPR to the GNN architecture helps to mitigate

the impacts of over-smoothing, a phenomenon which occurs when higher order elements of the polynomial
dominate in contribution to the final values of Z. In having order-specific coefficients via γ, higher order
summands can be down-weighted, and so the weights learned by GPR should decrease as the order grows
[9]. In practice, this is also dependent on the optimization algorithm selected, as the learning rate of
the components of γ must also have a suitable learning rate and corresponding learning rate decay, lest
higher order contributors be penalized too heavily. The implementation of GPR-GNN into the forward
propagation function in PyTorch can be seen in the pseudocode below [36]. The ⊙ operator is the element-
wise product between the output vector and UTX, otherwise known as the Hadamard product.

Algorithm 1 GPR Prop: Propagation Layer for GPR-GNN Message Passing

1: Initializing Values: Polynomial maximum order K, transition probability α
2: Initialize:
3: γk ← α(1− α)k, 0 ≤ k < K
4: γK ← (1− α)K
5: function Forward(X, Λ, U)
6: Data: Node features X, eigenvalues of L Λ, eigenvectors of L U
7: out← γ0 · (Λ)0
8: for k = 1 to K do
9: out← out+ γk · (Λ)k

10: end for
11: return U · (out⊙ (UTX))
12: end function

Centrality measures such as PageRank are thus useful in approximating filter functions on GNNs, as
they are directly motivated by the connectedness of the underlying graph. Integrating a learnable vector of
weights, γk, as opposed to a fixed coefficient, for each step in a walk in GPR further allows these graphical
methods to approximate complex filter functions.

5.1.0.2 BernNet

Polynomial filters are in themselves polynomial functions, and so methods to approximate complicated
polynomial functions are also applicable in the context of signal filters in GNNs. One such approximation
can be done using Bernstein polynomials, which aim to re-express a polynomial function as a linear
combination of Bernstein basis polynomials [18]. A basis polynomial of the order k takes the following
form for a maximum order K and t ∈ [0, 1]:



CHAPTER 5. DEGREE BASED EIGENVALUE CORRECTION 52

bKk (t) :=

(
K

k

)
(1− t)K−ktk. (5.4)

Thus, to approximate an arbitrary continuous function f , the linear combination can be constructed
as follows, with {θk}1≤k≤K ∈ RK being the coefficients for their corresponding order bases,

f(t) ≈ pK(t) :=

K∑
k=0

θk · bKk (t) =

K∑
k=0

θk ·
(
K

k

)
(1− t)K−ktk. (5.5)

For θk = f
(

k
K

)
, it can be shown that pK(t) → f(t),K → ∞ [26]. As the bases themselves are explicitly

defined as a function of the order and the function input, the problem then focuses on defining θk in the
event that f is also unknown, which is typically the case. We first reintroduce the function, h : [0, 2]→ [0, 1],
that we are seeking to approximate from (5.1). Let t in the above definition be λ

2 , for an eigenvalue λ,
thus restricting the input of f to be applicable for the Bernstein polynomial approximation. This then
yields the following form for pK(t),

pK

(
λ

2

)
=

K∑
k=0

θk

(
K

k

)(
1− λ

2

)K−k (
λ

2

)k

=

K∑
k=0

θk

(
K

k

)
1

2K
(2− λ)K−kλk. (5.6)

In order for this approximation to achieve pK
(
λ
2

)
→ h(λ),K →∞, it must be that θk = h

(
2k
K

)
, in the

event that h is an explicitly defined function. This then yields the following filtering process to produce
the final output signal Z as in (5.1) where λ1, . . . , λN are the individual eigenvalue entries of Λ,

Z = U diag

[
pK

(
λ1
2

)
, . . . , pK

(
λN
2

)]
UTXW. (5.7)

In the case of approximating a linear high-pass filter of the form λ
2 or a linear low-pass filter of the form

1− λ
2 , this can be calculated directly to be k

K and 1− k
K , respectively. However, for more complex filters

or filters for which the final form is unknown, the parameter vector θk can be approximated using gradient
descent methods [26]. Within this optimization process, there are additional constraints placed on the
behavior of the filter, namely that the filter itself must be non-negative. To motivate this constraint, we
view the task of optimizing pK to be a graph optimization problem, which we define as the following loss
function,

min
Z
f(Z) = (1− α)ZT η(L)Z+ α∥Z−X∥22, (5.8)

where α ∈ [0, 1) and η is a filtering function operating on the spectra of the normalized Laplacian, L.
As in standard optimization problems, we thus seek the minima of this function by finding the value of

Z at which its derivative is zero, ∂f(Z)
∂Z = 0 [49]. When evaluating the optimization problems, there are

thus requirements on the loss function such that a solution can be found, such as convexity. In this case,
for f(Z) to be convex, η(L) must also be positive semidefinite to avoid saddle points and f(Z) going to
−∞. This is clear, as in the event that ZT η(L)Z < 0 for some signal Z, the loss has the potential to be
non-convex or unbounded from below, which potentially then yields a nonsensical solution. Therefore, we
must restrict the problem to conditions in which η(L) is positive semidefinite, which we can express as

follows for a general polynomial filter g(λ) =
∑K

k=0 γkλ
k. We note that all eigenvalues of L will lie in the

interval [0, 2] [43], and so we can restrict the behavior of g to just the interval [0, 2],

0 ≤ g(λ) ≤ 1, ∀λ ∈ [0, 2]. (5.9)

The upper bound on this filter arises from taking the solution to the derivative of (5.8). The first
derivative is as follows,

f ′(Z) = 2(1− α)η(L)Z+ 2α(Z−X), (5.10)

after which we can then set the equation to 0 to find the optima.

0 = 2(1− α)η(L)Z+ 2α(Z−X)

αX = αZ + η(L)Z− αη(L)Z

Z = α [α+ η(L)(1− α)]−1
X,
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for which we know that this is the minima as η(L) is positive definite, thus yielding a convex loss function.
Applying this element-wise to each λi in Λ, for Λ being the diagonalized eigenvalues of L, we have that
for λi ∈ [0, 2], α [α+ λi(1− α)]−1 ≤ 1, specifically in the scenario where λi = 0. This then yields the
upper bound given in (5.9), as for g(λ) being an approximation of the function h, it should abide by the
same bounds. The lower bound arises from h being defined as strictly non-negative. In order to extend
this non-negativity to the use of the Bernstein polynomials in approximating h, we address first the upper
bound of 1 by selecting an appropriate γk such that

∑K
k=0 γkλ

k ≤ 1 [26]. To ensure that g(λ) ≥ 0, we
instead rely on the fact that any polynomial that is non-negative over an interval can be represented using
a non-negative linear combination of the Bernstein bases [39]. Thus, in selecting a non-negative vector θk,
the positive semi-definite form for η(L) can be retained, subsequently ensuring a convex loss function.

Pseudocode of the implementation using PyTorch for this methodology is as follows [33]. Note that the
constraint of non-negativity on the coefficient of the bases is done via the ReLU function, which is defined
as ReLU(x) = max(x, 0), thus guaranteeing non-negativity.

Algorithm 2 Bern Prop: Propagation Layer for Bernstein Polynomial Message Passing

1: Initializing Values: Polynomial maximum order K
2: Initialize:
3: Initialize θ
4: function Forward(X, Λ, U)
5: θ ← ReLU(θ)
6: out←

(
K
0

)
· 1
2K
· θ0 · (1 + Λ)K

7: for i = 0 to K − 1 do
8: Λ̃← (1 + Λ)K−i−1 · (1− Λ)i+1

9: out← out+
(

K
i+1

)
· 1
2K
· θi+1 · Λ̃

10: end for
11: return U · (out⊙ (UTX))
12: end function

BernNet thus utilizes the Bernstein polynomial bases to produce a linear combination of basis functions
with which to approximate the true signal function h. This method is unique, as the flexibility of the
Bernstein bases to represent any non-negative filter function h over the relevant interval [0, 2] ensures a
convex loss function in optimizing the learning parameters, θk.

5.1.0.3 JacobiConv

We begin the motivation for use of Jacobi basis polynomials by assessing the Hessian of the squared loss
function, R = 1

2∥Z − Y∥2F , where Y is the true values of the output signal and αk is a vector of layer

weight parameters. Note we are taking the Frobenius norm, which for a matrix A is ∥A∥F =
√

Tr(AAT ).

The Hessian matrix, H, is of size K ×K, corresponding to the number of layers or bases in the filter, and
each (k1, k2) element can be expressed as the following with respect to the parameter vector αk,

Hk1,k2
=

∂

∂αk1
∂αk2

1

2
∥Z−Y∥2F = (XW)T gk1

(L)gk2
(L)XW = W̃XT gk1

(L)gk2
(L)X, (5.11)

with the final equality derived by holding W constant thus allowing us to pull out a constant W̃ = WTW.
We then apply this to the spectra of L as a sum over gk1

(λi)gk2
(λi), scaled by the signal density of X for

that frequency, λi, which we denote as f(λi) [46]. This can then be approximated as a Riemann integral
over the interval [0, 2] for all possible eigenvalues of L,

Hk1,k2
= XT gk1

(L)gk2
(L)X =

N∑
i=1

gk1
(λi)gk2

(λi)f(λi) ≈
∫ 2

λ=0

gk1
(λ)gk2

(λ)f(λ)dλ. (5.12)

We seek to minimize the condition number of H, κ(H) = |λmax(H)|
|λmin(H)| , as it is the change in loss for a

change in inputs, and we are seeking a solution in a convex problem. Thus, orthogonal basis functions, gk,
in H, yield the best setting for fast and stable solution finding [46]. We now introduce the Jacobi bases,

P a,b
k (z) =


1, k = 0
a−b
2 + a+b+2

2 z, k = 1

(θkz + θ′k)P
a,b
k−1(z)− θ′′kP

a,b
k−2(z), k ≥ 2.

(5.13)
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The individual coefficients, dependent on k as well as two additional hyperparameters, a and b, are defined
as,

θk =
(2k + a+ b)(2k + a+ b− 1)

2k(k + a+ b)
, θ′k =

(2k + a+ b− 1)(a2 − b2)
2k(k + a+ b)(2k + a+ b− 2)

,

θ′′k =
(k + a− 1)(k + b− 1)(2k + a+ b)

k(k + a+ b)(2k + a+ b− 2)
.

(5.14)

Furthermore, JacobiConv mitigates issues with linear GNNs and their limited ability to express all possible
results in multidimensional problems where d > 1 by fitting a different vector of αk for each individual
output channel, 1 ≤ l ≤ d. For the l-th column of a matrix A being denoted A:l, this then yields the
following final filtering process for a specific output channel l,

Z:l =

K∑
k=0

αklP
a,b
k (L)XW:l. (5.15)

Let P be a k×N matrix of the polynomial coefficient values for each individual node, with each column
representing the coefficients for the corresponding order k. See below for a pseudocode implementation of
the basis calculations, where the function is passed to the forward propagation functionality from PyTorch
modules, as in the other polynomial bases, with α being initialized according to Polynomial Coefficient
Decomposition as described in [46].

Algorithm 3 JacobiConv: Recursive Jacobi Polynomial Basis

1: function JacobiConv(k,P,Λ, α, a, b)
2: if k == 0 then return 1
3: else if k == 1 then
4: coef1← α0

(
a−b
2

)
5: coef2← α0

(
a+b+2

2

)
· Λ

6: return coef1+ coef2

7: else
8: θk ← (2k+a+b)(2k+a+b−1)

2k(k+a+b)

9: θ′k ←
(2k+a+b−1)(a2−b2)

2k(k+a+b)(2k+a+b−2)

10: θ′′k ←
(k+a−1)(k+b−1)(2k+a+b)

k(k+a+b)(2k+a+b−2)

11: coef1← αk−1(θk · Λ + θ′k)P:k−1

12: coef2← αk−1θ
′′
kP:k−2

13: return coef1− coef2

14: end if
15: end function

Extending upon BernNet, JacobiConv thus uses the orthogonality of the Jacobi basis functions to drive
a faster and more stable solution finding algorithm. Additionally, the algorithm accounts for multichannel
problems by incorporating channel-specific coefficients across all layers, enabling more flexible estimation
of filter functions in categorization problems with more than two categories.

5.2 Eigenvalue Correction

In order to address the issue of high eigenvalue multiplicity in spectral filtering of GNNs, correction
strategies must satisfy two criteria. They should first reduce the multiplicity of the spectra in order to
improve filter performance, but they must also retain the general shape of the initial empirical eigenvalue
distribution in order to propagate the correct information regarding the frequency of each signal. [33]
proposes a uniform eigenvalue correction methodology, combining the empirical eigenvalue distribution
with a set of equally spaced eigenvalues, v. The i-th entry in v is defined,

vi =
2i

N − 1
, i ∈ {0, 1, 2, . . . , N − 1}. (5.16)

This monotonic series is then joined with the ordered set of eigenvalues with a trade-off parameter
β ∈ [0, 1), to produce a new set of ordered eigenvalues, µ:

µi = βλi + (1− β)vi. (5.17)
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In the case that β = 0, the new eigenvalues are simply the uniformly spaced series v, whereas if
β = 1, the original eigenvalues are returned. As [33] states in Theorem 2, given that both Λ and v are
monotonically increasing, µ must also be monotonic with µi ̸= µj , i ̸= j. Additionally, β can then be tuned
to ensure that the correct amount of information is retained from the original spectra, thus satisfying the
two criteria set out above. A key feature of this correction strategy is that it operates uniformly across
[0, 2], even in cases where regions of high multiplicity in the spectra are concentrated in regions smaller
than that interval. As such, the number of effected eigenvalues may be excessive, thus losing too much of
the initial information from the empirical spectra. This then motivates a more precise correction strategy
in the scenarios where we see a well-defined bulk of eigenvalues. Formally, this occurs in graphs where
Np ≥ log(N), as a reasonably well-connected graph is required for the eigenvalues of the normalized
Laplacian to begin exhibiting concentrated behavior. In regimes where Np < log(N), the eigenvalue
distribution exhibits atom-like behavior, with a particularly large atom at 0 [5].
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Figure 5: Eigenvalue distributions of L in sparse and dense regimes, with sparse graphs having Np <
log(N), whereas dense graphs have Np ≥ log(N). Sparse graphs exhibit atom-like behaviour in their
spectra, with a relatively reduced mass at 1. Dense graphs begin to exhibit an accumulation of mass near
1, as can notably be seen in the Photo dataset (green).

This motivates our proposed correction strategy, which retains the uniform spacing to ensure that the
multiplicities are reduced to 1 in the affected interval, but instead relies on the empirical degree of the
graph to determine the interval upon which this spacing is imposed. As is proven in [29], the spectra of
the normalized Laplacian converges to the semicircular law in the homogeneous setting, that is, for a fixed
value of p across all N nodes. It is critical to note that the semicircular law is strictly bounded on the
interval [−2, 2]. While the true connection probability of a real-world graph is most likely not represented
by an individual fixed p, and is more akin to the inhomogeneous setting where a connection probability
is defined as a scaled function εNf

(
i
N ,

j
N

)
, the empirical estimation of both εN and f is complicated and

beyond the scope of this work. We look to bound the behavior of the maximum eigenvalue of LN to form
the interval on which a more specific correction should be done. We start with fixing a consistent p across
all nodes such that Theorem 2 from [29] can be applied:

max
i

∣∣∣∣∣
√

Np

1− p
((1− λi(LN ))

∣∣∣∣∣ ≈ 2

max
i
|1− λi(LN )| ≈ 2

√
1− p
Np

,

with high probability. We can then take p ↓ 0, thus simplifying the right-hand side to 2√
Np

, and yield our

final interval,

max
i
|λi(LN )| ≈ 1± 2√

Np
, (5.18)

with high probability. Applying the original uniform eigenvalue correction strategy within this interval in
dense graph settings thus sufficiently reduces the multiplicity of the eigenvalue spectrum while retaining
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more of the initial empirical eigenvalue distribution structure than can be done by correcting the entire
[0, 2] interval. It is key to note that in sparse, Np < log(N) regimes, that this method will under-perform
compared to the original uniform strategy, as the bounds of correction will become larger than [0, 2], thus
losing more of the original eigenvalue structure. The impact on the eigenvalue distribution of LN can be
seen in (6) for both sparse and dense regimes.
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Figure 6: Comparison of three eigenvalue correction methodologies: (1) no correction, (2) uniform correc-
tion (β = 0.5), and (3) degree based correction (β = 0.5). The highest eigenvalue multiplicity after each
correction is applied is in parentheses in each corresponding legend. Note that in the dense regime, that
the degree based bounds offer a more precise region of correction, while in the sparse regime, this yields
an interval of correction exceeding that of the uniform method.

As such, let our new corrected eigenvalue vector be u, where:

ui =
2i

N − 1
, i ∈ {a, a+ 1, . . . , b− 1, b}, (5.19)

for a being the index of the eigenvalue immediately greater than 1 − 2√
Np

and b being the index of the

eigenvalue immediately less than 1+ 2√
Np

. u is thus of size at most N , allowing for the same combination

via the trade-off parameter β to be done as in (5.17), producing a corrected eigenvalue vector ν,

νi = βλi + (1− β)ui. (5.20)

The following pseudocode is an implementation of this degree-based eigenvalue correction (DEC)
methodology, where #Λbounded is the number of elements in the masked eigenvalue vector, Λbounded and
linspace is a function producing a vector of #Λbounded equally spaced values between 1± bound value.

Algorithm 4 DEC: Degree-Based Eigenvalue Correction

1: function DEC(N, p,Λ, β)
2: bound value← 2√

Np

3: eigenvalue mask← (Λ ≥ (1− bound value))
∧

Λ (≤ (1 + bound value))
4: Λbounded ← Λ[eigenvalue mask]
5: u← linspace(1− bound value, 1 + bound value,#Λbounded

6: νbounded ← β × Λbounded + (1− β)× u
7: ν ← Λ
8: ν[eigenvalue mask]← νbounded

9: return ν
10: end function
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5.3 Real World Graph Data

Real world benchmark datasets were used to compare the performance of the three eigenvalue correction
methodologies across the aforementioned polynomial filter types. These include three citation datasets,
Cora, CiteSeer, and PubMed [48], two purchase datasets, Computers and Photo [41], two Wikipedia
connection graphs, Chameleon and Squirrel [40], a co-occurence graph for actors, Actor, and webpage
graphs Texas and Cornell [37]. These graphs have individual node labels, and as such, the model is
evaluated based on its ability to classify the nodes correctly.

Figure 7: A visualization of the Cornell graph dataset (N = 183). Nodes representing web pages are
colored according to their respective classes. Edges represent hyperlinks between the individual web pages
[37].

Additionally, these datasets differ greatly in size and the characteristics of their connection structure,
thus giving a wide array of settings on which to evaluate how flexible a model is in adjusting to a variety
of graphs. Some of these characteristics are highlighted in Table 1.

Datasets Cora CiteSeer PubMed Computers Photo Texas Cornell Squirrel Chameleon Actor

N 2708 3327 19717 13752 7650 183 183 5201 2277 7600
∥E∥ 5278 4552 44324 245861 119081 279 277 198353 31371 26659
Λdistinct 2204 1885 7596 13351 7477 106 115 3275 1122 6420
Np/ log(N) 0.493 0.336 0.459 3.752 3.482 0.602 0.548 8.917 3.567 0.783

Table 1: Summary statistics of the datasets used for eigenvalue correction performance evaluation. N is
the number of nodes, ∥E∥ the number of edges, Λdistinct the number of unique eigenvalues, and Np/ log(N)
determines if the graph falls in the sparse regime (< 1), or the dense regime (> 1).

5.4 Model Training and Evaluation

In line with other work that uses these benchmark datasets to evaluate GNNs, such as [33] and [46], we
mask all graphs with the same split of 60% for training, 20% for validation, and 20% for testing. The
loss function used for optimization is the cross entropy loss, which is used specifically for classification
problems in PyTorch [36]. Cross entropy loss is defined as follows for C being the number of classes, wc

being class weights, and x and y being inputs and targets respectively:

ℓ(x, y) =
1

N

N∑
n=1

[
−

C∑
c=1

wc log
exp(xn,c)∑C
i=1 exp(xn,i)

yn,c

]
. (5.21)

Use of cross entropy loss in place of binary classification error during training provides a more nuanced
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error term, incorporating how confident the model is in its softmax classification by measuring the log-loss
between the predicted class probabilities as opposed to a binary outcome. This in turn avoids overfitting by
directly addressing the underlying distances as opposed to final labels. However, for ease of interpretation,
the final score for each model against its testing mask is expressed using the mean classification accuracy
over 10 fitting runs.

In order to have a valid comparison of the performance of the three polynomial filters, we fix the filter
specific hyperparameters across all eigenvalue correction strategies for a given dataset. Thus, the only
hyperparameter tuned is β from (5.17), which controls the balance between the uncorrected eigenvalues
and the redistributed eigenvalues, as in (5.17) and (5.20). This will be tested on intervals in β ∈ [0, 1)
spaced by 0.05, β ∈ {0, 0.05, 0.10, . . . , 0.95}, with the value of β that maximizes the classifying accuracy
being selected. Values of β for the uniform EC are held constant from Appendix D of [33].

All experiments are conducted on a machine with an AMD Radeon RX 7800 XT 16GB GPU, an AMD
Ryzen 5 5600X-6 Core Processor 3.70GHz CPU, and 64GB of memory.1

5.5 Hyperparameter Tuning and Selection

As outlined in (5.20), the hyperparameter of interest in our degree-based eigenvalue correction strategy for
polynomial filters in GNNs is β, which operates as a trade-off parameter between the uncorrected empirical
eigenvalue distribution, λ, and a set of size N containing an equidistantly spaced interval of eigenvalues
of length at most N , u. For β = 0, ν is then simply u, whereas in the setting where β = 1, we recover the
original empirical eigenvalue distribution, that is, the scenario with no eigenvalue correction done at all.
As such, the range of interest for β can be restricted to β ∈ [0, 1).
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Figure 8: Model sensitivity to β for β ∈ [0, 1). Note that Cora and Citeseer are in the sparse regime,
whereas Chameleon and Squirrel are in the dense regime, so model accuracy is relatively stable for dense
graphs, whereas in sparse graphs, tuning β is critical to improving model performance.

Figure 8 shows the effect of β in both dense and sparse regimes. Looking first at the sparse datasets,
Cora and Citeseer, we see significant increases in performance when applying degree based eigenvalue

1ZLUDA (https://github.com/vosen/ZLUDA) was used to wrap CUDA in order for PyTorch and Torch Geometric to run
on an AMD GPU.
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correction (DEC) to Jacobi and GPR at value of β greater than 0.3. In contrast, BernNet sees relatively
stable performance even at lower values of β, although model performance does increase slightly in line
with increasing β across all three filters. Looking back to Figure 6, it is evident that in sparse settings,
DEC does not yield a very informative interval on which to perform correction, and given the small value
of Np, we retrieve a potentially overly wide interval to correct. Given that in a sparse setting, we see
primarily atom-like behavior in the empirical spectral distribution, slight corrections of lower multiplicity
eigenvalues has reduced benefits for model outcomes. However, as is discussed in [33], multiplicity re-
duction near 1 is still valuable in improving model performance, and so we see that there is a localized
improvement near β = 0.5 for both Cora and Citeseer. This highly localized behavior in the eigenvalues
drives the increased performance for higher values of β, which more closely emulate the original distri-
bution, indicating that retaining the original shape is more beneficial in sparse regimes than correcting
eigenvalues with multiplicities greater than 1. Additionally, we see improved performance of BernNet at
lower values of β as it is inherently less sensitive to overfitting, which is beneficial when the spectra has
been over flattened, as in the case of applying DEC in sparse regime graphs. This is due to BernNet’s use
of the Bernstein basis polynomials, which are themselves smooth functions, and thus less likely to overfit
to the small sudden changes in the spectral distribution, as seen in Figure 6. In contrast, GPRGNN uses
node-level adjustments given its reliance on PageRank, which leads to significant overfitting, and Jacobi-
Conv’s use of orthogonal polynomials to increase the efficiency of learning works against its performance
on a relatively uninformative spectra in this scenario. As such, sparse graphs require careful tuning of β
for DEC to perform well.

Chameleon and Squirrel are both dense, as can be seen in Table 1 by their corresponding ratios for
Np/ log(N). Figure 8 shows that in this setting, modulating the value of β produces a more stable result
for model performance. This is driven by the accumulation of mass near, but not precisely at 1, as can be
seen in Figure 6, which provides a strong baseline of performance, even in the fully DEC driven (β = 0)
setting. In contrast, for the uniform method proposed by [33] there is significant drop-off in performance
for values of β near the bounds 0 and 1. As such, it is evident that DEC’s restriction of the interval of
correction to an interval smaller than [0, 2], yields more stable results in dense settings, given that the
method specifically focuses on regions of high multiplicity without distorting lower density regions in the
eigenvalue distribution. A full list of selected β values across all filters and datasets can be seen in Table 2.

Filter Actor Chameleon Citeseer Computers Cora Cornell Photo PubMed Squirrel Texas

BernNet 0.10 0.15 0.90 0.10 0.95 0.10 0.75 0.95 0.05 0.15
GPRGNN 0.20 0.10 0.90 0.75 0.85 0.35 0.75 0.95 0.25 0.90
JacobiConv 0.65 0.55 0.90 0.35 0.80 0.90 0.95 0.90 0.75 0.50

Table 2: Selected values of hyperparameter β for the proposed DEC method for each corresponding filter
and dataset. Note that β ∈ [0, 1), and values were selected by taking the value of β that corresponded to
the highest training accuracy.

5.6 Evaluated Model Performance

Using the values of β listed in Table 2 for each combination of filter, eigenvalue correction strategy, and
dataset yields the mean classification accuracy values given in Table 3. The corresponding confidence
intervals for these accuracies can be found in Appendix A.1.

Dataset BernNet GPRGNN JacobiConv

None Uniform EC DEC None Uniform EC DEC None Uniform EC DEC

Actor 38.132 38.271 38.189 38.113 38.366 37.878 36.384 37.897 37.935
Chameleon 64.858 72.166 73.217 56.827 71.816 73.239 73.807 74.595 74.333
Citeseer 73.547 71.869 73.247 72.066 60.900 73.001 71.460 61.896 71.555
Computers 86.772 85.392 87.925 86.649 84.396 88.913 89.585 85.172 89.490
Cora 87.373 75.238 87.816 87.009 83.000 87.406 87.071 83.173 88.062
Cornell 66.170 69.149 74.255 61.277 53.191 77.660 61.064 61.277 59.362
Photo 93.573 92.763 94.059 93.730 93.750 94.909 95.425 92.222 95.552
PubMed 84.763 83.787 85.237 85.427 83.612 86.611 85.366 79.229 85.336
Squirrel 41.940 55.879 58.761 32.113 54.150 54.025 59.183 54.140 59.299
Texas 83.443 83.607 86.066 81.148 84.426 87.705 78.033 86.721 87.213

Table 3: Final evaluated accuracies (%) on real-world datasets for all filters and eigenvalue correction
strategies. For a table of corresponding confidence intervals, refer to Table 4.
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On average, the DEC methodology yields 4.14% better accuracy than the EC methodology
and 7.10% better accuracy than no correction methodology for BernNet. Similarly, DEC
outperforms EC and no correction by 7.97% and 13.64% when applied to GPRGNN, and
4.46% and 1.47% when applied to JacobiConv, respectively. This difference between three filters
tested is symptomatic of how each filter propagates information between layers, similar to the differences in
model performance when varying β in Figure 8. As GPRGNN relies on the centrality of individual nodes to
handle propagation, it is highly dependent on having a maximally informative eigenvalue distribution with
which to perform the signal filtering process. Over smoothing of the distribution, either in magnitude or the
interval over which the smoothing occurs, fundamentally distorts the centrality of nodes, thus impacting
model performance. The impact of correction on GPRGNN can thus be interpreted as a trade-off between
the expressive range of the filter and its ability to accurately generate an output signal. Looking specifically
at the dense Chameleon and Squirrel datasets, we see that the ranges of correction as defined in (5.18)
as a function of

√
Np are approximately (0.619, 1.380) and (0.771, 1.229), respectively. This is a much

tighter interval than the [0, 2] range used for the EC correction. The value of this more precise correction
range is supported by the similarly low values of β for these two datasets in Table 2, indicating that the
corrected ν is on balance more informative than the empirical spectra. Finally, looking at the accuracy
and uncertainties of these correction methods using GPRGNN in Figure 9, we see that both EC and DEC
outperform no correction in both Chameleon and Squirrel. However, even with this tightened correction
interval, while the mean accuracy of DEC is slightly higher, we see that the two methods have overlapping
95% confidence intervals, indicating that in the dense setting, eigenvalue multiplicity reduction is more
valuable than retaining the shape of the empirical spectra. In contrast, in sparse regimes, such as Cora
and Citeseer, we see that tuning of β yields values near 1 for GPRGNN, indicating that the model is
predominately using the empirical eigenvalues, hence the accuracy of DEC being similar to that of having
no correction applied. Here, it is thus more important to retain the shape of the underlying distribution
than to reduce multiplicity.
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Figure 9: Final model mean accuracies, compared across the Cora (S), Citeseer (S), Chameleon (D), and
Squirrel (D) datasets. Error bars (red) are the 95% confidence intervals over 10 runs for each corresponding
combination of filter, correction strategy, and dataset.

The polynomial basis filters, BernNet and JacobiConv, see smaller differences in performance, as these
methods aim to approximate the spectra as a polynomial function, leading to increased retention in the
shape of the eigenvalue distribution. This contrasts with the emphasis on retaining individual node behav-
ior in GPRGNN. Starting with BernNet’s application to the dense datasets, we see that the broad changes
in performance are similar to that of PageRank motivated methods, as the high eigenvalue multiplicity of
datasets like Chameleon and the subsequent reduced expressiveness of applied filters dominate the perfor-
mance of uncorrected methods. However, the gap by which DEC outperforms EC is notably wider in the
densest graph, Squirrel, where the selected β is also 0.05. For a polynomial approximation using Bernstein
polynomials, using a corrected spectra with a narrow correction range of (0.771, 1.229) implies that much
of the range is untouched, and that the range of correction is highly focused on minimally disruptive cor-
rection of a single mass. This further promotes having a small β value, as the difference across the range
between λ and u is thus minimal when assessing the range of eigenvalues affected. Figure 10 visualizes
this, with the over flattening apparent for the uniform EC, whereas DEC holds some of the initial structure
even after correction by narrowing the range at which equidistant spacing is spliced in.
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Figure 10: Comparison of eigenvalue correction methodologies for the Squirrel dataset (β = 0.44 for EC,
β = 0.05 for DEC) and for the Cora dataset (β = 0.63 for EC, β = 0.95 for DEC).

Eigenvalue correction for sparse datasets yields different results as the underlying shape is inherently
difficult to approximate, as can be seen in Figure 10 for Cora, where at β = 0.95 the correction done
is minimal. This minimal correction reduces eigenvalue muliplicity but ensures as much shape retention
as possible, a trend that can similarly be seen for other sparse datasets in Table 2. For Cora, this
minimal correction yields an improvement in the accuracy of BernNet from 87.373% with no correction to
87.816% with DEC applied. Notably, EC uses a significantly lower β = 0.63 and produces less accurate
predictions, indicating that EC has lost an excessive amount of information from the distribution’s shape
by over-correcting. JacobiConv outperforms BernNet in dense settings as its use of polynomial coefficient
decomposition and orthogonality of the Jacobi bases allows for faster solution finding [46], but this gain is
reduced in sparse settings as it is a more difficult problem to approximate an extremely diffuse spectra. As
such, in the spare regime, we see that any correction strategy yields similar performance between BernNet
and JacobiConv. DEC thus uses the average degree of the underlying distribution to produce a more
informed balance between multiplicity reduction and shape retention in approximating filter functions,
with improved accuracy over both uncorrected and EC methods in dense settings. While the improvement
from any correction method is reduced in sparse settings, DEC is able to perform at least as well as the
uncorrected polynomial approximations via tuning of β.



Chapter 6
Discussion

This thesis aimed to fill a gap in the literature of Erdös-Rényi Random Graphs in the inhomogeneous
regime by proving that the empirical spectral distribution of the normalized Laplacian converges to the
deterministic limiting measure, µf , and applying this result and its methods to a statistical application
in the approximation of PageRank, as well as a machine learning application via eigenvalue correction
in GNNs. Throughout the theoretical parts of this work, we have relied on the assumption that we are
operating in the dense regime with a well-connected graph, that is, where NεN ≫ log(N).

First, we proved that the empirical spectral distribution of an appropriately centered and scaled nor-
malized Laplacian matrix of an inhomogeneous random graph where the connection probability function
can be decomposed multiplicatively indeed converges to the limiting measure, µf . This deterministic mea-
sure provides an extension of the semicircular law that governs the limiting behavior of the normalized
Laplacian in the homogeneous regime, as proven in [29]. Additionally, in the proof, we have borrowed
methods for perturbation and Gaussianization for inhomogeneous random graphs from [7], which focused
on the adjacency and Laplacian matrices. The formal proof of this convergence to a deterministic limiting
measure fills a gap in the literature of random graphs, extending the field’s understanding of the asymp-
totic behaviour of LN in more generalizable settings. This result and its constituent methods will enable
downstream statistical methods on graphs to be applied to more diverse sets of graphs with appropriate
mathematical motivation, particularly in real-world settings where inhomogeneity is commonplace.

We explore one of these methods in our exploration of approximations of PageRank in the same
inhomogeneous setting, where the PageRank vector, which as a centrality measure can also be viewed as
the stationary distribution of a stochastic matrix, is instead represented by the volume normalized degree
vector. In proving that this approximation does indeed hold for a general class of inhomogeneous graphs,
and further by providing the rate of convergence in total variation distance between the two probability
vectors, K√

NεN
, we have extended upon the initial work done in [2], which proved this approximation in

the more specific Chung-Lu and Stochastic Block Model regimes. This proof builds directly upon the
prior result regarding the convergence of the spectral measure of LN to µf , as it similarly requires the
degree behaviour of the graph to be reasonably well-behaved with the maximum degree of the graph being
finite and the minimum degree of the graph being non-zero in order for a decoupling of the empirical and
expected degree matrices. Additionally, we have extended the result concerning counting across maximal
walk contributions as a representation of the maximum eigenvalue of CN to the general inhomogeneous
case, building upon the initial result from [10]. We believe that these results can be applied to statistical
methods and algorithms that rely on calculation of PageRank at either the global graph level or for smaller
sub-graphs, specifically for graphs that do not adhere to more common inhomogeneous settings for which
prior results exist.

Finally, we applied this understanding of dependence on the behavior of the spectral measure on
the degree of the underlying graph to GNNs, specifically in the context of eigenvalue correction of the
normalized Laplacian as it is used for propagation between layers. This correction by imposing uniform
spacing between eigenvalues improves the diversity of output values for the underlying filter functions,
thereby improving the expressiveness of the overall GNN. Our contribution was in leveraging that the
degree relative to the size of the graph controls the accumulation of central mass in its spectra, and so by
restricting the range of eigenvalue correction as a function of the degree we arrive at a final corrected spectra
which adequately reduces the multiplicity of the individual eigenvalues with minimal loss of information.
This was found to be particularly effective in dense graphs, where Np > log(N), such as the Squirrel or
Computers datasets, where our proposed degree based eigenvalue correction methodology outperformed
the uniform methodology proposed by [33] which corrects across the entire interval of eigenvalues, [0, 2].
Furthermore, assessing the performance difference across a set of real-world datasets demonstrated that
DEC outperforms the uniform correction methodology, on average. However, the efficacy of both our
results and that of the uniform correction depend heavily on an appropriate selection of β ∈ [0, 1) in order
to adequately balance the original distribution and the corrected, even when the correction interval is
narrower than [0, 2]. While this methodology yields relatively stable results in the dense regime for any
values of β, sparse graphs require very careful tuning, as can be seen in Figure 8, as final model accuracy
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is highly variable at lower values of β when a relatively flat distribution of evenly spaced eigenvalues is
unable to accurately model an atom heavy distribution.

While this work has made significant progress towards the understanding and application of the spectral
behaviour of LN for inhomogeneous random graphs, there are several open questions that remain. These
open questions arise from changing the underlying assumptions of Theorem 3.2.1 in order to extend these
results to different settings or to evaluate different quantities.

• Theorem 3.2.1 relies on the assumption that f can be decomposed multiplicatively into f(x, y) =
r(x)r(y). However, we believe that the convergence of LN to µf holds for any general f : [0,∞)2 →
[0,∞), so long as it remains bounded and Riemann integrable.

• In this thesis, we analyze ESD (LN ) and its convergence to µf . However, the asymptotic behaviour of

the empirical spectral distribution of QN := D
−1/2
N AND

−1/2
N in the sparse regime remains unknown.

• Throughout this work, we assume a dense graph, where NεN ≫ log(N). This analysis and its
methods do not apply in the context of sparse graphs, where either NεN ≪ log(N) or NεN → λ ∈
(0,∞), and instead we refer readers to [5] for the analysis of the behaviour of atoms in that setting for
the spectrum of adjacency matrices. Thus, it remains an open problem to characterize the behaviour
of the spectra of the Laplacian and normalized Laplacian matrices in the sparse regime.

• We have considered a connection probability between vertices of the form pij = εNf
(

i
N ,

j
N

)
. How-

ever, there is a more general form for inhomogeneous connection probabilities, known as Kernel-
Based Random Graphs (KBRGs). For a vertex set VN := {1, . . . , N}, a weight set (Wi)i∈VN

where

Wi
iid∼ Pareto(τ), τ > 0, and a kernel function κσ : [0,∞)2 → [0,∞), σ ≥ 0, the connection probability

is instead,

pij :=
κσ(Wi,Wj)

∥i− j∥α
∧ 1,

for α being a long range tuning parameter for the influence of distance between vertices. The limiting
measure of the spectra of the adjacency and graph Laplacian matrices have been defined in [12] and
[25], respectively, but the limiting measure of the normalized Laplacian in this setting still remains
an open problem.

Theorem 4.2.1 also poses some open questions that extend upon the results discussed in this thesis,
also surrounding the generalizability of approximations of PageRank to other inhomogeneous graphs.

• In this work, we have proved the validity of the approximation of PageRank in a rank-one setting.
However, this is more broadly generalizable to any finite-rank setting where,

f(x, y) =
α∑

i=1

θiri(x)ri(y),

for ri being a bounded, continuous function, and α > 1. As such, validating this degree based
approximation for all finite-rank random graphs remains an open problem.

• Theorem 4.2.1 and its proof further restrict the earlier assumption of a dense graph, necessitating
that for ξ > 6, NεN ≫ logξ(N), thus yielding a very sharp bound. However, we believe that this
approximation still holds in scenarios where this requirement is relaxed such that ξ ≥ 1, but our
methodology does not yield this extension.

Finally, the results in this thesis surrounding degree based eigenvalue correction for GNNs offer some
potential points of further analysis.

• The analysis run in this thesis on real-world datasets relies on a set of fixed hyperparameters, aside
from β, to remain in line with the methodology used by [33]. While this removes the need for
tuning across a wide range of hyperparameters, such as layer specific learning rates, and improves
comparability of results by holding all else constant beyond the correction methodology, a more in-
depth analysis involving retuning of all hyperparameters could yield valuable results concerning the
interplay between filter specific hyperparameters and β.

• The proposed DEC strategy uses a heuristic approach based on results from analysis of homogeneous
random graphs by using 2√

Np
as the interval upon which to execute correction. While this is com-

putationally straightforward, this poses the open question of it is possible to extricate the empirical
maximum eigenvalue from the data and integrate into an eigenvalue correction methodology that
yields a more precise interval of correction.
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Appendix

A.1 Confidence Intervals on Corrected Filter Performance

Dataset BernNet GPRGNN JacobiConv

None Uniform EC DEC None Uniform EC DEC None Uniform EC DEC

Actor 0.538 0.893 0.855 0.627 0.570 0.792 0.874 0.722 1.020
Chameleon 1.226 0.635 0.832 1.598 0.941 1.094 0.788 1.029 0.985
Citeseer 0.682 0.928 0.532 0.723 0.982 0.709 0.859 1.050 1.010
Computers 0.481 0.363 0.670 0.703 0.411 0.979 0.454 0.234 0.405
Cora 0.723 0.558 0.821 0.723 0.788 0.854 0.460 0.706 0.789
Cornell 4.894 5.750 3.830 6.596 11.069 1.702 7.878 5.532 8.723
Photo 0.359 0.248 0.213 0.410 0.309 0.273 0.354 0.374 0.278
Pubmed 0.254 0.398 0.238 0.325 0.254 0.418 0.469 0.398 0.411
Squirrel 1.210 0.663 0.970 0.788 1.085 0.894 0.913 1.000 0.778
Texas 3.279 2.623 3.119 3.443 3.279 2.295 8.361 2.955 3.443

Table 4: Final evaluated accuracy confidence intervals (%) on real-world datasets for all filters and eigen-
value correction strategies.

A.2 Final Accuracy Comparison Plots For All Datasets
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Figure 11: Final model mean accuracies for GPRGNN, compared across all real-world test datasets. Error
bars (red) are the 95% confidence intervals over 10 runs for each corresponding combination of filter,
correction strategy, and dataset.
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Figure 12: Final model mean accuracies for BernNet, compared across all real-world test datasets. Error
bars (red) are the 95% confidence intervals over 10 runs for each corresponding combination of filter,
correction strategy, and dataset.
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Figure 13: Final model mean accuracies for JacobiConv, compared across all real-world test datasets.
Error bars (red) are the 95% confidence intervals over 10 runs for each corresponding combination of filter,
correction strategy, and dataset.
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