Universiteit

4 Leiden
The Netherlands

Exploring and Communicating the Pruning Variability of Decision

Trees Caused by Cross-Validation
Bresser, Madelief

Citation
Bresser, M. (2025). Exploring and Communicating the Pruning Variability of Decision Trees
Caused by Cross-Validation.

Version: Not Applicable (or Unknown)
) License to inclusion and publication of a Bachelor or Master Thesis,
License: 2023

Downloaded from: https://hdl.handle.net/1887/4258557

Note: To cite this publication please use the final published version (if applicable).


https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/4258557

A:E:x Universiteit
Ndlied) Leiden
'%3557 The Netherlands

Exploring and Communicating
the Pruning Variability of
Decision Trees Caused by

Cross-Validation

Madelief Bresser

Thesis advisor: Dr. S.J.W. Willems
Second thesis advisor: Prof.dr. E.M.L. Dusseldorp

Defended on the 9th of July, 2025

MASTER THESIS

STATISTICS AND DATA SCIENCE
UNIVERSITEIT LEIDEN




Contents

Contents

2.2 Buildingalree . . . . . . ..
2.3 Example Regression Tree for Predicting Car Prices| . . . . . . ... .. ... ...

2.4 Pruning in Decision Trees| . . . . . .. . .. . oo
[2.4.1 Introduction to Pruning| . . . . . . ... .. ... o000
2.4.2  Post-pruning Process|. . . . . . . . .. ... oo

[3 Trees in Meta-Analysis|

3.1 Meta-Analysis|. . . . . . . . . .
3.2 Meta-CARTI. . . . . . . . . . e

4 Methods!

4.1.1  Study and Sample Size|. . . . . ..o
1.2 Moderator Simulationl . . . . . . . . .. ...

4.1.5  Heterogeneity| . . . . . . . . .. Lo
1.6 Summary] . . . ... e e e e e e e e
4.2 Variability Analysis|. . . . . . . . ...

11
13
13
13
16

18
18
19
20
21
22



CONTENTS

b.1  Terminal Node Variability| . .
B.1.1  Tree Model 1 Resultsl

[7.1 Node Frequency Visualization|

7.2 Interactive Node Frequency Visualization| . . . . ... ... ... ... ......
[7.3  Terminal Node Frequency Visualization| . . . . ... ... ... ... .. ... ..
[7.4  Pruning Variability Diagnostics| . . . . . . . . . . ... L oL

7.5 Reproducibility Through Seed|

D10 O PI1Y]

|[A Classification Tree Example|

[B Code Availability|

31
31
32
32

34
34
34
36
38
38
43

50
50
52
53
54

55
95
o7
99
60
60

62

66

68



Abstract

Decision trees are popular statistical methods because they are both intuitive and easy to
implement through R packages, such as rpart and metacart. They work by iteratively dividing
the data using decision rules depending on specific predictors, resulting in a tree-like structure
that is easy to interpret. However, one of the main challenges of building a decision tree, is
finding the optimal tree size. A tree that is too small can miss important patterns in the data.
In contrast, a tree that is too big can overfit the data by including noise and, therefore, might
not generalize well to new data. As a solution to this challenge, pruning methods are often
used. Pruning simplifies the tree by removing excessive splits that provide little predictive value,
or may reflect noise in the data. By removing these splits and nodes, while keeping the main
structure and important splits at the top, the risk of overfitting is reduced. However, the pruning
process depends on cross-validation, which requires random partitioning of the data. This random
nature of data splitting generates variability, which can result in inconsistent pruning outcomes.
The focus of this thesis is on pruning variability in random-effects meta-CART models. These
models apply decision tree methods to meta-analytic data. In the meta-analytic context, effect
sizes are used as the response variable, while moderators are the predictor variables that may
explain differences in effect sizes across studies, such as the study characteristics. The aim of
this thesis is to investigate how moderator type, effect size strength, moderator correlation, and
the pruning strictness, contribute to the pruning variability. Pruning was repeated across 1000
iterations using different seeds on various simulated datasets. Results showed that the pruning
outcomes varied significantly and depended on interactions between moderator type, moderator
correlation, effect size strength, and pruning strictness. Additionally, three visualization tools
were developed, and other suggestions were provided to visualize and communicate the pruning

variability.



Chapter 1

Introduction

Decision trees are often used in data analysis for both classification and regression tasks
(Mienye and Jere, 2024). This is because they provide an intuitive and practical approach to
modeling decision-making. Their interpretability and flexibility make them useful in various
fields, such as behavioral science, medicine, finance, and marketing (Finch et al., 2011; Kim
et al., [2001; Leach et al., 2016; Li et al., 2020af Podgorelec et al., [2002; Sarker et al., [2020}
Trujillano et al., 2009). Decision trees build a tree-like structure by recursively splitting the data
using decision rules that depend on specific predictor variables. The tree ends with terminal
nodes that offer predicted values. For categorical response variables, splits aim to maximize the
node purity through minimizing the Gini Index or entropy values (Breiman et al., [1984; James
et al.,|2013)). For continuous response variables, they aim to reduce the residual variance within
nodes. By building a tree-like structure through this recursive process, the model can detect
complex data patterns. However, the main challenge of building a decision tree, is finding the
optimal tree size. Underfitting could result from a decision tree that is too small, failing to
capture the complex patterns present in the data. Furthermore, overfitting results from decision
trees growing too big, capturing noise from the data, and therefore, reducing their generalizing
performance (Breiman et al., [1984; Gey and Nedelec, [2005; Isaksson et al., 2008).

As a solution to this challenge, pruning methods are often used in order to remove excessive
splits from the fully grown tree. Pruning removes the lower splits and nodes in order to simplify
the model, but preserves the most important decision rules and nodes at the top of the tree. By
only retaining splits that improve model prediction while removing splits that might be capturing
noise, pruning helps to reduce overfitting (James et al., |2013]). Cross-validation techniques, such
as V-fold cross-validation, are used in the pruning process to test model performance across
separate data folds. This helps determine the generalization capabilities of the pruned trees.
However, each time cross-validation is repeated with a different partitioning of the data into
folds, a different final tree might result (Browne, |2000; Geurts et al., 2006; Isaksson et al., |2008]).

Therefore, the outcome of the pruning process can vary. This lack of consistency in the pruning
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process can make it difficult to maintain a single stable tree, which can lead to unreliable model
interpretations and can be confusing to users who do not understand this randomness.

The trees constructed during cross-validation arise from data subsets (cross-validation folds)
rather than the entire dataset. Since the process of finding the optimal pruning value depends on
cross-validation tree performance, the variability introduced by constructing trees from subsets,
affects the pruning process (James et al., |2013). One important cause of this variability, is
the nature of the predictor variables. Both continuous and categorical variables influence the
tree-building process and, consequently, the pruning process. However, they do so in distinct
ways. The variability caused by continuous variables arises from the requirement to find optimal
split thresholds, where all potential split points for a variable are evaluated. This approach can
introduce bias in variable selection, especially when the number of possible splits differs across
predictors (Loh, [2002} Loh and Shih, {1999} Shih, 2004). Continuous variables, which have more
potential split points, are more likely to be selected, even when these splits do not significantly
improve the model. This bias can cause the tree structure to vary across folds due to small
changes in the data, making it harder to identify consistent and important splits. Categorical
predictors introduce different forms of variability, namely through biased split determination
methods. Variables that contain many categories tend to be selected for splitting more frequently,
since they offer more partitioning options (Loh, 2002; Loh and Shih, [1999; Shih, [2004)). Splits can
then be chosen without adding important information, as they may lower the splitting criterion
without improving the predictive or explanatory power of the model.

Another cause of variability is predictor imbalance. If there are predictor variables containing
values or categories that are underrepresented, trees can fail to identify consistent splits contain-
ing those values. This is because, if predictor imbalance is present, splitting criteria tend to favor
majority values, resulting in biased structures and missed patterns associated with the minority
values (Chaabane et al.,[2020; Chawla, 2010; Cieslak and Chawla, 2008} Liu et al.,|2010)). Predic-
tor imbalance can also affect cross-validation, as underrepresented categories might not appear
in every fold. This can lead to instability in the pruning process. Furthermore, correlations and
interactions between predictors also contribute to the variability. When predictors are highly
correlated, the algorithm often selects only one of them for splitting, even if multiple are relevant
(Doyle, [1973; Loh, 2014). This can lead to instability, as small changes in the data may shift the
preference from one correlated variable to another. Furthermore, correlated variables can also
introduce bias since decision trees tend to favor the correlated variables during the tree-building
process (Strobl et al., 2008)). Similarly, interaction effects may only be detected in certain sub-
sets of the data, causing different splits to be chosen across folds. All these characteristics can
introduce variability during the tree construction process and, therefore, influence the pruning
process. This makes the final pruned trees less stable and more difficult to interpret.

The variability of pruning outcomes presents a challenge for users who depend on decision
tree analyses. The developers of the metacart R package (Li et al., |2020b) noticed that users

frequently encounter unexpected variations in model results from repeated analyses due to varia-
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tion in the pruning process. This variability in the pruning results might reduce confidence in the
reliability of the model and emphasizes the need for better understanding and communication of
the pruning variability. As decision trees are used frequently for important tasks, it is important
to ensure that the models are both consistent and reliable.

To address these challenges, this thesis focuses on the following research question: How
do characteristics of the generated data, such as moderator type, effect size, and moderator
correlation, and the pruning strictness, contribute to the pruning variability? To support this
analysis, this thesis first examines how cross-validation introduces variability in pruned decision
trees. Next, a simulation study is conducted using true underlying tree models with various
characteristics. The goal is to investigate the causes of pruning variability and assess their
combined effects on tree structure stability and interpretability. Additionally, this thesis will
develop visualizations to communicate the pruning variability to users. These visualizations will
show the range of potential pruned trees. Furthermore, they will emphasize areas where the
tree might vary due to cross-validation. The goal of these visualizations is to improve model
interpretation and, therefore, allow users to better understand their, possibly variable, results of
the pruning process. To make them more practical, these methods will serve as an extension to
existing decision tree R packages. This will make the results more reproducible and improve the

acceptability of decision tree analyses.



Chapter 2

Decision Trees

2.1 Introduction

As one of the most intuitive machine learning methods, decision trees are often used for
both regression tasks and classification tasks (Mienye and Jere, 2024)). Decision trees are non-
parametric models since they avoid making assumptions about the data distribution, unlike linear
models that depend on predefined relationships between predictors and response variables. They
can discover complex predictor relationships and non-linear patterns by themselves automatically
without requiring explicit specification of these interactions (Breiman et al., [1984). Therefore,
decision trees are an effective tool for exploratory data analysis.

Decision trees are built using recursive partitioning. Through a series of binary splits that
focus on maximizing within-node homogeneity, the data iteratively gets divided into increasingly
smaller and uniform regions. The internal nodes of the tree function as decision rules, which are
based on predictor variable thresholds, whereas the terminal nodes, or leaves, denote the pre-
dicted results. In classification tasks, the predictions take the form of class labels. For regression
tasks, they yield numerical predictions. The tree-like structure of the model provides high inter-
pretability since it allows users to visualize splits as decision rules, which makes understanding
predictions straightforward and clear. Hence, decision trees are both easy to interpret and very
useful in practice. Additionally, decision trees can process both continuous and categorical pre-
dictor variables, and are robust to changes in data scale or monotonic transformations (Breiman
et al.,|1984; James et al.,|2013; Loh, |2014). These characteristics make them an effective method
for analyzing a wide range of datasets.

This chapter explores the work of Breiman et al. (1984) on decision trees, which presents an
essential understanding of Classification and Regression Trees (CART), and how they are used
in practice. This chapter examines the main ideas from their book together with more recent
studies that have expanded their work. Additionally, the work of James et al. (2013) is used as

the foundation for most of the formulas and techniques presented in this chapter, since it offers
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a more accessible approach to understanding these concepts.

2.2 Building a Tree

Decision trees start with dividing the data into nodes, or regions, through recursive division
that results in more homogeneous regions, with respect to the response variable. The concept of
regions is important to how decision trees work, as they represent subdivisions of the predictor
space, that are created to maximize the within-node homogeneity of the tree. Binary decision
rules form the basis of the algorithm by consistently splitting the data into distinct data regions.
The process of determining each split involves evaluating every potential way to divide the data.
For numeric predictors, each unique value of the variable serves as a possible threshold to evaluate
if the data split at that point results in more homogeneous subsets. For categorical predictors, the
algorithm examines every possible combination of category groupings when determining splits.
The aim is to split the predictor space into J unique regions that do not overlap: Ry, Rs,..., R;.
Each observation in region R; receives the same prediction, namely the average response value
from training observations found within R; for regression tasks, and the dominant category
found within R; for classification tasks. Although regions may take any form, decision trees
usually break down the predictor space into high-dimensional rectangular or box-shaped regions
to maintain simplicity and interpretability. Decision trees construct splits through different
measures based on whether the tree is designed for regression or classification.

When building regression trees, the goal is to determine regions (R, ..., R;) that minimize
the Residual Sum of Squares (RSS), defined as

J
RSS=Y">"(yi—ir,)" (2.1)

j=1i€R,
where g, represents the average response for region R;, J denotes the total number of regions,
and y; indicates the response value for observation number i. The computational effort required
to evaluate all possible thresholds to divide the feature space into J regions makes this approach
computationally demanding. Therefore, decision trees use a top-down greedy method called
recursive binary splitting. The tree-building procedure starts with all observations assigned to
one region at the root node of the tree. The method then successively divides the predictor space
into two regions. During each step of the recursive binary splitting process, the algorithm selects
the optimal split for that specific step without considering future steps that could result in a
better overall tree structure. The predictor X; and cutpoint s that produce the regions with the
lowest RS'S, determine the split. The recursive binary splitting approach can be summarized as

follows. First, we create two regions for every predictor X; by using every possible cutpoint s:

Rl(j,S):X‘Xj <s, RQ(],S):X|XJZS (22)

Next, for every candidate split (7, s), we calculate the RSS for the two regions:
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RSS(Gj.s)= > (wi—ir)*+ >, Wi—ir)% (2.3)
i€R1(],s) i€R2(4,s)
where the mean responses of regions R;(j,s) and Ry (j, s) are represented by §gr, and §g,, re-
spectively. Next, we choose the predictor X; and cutpoint s that produce the smallest RSS(j, s),
perform the split, and continue recursively.

Classification trees, like regression trees, use recursive partitioning but are designed to predict
categorical outcomes rather than continuous values. In this case, each terminal node assigns the
most frequent class label to all observations within it. Classification trees also develop through
recursive binary splitting, dividing the predictor space into regions that become progressively
more homogeneous, ideally each containing one very dominant class. However, classification
trees use the classification error rate, Gini index, or entropy as metrics to determine split quality
instead of the RSS. The classification error rate evaluates the proportion of data points in a

node that are not from the most frequent class. It can be expressed as

Error =1 — m]?x(ﬁmk), (2.4)

where the term p,,; represents the proportion of observations within node m that are classified
as class k, and maxy (Pmi) calculates the highest proportion across all classes k to determine the
proportion of the most frequent class in node m. The classification error represents the proportion
of observations that receive incorrect classifications. It serves as a simple and straightforward
metric but fails as a sensitive tree construction measure. This is because it focuses only on the
most frequent class proportion in each node, while ignoring other class distributions. Therefore,
for tree construction, it is common to use the Gini index or entropy instead (James et al., |2013]).
The Gini index measures how impure a node is by calculating total class variance. Lower values

show that the nodes contain more homogeneous classes. It is defined as

K
k=1

where K represents the total number of classes, while p,,; measures the proportion of class k
observations within node m. Nodes that contain mostly observations from a single class, show low
Gini index values, making this metric valuable for maintaining node purity. Similarly, entropy
functions as an impurity evaluation for nodes, where lower entropy values indicate higher node

homogeneity. It is defined as

K

D == pmrlog(Bmn), (2.6)
k=1

where p,,; denotes the percentage of data points in node m, which fall under class k, and K
stands for the total number of classes. The Gini index and entropy show greater sensitivity to

changes in node purity than the classification error rate, making them ideal for assessing splits
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when growing trees. However, all three metrics can be used during pruning, a later step where
the fully grown tree is simplified to reduce overfitting and improve predictive performance, as we
will discuss later in this chapter. In that context, the classification error rate is often preferred
if the goal is to maximize the accuracy of the final pruned tree (James et al., [2013]).

This process continues until the algorithm produces a fully grown tree. A fully grown tree is
one in which all possible splits have been made, subject to the constraints of the data. Usually,
the splitting process continues until a stopping criterion is met. The process will, for example,
be constrained by setting a minimum number of observations per node, a maximum size (depth)

for the tree, or a minimum reduction in impurity required for a split to be considered.

2.3 Example Regression Tree for Predicting Car Prices

Imagine we want to predict the price of a car, a continuous variable, based on various variables
from the Automobile Data dataset, published in the April 1990 issue of Consumer Reports
(Consumer Reports, [1990). The dataset includes variables such as country of origin, mileage,
weight, engine displacement, and horsepower. Using a regression tree, we partition the data
into distinct groups based on these variables, allowing us to predict car prices by identifying
shared characteristics within each group. An example of such a tree is shown in Figure Each
terminal node represents the predicted price for cars within that group, while the percentages
indicate the proportion of observations in each node relative to the total dataset. Below, we
describe the process of constructing the tree.

The regression tree algorithm begins with all observations in a single group, represented by
the root node. The average variability in car prices is called the Mean Squared Error (MSE),
which is the RSS divided by the number of observations within a node. Before making any
splits, the mean price is $12,615.67 and the MSE is 16,392,520. To reduce this variability,
the algorithm identifies the optimal variable and threshold for splitting the data. The initial
data split uses weight as the criterion, with the splitting threshold set at 2,980 pounds. Cars
that are under 2,980 pounds move to one node, while those exceeding 2,980 pounds move to a
different node. The data split by weight resulted in two regions with mean prices of $10,442.58
and $15,875.29. After splitting by weight, the M SE decreased to 7,880,181 for lighter cars and
11,452,450 for heavier cars. This reduction demonstrates the effectiveness of weight in explaining
the variability in car prices.

For lighter cars (weight < 2,980), the next split depends on car type. Small cars form
a terminal node with a mean price of $7682.39 and an MSE of 1,677,286 reflecting the low
variability in prices within this group. The node that includes the other car types, now has an
average price of $12,002.70 with an M SFE of 4,645,995 and gets divided further by their country
of origin. Cars originating from Japan and the USA, Korea, and the USA have an average price
of $11,261.20, with an M SE of 1,418,199, whereas cars from the other countries have an average
price of $13,393.00, with an MSE of 7,734,262. Each split reduced the M SFE in the resulting
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regions, leading to subsets with increased homogeneity.

Figure 2.1

Example of a Regression Tree for Predicting Car Prices

12616
100%
Weight < 2980

Type = Small

12003
38%
Country = Japan/USA,Korea,USA
7682 11261 13393 14186 18241
22% 25% 13% 23% 17%

Note. Terminal nodes show the average predicted price, with percentages indicating the

Country = USA

proportion of observations in each node.

For heavier cars (weight > 2,980), the next split depends on country of origin. Cars from
the USA form a terminal node with a mean price of $14,185.71 and an M SE of 3,417,360. Cars
from the other countries form another terminal node with a mean price of $18,241 and an M SE
of 13,109,880. These splits further reduce the overall variability in car prices by grouping cars
with similar characteristics.

No further splits are performed since the stopping criteria have been met. Using the rpart
R package default values for the stopping criteria, splits are, for instance, only performed if a
node contains at least 20 observations (minsplit), and terminal nodes must have a minimum of 7
observations (minbucket). Additionally, the complexity parameter (¢p) is set to 0.01 by default,
requiring each split to decrease the overall lack of fit by a certain amount before being allowed
(Therneau et al.,[2023). Concluding, to predict the price of a new car, the variables weight, type,
and country of origin, are used to navigate through the tree to a terminal node. The resulting
regression tree (Figure provides a clear and interpretable approach to understanding how
these factors influence car prices. Additionally, an example of a classification tree can be found

in Appendix A.
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2.4 Pruning in Decision Trees

2.4.1 Introduction to Pruning

A primary issue of decision trees, is their tendency to overfit the training data. When grown
to their full depth, trees capture both the underlying patterns and the noise in the data, resulting
in models that perform poorly on unseen data. This makes tree generalizability an important
consideration. To deal with this issue, techniques like pruning and ensemble methods (bagging
and boosting) can be applied. The latter will not be explained further since they lie outside the
scope of this thesis. Pruning techniques help solve this problem by shrinking the tree structure,
enhancing the generalization capability of the model. Pruning works by identifying and removing
splits and nodes that add minimal predictive power to the tree, resulting in a simpler model. Two
main approaches exist for pruning decision trees: pre-pruning which is known as early stopping
and post-pruning referred to as cost-complexity pruning (Breiman et al., |1984; Fiirnkranz, 1997;
James et al., [2013]).

Pre-pruning stops the tree growth before the model becomes too complex. The algorithm
may stop splitting a node if it contains too few observations or if further splits do not significantly
improve the performance of the model (based on some measure of improvement). Pre-pruning
reduces the risk of overfitting but comes with the downside that it might miss important features
of the data by stopping too early (Fiirnkranz, [1997). In contrast, post-pruning or cost-complexity
pruning creates an initial full tree that captures all data splits before removing splits that do not
substantially decrease prediction error (Breiman et al., [1984). Achieving the optimal balance
between model complexity and accuracy matters because complex trees can show high perfor-
mance on training data but deliver poor results on test data. Since this thesis specifically aims to

investigate the variability arising from post-pruning, only post-pruning will be discussed further.

2.4.2 Post-pruning Process

A common pruning strategy is cost-complexity pruning, also known as weakest-link pruning.
This strategy involves first growing an initial tree, T', that fully captures the data. Next, subtrees
are generated by iteratively removing splits that contribute the least to reducing the RSS or an-
other error metric. This sequence of subtrees is indexed by a non-negative complexity parameter
(cp), a, which controls the trade-off between tree complexity and fit to the data. Addition-
ally, cross-validation is used to select the optimal complexity parameter o. The cost-complexity

criterion used to evaluate subtrees is expressed as

Ro(T) = R(T) + o|T], (2.7)

where the penalized error R, (T) results from combining tree error R(T) with a size penalty
depending on the number of terminal nodes |T| in tree T, and is regulated by «. A larger «

favors simpler trees by penalizing models with many terminal nodes. For example, regression
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trees utilize the RSS in order to quantify the error metric, the cost-complexity criterion is then

expressed as

1T

Ro(T) =Y > (yi—9r,)*+ T, (2.8)

m=1i:x;ER,

where the predicted response for R,,, denoted as g, , is the average of the training observations

within that region.

In order to prevent having to analyze every value of o, we can use geometric means. There
are exact values of o that correspond to a point at which the tree structure changes, named
critical values (Therneau and Atkinson, 2023). For example, we can have a tree that maintains
three splits if we provide an « value equal to or less than cp; but greater than cps. In order to get
a value of « that represents this interval, we can calculate the geometric means. The geometric
means, derived from the critical o values, allow us to represent intervals without needing to
manage every « individually. Therefore, using these geometric means makes the pruning process
more computationally efficient. The geometric means of the intervals can be calculated using the

following formula:

Geometric Mean = /cp; - cpa. (2.9)

These computed geometric means are the values of o that can now be evaluated using cross-
validation (James et al., 2013; Therneau and Atkinson, 2023).

To select the optimal subtree, the performance of the model is evaluated using cross-validation.
In V-fold cross-validation, the data is split into V' equal parts or folds. The model is first trained
on V — 1 folds and then tested on the remaining fold, repeating the process V' times (Browne,
2000). The average cross-validation error across all folds is used to measure how well the tree

generalizes to new data, it is defined as

v
1
Cross-Validation Error = v ; Error;, (2.10)

where Error; is the test error for the i-th fold (Browne, 2000). The « that produces the lowest
cross-validated error can be chosen as the value for the final model. Alternatively, the one-
standard-error or the c¢- SE rule may be applied, where the value of « that produced the simplest
tree whose error is within one or ¢ standard errors of the minimum, is selected (Breiman et al.,
1984; Dusseldorp et al.,|2010). The entire pruning process can be seen in Algorithm

Now, if we go back to the regression tree example that was visualized in Figure we can
perform post-pruning on this tree. First, various values of the complexity parameter are evaluated
using cross-validation. We can see the results of this cross-validation process visualized in Figure
2.2
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Algorithm 1 Construction of a Decision Tree with Pruning

1. Begin by growing an initial tree on the training dataset through recursive binary splitting.

Continue this process until a predefined stopping criterion is met.

2. Perform cost-complexity pruning on the fully grown tree to create a sequence of smaller

subtrees, each corresponding to a different value of a.

3. Determine the optimal a using V-fold cross-validation:

(a) Split the training data into V" equal parts (folds). For each fold, apply the steps of growing
a full tree and pruning it (Steps 1 and 2) to the remaining V' —1 folds, leaving the current
fold out for testing. Compute the mean squared prediction error for the left-out fold for

each subtree and value of a.

(b) Calculate the average error across all V folds for each a. Select the « that results in the
lowest average error. Alternatively, the ¢ - SE rule can be used. This rule selects the
highest « value where the cross-validated error remains within ¢ standard errors from the
minimum cross-validated error (often chosen as 1, referred to as the one-standard-error

rule).

4. Choose the subtree corresponding to the selected a.

Figure 2.2

Relationship Between Complexity Parameter v (cp) and Relative Cross-Validation Error

size of tree
1 2 3 4 5
5 | \ \ \ |
.
W N
L]
= =
=
(0] )
) s
L B
g <«
1 o
> I \ \ \ I
Inf 0.26 0.12 0.048 0.016
cp

Note. The top x-axis shows tree size (number of terminal nodes), while the bottom x-axis
represents « values. The y-axis displays the relative cross-validation error (xerror), which
measures the ratio of the cross-validated error of a subtree to the cross-validated error of the
unpruned tree. The dashed line marks the one-standard-error rule, suggesting the simplest tree

within one standard error of the minimum error.
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The « value of 0.048 yielded the lowest cross-validation error with the one-standard-error rule.

The pruned tree is visualized in Figure As we can see, there are fewer terminal nodes now.

Figure 2.3

Example of a Pruned Regression Tree for Predicting Car Prices

Weight < 2980
12616
100%

Type = Small Country = USA

Note. Terminal nodes show the average predicted price, with percentages indicating the

proportion of observations in each node.

Concluding, cost-complexity pruning involves choosing the optimal tree from the resulting
sequence of subtrees that emerges through repeated pruning steps from the fully grown tree. It
is important to note that this process maintains the tree structure, ensuring that the sequence
keeps both split order and threshold values unchanged. The pruning procedure only selects nodes
and splits from the fully grown tree to either keep or remove in order to minimize overfitting and

enhance model generalization.

2.5 Decision Trees in R

The rpart R package (R Core Team, 2024; Therneau and Atkinson, [2023; Therneau et al.,
2023) implements the CART algorithm for constructing decision trees within R. The primary
function rpart () requires users to provide both a formula and a dataset, while the algorithm in-
ternally determines suitable splitting criteria according to the response variable type. The default

measure for node purity in classification tasks within rpart is the Gini index, but users can select



CHAPTER 2. DECISION TREES 17

entropy as an alternative option. The best splits for regression tasks, are determined by evaluat-
ing the Residual Sum of Squares (RSS). Furthermore, users can modify the tree-building process
with different parameter settings. Different pre-pruning settings can be modified through the
control argument, which includes parameters such as minimum split observations (minsplit),
minimum terminal node observations (minbucket), the complexity parameter (cp), and maxi-
mum tree depth (maxdepth). Next, users can examine the rpart results using the summary ()
function. The summary () function provides comprehensive details about the constructed tree. It
includes split criteria information, node counts, descriptions of the tree structure, and terminal
node predictions.

The rpart package also supports post-pruning. The rpart () function automatically imple-
ments cross-validation to assess multiple pruned trees at various values of a. The package uses
the geometric means method to select the o values that it will evaluate using cross-validation. By
using the geometric means, all significant pruning options will be assessed while still achieving
computational efficiency. Additionally, the parameter xval (default value 10) can be adjusted,
allowing users to define the number of folds for cross-validation. The cross-validation results can
be found in the cptable. The cptable of the model displays important parameters, including
the complexity parameter (cp), number of splits (nsplit), relative error of the tree (rel error),
which divides the error of a subtree by the error of the most simple tree (without splits), cross-
validated error (xerror), and the standard deviation of the cross-validated error (xstd). These
results can also be visualized using the plotcp() function, as shown in Figure Next, the
prune () function allows users to prune the tree by setting a value for the c¢p parameter that
specifies how much pruning should occur.

The visualization tools within the rpart package are important for interpreting decision trees.
The plot () function generates a basic tree diagram that can be improved through the text ()
function by labeling splits, adding predictions, and adding sample sizes. These visualizations
often require manual modification to improve their interpretability. The rpart.plot package
delivers advanced visualization features that offer improvements beyond the basic tree visual-
izations created by rpart. This package generates clear visual layouts with distinct nodes that
display decision rules and outcome predictions together with sample sizes. The rpart.plot
package builds on the ggplot2 R package (Wickham, 2016)), and lets users customize their deci-
sion tree visualizations with options such as changing the colors, text size, and labels. Examples
of figures created with this package are Figure [2.1] and Figure It is important to note that,
even though rpart() automatically uses cross-validation to find the best « value for pruning,
the plot () function will show the fully grown tree if the tree is not manually pruned using the
prune () function.

In conclusion, the rpart package is an important R package for creating decision tree models
in R. It can automatically grow trees, apply pruning with cross-validation, and create visualiza-
tions, making it a useful choice for those working with CART models. More information and

details about this package can be found in the rpart package manual (Therneau et al., 2023).



Chapter 3

Trees in Meta-Analysis

3.1 Meta-Analysis

Meta-analysis is an important statistical approach for combining results from different inde-
pendent studies. By combining the results, they generate more reliable and generalizable answers
to research questions (Israel and Richter, |2011)). Meta-analysis is often used for healthcare, psy-
chology, and social science research. This is because individual studies in these fields often
produce contradictory results or face limitations like small sample sizes and low statistical power
(Hedges and Olkin, 1985). Meta-analysis aims to improve statistical precision, while generating
stronger overall effect size estimates by combining data. It determines a combined effect size.
This effect size represents results from numerous studies, and accounts for the variations found
between their effect sizes (Borenstein et al., [2009; Borenstein et al., 2010; Dusseldorp et al.,
2014). The observed variability in effect sizes between studies, is referred to as heterogeneity.
Heterogeneity can arise from variations in participant characteristics or study design aspects,
such as intervention techniques or outcome measurements. Analyzing the heterogeneity prevents
oversimplified conclusions that can lead to misinterpretations and incorrect decisions. Hence, for
meta-analytic results to be reliable, researchers must understand and address heterogeneity in
their analyses.

Fixed-effect and random-effects models are traditional meta-analytic approaches, helping re-
searchers manage heterogeneity in their analyses. Fixed-effect models operate on the assumption
that every study included measures one true effect size, with differences arising only from sam-
pling error (Dettori et al.,[2022). Fixed-effect models work well when studies share similar designs
and aims. Random-effects models accommodate different true effect sizes across studies, while
incorporating both within-study variance and between-study variance to account for heterogene-
ity (Dettori et al., 2022). Random-effects models demonstrate better suitability for datasets
with significant differences in study designs, populations, or contexts (Borenstein et al., |2009;
Borenstein et al., 2010; Dettori et al., [2022). Both the fixed-effects and random-effects models
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remain useful, but they also contain limitations. The models can measure heterogeneity, but
face difficulties in explaining it. This happens especially when relationships between study char-
acteristics and effect sizes are complex, non-linear or include moderator interactions (Li et al.,
2020a; Tipton et al., 2019)). This can become problematic when the number of studies is small, as
meta-regression, a common method to explore moderators, would then suffer from low statistical
power to test all variables simultaneously (Li et al., [2020a). Additionally, meta-regression re-
quires that all main effects and interaction terms are specified, which becomes impractical when
no clear hypotheses exist and the number of possible interactions is large (Li et al.,[2020a)). These
limitations of traditional approaches stimulates researchers to study more flexible and practical
methods, including decision tree-based techniques, to enhance their understanding and modeling
of heterogeneity.

This chapter will discuss how decision tree methods can enhance traditional meta-analysis
techniques, with a focus on the meta-CART approach introduced by Dusseldorp et al. (2014)).
Decision trees provide improved modeling capabilities for complex data, because they can reveal
non-linear relationships and study characteristic interactions, while providing more flexibility
than traditional models. The following sections explore the application of decision tree methods
to meta-analysis. Additionally, this chapter demonstrates how the metacart R package offers
a practical approach for applying these methods. The work of Li et al. (2020a) serves as the
foundation for the concepts and formulas discussed in this chapter. This is because it offers
an accessible and comprehensive understanding of the application of decision tree methods in

meta-analysis.

3.2 Meta-CART

Standard CART methods examine individual-level data, whereas meta-CART (Meta-analytic
Classification and Regression Trees) applies CART techniques to aggregated data from multiple
studies included in a meta-analysis. The effect size functions as the response variable, while study-
level characteristics (moderators) operate as predictive variables. The algorithm recursively
partitions the dataset to find moderators that explain the variability in effect sizes. It does not
work towards individual-level predictions but finds study subgroups displaying similar effect sizes,
helping understand the impact of the moderators on study variation (Dusseldorp et al., 2014}
Li et al., |2020al). The method uses a recursive partitioning algorithm to iteratively split studies
into increasingly homogeneous subgroups. At each step, the algorithm selects the moderator
and corresponding threshold that maximizes the difference between subgroups, as measured by
a heterogeneity metric such as the Q)-statistic.

The process begins like traditional CART with the entire dataset as a single parent node,
representing all studies. The algorithm then evaluates potential splits for all available moderators,
identifying the split that maximizes between-group heterogeneity while minimizing within-group

variability. This split divides the data into two child nodes, which are then subjected to the
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same procedure. The algorithm continues this process until stopping criteria are met, such as a
minimum number of studies per terminal node. The resulting tree structure provides a visual tree
of the relationships between moderators and effect sizes, with terminal nodes representing distinct
subgroups of studies and internal nodes showing the moderators and thresholds that define these
subgroups. Importantly, meta-CART also includes mechanisms to deal with overfitting, such as

tree pruning with cross-validation, which will be explained later.

3.2.1 Random-Effects Meta-CART

Unlike Fixed-Effects (FE) meta-CART, which assumes all variability in effect sizes can be
attributed to moderators and within-study sampling error, Random Effects (RE) meta-CART
accounts for additional variability between studies that cannot only be explained by observed
moderators or sampling error. In this thesis, the focus is only on RE meta-CART since it is more

flexible and widely used in research (Li et al.,|2025)). The random-effects model is represented as

dy, = Bo + Bizik + Bozor + - - + BTy + Tk + €k, (3.1)

where 75, denotes the variation introduced by residual heterogeneity, distributed as N'(0,02). This
term captures the difference between the true effect size of the kth study and the population
mean from which all study effect sizes are sampled. The term € accounts for the sampling error
of the observed effect size dj, distributed as N (O,USk). Thus, total variability in effect sizes
arises from two components, namely residual heterogeneity and sampling error. The variance
components, 052 and 02, are estimated hierarchically, which means that the sampling variance
is estimated first, followed by the between-study variance (Erez et al., [1996).

The within-study variance, O'?k, can be estimated using formulas specific to the study design,
such as those for Hedges’ g:

2 _ nj +nf di

= + , 3.2
7 = TaTng AT ) (32

where n{ and nkc are the sample sizes of the treatment and control groups, respectively. The
between-study variance, o2, is estimated using the DerSimonian—Laird method, selected for
computational efficiency in the metacart R package (Li et al., 2020b). Using these variance
estimates, the summary effect size under the RE model is computed as a weighted mean, with

weights given by wy = 1/(02 + 02), and * denoting the random-effects statistics:

>k i/ (0 +07)
2 1/(02 +037)

To quantify heterogeneity, the model employs the Q* statistic, defined as
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The tree-growing process in RE meta-CART is similar to traditional decision tree algorithms
but requires additional steps to account for residual heterogeneity. At each split, the algorithm
estimates 02, as the heterogeneity between subgroups is influenced by the residual variance. The

between-subgroups heterogeneity, Q%, is defined as

17|

Q5 = ZZM’ (3.5)
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where |T'| represents the total number of subgroups, d;, is the summary effect size within sub-

group t, and d | is the overall mean. Unlike standard CART, which uses traditional recursive

partitioning where each split is made independently, RE meta-CART affects the overall esti-

2
P

evaluate all terminal nodes at once, rather than considering them separately. As a result, the

mation of o2 and the calculation of @ with every new split. This means the algorithm must

process follows a sequential approach, where each new split depends on the ones that came before
it.

3.3 Pruning in RE Meta-CART

The RE meta-CART pruning technique differs from standard decision tree pruning, as each

split affects the residual heterogeneity variance (02).

Algorithm 2 Construction of a RE Meta-CART Tree with Pruning
1. Use sequential binary splitting on the training data to build a full initial RE meta-CART

tree, where after each split the residual heterogeneity (02), is re-estimated. Until the predefined

stopping threshold is reached, keep dividing the training data.

2. Start with the complete meta-CART tree size and obtain a sequence of tree sizes by lowering

the amount of terminal nodes one by one. Note that at this point, no trees are grown yet.

3. Use V-fold cross-validation in order to find the optimal tree size:

(a) Make V equal folds out of the training data. Using the preset tree sizes from Step 2, fit
an RE meta-CART model to V' — 1 folds for each fold, leaving the current fold out for
testing. For every subtree, calculate the mean squared prediction error using the left-out
fold.

(b) For every tree size, calculate the average error over all V' folds. The tree size with the
lowest average error within ¢ standard errors of the overall minimum error should be

chosen.

4. Using the training data, fit an RE meta-CART tree using the optimal tree size.

Standard CART pruning removes splits sequentially with the use of cost-complexity pruning,

and removing these splits, does not affect previous computations. However, RE meta-CART
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pruning calls for a different approach, as eliminating a split will affect the residual heterogeneity
2

variance, oz. So, since the cost-complexity pruning method cannot be used in this context,
cross-validation is used as the primary approach to find the optimal tree size. The RE meta-
CART pruning process evaluates trees of various sizes and identifies the tree that achieves the
best combination of model simplicity and prediction accuracy. The selection process prevents
overfitting and maintains model stability by choosing the simplest tree within ¢ standard errors
of the minimum cross-validation error. The full pruning process for RE meta-CART trees is
shown in Algorithm

To demonstrate this process, imagine an initial RE meta-CART tree is developed, producing
a tree with seven terminal nodes. The pruning process then creates a sequence of tree sizes
with progressively fewer terminal nodes (6, 5, 4, etc.), each indicating a simpler model. These
various tree sizes are then used to grow decision trees, which additionally, get evaluated using
cross-validation and a mean squared error predictive performance assessment.

In summary, unlike standard CART pruning, which removes tree splits based on complexity
penalties, RE meta-CART pruning ensures that the final tree still takes heterogeneity adjust-

ments into account at every split by only using cross-validation.

3.4 Meta-CART in R

The R package metacart features implementation of the meta-CART algorithm, created for
decision tree meta-analysis methods (Li et al., [2020b; R Core Team, [2024). The metacart
package includes two main functions called FEmrt() and REmrt(), which build meta-CART
models representing fixed-effects and random-effects models, respectively. The functions require
effect sizes, moderator variables, and the within-study variance as inputs to generate a decision

tree model. For instance, a call to REmrt () might look like:
tree <- REmrt(formula = yi ~ ml + m2 + m3, vi = vark, data = meta_data)

Here, yi represents the response variable (effect size), the right-hand side of the formula (m1 +
m2 + m3) specifies the moderators to be evaluated, and vark is the corresponding variance for
each effect size. The resulting object, tree, contains the fitted meta-CART model, including
information about the splits, subgroup characteristics, and effect size estimates for each subgroup.
Heterogeneity gets evaluated using the @Q-statistic metric. The tree-building process allows for
customization through parameters such as the maximum number of splits (maxL), the minimum
number of studies required in a parent node before a split is attempted (minsplit), the minimum
number of studies allowed in a terminal node (minbucket), and the threshold for reduction in
between-subgroup heterogeneity (cp) needed for a split to be made. Additional options include
the number of folds for cross-validation (xval) and the pruning strictness value (c.pruning),

which determines how aggressively the tree is pruned using the ¢ - SE rule.
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Cross-validation results can be accessed through the cptable component of the tree object,
offering a better understanding of the stability of the model. The tree$cptable provides statis-
tics on how the tree performs across different cross-validation folds. Unlike the rpart package,
where pruning must be carried out manually after fitting the initial tree, the metacart package
integrates pruning with cross-validation directly into the tree-building process. As a result, the
final tree returned by the fitting function is already pruned to the optimal size based on cross-
validation results. This can lead to confusion, as pruning results may vary depending on the
seed used, causing different pruned trees to be produced across different runs.

Visualization is an important feature of the metacart package. The plot function provides
a clear representation of the decision tree. Nodes display the number of studies they contain
(K), with decision rules shown below the internal nodes. This produces a tree structure that
emphasizes key moderators influencing heterogeneity and reveals subgroups of studies with sim-
ilar characteristics. Below the tree, the predicted response values (effect sizes) for each terminal
node are shown. Figure[3.I]demonstrates an example of a decision tree generated using metacart

with a simulated dataset available in the package as well.

Figure 3.1
Ezxample of a Meta-CART Decision Tree Made with Package metacart

= R R =L
o A

Note. Each node displays the number of studies (K) in that subset, with decision rules shown

below the internal nodes.

In this example, the root node represents the full dataset of K = 120 studies. The first split
occurs on the categorical moderator m1, dividing the data into K = 61 studies where m1l =

A, and K = 59 studies where ml is not A. Additional splits based on moderators m2, m3,
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and m4 further refine the subgroups, with the final nodes representing groups of studies with
homogeneous effect sizes.

It is also possible to access the full unpruned generated tree by calling the initial.tree
object. This object contains the decision tree before any pruning has occurred, allowing users
to examine the structure and splits that would have been made without the pruning process.
The unpruned tree can also be visualized using the plot() function, similar to the pruned
tree. Additionally, the summary() function can again be used to retrieve detailed information
about the full tree, including the number of splits, the conditions defining each split, and the
characteristics of each subgroup. In summary, the metacart package is an important R package
for applying decision tree methods to meta-analytic data, helping identifying moderators that
explain heterogeneity. A more detailed overview of the functions can be read in the metacart
package manual (Li et al., 2020D)).

Within the scope of this thesis, it is important to understand that the automatic post-pruning
feature of the metacart package, makes the differences in pruned trees between runs more noti-
cable. Since the rpart package requires users to perform post-pruning manually, the variability
in pruning results with rpart becomes less unexpected. In contrast, the automatic pruning pro-
cess in the metacart package can lead to user confusion due to variability in results. Therefore,

examining and communicating the variability present within meta-CART is important.
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Methods

This chapter describes the methods used in this thesis. The main goal of this thesis was to
investigate pruning variability in decision trees caused by cross-validation. To achieve this goal,
we examined how various characteristics and levels of pruning strictness influenced the stability
of the tree structures. Various meta-analytic datasets were simulated, and pruning variability
in random-effects meta-CART models, built on these datasets, was evaluated. These datasets
were generated by varying the moderator type, effect sizes, correlation structures, and the true
underlying tree models. The data simulation approach followed the methodology used by Li
et al. (2025)). First, an overview of the data simulation process is given, including the process
of how the moderators and observed effect sizes were generated. Next, a description of the
underlying tree model specifications is provided, where variations in effect sizes across moderators
were introduced, creating different levels of true tree model complexity. Finally, the chapter
provides a description of how the pruning variability was assessed in the simulated datasets.
This includes examining the effects of pruning on the number of terminal nodes and the entropy
of these nodes. Additionally, ANOVA tests were used to evaluate how moderator type, effect size
strength, moderator correlation, and pruning strictness contributed to the pruning variability.
These tests helped to identify which factors most strongly influenced pruning outcomes and how

they interacted. All R code used for the simulations and analyses can be found in Appendix B.

4.1 Data Simulation

4.1.1 Study and Sample Size

This study simulated various datasets in order to reflect different meta-analysis scenarios. All
the simulated datasets consisted of 120 studies in order to maintain a balance between sufficient
tree growth and the restricted availability of studies in meta-analyses. The sample size for each
study k, denoted as ny, was simulated using the methodology described by Viechtbauer (2007)).

Specifically, the sample sizes followed a normal distribution with a mean of 80 (%) and a standard

25
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deviation of /3 to introduce realistic variability in the study sample sizes.

4.1.2 Moderator Simulation

Each study included ten moderators. The values of these moderators were sampled from
a uniform distribution between 0 and 1. This number was chosen to maintain a balance be-
tween model complexity and interpretability, allowing for various tree structures while avoiding
excessive noise (Li et al., [2025). Only two to three of these moderators were actually used to con-
struct the tree models. The remaining moderators served as noise variables to reflect real-world
conditions where multiple potential moderators are available, but only a few are truly relevant.
Additionally, a correlation structure was applied to introduce correlation among moderators,
with correlations set at 0.3, 0.5, or 0.7. These values were selected to evaluate the impact of
varying correlation levels on the pruning variability. A correlation of 0.3 showed a weak corre-
lation, whereas 0.5 denoted a moderate correlation, and 0.7 showed a strong correlation among
moderators. Correlated moderator values were generated by simulating multivariate normal vec-
tors using the mvtnorm R package (Genz & Bretz, 2009). To convert these values into uniform
distributions while preserving their correlation structure, the probability integral transform was
applied, as described in Gilli et al. (2011]).

In addition to continuous moderators, we investigated the effects of categorical moderators
on pruning behavior by applying two discretization methods to the first five moderators (M1 to
MS5). Under the balanced categorization method, moderator values were split into three cate-
gories, where values below 0.3333 were assigned category A, values between 0.3333 and 0.6666
were assigned category B, and values above 0.6666 were assigned category C. In contrast, the
unbalanced categorization method assigned values below 0.2222 to category A, values between
0.2222 and 0.8888 to category B, and values above 0.8888 to category C. The second approach
resulted in a dominant middle category and two less frequent categories, allowing for an assess-
ment of whether pruning behaves differently when categorical moderators exhibit an imbalanced
distribution. The details of these categorizations are presented in Table

Table 4.1

Comparison of Balanced and Unbalanced Categorical Moderators

Category Balanced Categorization Unbalanced Categorization
A x < 0.3333 x < 0.2222
B 0.3333 < z < 0.6666 0.2222 <z < 0.8888
C x > 0.6666 x > 0.8888
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4.1.3 Model Specification

Two different tree models were designed to examine how variations in moderator effects
influence the resulting tree structures. These models represented different levels of complexity,
allowing for a comparison of pruning behavior under simpler and more complex decision rules.
We first discuss the tree models for the datasets that only contained continuous moderators.

The first tree model followed a straightforward structure, where the true effect size (J) was
determined by only two moderators. The effect size was assigned when both the first and fifth
moderators (M1 and M5) exceeded 0.3333. This model allowed us to investigate the pruning
variability in a model with less interactions and easier splits. The characteristics of this tree
model are visualized in Figure

Figure 4.1
Tree Model 1 for Continuous Moderators

M1 <0.3333

Yes No

M5 < 0.3333

Effect size is 0

Yes No

Effect size is 0 Effect size is 0.3/0.5

In contrast, the second tree model introduced additional complexity by including more con-
ditions and interactions between moderators. For this model, the effect size was assigned either
when the second moderator (M2) was equal to or larger than 0.6666 or when a combination of
the second, third, and fourth moderators (M2, M3, and M4) met the following threshold criteria,
the second moderator was smaller than 0.6666, the third moderator was larger than 0.3333, and
the fourth moderator was larger than 0.3333. This structure increased the depth and complexity
of the tree, allowing for an assessment of the stability under more complex conditions that could

cause the pruning process to be less stable. The characteristics of this tree model are visualized
in Figure [1.2]
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Figure 4.2
Tree Model 2 for Continuous Moderators

M2 < 0.6666
Yes No
M3 < 0.3333 Effect size is 0.3/0.5
Yes No
Effect size is 0 M4 <0.3333
Yes No
Effect size is 0 Effect size is 0.3/0.5

A similar structure was applied when defining effect size structures based on categorical
moderators for the categorical datasets. The first tree structure assigned an effect size when the
first and fifth moderators (M1 and M5) belonged to category B or C, mirroring the structure of
the continuous tree where these moderators had to exceed a given threshold to influence effect

size determination. The characteristics of this tree model are visualized in Figure [£.3]

Figure 4.3
Tree Model 1 for Categorical Moderators

M1isBorC

Yes No

M5isBorC

Effect size is 0

Yes No

Effect size is 0 Effect size is 0.3/0.5
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The second tree structure again followed a more complex pattern, where an effect size was
assigned when the second moderator (M2) was in category C or when a combination of the
second, third, and fourth moderators (M2, M3, and M4) met the required classification criteria,
in which the second moderator belonged to category A or B, the third moderator belonged to
category B or C, and the fourth moderator belonged to category B or C. This categorization
ensured that the decision rules, guiding the effect size assignment, maintained a structure that
corresponded to the structure established for the continuous moderators. The specifications of

this tree model are visualized in Figure [£.4

Figure 4.4
Tree Model 2 for Categorical Moderators

Yes No
Yes No
Yes No

4.1.4 Effect Sizes

The true effect sizes (d) for each of the 120 studies were chosen to be 0.3 or 0.5, depending
on the condition. These values indicated small to moderate effect sizes, often reported in meta-
analyses, and represented reasonable effect size magnitudes. The choice of these effect size values
was inspired by previous meta-analytic studies which found this range to be small to moderate
effects generally encountered in empirical studies (Valentine et al., . The goal was to see
whether pruning variability changed with the strength of the true underlying effect.

After the assignment of true effect sizes, the datasets were completed by simulating observed
effect sizes with the same method that was used by Li et al. for their simulation. For each
study k, an observed effect size g;, was sampled from a normal distribution with mean § (either
0.3 or 0.5) and variance o2 (the between-study heterogeneity, discussed in the next section).
The observed effect sizes were then drawn from a non-central t-distribution, and scaled by a

small-sample correction factor and sample size:
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c(mp) ™ (7in) g ~ to, (567 Tin), (4.1)

where the value of 7, was computed as

ng = ———. 4.2
BT+, (4.2)
The correction factor ¢(my) was defined as
c(mg) =1-— 3 (4.3)
M s -9 '

with degrees of freedom my = 2ng —2. This setup reflected the sampling distribution of observed
effect sizes while accounting for small-sample bias and the influence of true effects and sample
size. The corresponding sampling variance was calculated as

2TLk—2

Var(gy) = c(my)? - @ — D/ <1 + "’“25’“) — 0z (4.4)

4.1.5 Heterogeneity

Set at 0.025, the between-study variance (02) functioned as the variance of the normal distri-
bution from which the real effect sizes were derived and helped to account for the between-study
heterogeneity. This value was selected because it is in line with generally reported modest de-
grees of between-study heterogeneity in meta-analyses (Borenstein et al., 2009; Li et al., 2025}
Veroniki et al., 2016)). Heterogeneity is important because it added another source of uncertainty
that could influence the tree-building process among the various data conditions. However, to
not further extend the scope of this study, we did not test multiple values of heterogeneity, but
set it to 0.025 for all datasets.

4.1.6 Summary

The simulation process generated 36 (3 - 2 - 2 - 3) different datasets. One for each unique
combination of the four design factors: types of moderators (3), effect size strengths (2), tree
structures (2), and multiple values for the true correlation (3). The details of the simulation

conditions are summarized in Table .21

Table 4.2

Simulation Conditions and Options

Design Factor Levels
Moderator Type Continuous, Categorical, Unbalanced Categorical
Effect Size Strength 0.3, 0.5

Tree Structure Model 1 (Figure , Model 2 (Figure

Correlation Level 0.3, 0.5, 0.7
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4.2 Variability Analysis

To analyze the effects of pruning on the random-effects meta-CART models, we generated
1,000 pruned trees for every dataset, each corresponding to a different seed. To ensure repro-
ducibility and allow investigation of the variability caused by random seeds, we first selected
a specific initial seed and then sampled 1,000 seeds from a broad range. This method allows
others to reproduce the research while still allowing the variation in the pruning results to be
investigated.

For each of the 1000 repetitions of the pruning process, we saved the number of terminal nodes
for the pruned tree to assess the pruning variability. Based on these results, various analyses
were conducted, including examining the number of terminal nodes, computing entropy values,
and conducting ANOVA tests to assess whether the variability in pruning could be attributed
to the different characteristics, or random effects introduced by the different seeds.

For the analysis, the two different tree models were examined independently. Examining the
pruning variability for both models separately helped us to better understand how the influence

of the different characteristics varied across different degrees of model complexity.

4.2.1 Pruning

To evaluate how different levels of pruning strictness affect the pruning variability, each
dataset was analyzed using a c.pruning random-effects meta-CART value of 0 and 0.5. The
c.pruning parameter represents the ¢ value in the ¢+ SE rule. Higher pruning values (¢ = 0.5)
represent a stricter pruning criterion, producing smaller and simpler trees. In contrast, lower
pruning values (¢ = 0) apply less strictness, resulting in larger and more complex trees that may

be more sensitive to overfitting.

4.2.2 Terminal Nodes

One of the most important aspects of understanding pruning variability, is the number of
terminal nodes left in the tree after pruning. In a decision tree, terminal nodes are the last nodes
that will not be split further. If the number of terminal nodes is stable across most runs of the
pruning process, the pruning process is producing consistent outcomes. In contrast, variations
in the number of terminal nodes over several runs imply that slight data fluctuations and the
seed used, influence the pruning process, thus resulting in variability in the pruned trees.

The terminal node count results were visualized using stacked bar graphs. These bar graphs
displayed the proportion of different terminal node counts across different moderator types,
correlations, effect sizes, and pruning values. Additionally, these bar graphs allowed for an
assessment of whether the pruning process selected the correct number of terminal nodes (the

number that corresponded to the actual underlying tree model).
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4.2.3 Entropy

To further assess the variability in pruning, the entropy values of the terminal node distribu-
tion were computed. Entropy functions as a measurement of uncertainty that becomes especially
valuable for categorical count data since it measures the variability and unpredictability of cat-
egories present in a dataset (Alsakran et al., 2014; Archer et al., 2013} Saraiva, 2023). In this
context, the entropy quantified the variability in the number of terminal nodes across several
runs. The entropy values were calculated using the Shannon entropy (Saraiva, 2023; Shannon,
1948). Shannon entropy was selected because it offers a straightforward measure of variability
that treats all outcomes equally without requiring tuning parameters. The following formula

defines this entropy:

K
D == prlogy(pr), (4.5)
k=1

where py denotes the proportion of models with terminal nodes classified in category k, and K
is the total number of possible categories (the number of terminal nodes). A low entropy value
indicated that the pruning process produced trees that were mostly the same size across all runs,
whereas a high entropy value meant that the pruning process was more sensitive to the different

seeds and resulted in more variability in tree sizes.

4.2.4 ANOVA

ANOVA tests were applied to further investigate how pruning strictness, moderator type,
effect size strength, and moderator correlation, influenced the entropy values (representing the
pruning variability). Specifically, the ANOVA tests assessed whether these factors had a signifi-
cant effect on entropy, which had the largest influence, and whether there were interaction effects
between them.

To identify which variables contributed to pruning variability and whether these effects de-
pended on interactions between them, we compared models with increasing complexity. Specif-
ically, we wanted to determine whether including interaction terms improved model fit. To do
this, we first compared a model with only main effects to a model that included all two-way
interactions. Then, we compared the two-way interaction model to a model that also included
three-way interactions. These comparisons were made using ANOVA tests to assess whether
adding interaction terms led to a significantly better fit. To ensure the validity of the final
ANOVA model, the assumptions of normality and homoscedasticity were assessed by inspecting
Q-Q plots and residuals versus fitted values plots. In addition, the Shapiro-Wilk test was con-
ducted to further test the normality of the residuals. Line graphs were then used to visualize the
significant interactions. These graphs helped us better understand the interactions between the
characteristics. Additionally, post-hoc comparisons were done using Tukey’s Honest Significant

Difference (HSD) test, in order to investigate the significant main effects of characteristics that
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did not contain significant interactions.

In summary, this analysis provided a comprehensive approach to investigating the pruning
variability in random-effects meta-CART models resulting from cross-validation. We looked at
how different characteristics influenced the pruning process using 1,000 distinct seeds, and then

evaluated the outcomes in terms of terminal nodes, entropy, and ANOVA testing.



Chapter 5

Results

In this chapter, the results of the pruning variability analysis in random-effects meta-CART
models, are presented. Specifically, the influence of pruning with cross-validation on the stability
of the tree structures. The main outcomes that are presented, are the number of terminal nodes,
entropy values, and the effects of the various characteristics and the pruning strictness, assessed
through ANOVA. The results show how pruning affected the stability and interpretability of
decision trees under different meta-analytic conditions.

5.1 Terminal Node Variability

The number of terminal nodes remaining after pruning was an important measure of pruning
variability. This section examines the distribution of terminal node proportions across 1,000

generated trees for every dataset with each pruning strictness value (¢ = 0 and ¢ = 0.5).

5.1.1 Tree Model 1 Results
Recovery of the Correct Number of Terminal Nodes

The terminal node proportions for tree model 1 are shown in Figure [5.1} Tree model 1
had a simpler underlying structure, and the correct number of terminal nodes, based on the
true data structure, was three, as visualized in Figures and The correct number of
three terminal nodes was often recovered when the correlation between moderators was low or
moderate (p = 0.3 and p = 0.5). In contrast, for high correlation (p = 0.7), the correct number
of terminal nodes was often not recovered. When the effect size was low (6 = 0.3) and the
correlation high (p = 0.7), underfitting occurred more frequently. This happened particularly
for datasets with continuous (CON) and unbalanced categorical (UBCAT) moderators, with the
number of terminal nodes being lower than three. For balanced categorical (CAT) moderators,

however, overfitting happened more often, with trees often having more than three terminal

34
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nodes. This overfitting effect was less pronounced under stricter pruning (¢ = 0.5). For UBCAT
moderators under high correlation, underfitting was often observed regardless of the pruning
strictness, suggesting that the combination of collinearity and imbalance made it difficult for
the model to detect all important splits. Pruning strictness influenced recovery as expected.
For the less strict pruning (¢ = 0), trees tended to have more terminal nodes, leading to more
complex models. In contrast, stricter pruning (¢ = 0.5) resulted in trees with fewer terminal
nodes, limiting overfitting but potentially increasing the risk of underfitting depending on the

data conditions.

Figure 5.1
Proportion of Terminal Nodes for Tree Model 1
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Note. The x-axis represents the pruning values (¢ = 0 and ¢ = 0.5), and the y-axis shows the
terminal nodes proportions. The bars represent the proportion of terminal node count across
different moderator types, continuous (CON), categorical (CAT), and unbalanced categorical

(UBCAT), and correlation-effect size (p and ¢) combinations.

Stability of the Tree

In addition to investigating the recovery of the correct number of terminal nodes, the stability
of the tree structures across replications could also be explored by looking at Figure First,
the stability of the tree structures seemed to be influenced by the pruning strictness. With less
strict pruning (¢ = 0), the number of terminal nodes seemed to vary more across replications,
indicating inconsistent pruning behavior. In contrast, stricter pruning (¢ = 0.5) led to less

variation in terminal node counts, suggesting that this pruning level reduced the sensitivity of

Terminal Node
Count
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the model to small fluctuations in the data. Furthermore, the type of the moderators also affected
the stability of terminal nodes. UBCAT in general produced relatively consistent terminal node
counts regardless of the correlation value. The low variation suggests that the imbalance in
category frequencies might have constrained the ability of the model to include splits that were
not important. However, this same restriction may have contributed to underfitting, as we have
discussed before. For CON and CAT, there seemed to be more variability, especially combined
with lower effect sizes (§ = 0.3).

The correlation between moderators also seemed to influence tree stability. For high correla-
tion (p = 0.7), there was more variability in the number of terminal nodes compared to the lower
correlations, where variability was minimal. Additionally, pruning variability was also affected
by the effect size. The variability in terminal node counts across almost all combinations of
moderator type, pruning level, and correlation increased when the average effect size was lower
(6 = 0.3). This implies that the tree pruning process became more sensitive to random noise in
the data when the effect size was less strong, which then influenced how many splits were kept
after pruning.

In summary, these findings indicate that an interaction of pruning strictness, moderator type,
moderator correlation, and effect size strength, influenced tree complexity and stability in tree
model 1. Stricter pruning in general resulted in more stable and simpler trees while sometimes
underfitting the data. Less strict pruning resulted in more complicated and variable trees that
sometimes overfit the data, especially when combined with strong moderator correlation or low
effect sizes. Pruning results were also influenced by moderator structure, where imbalanced cat-
egorical moderators produced smaller and more stable models that might have missed important

features in the data.

5.1.2 Tree Model 2 Results
Recovery of the Correct Number of Terminal Nodes

The terminal node proportions for tree model 2 are shown in Figure [5.2} Tree model 2 had
a more complex underlying tree structure, compared to tree model 1. The correct number of
terminal nodes for this model, based on the true data structure, was four, as visualized in Figures
[42] and [£4] For Tree Model 2, the correct number of terminal nodes was often not achieved,
especially for small to moderate correlations (p = 0.3 and p = 0.5). In most conditions, the
trees either underfit or overfit the data. Specifically, for lower effect sizes (6 = 0.3), trees
tended to underfit, while for higher effect sizes (6 = 0.5), they overfit. The correct number of
terminal nodes was most often achieved under high moderator correlation (p = 0.7) combined
with higher effect sizes (6 = 0.5), specifically for CON and CAT. This suggests that, for tree
model 2, high correlation and stronger effect sizes might have helped the model better recover the
correct number of terminal nodes. Furthermore, pruning strictness also influenced the results.

When pruning was less strict (¢ = 0), trees in general had more terminal nodes, as expected.
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Additionally, for stricter pruning (¢ = 0.5), the number of terminal nodes was reduced, as we

would expect.

Figure 5.2
Proportion of Terminal Nodes for Tree Model 2
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Note. The x-axis represents the pruning values (¢ = 0 and ¢ = 0.5), and the y-axis shows the
terminal nodes proportions. The bars represent the values of entropy across different
moderator types, continuous (CON), categorical (CAT), and unbalanced categorical (UBCAT),

and correlation-effect size (p and 6) combinations.

Stability of the Tree

In addition to investigating the recovery of the correct number of terminal nodes, the stability
of the tree structures across replications, could also be explored by looking at Figure The
variability in terminal node counts was much higher compared to tree model 1. This higher
variability made it more difficult to explore specific patterns. However, pruning strictness seemed
to influence the tree stability again. For less strict pruning (¢ = 0), the variability in terminal
node counts seemed higher, indicating less stable trees across replications. In contrast, stricter
pruning (¢ = 0.5) seemed to have more consistent terminal node counts. This suggests that
stricter pruning helped reduce sensitivity to random noise in the data again.

Furthermore, the correlation between moderators also seemed to influence the stability of
tree model 2. High correlation (p = 0.7) often seemed to result in more stable trees. This

could specifically be seen when combined with the larger effect size (§ = 0.5). In contrast, lower

Terminal Node
Count
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correlation values seemed to show more variability in terminal node counts. Additionally, the
effect size also seemed to influence tree stability. When the effect size was small (§ = 0.3), the
pruning variability seemed to be lower. In contrast, with higher effect sizes, there seemed to
be more variability, except for combinations with the highest correlation. This is not consistent
with what we had seen for tree model 1, where this effect was reversed and lower effect sizes led
to more variable pruning behavior. Finally, for the moderator types, the higher variability in
tree model 2 made it difficult to see specific patterns in how different moderator types affected
the tree structure stability by just looking at the proportions.

In summary, for tree model 2, the correct number of terminal nodes was often not achieved.
Furthermore, tree model 2 had more variability in the number of terminal nodes compared
to tree model 1. High moderator correlation, especially when combined with stronger effect
sizes, seemed to help with recovering the correct amount of terminal nodes. However, pruning
strictness remained important. Stricter pruning provided more stability and simplicity in the tree

structures. In contrast, less strict pruning allowed for more complexity, and had more variability.

5.2 ANOVA Results

To investigate the influence of the characteristics of the data and the pruning strictness on
pruning variability, a series of ANOVA tests were conducted using the entropy values as the
response variable. These analyses were used to confirm earlier observations and to explore how

main effects and interaction terms contributed to pruning variability in more depth.

5.2.1 Tree Model 1 Results
Model Comparison

For tree model 1, three ANOVA models were evaluated, one including only main effects, one
additionally incorporating two-way interactions, and one extending further to three-way inter-
actions. The main effects model contained the pruning strictness and the characteristics of the
data, specifically moderator type, effect size strength, and correlation structure, as the variables.
Two-way interactions let these moderators interact with each other, therefore assessing their
combined effect on the pruning variability. Three-way interactions allowed for an understanding
of their combined effects even further by allowing the interactions between two moderators to
be affected by a third variable. The two-way interaction model was initially compared with the
main effects model to evaluate model performance. The two-way interaction model was then
compared with the three-way interaction model to see if adding more complex interactions had
additional explanatory value. Table [5.1| shows the results of these comparisons. The addition of
two-way interactions significantly enhanced model fit (p = .0052), suggesting that interactions
between the characteristics were important for explaining the pruning variability. Adding three-

way interactions, however, did not show any significant improvement (p = .2183), suggesting
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that higher-order interactions did not significantly increase the explanatory power. Thus, the

two-way interaction model was selected for further analysis.

Table 5.1
ANOVA Comparison for Tree Model 1

Comparison Model Residual df RSS df SS  p-value

Main vs. 2-way Main Effects 29 5.519 - - -
Two-Way Interactions 16 1.297 13 4.222 .0052 **

2-way vs. 3-way  Two-Way Interactions 16 1.297 - - -
Three-Way Interactions 4 0.164 12 1.133 .2183

Note. The main effects model was first compared with the two-way interaction model, followed
by a comparison of the two-way interaction model with the three-way interaction model.
Asterisks indicate statistical significance (*** for p < .001, ** for p < .01, * for p < .05, and .
for p < .1).

Assumption Checks

Before interpreting the results of the two-way interaction ANOVA model, several assumptions
were checked. The Q-Q plot of the residuals (Figure indicates that the residuals were

approximately normally distributed.

Figure 5.3
Q-Q Plot of Residuals for Tree Model 1
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Note. The Q-Q plot checks the normality assumption for the residuals. The x-axis represents
the theoretical quantiles, while the y-axis represents the sample quantiles of the residuals. The

red reference line shows where the residual points should be, to be normally distributed.
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This was supported by the Shapiro-Wilk test (W = 0.981, p = .7743), which did not provide
evidence to reject the assumption of normality. This suggests that the residuals followed a
distribution that is close enough to normal for the analysis to be considered valid in this regard.

Homoscedasticity was evaluated by plotting the residuals against the fitted values (Figure
. For the homoscedasticity assumption to be met, the residuals should be randomly scattered
across the full range of fitted values. In the figure, we can see that there was random scattering
around zero for the higher fitted values. At the lower end, however, a clustering of residuals
was observed. This could be due to many entropy values being zero or near zero, resulting
in a concentration of residuals in that section of the graph. Even though this trend indicates a
potential deviation from the homoscedasticity assumption, it appeared to be caused by particular
features of the dataset rather than a universal trend across all fitted values. However, this possible

violation should be kept in mind when interpreting the results of the model.

Figure 5.4
Residuals vs Fitted Values for Tree Model 1
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Note. The x-axis represents the fitted values from the model, while the y-axis shows the
differences between the observed values and the predicted values. This plot is used to assess
homoscedasticity. If no clear trend was observed, the assumption of equal variances across

fitted values is supported.

Summary of Model Results

The ANOVA summary for the two-way interaction model is shown in Table Most of the
variation in pruning variability was explained by interaction terms, specifically the interaction
between moderator type and correlation (p = .0017) and the interaction between correlation and
pruning strictness (p = .0061). The first significant interaction indicates that the effect of cor-

relation on pruning variability was not consistent across all conditions but varied depending on
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the type of the moderator. Furthermore, the significant interaction between correlation and the
pruning strictness suggests that the influence of correlation depended on the pruning strictness.
Since correlation was involved in multiple significant interactions, the main effect (p < .0001)
should be interpreted as conditional on other variables. Furthermore, effect size showed a signif-
icant main effect (p = .0294), indicating that changes in effect size strength influenced pruning
variability across conditions, independent of the other variables. This main effect is discussed

further in the post hoc analysis section.

Table 5.2
ANOVA Summary for Two-Way Interaction Model (Tree Model 1)

Factor SS MS  F-Statistic p-value
Moderators 0.574 0.287 3.043  .0532 .
Correlation 4.360 2.180 26.897 < .0001 ***
Effect Size 0.463 0.464 5.719 .0294 *
Pruning Strictness 0.260 0.260 3.206 .0923 .
Moderators:Correlation 2.327 0.582 7177 .0017 **
Moderators:Effect Size 0.209 0.105 1.291 .3021
Moderators:Pruning Strictness 0.097 0.048 0.597 .5622
Correlation:Effect Size 0.245 0.122 1.508 .2511
Correlation:Pruning Strictness 1.158  0.579 7.146 .0061 **
Effect Size:Pruning Strictness  0.186 0.186 2.299 .1489
Residuals 1.297 0.081 - -

Note. The Sum of Squares (SS) represents the total variation attributed to each factor. The
Mean Square (M .S) is obtained by dividing S.S by the degrees of freedom and reflects the
average variance explained by each factor. The F-statistic is the ratio of M S for a given factor
to the residual M S, indicating how much the factor contributes relative to unexplained
variance. Asterisks indicate statistical significance (*** for p < .001, ** for p < .01, * for

p < .05, and . for p < .1).

Exploration of Interactions

To better understand the interaction effects that influenced the pruning variability in tree
model 1, two interaction plots were generated. Figure [5.5] visualizes the interaction between
correlation (p) and pruning strictness (¢). At ¢ = 0.5, entropy increased slightly as the correlation
increased from 0.3 to 0.5 and continued to increase slightly more from 0.5 to 0.7. For ¢ = 0,
entropy slightly increased again between correlation 0.3 and 0.5. However, at correlation 0.7, the
entropy value increased substantially. This suggests that when pruning was less strict (¢ = 0), the
influence of correlation was minimal until the correlation became very high, where the variability

increased substantially. These patterns showed that the pruning strictness value moderated the
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influence of correlation on pruning variability, with higher ¢ values reducing the variability for

high correlation compared to the lower ¢ value.

Figure 5.5
Interaction Between Correlation and Pruning Strictness (Tree Model 1)
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Figure 5.6
Interaction Between Correlation and Moderator Type (Tree Model 1)
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Figurevisualizes the interaction between correlation (p) and moderator type. For contin-
uous moderators (CON), entropy increased as correlation increased, showing a linear trend. For
categorical moderators (CAT), entropy only increased very slightly but stayed low between cor-
relations of 0.3 and 0.5. However, it showed a big increase at correlation 0.7, indicating greater
sensitivity of categorical moderators to high correlation levels. For unbalanced categorical moder-

ators (UBCAT), entropy was low at correlation 0.3, increased at 0.5, and then slightly decreased
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at 0.7. These results demonstrated that the way correlation influenced the pruning variability
depended not only on the correlation level but also on the type of moderator. Balanced categor-
ical moderators appeared specifically sensitive to high correlation (p = 0.7), whereas continuous

moderators showed a more consistent pattern of increasing pruning variability.

Post Hoc Analysis

To further examine the effect of the effect size strength, a post-hoc test was conducted
since effect size only showed a significant main effect and was not involved in any significant
interactions. A Tukey HSD test was used to compare the mean entropy values between the
two effect size levels. The test revealed that entropy at 6 = 0.5 was significantly lower than at
0 = 0.3 (mean difference = —0.23, p = .0294), suggesting that reduced pruning variability was
associated with stronger average effect sizes. This finding implies that the tree models were better
at separating important splits from noise when effect sizes were stronger, therefore producing
more consistent pruning results across replications.

In summary, the results for tree model 1 showed that pruning variability was mainly influenced
by two-way interactions between correlation and moderator type, and between correlation and
pruning strictness. These interactions indicate that the effect of correlation depended on both
the type of moderator and the level of pruning. The effect size also had a significant effect, with

smaller effect sizes increasing the pruning variability compared to higher effect sizes.

5.2.2 Tree Model 2 Results

Model Comparison

For tree model 2, three ANOVA models were evaluated, one including only main effects,
one also including two-way interactions, and one additionally including three-way interactions.
The main effects model included moderator type, correlation, effect size, and pruning strictness
as separate variables. Two-way interactions allowed for combinations of these variables, while
three-way interactions examined how the effect of two variables was influenced by a third. The
models were compared sequentially to assess the improvement in model fit as more interaction
terms were added. The results of these comparisons are presented in Table

Adding two-way interactions to the main effects model did not significantly improve the fit
(p = .5074). However, extending the model to include three-way interactions led to a significant
improvement over the two-way interaction model (p = .0065). This was also confirmed by the
direct comparison between the main effects model and the three-way interaction model, which
showed a statistically significant increase in model fit (p = .0080). These results suggest that
the inclusion of three-way interactions was important for capturing variation in the pruning
variability in tree model 2. Thus, the three-way interaction model was selected for further

analysis.
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Table 5.3
ANOVA Comparison for Tree Model 2

Comparison Model Residual df RSS df SS  p-value
Main vs. 2-way Main Effects 29 6.915 - - -
Two-Way Interactions 16 3.849 13 3.066 .5074
2-way vs. 3-way  Two-Way Interactions 16 3.849 - - -
Three-Way Interactions 4 0.070 12 3.779 .0065 **
Main vs. 3-way Main Effects 29 6.915 - - -
Three-Way Interactions 4 0.070 25 6.845 .0080 **

Note. The main effects model was first compared with the two-way interaction model, followed
by a comparison of the two-way interaction model with the three-way interaction model.
Lastly, the main effects model was compared with the three-way interaction model. Asterisks
indicate statistical significance (*** for p < .001, ** for p < .01, * for p < .05, and . for p < .1).

Assumption Checks

Before interpreting the results of the three-way interactions ANOVA model for tree model
2, we assessed whether the model assumptions were met. First, we examined a Q-Q plot of the
residuals (Figure , which suggests that the points slightly deviated from the indicated line

but were still relatively aligned, indicating a somewhat normal distribution.

Figure 5.7
Q-Q Plot of Residuals for Tree Model 2
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Note. The Q-Q plot checks the normality assumption for the residuals. The x-axis represents
the theoretical quantiles, while the y-axis represents the sample quantiles of the residuals. The

red reference line shows where the residual points should be, to be normally distributed.
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To test this further, a Shapiro-Wilk test was conducted, yielding a test statistic of W = 0.956
and a p-value of .1603. The relatively high p-value indicates that the residuals did not significantly
deviated from normality, and thus the normality assumption appeared to be met. Next, we
inspected the residuals versus fitted values plot (Figure to evaluate homoscedasticity. In
this plot, residuals should be evenly scattered across the range of fitted values without showing
any trend or pattern. The plot for tree model 2 displayed an even spread of residuals around
zero, without any noticeable trends or patterns. Unlike in tree model 1, no clustering at the
lower fitted values was observed. This suggests that the variance of the residuals was relatively
constant across different levels of the response, supporting the assumption of homoscedasticity.
So, the Q-Q plot, Shapiro-Wilk test, and residuals versus fitted values plot all supported the
conclusion that the assumptions underlying the ANOVA model were reasonably well satisfied for

tree model 2.

Figure 5.8
Residuals vs Fitted Values for Tree Model 2
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Note. The x-axis represents the fitted values from the model, while the y-axis shows the
differences between the observed values and the predicted values. This plot is used to assess
homoscedasticity. If no clear trend was observed, the assumption of equal variances across

fitted values is supported.

Summary of Model Results

The summary of the ANOVA results for the three-way interactions model is presented in
Table The results showed that several three-way interactions significantly contributed to
pruning variability in tree model 2. Specifically, the interactions between moderators, corre-
lation and effect size, the interaction between moderators, effect size and pruning strictness,

and the interaction between correlation, effect size and pruning strictness, all reached statistical
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significance (p = .0018, p = .0489, and p = .0191, respectively). These findings suggest that
pruning variability was influenced by the combined effects of the characteristics rather than by
any single variable or two-way interaction. When higher-order interactions are present and sig-
nificant, the individual and lower-level interaction effects involving those variables are usually
less informative. Therefore, the significant results suggest that the relationship between pruning
variability and the characteristics depended on specific combinations of moderator type, effect

size strengths, and correlation levels.

Table 5.4
ANOVA Summary for Three-Way Interactions Model (Tree Model 2)

Factor SS MS  F-Statistic p-value
Moderators 0.6320 0.3160 18.075 .0099 **
Correlation 0.0452  0.0226 1.294 3687
Effect Size 0.4432 0.4432 25.348 .0073 **
Pruning Strictness 1.0878 1.0878 62.219 .0014 **
Moderators:Correlation 0.3021 0.0755 4.321 .0927 .
Moderators:Effect Size 0.0031 0.0015 0.088 .9179
Moderators:Pruning Strictness 0.0687 0.0343 1.965 .2545
Correlation:Effect Size 1.4693 0.7346 42.021 .0021 **
Correlation:Pruning Strictness 0.6589 0.3294 18.844 .0092 **
Effect Size:Pruning Strictness 0.5640 0.5640 32.261 .0047 **
Moderators:Correlation:Effect Size 2.7856  0.6964 39.834 .0018 **
Moderators:Correlation:Pruning Strictness 0.3112  0.0778 4.450 .0886 .
Moderators:Effect Size:Pruning Strictness  0.2462 0.1231 7.042 .0489 *
Correlation:Effect Size:Pruning Strictness  0.4361  0.2180 12.472  .0191 *
Residuals 0.0699 0.0175 - -

Note. The Sum of Squares (SS) represents the total variation attributed to each variable. The
Mean Square (M .S) is obtained by dividing S.S by the degrees of freedom and reflects the
average variance explained by each variable. The F-statistic is the ratio of M S for a given
variable to the residual M S, indicating how much the variable contributes relative to
unexplained variance. Interaction effects are indicated with colons. Asterisks indicate
statistical significance (*** for p < .001, ** for p < .01, * for p < .05, and . for p < .1).

Exploration of Interactions

To better understand the complex interactions that influenced the pruning variability in tree
model 2, various interaction plots were generated. These figures examined the combined effects
of moderator type, correlation, and pruning strictness, at two different levels of effect size. The
two panels in the figures (Figure and show the results for 6 = 0.3 (panel a) and
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d = 0.5 (panel b). This allowed for a comparison across effect size levels and an assessment of
whether the strength or the form of the interactions changed across these levels.

Figure [5.9] visualizes the interaction between moderator type and correlation. At § = 0.3,
the shape of the interaction was different between moderator types. For continuous moderators
(CON), entropy followed a U-shape with entropy being the highest at correlation values of 0.3
and 0.7, and lowest at 0.5. Unbalanced categorical moderators (UBCAT) showed a similar U-
shaped pattern, but the entropy was overall lower, suggesting that pruning was more stable for
UBCAT which might be due to the imbalance making certain splits more likely to be kept. For
balanced categorical moderators (CAT), the pattern was reversed. Here, entropy had a peak at
correlation 0.5 and was lower at the extremes. This suggests that pruning was most variable when
the correlation was moderate for CAT. At & = 0.5, the patterns were reversed. For the higher
effect size, CON and UBCAT showed reversed U-shapes, with entropy highest at correlation 0.5,
and lower at 0.3 and 0.7. For CAT, the shape both reversed and flattened. Entropy decreased
from 0.3 to 0.5 and slightly increased from 0.5 to 0.7, forming a weaker U-shape and a flatter
trend.

Figure 5.9
Interaction Between Correlation and Moderator Type at Different Effect Size Levels (Tree

Model 2)
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Comparing the two effect size levels, entropy was in general higher at 6 = 0.5 than at 6 = 0.3,
but more importantly, the shape of the interaction changed. At § = 0.3, the relationship between
correlation and entropy was clearly different across moderator types, showing an U-shape for
CON and UBCAT, and a reversed U-shape for CAT. At 6 = 0.5, these patterns reversed or
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flattened. This suggests that the way correlation affected pruning variability depended not only
on moderator type but also on the effect size strength. As the effect size increased, the correlation
point where pruning was most unstable shifted, and the shape of the interaction changed.

Figure shows the interaction between correlation and pruning strictness. At § = 0.3,
the strength of the interaction was clear, with entropy increasing with correlation when pruning
was less strict (¢ = 0), but showing a non-linear pattern under stricter pruning (¢ = 0.5), with
entropy lowest at a correlation of 0.5. This suggests that stricter pruning reduced variability when
correlation was moderate, while less strict pruning resulted in steadily increasing variability as
correlation increased. At 6 = 0.5, the interaction mostly disappeared. For both pruning levels,
entropy was relatively stable between correlations of 0.3 and 0.5, and then dropped at 0.7. The
drop was more pronounced for stricter pruning, indicating that at larger effect sizes, pruning
helped reduce pruning variability under strong correlation. However, in general the difference
between pruning levels was much smaller than at § = 0.3.

So, comparing the two effect size levels, the overall entropy was again, in general, higher at
6 = 0.5. However, the most important difference was the difference in strength of the interaction.
At § = 0.3, there was a clear difference between the pruning conditions across correlation levels,
while at 6 = 0.5, the patterns were often parallel. This suggests that pruning interacted with

correlation more strongly when the effect size was smaller.

Figure 5.10
Interaction Between Correlation and Pruning Strictness at Different Effect Size Levels (Tree

Model 2)
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Figure[5.11]shows the interaction between moderator type and pruning strictness. At § = 0.3,
entropy was higher for all moderator types when pruning was less strict (¢ = 0), with continuous

moderators (CON) showing the most variability, followed by balanced categorical moderators
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(CAT), and then unbalanced categorical moderators (UBCAT). When pruning became stricter
(¢ = 0.5), entropy decreased for all three moderator types. At ¢ = 0.5, the strength and shape
of the interaction were quite different. For CON and CAT, entropy slightly increased under
stricter pruning, indicating that pruning no longer stabilized the tree as it did at lower effect
sizes. In contrast, UBCAT showed a decrease in entropy as pruning became stricter, maintaining
the same shape of effect as seen at § = 0.3. This implies that the effectiveness of pruning at
reducing variability in this case depended more on the moderator type. While it still decreased
entropy for UBCAT, it increased entropy slightly for CON and CAT.

When comparing both effect size levels, aside from the entropy again being higher in general
at d = 0.5, it can be seen that the strength of the interaction between pruning strictness and
moderator type changed for the different effect sizes. At 6 = 0.3, the patterns across moderator
types were similar, with stricter pruning leading to lower entropy in all cases, suggesting little
interaction. However, at 6 = 0.5, this changed. UBCAT still showed a decrease in entropy under
stricter pruning, but CON and CAT showed slight increases. This difference indicates that the

interaction between pruning and moderator type became stronger at higher effect sizes.

Figure 5.11
Interaction Between Pruning Strictness and Moderator Type at Different Effect Size Levels

(Tree Model 2)
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In summary, the results for tree model 2 showed that including three-way interactions sig-
nificantly improved model fit, and these interactions were important for explaining pruning
variability. The influence of moderator correlation, effect size, pruning strictness, and moderator

type on pruning variability depended on their combinations rather than on individual effects

alone.
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Discussion

6.1 Findings

This thesis provided a comprehensive analysis of the pruning variability in random-effects
meta-CART models caused by cross-validation, by investigating how pruning strictness and
characteristics of the data influence this variability. Studying the effect of different moderator
types, effect size strengths, correlation levels, and pruning strictness on pruning variability, re-
vealed that the variability often depended on the interaction between these factors, rather than
a single factor.

For the more simple model (tree model 1), stricter pruning led to fewer terminal nodes,
as expected, and produced more stable trees. However, this came at the cost of potentially
discarding useful splits, especially when moderators were imbalanced or strongly correlated. This
issue could be due to the splits involving minority categories that are often pruned during cross-
validation. This issue has been mentioned before by researchers, where decision trees struggle
with imbalanced variables and do not prioritize the minority categories (Chaabane et al., 2020}
Liu et al.,[2010). In contrast, less strict pruning retained more complexity, as expected. However,
it also introduced greater variability, especially when effect sizes were weak and moderators were
highly correlated. Under those conditions, the model might include noise, making the pruning
outcomes less consistent. These results align with previous findings that decision trees have to
deal with a trade-off between simplicity and sensitivity, where simpler models are more stable
but risk missing important patterns, while more complex models capture more detail but can
be more sensitive to random variation (Breiman et al., [1984; James et al., 2013)). This study
extends that idea to meta-analysis, where the data can often be more variable to begin with.

The more complex model (tree model 2) had a different pruning variability pattern than tree
model 1. In general, the pruning behavior of tree model 2 was more variable, compared to tree
model 1. As expected, less strict pruning resulted in more terminal nodes on average. However,

it also led to higher variability, implying higher sensitivity to random variation. Consistent
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with expectations, stricter pruning on average produced simpler trees with fewer terminal nodes.
Furthermore, they also had lower variability on average. However, despite this lower variability,
pruning rarely resulted in the correct number of terminal nodes. In most conditions, trees either
underfit or overfit the data, depending on the effect size. Specifically, when effect sizes were low,
the models tended to underfit the data, regardless of the moderator type or correlation. When
the effect sizes were high, overfitting happened more often. Interestingly, higher correlation
between moderators did not increase variability, as it did in tree model 1. For tree model 2, high
correlation often helped the model achieve the correct number of terminal nodes when combined
with the stronger effect sizes. This result suggests that in more complex trees, the combination
of high correlation between moderators and strong effect sizes, can improve the stability of the
model by detecting the correct number of terminal nodes. However, despite this stability, pruning
in tree model 2 was still less accurate compared to tree model 1.

These results were further investigated using ANOVA models. The ANOVA results for tree
model 1 indicated that pruning variability was mostly influenced by two-way interactions. Specif-
ically, the interaction between moderator type and correlation suggests that the effect of corre-
lation on pruning variability was different across moderator types. For continuous moderators,
higher correlation increased entropy, this effect of collinearity may cause the model to emphasize
less important moderators while missing important moderators. This result is consistent with
prior research, which suggests that collinearity can lead trees to select only one variable from a
group of correlated predictors (Loh, 2014} Strobl et al.,[2008)). In contrast, categorical moderators
were very sensitive to high correlation, while unbalanced categorical moderators did not show
as big of an increase in entropy. This result suggests that imbalance in categorical moderators
might stabilize pruning by making certain splits more likely to be retained. Furthermore, the
pruning strictness had a significant interaction with correlation. For less strict pruning, entropy
increased when the correlation became higher. In contrast, for stricter pruning, the increase in
entropy was much less strong as correlation became higher. This result suggests that stricter
pruning can help stabilize the model even when high correlation is present. Effect size also played
a significant role in pruning variability. Lower effect sizes had higher entropy values than higher
effect sizes in general. This result suggests that weaker effect sizes made it harder for the model
to identify stable splits.

The ANOVA results for tree model 2 showed that pruning variability was influenced by
higher-order interactions rather than by single factors. The interaction between moderator type,
correlation, and effect size suggests that the effect of correlation on pruning variability was not
consistent across all moderator types or effect size levels. For example, correlation had a U-
shaped effect on entropy for continuous moderators at the lower effect size, but this pattern
reversed at the higher effect sizes. Furthermore, the interaction between correlation, effect size,
and pruning strictness showed that the way correlation affects pruning variability also depended
on how strict the pruning was, and how strong the effect sizes were. At lower effect sizes,

correlation and pruning strictness interacted more clearly. For example, entropy values were in
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general lower for stricter pruning at the lower effect sizes, while at higher effect sizes, entropy
was generally less affected by the pruning strictness level. The last significant interaction was
between moderator type, effect size, and pruning strictness. This interaction showed that stricter
pruning had different effects depending on the type of moderator, and how strong the true effect
sizes were. At lower effect sizes, stricter pruning reduced variability for all moderator types, but
at higher effect sizes, the effect changed and became less strong for some moderator types.

So, the research question of whether characteristics of the data and pruning strictness con-
tribute to pruning variability is confirmed. The results indicated that pruning variability de-

pended on interactions between moderator type, effect size, correlation, and pruning strictness.

6.2 Limitations

Several methodological limitations should be considered when interpreting these results.
While the simulation design allowed for strict control over moderator characteristics, it does
not capture the full complexity of real-world meta-analytic datasets. Real empirical data can
often involve issues such as missing moderator values, publication bias, and reporting errors.
These factors introduce additional randomness and noise that were not simulated. Especially
missing data can be common in practice. Since the simulations did not include missing data in ei-
ther moderators or responses, the interaction between missingness and pruning decisions remains
untested. This could affect pruning variability in practice. Furthermore, the simulations used
fixed design choices, such as a constant number of studies (ny = 120), a constant heterogeneity
variance (02 = 0.025), a set of correlation levels (p = 0.3, 0.5, 0.7), and two pruning strictness
levels (¢ = 0, ¢ = 0.5). These choices made comparisons clearer but reduced generalizability. In
practice, sample sizes, effect sizes, and moderator structures vary noticeably. It is not known
how pruning variability would behave under, for example, smaller samples, greater heterogeneity,
or even more complex structures.

Next, another limitation is about the assumptions in the ANOVA models. Normality of
residuals was generally supported in the simulations, and the residual plots did not show major
deviations. However, some minor heteroscedasticity was present. In particular, the entropy
values showed zero inflation, meaning many values were clustered at or near zero. This led to
residuals being more concentrated at the lower end of the scale. This pattern should be taken
into account as it violates the assumption of constant variance and may affect the reliability of
model comparisons.

Furthermore, the discretization of continuous moderators into categorical variables changed
the correlation structure. Unbalanced categorization in particular tended to weaken correlations.
For example, variables with p = 0.7 in the continuous condition often dropped to around p = 0.6
after discretization. Although discretization was necessary for modeling balanced and unbalanced
categorical moderators in this study, it introduced systematic bias that should be taken into

account.
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In addition, a sample check of the fully grown trees revealed that the true underlying model
with the correct set of splits was often not recovered. This means that all subsequent pruned
trees were already based on suboptimal initial trees, which limits how much we can interpret the
results in terms of recovering the correct tree structure. As a consequence, observed patterns
in the number of terminal nodes or the entropy of pruned trees should be interpreted with
caution. They reflect variability within a set of already imperfect trees, not variability around
a known correct solution. However, even when starting from an incorrect full tree, repeated
cross-validation still led to different pruning outcomes. So users would still see variation in the
final pruned trees each time they rerun the process. It remains unclear whether greater pruning
variability is linked to incorrect initial trees, but it is possible that an incorrect starting point
makes the pruning process more sensitive to random variation in the cross-validation splits.

Finally, this study focused only on random-effects meta-CART models with specific levels of
pruning strictness. Other decision tree methods, such as standard CART, fixed effects meta-
CART, or ensemble methods like Random Forests, follow different principles for split selection
and pruning. It is not clear if the results observed here would be the same for other decision tree
methods. Therefore, comparisons across methods would be needed to generalize these findings.

Overall, these limitations mean that although the findings provide information about the
pruning variability under controlled conditions, further research is needed to understand how

these effects behave with missing data, more varied data structures, and other modeling methods.

6.3 Future Research

Building on the findings of this thesis, future research could address several important areas.
First, future research could apply the variability analysis to real-world meta-analytic datasets.
This could involve selecting datasets that differ in various characteristics, such as heterogene-
ity, sample size, and moderator type, to test whether the effects observed in the simulations
hold in practice. Another option is to run new simulations based on the structure of existing
datasets, rather than generating data randomly. Both approaches would help evaluate how prun-
ing variability behaves outside controlled settings and whether the patterns generalize. Doing
this, also addresses the external validity concerns mentioned before, and could reveal additional
factors influencing variability that were not captured in the current design. Next, the ANOVA
analysis showed zero inflation in the entropy values, which caused heteroscedasticity. Future
work could consider alternative metrics that are less affected by the zeros, or future work could
modify the analysis to account for this feature. For example, it could use zero-inflated models,
or apply transformations. Additionally, the discretization of continuous moderators reduced the
correlation strength, which may have affected model behavior. Although this discretization was
necessary in the current design, it introduced distortions that could be avoided by using methods
that model categorical moderators directly. Comparing different approaches to discretization, or

avoiding it, could help clarify how data processing decisions affect pruning results. Next, another
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issue observed in this study was that the fully grown decision trees often failed to recover the
true underlying data structure. This raises concerns about whether pruning variability is being
measured relative to an accurate reference. Future research could explore strategies to improve
the reliability of the fully grown trees, such as adjusting the splitting criteria or increasing the
sample size, to ensure the initial model captures the true underlying structure in the data. In
addition, it could be useful to investigate whether the correctness of the initial tree influences the
pruning variability. For example, if the starting tree is already incorrect, the pruning behavior
might show more variation.

All in all, these suggestions can extend the current findings and test how pruning variability

is affected by factors that are common in practice but not included in this simulation design.

6.4 Conclusion

In this thesis we investigated whether pruning variability caused by cross-validation is influ-
enced by characteristics of the data and pruning strictness in random-effect meta-CART models.
The results showed that pruning variability depended on interactions between multiple factors,
including effect size strength, moderator type, correlation, and pruning strictness. While decision
trees offer a useful balance between flexibility and interpretability, their stability remains sen-
sitive to these characteristics. The pruning variability creates challenges for interpretation and
reproducibility, specifically in meta-analytic settings. The findings of this thesis emphasize the
importance of evaluating this variability. Addressing the limitations of this study and expanding
the analysis to real datasets and alternative models, can help clarify when decision tree results
can be considered reliable in practice. In the next section, we present and discuss suggestions

for how to communicate the pruning variability effectively to users.
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Visualization

The results from this thesis show that pruning variability in random-effects meta-CART,
caused by cross-validation, was influenced by several characteristics, including moderator type,
effect size strength, correlation, and pruning strictness. In some cases, this variability led to
large differences in the resulting tree structures. To make this variability easier to interpret,
and help users evaluate their results more clearly, we propose several tools to communicate and
visualize the pruning variability. These tools are implemented in R and work as an extension
of the metacart package. They take a previously fitted RE meta-CART model (REmrt) and
repeatedly apply automatic cross-validation pruning while recording which nodes are kept across
runs. The aim is to show which parts of the tree are stable and which are not, so that users can
assess the reliability of individual nodes and splits.

Three types of visualizations are introduced. First, a static plot with node coloring based on
how often each node is retained. Second, an interactive tree plot that allows users to explore
pruning stability by hovering over the nodes. Third, a plot that shows how often each node
appears as a terminal node. The color schemes used for all the visualizations, are designed to
be inclusive for most types of color vision deficiencies. In addition, we suggest other strategies
for improving transparency, including adding a seed argument to the tree-building functions and
showing a summary of the variability using numerical diagnostics. Together, these additions aim
to communicate the pruning variability and make the interpretation easier. All code used for the

visualizations can be found in Appendix B.

7.1 Node Frequency Visualization

The function plot.PV() creates a static plot that shows how frequently each node of the full
initial tree is kept in the final pruned trees across repeated cross-validation runs. An example of
this plot can be seen in Figure
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Figure 7.1

Pruning Variability Visualization Showing Node Frequency across Iterations

Meta-CART Node Pruning Variability Analysis
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The function takes three main arguments, namely the fitted model object (y), the number of

iterations (iter), and the pruning strictness value (c.pruning).

library(metacart)

y <- REmrt(efk " mi1 + m2 + m3 + m4 + mb + m6 + m7 + m8 + m9 + mil0,

vi = vark, data = dat, c.pruning = 0)

plot.PV(y, iter = 100, c.pruning = 0)

During each iteration, the tree is pruned using a new cross-validation split. The function then
tracks which nodes are retained and colors them based on how often they are kept across the iter-
ations. A divergent color scale is used, where darker blue indicates nodes that are often retained
and lighter yellow shows nodes that are frequently pruned. Although the scale is continuous, the
plot divides the values into five bins to make the legend easier to read. This helps users interpret
the plot more quickly, especially when the tree contains many nodes. The number of bins was set
to five to keep the output clear and easy to interpret. More bins result in small color differences,

which could be harder to distinguish, especially when there are many nodes. Fewer bins would
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reduce the amount of detail and could make it harder to distinguish different levels of variation.
Five bins provide a balance by simplifying the color scale without losing too much information.
Furthermore, the color scheme was chosen to ensure good contrast between different levels and
to be accessible for users with different types of color vision deficiency. Next, all nodes are shown
as ovals, matching the default plotting style in metacart, so the output remains familiar to users
of the package. This visualization helps identify which parts of the initial tree tend to remain

stable across repeated pruning.

7.2 Interactive Node Frequency Visualization

The plot.PV.I() function builds on plot.PV() by providing an interactive version that
allows users to explore pruning variability in a more interactive way. This function uses the
visNetwork R package for constructing and visualizing the tree (Thieurmel et al., . An
example of this plot is shown in Figure [7.2]

Figure 7.2

Interactive Pruning Variability Visualization Showing Node Frequency across Iterations

Meta-CART Node Pruning Variability Analysis
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Figure 7.3

Interactive Pruning Variability Visualization Showing Node Frequency across Iterations

Meta-CART Node Pruning Variability Analysis
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Like the static plot, the function requires a fitted model (y), number of iterations (iter), and

pruning strictness value (c.pruning).
plot.PV.I(y, iter = 100, c.pruning = 0)

The function again performs repeated cross-validation and tracks how often each node in the
initial tree is retained. The resulting plot lets users hover over nodes to see extra information,
including how often a node was kept and the sample size in that node. Figure shows how
this hover functionality works. This is especially helpful in larger trees, where pruning behavior
can be harder to summarize by just looking at the plot. Node color is based on the percentage
of times a node was retained, using a divergent color scale that goes from light yellow (low
retention) to dark blue (high retention). The percentages are again grouped into five bins, for
the same reasons explained earlier. The colors were also chosen with accessibility in mind, as
mentioned before. Unlike the static plot function, this visualization is built with the visNetwork
package, not with the metacart code. Because of that, the node shapes follow common decision

tree conventions where the splitting nodes are shown as ovals, and terminal nodes are shown
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as rectangles. This makes it easier to distinguish between them when exploring the tree. This
visualization is useful for seeing which parts of the tree are kept most often and for finding

unstable nodes.

7.3 Terminal Node Frequency Visualization

The plot.PV.TN() function shows how often each node appears as a terminal node across
pruning iterations. An example of this visualization is shown in Figure [7.4] This provides a
different perspective compared to the other plots by focusing specifically on the terminal nodes
of the tree structures. As with the other visualizations, the function takes a fitted model (y),

number of iterations (iter), and pruning strictness value (c.pruning).

plot.PV.TN(y, iter = 100, c.pruning = 0)

Figure 7.4

Pruning Variability Visualization Showing Terminal Node Frequency across Iterations

Meta-CART Terminal Node Pruning Variability Analysis
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In each iteration, the function records which nodes end up as terminal nodes. The resulting
plot uses the same divergent color scale as the first plot function (plot.PV) in order to show how

often each node is a terminal node in the pruned trees. The frequencies are again, proportional



CHAPTER 7. VISUALIZATION 60

to the number of iterations, divided into five bins. Nodes that often appear as terminal nodes
are shown in darker blue, while less frequent nodes are shown in lighter yellow. All nodes are
displayed as ovals, using the same format as the first plot function. This ensures consistency
with the default metacart style. The only difference from the first plot function is that this plot
emphasizes how often nodes are terminal nodes, rather than how often they are included in the

tree in general. This helps users see which nodes of the tree are often terminal nodes.

7.4 Pruning Variability Diagnostics

The visualizations above are useful for assessing pruning variability, but they require looking
at plots. For a quicker summary, we suggest communicating numerical diagnostics that sum-
marize how stable the pruned trees are across repeated runs. One useful metric is the Shannon
entropy of the terminal node distribution, which we used before. The entropy captures how
consistently the same nodes end up as terminal nodes. Low entropy (below 0.5) suggests high
consistency, moderate entropy (0.5 to 1.5) indicates moderate variability, and high entropy (above
1.5) means that the pruned tree structure varies considerably between iterations. In addition,
communicating the mean number of terminal nodes provides a sense of the average tree size,
while the standard deviation gives an idea of how much this size fluctuates. These values can be

obtained using the summary.PV() function.

summary.PV(y, iter = 100, c.pruning = 0)

Pruning Variability Diagnostics
Entropy of terminal node distribution: 1.76 (high)
Mean number of terminal nodes: 4.0

SD of terminal nodes across runs: 0.9

This output can help users decide whether the pruning strictness value is reasonable, whether
a fixed seed might be useful for reproducibility, or whether the results should be interpreted with
caution due to an unstable tree structure. Since these diagnostics involve concepts like entropy,

they are especially useful for advanced users who are familiar with these diagnostics.

7.5 Reproducibility Through Seed

Finally, to make pruning reproducible, we suggest adding a seed argument to the REmrt

function.

y <- REmrt(efk " ml + m2 + m3 + m4 + m5 + m6 + m7 + m8 + m9 + mi0,

vi = vark, data = dat, c.pruning = 0, seed = 123)
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This controls randomness in the pruning step, so repeated runs return the same pruned tree.
This does not affect the full initial tree but ensures that pruning results are consistent across

runs. This is helpful for reproducibility or when tables or plots have to be generated for reports.
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A Classification Tree Example

Imagine we want to predict the type of a car, a categorical variable with categories small,
sporty, compact, medium, large, and van, based on various variables from the Automobile Data
dataset we used previously (Consumer Reports, . Using a classification tree, we partition
the data into distinct groups using the variables of the dataset, allowing us to predict car types
by identifying shared characteristics within each group. An example of such a tree is shown in
Figure Each terminal node represents the predicted car type for the corresponding group of
cars, while the percentages indicate the proportion of observations in each node relative to the

total dataset. Below, we describe the process of constructing the tree.

Figure A.1
Ezxample of a Classification Tree for Predicting Car Types

Weight >= 2568 -
yes no
Compact
' 100%
Weight < 3128

Compact
75%

Mileage >= 21

Medium
35%

Note. Terminal nodes show the predicted car type, with percentages indicating the proportion

of observations in each node.

The classification tree algorithm begins with all observations in a single group, represented by
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the root node. At this stage, the total impurity, measured by the Gini index, is calculated. The
Gini index for the root node is 0.75, representing the overall impurity of the car types within the
group. The tree then proceeds to find the optimal feature and threshold for splitting the data.
The first split is based on weight, with a threshold of 2,567.5 pounds. Cars under 2,567.5 pounds
are directed to one node, while cars equal to or above that weight go to another node. The split
generates new nodes with Gini indexes of 0.67 for the left node containing 45 observations and
0.13 for the right node containing 15 observations, indicating a substantial reduction in impurity.

The left node shows a Gini index value of 0.67, suggesting moderate impurity and predicts
compact as the class. This node is further split based on weight at a threshold of 3,127.5 pounds.
The weight subset under 3,127.5 pounds (24 observations), shows a Gini index reduction to
0.375, while keeping compact as the predicted class. The Gini index is 0.57 for vehicles that
weigh 3,127.5 pounds or more, which demonstrates moderate impurity, while the model predicts
medium as the class. The next split examines mileage, using 20.5 miles per gallon as the dividing
point. The dataset shows that vehicles with mileage greater than or equal to 20.5 miles per
gallon (9 observations), fall under the medium category according to the model, with a Gini
index measuring impurity at 0.11. The model assigns cars with mileage smaller than 20.5 (12
observations) to the van class, while showing a moderate Gini index of 0.42.

Hence, the Gini index at each tree node demonstrates the effectiveness of data splits by
producing more homogeneous groups. Each data split shows a decline in the Gini index, proving
that decision rules effectively reduce the impurity. The tree used default stopping criteria from
the rpart R package (Therneau et al., 2023). Concluding, to predict the type of a new car,
the variables weight, mileage, and country of origin, are used to navigate through the tree to a
terminal node. The resulting classification tree (Figure provides a clear and interpretable

approach to understanding how these factors influence car types.



B Code Availability

All the R code used in this thesis is available at https://github.com/madeliefeliss / ThesisCode.

This includes the data simulation, pruning variability analysis, and visualization code.
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