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Abstract

The Hubble constant, H0, sets the absolute scale for distances and ages in
our Universe, yet its precise value remains debated, as local measurements
and indirect approaches do not agree at a significant level. This thesis devel-
ops the idea by Renzi and Silvestri [2023] for a calibration-free and model-
independent framework for estimating H0 directly from cosmological obser-
vations. The analysis combines uncalibrated Type Ia supernovae from the
Pantheon+ and DES-SN 5YR samples, unanchored baryon acoustic oscilla-
tion (BAO) data from SDSS and DESI, and 33 cosmic chronometer measure-
ments for a model independent estimate of the expansion rate. Combining
this data using the distance-duality relation, yields a direct measurement of
the absolute magnitude of the supernovae, which can be compared to the
locally calibrated value. Assuming an FLRW expansion at low redshift this
magnitude can than be transferred into a measure of H0. Gaussian pro-
cess regression is used to non-parametrically reconstruct both the supernova
magnitude-redshift relation and the cosmic expansion history from chronome-
ters. In this way, no assumptions about a cosmological model, the sound
horizon, or local distance calibration are required. The reconstructed H(z)
from chronometers agrees with ΛCDM within 1σ across 0 ≲ z ≲ 2.5, and
angular diameter distances obtained from the combination of BAO and CC
are mutually consistent across all datasets. The results for Pantheon+ and
DES-SN 5YR supernovae are statistically compatible, but exhibit a system-
atic offset in apparent magnitudes that propagates into a catalog difference
of ∆MB ≃ −0.04 mag, with Pantheon+ being brighter. The difference in
magnitudes leads to a ∼ 2% shift in the inferred H0, with DES being higher.
The resulting absolute magnitudes, MB ≃ −19.36 to −19.42 mag, are con-
sistent with the required magnitude from the inverse distance ladder and are
in 2-3% tension with the locally calibrated magnitude from SH0ES. Since
this framework excludes systematics of the distance ladder itself, the remain-
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ing source of systematic uncertainty is primarily the supernova calibration.
In light of other local probes, which give h ∼ 0.73, that do not depend on
MB, the discrepancy is more plausibly interpreted as a systematic offset of
the entire local distance ladder at low redshift. Furthermore, these findings
limit the explanatory power of early-universe solutions to the Hubble ten-
sion, since the purely data driven MB is consistent with the indirect distance
ladder (i.e. with the ΛCDM sound horizon), raising H0 by altering the sound
horizon cannot explain the full set of data. Across dataset combinations the
joint likelihood analysis yields H0 ≃ 66.5-68.5 km s−1 Mpc−1 with 2.0-2.7%
precision, and q0 ≃ −0.57 ± 0.08.
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1 Introduction

”Night is an element of love; like fog. It liberates space, lets
freshness cross it... With or without stars and galaxies, the sky
becomes a private territory - the imagination’s own scope.”
— Etel Adnan in The Cost for Love We are Not Willing to Pay

This image of the sky as a private territory reminds us that the cosmos,
though vast, touches our imagination intimately. To enter the night is to
be reminded of the depth of the universe and of our own fragility within it.
To understand the cosmos is a way of understanding parts of ourselves: our
curiosity, our place within that expanse, and the tools we use to trace its
contours.

Adnan’s words evoke a space where immensities and intimacies meet. The
sky is not only an expanse of stars and galaxies, but also a terrain of thought
and memory, a field where imagination confronts reality. Cosmology grows
out of this same tension: the universe appears immense and unreachable, yet
it soaks into our most immediate experience, compelling us to measure, to
compare, and to weave fragments of light into a coherent map of our world.

Since the earliest measurements of the Earth and the Moon, our horizon has
steadily expanded, first to the Sun and the planets, then to the stars, to other
galaxies and eventually attempting to map the large scale structure of our
observable universe. Each step outward depended on the notion of distance,
which continues to underlie how we situate ourselves in the cosmos. To do
this, the Hubble constant H0 is among the most important parameters of our
current cosmological model, as it sets the absolute scale for cosmic distances
and ages.

For almost a century, measuring H0 precisely and consistently has been a
central challenge in cosmology. Today, two main approaches dominate: lo-
cal determinations of the expansion rate via the local distance ladder, and
an inverse route that combines observations of the cosmic microwave back-
ground with the cosmological standard model. With evolving measurement
techniques, percent level accuracy in H0 has been achieved, yet the two ap-
proaches do not agree. Two prominent determinations are the local measure-
ments from the SH0ES collaboration, based on Cepheid calibrated Type Ia
supernovae, which yield H0 = 73.04 ± 1.04 km s−1 Mpc−1 [Riess et al., 2022],
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and the inference from the cosmic microwave background observed by Planck
within the ΛCDM model, which gives H0 = 67.36 ± 0.54 km s−1 Mpc−1

[Planck Collaboration, 2018]. The origin of this Hubble tension, at the level
of 5σ, remains an open puzzle.

But the Hubble tension is not simply about the value of a single number. At
its core it reflects the challenge of reconciling an array of distance measure-
ments at low redshifts with the global cosmological model. The local route
depends on calibration of the absolute magnitude of Type Ia supernovae, but
is largely independent of the cosmological model, while the inverse route
does not require calibration, but is dependent on early-universe physics and
the choice of a model. This can make it difficult to disentangle whether the
discrepancy comes from the data or from the theoretical framework used to
interpret them.

The motivation of this thesis is to take a step back and ask how far one can
proceed without such assumptions of calibration, anchoring and a cosmo-
logical model. By combining uncalibrated Type Ia supernovae, unanchored
baryon acoustic oscillations, and cosmic chronometer data under the dis-
tance duality relation, it develops the idea by Renzi and Silvestri [2023] for
a calibration-free and model-independent route towards H0. The aim is to
establish a transparent reference built directly from data, against which the
consistency of late universe probes can be tested. In doing so, the work
contributes to the broader effort of clarifying what ingredients are needed to
reach a self consistent picture of the universe’s expansion.

This thesis is organized as follows. Chapter 2 introduces the general ge-
ometrical and kinematical framework of the expanding Universe, covering
redshift, cosmological distances, and the distance duality relation, as well
as the low-redshift cosmographic expansion. Chapter 3 provides a historical
and methodological overview of the Hubble constant, reviewing its interpre-
tations, measurement techniques, and the current Hubble tension with some
possible solutions. Chapter 4 covers the methodological approach of deter-
mining H0 from first principles in a model-independent way, without relying
on local calibration of an absolute magnitude or anchoring with the sound-
horizon. The observational datasets used in the analysis are described in
Chapter 5. Chapter 6 discusses Gaussian process regression and its imple-
mentation for the non-parametric reconstruction of cosmological observables.
The main findings of this work are presented and compared to related ap-
proaches in Chapter 7, which also discusses them in the broader context of
the Hubble tension. Finally, Chapter 8 summarizes the conclusions.
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2 Geometry & Cosmography of
the Expanding Universe

This chapter introduces the purely kinematic framework, built on large-scale
homogeneity, isotropy, and standard photon propagation,that underlies the
model independent determination of H0. Dynamic assumptions (e.g. the
Friedmann equation or a specific energy budget) are not invoked.

2.1 FLRW Space-Time and Kinematics
The most general (and hence, up to trivial re-labellings, the unique) line ele-
ment compatible with spatial homogeneity and isotropy - i.e. the assumption
of the cosmological principle - is the Friedmann-Lemâıtre-Robertson-Walker
(FLRW) metric. On large scales the universe is therefore maximally symmet-
ric in its spatial sections (slices of constant cosmological time): every point
and every direction are statistically equivalent. In reduced circumference co-
ordinates the FLRW metric reads

ds2 = −c2 dt2 + a2(t)

[
dr2

1 − k r2/R2
0
+ r2dΩ2

]
, (2.1)

with dΩ2 = dθ2 + sin2θ dϕ2. Imposing spatial homogeneity and isotropy
strips the ten free components of the symmetric four metric gµν down to
only two quantities, the time-varying scale factor a(t) and a length scale
R0 that fixes the constant spatial curvature [Baumann, 2022, p. 25]. The
following conventions are adapted throughout:

• k ∈ {+1, 0, −1}: dimensionless curvature index (closed, flat, open);

• a(t): dimensionless scale factor, normalised to a(t0) ≡ 1;

• r: comoving radial coordinate (units of length);

• R0: physical spatial curvature radius (units of length) set by the cur-
vature density today Ωk,0 ≡ 1 − Ω0.

Where the rescaling freedom of Eq. (2.1), i.e. a→λa, r→r/λ, R0 →R0/λ,
is used to set the present-day scale factor to unity [Baumann, 2022, p. 25].
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In this convention the discrete index k ∈ {+1, 0, −1} retains its usual values
while R0 becomes the physical curvature radius today. Alternatively, some
authors fix R0 = 1 and leave a(t0) arbitrary; both choices are equivalent but
one cannot impose both conditions at once.1

From the radial comoving coordinate r one can define the proper (physical)
separation

Dp(t) = a(t) r,
Ḋp(t) = ȧ r+ a ṙ = H(t)Dp + vpec,

H(t) ≡ ȧ

a
,

(2.2)

where, henceforth, an overdot denotes d/dt. Here H(t) is the Hubble param-
eter, and vpec ≡ a ṙ is the peculiar velocity relative to the uniform Hubble
expansion.

Instead of reduced circumference coordinates one can also write the metric of
Eq. (2.1) in hyperspherical coordinates:

ds2 = −c2dt2 + a2(t)
[
dχ2 + S2

k(χ) dΩ2
]
,

where Sk(χ) =


R0 sin(χ/R0), k = +1,
χ, k = 0,
R0 sinh(χ/R0), k = −1.

(2.3)

The radial coordinate χ has units of length and is introduced by setting
dr ≡ dχ

√
1 − kr2/R2

0 in Eq. (2.1) [Baumann, 2022, p. 25].

2.2 Redshift
With the partial exception of recent neutrino and gravitational-wave detec-
tions, almost all empirical information about the cosmos reaches us in the
form of electromagnetic radiation. When a photon is emitted at cosmic time
te and observed at t0, the expansion of space stretches its wavelength and

1If one instead adopts the normalisation R0 = 1, the numerical value of the curvature
is transferred into the sign parameter itself; one then writes k > 0, k = 0 or k < 0 for
closed, flat and open spatial slices, with |k| =

√
|ΩK | c/H0.
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lowers its frequency. The redshift describes a fractional change in photon
energy,

z =
λ0 − λe
λe

=
νe − ν0
ν0

=
a0
ae

− 1, (2.4)

and thus provides a direct link between observation and the scale-factor his-
tory.

For non-relativistic motions (v ≪ c) one has the familiar linear approxima-
tion z ≃ v/c, but the exact special-relativistic Doppler relation reads

1 + z =

√
1 + v/c
1 − v/c

, (2.5)

valid in the local rest frame of the source. The observed redshift z0 is usually
decomposed into a cosmological part, zcos, produced by the Hubble flow, and
a peculiar component, zpec. For vpec ≪ c the two are related by

vpec ≃ c
z0 − zcos
1 + zcos

, (2.6)

as shown by Hogg [2000, eqs. 9-10].

2.3 Cosmological Distance Measures
In everyday geometry one quotes a single, unambiguous number for the dis-
tance between two points. In our expanding Universe the situation is more
complicated. The radial coordinates r and χ that appear in the FLRW met-
rics Eq. (2.1) and Eq. (2.3) are merely labels on the comoving grid, which are
fixed by conventions and by themselves have no direct observational mean-
ing. Only when χ is tied to an observed redshift - giving the line-of-sight
comoving distance χ(z) - does it acquire physical content (see sec. 2.3.1).
Even the proper distance introduced in Eq. (2.2) is not a directly measurable
quantity, because it refers to the length of a ruler laid out instantaneously
along a spatial hypersurface of constant cosmic time [Baumann, 2022, p. 35].2

What can be measured are separations encoded in the light that reach us
today. All practical distance indicators - whether geometric, standard candles

2Any attempt to measure that length would be troubled by the fact that light from one
end of the ruler must travel to the other, and during that time interval the scale factor
would change.
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(objects of known luminosity), or standard rulers (objects of known physical
size) - rely on the properties of photons that travel on radial null paths and
terminate at the observer [Hogg, 2000]. In this sense all cosmological distance
measures are different ways of quantifying the spacing between two events
(tem, tobs) that lie on a single light ray.

For sufficiently small redshift z ≪ 1, equivalently v/c ≪ 1 or D ≪ c/H0,
the expansion may be approximated by the famous linear Hubble law,

D ≃ cz/H0
(
or v ≃ H0D

)
, (2.7)

and every distance measure - i.e. luminosity, angular-diameter, comoving,
etc. - agree on the same value within a few percent. [Hogg, 2000] This
approximation must be applied with care, because it remains valid only at
very low redshift; once higher order terms become non-negligible z ≳ 0.05
the different distance definitions begin to diverge.

2.3.1 Radial Null Geodesic and the Line-of-Sight Co-
moving Distance

For light rays ds2 = 0 propagating radially dΩ2 = 0 the FLRW metric
Eq. (2.3) gives

dχ =
c dt

a(t)
=

c dz

H(z)
.

Integrating from reception z = 0 to emission z yields the line-of-sight co-
moving distance

χ(z) =
∫ z

0

c dz′

H(z′)
= DH0

∫ z

0

dz′

E(z′)
,

where DH0 ≡ c

H0
and E(z) ≡ H(z)

H0
.

(2.8)

The Hubble distance DH0 = c/H0 ≃ 3000h−1 Mpc = 9.26 × 1025 h−1 m,
where h ≡ H0/(100 km s−1Mpc−1) [Hogg, 2000, Eq. 4], sets the absolute
distance scale. Whereas E(z) is the dimensionless Hubble parameter that
describes the redshift dependence of the cosmic expansion. The distances
DH0 and χ(z) serves as cosmography’s baseline, since they appear as building
block in all the other distance definitions. The line-of-sight distance χ(z) is
the current-epoch spacing, along our line of sight, between us and the source
if both simply move with the Hubble flow [Hogg, 2000].
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2.3.2 Transverse (or Proper Motion) Comoving Dis-
tance

Suppose two galaxies have the same redshift z but appear on the sky with
an angular separation δθ ≪ 1. Their comoving separation orthogonal to
the line of sight is defined as DM (z) δθ [Hogg, 2000]. In the hyperspherical
coordinates of Eq. (2.3) this is obtained by replacing the radial coordinate in
the curvature function Sk(χ) with the line-of-sight comoving distance χ(z)
from Eq. (2.8):

DM (z) ≡ Sk

[
χ(z)

]
,

where Sk

[
χ(z)

]
=



DH0√
Ωk,0

sinh
(√

Ωk,0 χ(z)/DH0

)
, Ωk,0 > 0,

χ(z), Ωk,0 = 0,

DH0√
|Ωk,0|

sin
(√

|Ωk,0| χ(z)/DH0

)
, Ωk,0 < 0.

(2.9)

Here Sk(χ) is rewritten by substituting R0 = DH0/
√

|Ωk,0|; this eliminates
the explicit curvature radius in favor of the observationally convenient param-
eter Ωk,0 ≡ 1 − Ωtot,0.34 Since the hyperbolic sinus is a complete function a
compact way of writing Eq. (2.9) is

DM (z) =
DH0√

ΩK
sinh

(√
Ωk,0 χ(z)/DH0

)
, (2.10)

which holds for all real values of Ωk,0.5

The transverse comoving distance DM has the same value like the proper-
motion distance, which compares an object’s physical transverse speed with
its observed angular drift [Weinberg, Steven, 1971, pp. 423-424].

3The choice of the trigonometric versus hyperbolic function in Sk depends on the sign
of the spatial curvature: a closed universe (ΩK < 0) bends separations on a 3-sphere and
brings in the sine term, an open universe (ΩK > 0) bends them on a 3-hyperboloid and
requires the hyperbolic sine, while the flat case (ΩK = 0) collapses to the identity. Note,
however, that ”spatial curvature” itself is not coordinate-invariant, one can always choose
spatial coordinates that locally flatten a given time slice, the invariant quantity is the four
dimensional space-time curvature tensor fixed by the stress-energy content.

4For x > 0 we have sinh x > x > sin x, it follows that Dopen
M > Dflat

M > Dclosed
M for the

same comoving χ.
5Where the identity sin(x) = sinh(ix)/i is used.

7



Valentin Reichel

Equation (2.9) will be related to the definitions of the angular diameter
distance and luminosity distance in the following subsections.

2.3.3 Angular Diameter Distance
In a static, Euclidean space a simple way to define distance is to compare
the angular size θ (in radians) of an object with its intrinsic physical size R,
objects whose size R is known a priori are referred to as standard rulers. For
sufficiently small angles6 the basic Euclidean relation

θ =
R

D
(2.11)

identifies the distance D to the object.7 To preserve the familiar Euclidean
relation, one defines the angular diameter distance

DA ≡ R

θ
, (2.12)

so that Eq. (2.11) holds by construction even in an expanding FLRW uni-
verse.

If one considers two light rays that leave the source simultaneously at emis-
sion time te, separated by an infinitesimal angle δθ ≪ 1 in the (θ,φ) plane
and sharing the same comoving radial coordinate χ (see Fig. 2.1). At emis-
sion their physical transverse separation is obtained from Eq. (2.3) with
dχ = dφ = 0:

δℓ⊥(te) = a(te)Sk(χ) δθ . (2.13)

Identifying δℓ⊥(te) ≡ R and δθ ≡ θ in the small-angle limit gives the angular
diameter distance

DA(z) =
R

θ
= a(te)Sk(χ). (2.14)

Utilizing the earlier result from Eq. (2.9) one finds

DA(z) = a(te)Sk(χ) =
DM (z)

1 + z
. (2.15)

6Assuming θ ≪ 1 rad so that sin θ ≃ θ.
7Here, the generic label D is used for distance without a subscript, as the definitions

of distances in static Euclidean space is unambiguous.
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Due to the 1/(1+ z) term, the growth of DM is eventually suppressed so that
DA increases with redshift only up to approximately zmax ∼ 1.5 (ΛCDM)
and then decreases, so standard rulers of identical size subtend larger angles
on the sky at very high z. At the redshift zmax the cross-sectional area of
the past light-cone is the biggest (refocussing of the past light-cone), i.e.
our Universe is acting as a giant lens. This reflects cosmic expansion: the
Universe, and hence the proper separation between us and the source, was
smaller at the time of emission than it is today [Baumann, 2022, p. 40].

Figure 2.1: Illustration of the geometry of angular diameter distance. A source
of physical size R at emission time te subtends an angle θ at the observer at time
t0. Figure taken from Baumann [2022, Fig. 2.7, p. 40].

2.3.4 Luminosity Distance
In observational cosmology, one of the most powerful methods for estimating
the distance to astronomical objects is the use of standard candles - sources
whose intrinsic (bolometric) luminosity L is known or can be reliably inferred.
By measuring the received energy flux F the distance can be inferred. In
non-expanding Euclidean space the inverse square law

F =
L

4πD2 (2.16)

identifies the physical distance D to the object. Luminosity distance DL gets
defined so that Eq. (2.16) still holds by definition, i.e.

DL ≡
√

L

4πF . (2.17)

It is important to note that in an expanding space, this generally will not be
equal to the proper distance.

9



Valentin Reichel

If we assume that the source in Fig. 2.2 releases photons at time te with fre-
quency νe, then in a short time interval δte, the number of released photons
will be N = L δte/h νe. Utilizing the cosmological principle, one conve-
niently chooses the source to be at radial coordinate χ = 0, and the observer
at χ. [Schutz, 2009, pp. 349-350] The photons will spread across a spherical
surface and at time t0 the proper area over they will have spread will be
equal to the integral over the solid angle part of the line element in Eq. (2.3),
i.e.

S = 4π a2(t0)S
2
k(χ) = 4πD2

M , (2.18)

where the normalization of the scale factor, isotropy and Eq. (2.9) was used.
Additionally, the energy of the arriving photons is decreased by a factor of
1/(1 + z), since the photon’s emission frequency νe is redshifted to a lower
observed frequency ν0 = νe/(1+ z) (or equivalently to a higher wavelength).
At last, also the arrival rate of photons is smaller by another factor of 1/(1+
z) compared to when they were emitted. [Schutz, 2009, pp. 349-350] So the
observed flux at time t0 is

F = L/(S (1 + z)2) = L/(4πD2
M (1 + z)2). (2.19)

Alternatively, one may express this result locally in terms of infinitesimal
beam properties: from the conservation of photon phase space density and
assuming isotropic emission, it follows that

F dS =
L

4π
dΩ

(1 + z)2 , (2.20)

where dS is the cross-sectional area of the beam at the observer and dΩ is
the solid angle it subtends at the source. For an isotropic source emitting
equally into all directions, dS/dΩ = S/(4π), recovering the same expression
for the flux above. [Ellis et al., 2012, p. 163]

Comparing the result of Eq. (2.19) with the definition of luminosity distance
in Eq. (2.17), one obtains

DL = (1 + z)DM . (2.21)

10
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Figure 2.2: Illustration of how light emitted by a source at time te with lumi-
nosity L travels through expanding space to reach the observer at time t0. As
the wavefront expands spherically, only a small portion intersects the detector,
and the signal arrives stretched in both wavelength and arrival time due to cosmic
expansion by a factor of (1 + z)2. Figure taken from Baumann [2022, Fig. 2.5,
p. 36].

Besides electromagnetic standard candles, recently detected gravitational
wave signals from compact binary mergers now provide standard sirens, of-
fering an exciting new route to measuring luminosity distance. In general
relativity the strain amplitude of a GW signal decreases proportionally to
1/DL, so matching the observed chirp to a template gives the luminosity
distance directly, without any intermediate flux calibration. A gravitational
wave detection on its own, however, supplies no redshift; an electromagnetic
counterpart or a statistical host-galaxy association is therefore essential to
locate the siren on the DL(z) relation. [Baumann, 2022, p. 36]

Cosmological distances respond directly to the expansion history encoded
in E(z). In particular, when a cosmological constant is present the early
Universe expansion rate is lower than in a purely matter-dominated model.
The slower growth of the scale factor lets photons travel for a longer interval,
so DM ,DA and DL all come out larger. Consequently, equally distant sources
appear dimmer in a Λ-dominated Universe than they would if only matter
were present. [Dodelson and Schmidt, 2020, p. 37]

11



Valentin Reichel

2.4 Apparent Magnitude and Distance Mod-
ulus

Type Ia supernovae (SNe Ia) act as standardizable candles, whose absolute
band magnitude M can be inferred with tight scatter. The observed flux from
any source of luminosity L at luminosity distance DL follows Eq. (2.16). In
the B band, the apparent magnitude is defined as

mB = −2.5 log10 FB + const. . (2.22)

The distance modulus is the difference between the apparent magnitude mea-
sured at redshift z and the absolute magnitude the object would have at a
fiducial distance of 10 pc:

µB ≡ mB −MB = −2.5 log10

[
FB(DL

FB(DL=10 pc)

]
= 5 log10

[
DL(z)
10 pc

]
= 5 log10

[
DL(z)
1 Mpc

]
+ 25. (2.23)

So µB is just a logarithmic distance measure.

Therefore, one can write the measured apparent magnitude as follows,

mB(z) = MB + 5 log10

[
DL(z)
Mpc

]
+ 25 (2.24)

=
[
MB − 5 log10H0

]
+ 5 log10

[
H0DL(z)

Mpc

]
+ 25, (2.25)

so only the combination M ≡ MB − 5 log10H0 enters. Consequently,
supernova data alone cannot separate the absolute magnitude from the Hub-
ble constant; the product DL ≡ H0DL(z) is often called the Hubble-free
luminosity distance, since DL ∝ H−1

0 .

For any filter X one generally writes

mX −MX = µ(z)︸ ︷︷ ︸
band independent

+ KX(z) +AX︸ ︷︷ ︸
band corrections

, (2.26)

where KX(z) is the k-correction accounting for the fact that an observer
centered filter at frequency νX samples rest-frame (1 + z)νX :

KX(z) = −2.5 log10

[
(1 + z)

L(1+z)νX
LνX

]
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[Hogg, 2000, Eq. 27]; and AX = RX E(B − V ) is the dust extinction term,
with RV ≃ 3.1 for the Milky Way.

The supernova catalogues analysed here provide rest-frame, k-corrected and
extinction corrected B-band magnitudes. So that throughout this work
µB = mB − MB is used, with all band corrections already absorbed in
the reported mB.

2.4.1 Snapshot of the Modern Distance Ladder
This subsection provides a brief overview of some principal techniques cur-
rently used to determine cosmological distances. Most techniques rely on one
(or a combination) of four underlying principles - geometry, standard candles,
standard rulers, and (for gravitational waves) standard sirens. Typically one
builds up a distance ladder, where each rung is calibrated by the one below
it, but there are also some one-step methods who skip having to climb the
ladder.

Primary (geometric) rungs: • Solar System radar : Echo times to plan-
ets define the astronomical unit that underlies parallax.

• Trigonometric and secular parallax : Annual (or long-baseline)
stellar parallaxes give distances to ≲10 kpc.

• Statistical parallax : Using uniform stellar populations and com-
paring proper motions and radial velocity dispersions gives a mean
distance measurement.

• Moving-cluster geometry: Proper motion convergence and radial
velocities fix cluster distances.

• Maser orbits: Water masers moving in Keplerian disks enable
geometric distance measurements by combining VLBI proper mo-
tions, Doppler shifts, and orbital geometry.

• Main-sequence fitting: To determine a cluster’s distance by align-
ing its color-magnitude diagram with a calibrated reference, using
the shift in brightness as a distance indicator.

• Eclipsing binaries: Light curves and radial velocities give stars’
radii and temperatures, enabling an inference of luminosity and
therefore distance.

• Baade-Wesselink method: Combining a pulsating star’s radius
change from spectroscopy with its brightness variations gives its
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distance.

• Sunyaev-Zelâdovich + X-ray: Combining SZ and X-ray data gives
a cluster’s physical depth (along LOS); assuming symmetry, this
and its angular size yield the angular diameter distance.

Secondary (calibrated) rungs:

• Cepheid and RR-Lyrae variables: Their period-luminosity relation
gives distances to ∼40 Mpc.

• Mira variables: Long-period AGB stars allow distance measure-
ments to ∼100 kpc.

• Tip of the red giant branch (TRGB) and JAGB stars: The sharp
luminosity cut-off of RGB stars and the J-band asymptotic giant
branch tip both serve as standardizeable candles in the ∼ 1 − 20
Mpc range.

• Large Magellanic Cloud anchor : At ∼50 kpc the LMC provides a
very important step in the ladder, with its distance measured by
various calibrators.

• Planetary-nebula luminosity function: The bright end cutoff pro-
vides distances to ∼20 Mpc.

• Globular-cluster luminosity function: The peak absolute magni-
tude is nearly universal and distance independent.

• Surface-brightness fluctuations: Pixel-to-pixel variance scales with
1/D and works for smooth early-type galaxies.

• Brightest-cluster galaxies: Their relatively uniform luminosities
make them useful as standard candles for distance estimates out
to ∼300 Mpc.

• Tully-Fisher, Faber-Jackson, Dn-σ: Galaxy scaling relations link
luminosity to rotation speed or velocity dispersion.

• Type Ia supernovae: Light curve shape standardises peak lumi-
nosity, giving DL to z≳1.

• Type II supernovae: The photospheric expansion (Baade-Wesselink)
supplies distances independent of luminosity calibration.
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One-step (ladder independent) distances:

• Strong-lens time delays: Differences in light travel time between
multiple quasar images give the ”time-delay distance” D∆t, a sin-
gle geometric scale that depends on the separations among ob-
server, lens, and source.

• Gravitational-wave standard sirens: The strain amplitude and
phase of a compact binary waveform fix the luminosity distance
DL without any photometric calibration.

• Megamaser discs: VLBI proper motions and Keplerian rotation
curves of H2O masers in discs yield geometric distances to indi-
vidual galaxies at 3-30 Mpc.

• Baryon Acoustic Oscillations (BAO): The comoving sound hori-
zon rs imprinted in large-scale structure acts as a standard ruler,
providing DM (z)/rs and DH(z)/rs over 0.1 ≲ z ≲ 2.5.

The list above is most likely not complete and has been configured using the
lecture notes from Bartelmann [2022] and Bouwens [2024].

2.5 Etherington’s Distance-Duality Relation
In the previous sections several cosmological distance measures were intro-
duced, including the transverse comoving distance DM , the luminosity dis-
tance DL and the angular diameter distance DA. Although they appear
distinct, it can be shown that they are not independent: under very general
assumptions, there exists a unique relation between them. This distance du-
ality relation (DDR) is a purely geometric result discovered by Etherington
[1933], valid in any spacetime, regardless of curvature, anisotropy, or inho-
mogeneity, provided that photons travel along null geodesics, their number
is conserved and a metric theory of gravity holds. [Renzi and Silvestri, 2023]

To derive the relation, one can consider a bundle of light rays connecting
a source and an observer. There are two natural ways to define an area
distance, depending on the viewpoint:

• From the observer’s viewpoint: a past-directed (incoming) bundle of
null rays subtends a solid angle dΩ0 on the observer’s sky at time t0,
and the bundle’s cross-sectional area at the source is dS0 (see Fig. 2.1.
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This defines an area distance, that is the angular diameter distance8,
as

D2
A ≡ dS0

dΩ0
. (2.27)

• From the source’s viewpoint: a future-directed (outgoing) bundle of
null rays subtends a solid angle dΩG at the emitter (source), and has a
cross-sectional area dSG at the observer at time t0 (see Fig. 2.2). This
defines a different notion of area distance

D2
M ≡ dSG

dΩG
, (2.28)

which one can associate with the transverse comoving distance9 already
defined earlier.

After defining both area distances, one finds that they are not independent
but are in fact just different by a redshift factor. As first shown by Ethering-
ton [1933], the incoming and outgoing bundles of light rays described above
share the same null geodesics, and their associated cross-sectional areas and
solid angles obey the reciprocity condition

dSG dΩ0 = (1 + z)2 dS0 dΩG, (2.29)

where z is the redshift of the source as measured by the observer. Combining
this result with the definitions of area distances in Eq. (2.27) and Eq. (2.28)
from above, one obtains

DM = (1 + z)DA. (2.30)

Substituting the relation in Eq. (2.21) for DM yields the familiar form of the
DDR:

DL = (1 + z)DM = (1 + z)2DA. (2.31)

This redshift dependence arises because the solid angle under which a source
is observed transforms under the relative motion of source and observer,
following the special-relativistic transformation of angles. As a result, the

8This area distance goes by many different sometimes confusing names including area
distance, observer area distance, distance by apparent size or corrected luminosity distance.

9This area distance is also called galaxy area distance, effective distance, angular size
distance or proper motion distance.
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apparent asymmetry between DA and DM is fully accounted for by the red-
shift factor. In cases like gravitational lensing, where light rays are bent
and can refocus, a source may appear both unusually large and unusually
bright, so that apart from redshift effects, an object far away can produce
the same observed flux in a given solid angle as one that is much nearer. [Ellis
et al., 2012, p. 166] There is only one independent cosmological distance
measure.

Testing the DDR is a powerful consistency check between independent datasets
that probe different cosmological distance measures. Since the DDR relies
only on minimal and well-motivated assumptions, any observed violation is
more likely to signal systematics or inconsistencies in the data. Nevertheless,
a confirmed breakdown of Eq. (2.31) would have profound implications, po-
tentially pointing to new physics such as photon absorption or scattering, or
exotic effects like photon-axion conversion or deviations from a metric theory
of gravity.

To quantify potential deviations from the distance duality relation, the di-
mensionless parameter

η(z) ≡ DL(z)

(1 + z)2DA(z)
= 1 (2.32)

is introduced, which equals unity if the DDR holds exactly. Any redshift-
dependent departure η(z) ̸= 1 would signal either unaccounted observational
systematics or a breakdown of the underlying physical assumptions.

2.6 Low-Redshift Cosmography
For sources at small redshifts (z ≲ 1), one can use the analytical properties
of the scale factor a(t) near the present time t0 to expand cosmological
observables in powers of z. This model-independent approach relies solely
on the assumption of a homogeneous and isotropic FLRW geometry, without
invoking the Friedmann equations or a specific energy content. [Visser, 2004]

Following Visser [2004], one defines the first three time derivatives of the
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scale factor as

H(t) ≡ 1
a
ȧ, (2.33)

q(t) ≡ − 1
a
ä
(
ȧ

a

)−2
= − ä

aH2 , (2.34)

j(t) ≡ 1
a

...
a
(
ȧ

a

)−3
=

...
a

aH3 . (2.35)

These parameters are all dimensionless and describe the kinematics of ex-
pansion: H is the Hubble rate, q the deceleration parameter, and j is called
the jerk parameter. Around t0, the scale factor can be expanded as

a(t)
∣∣∣
t0
= 1 +H0 (t− t0) − 1

2q0H
2
0 (t− t0)

2+

+
1
6j0H

3
0 (t− t0)

3 + O
(
(t− t0)

4
)
, (2.36)

where a0 is set to unity and all parameters with subscript zero (i.e.H0, q0, j0)
refer to their present day values.

Using the definition of redshift in Eq. (2.4) one can invert the expansion in
Eq. (2.36) to obtain redshift as a function of lookback time ∆t = t0 − t:

z = H0 ∆t+
1
2(1 + q0)H

2
0 ∆t2

+
1
6
(
j0 + 3q0 + 3q2

0
)
H3

0 ∆t3 + O(∆t4), (2.37)

This can be inverted to express lookback time in terms of z:

H0 ∆t = z − 1
2(1 + q0) z

2+

+
1
6
(
1 + q0 + 3q2

0 − j0
)
z3 + O(z4). (2.38)

The line-of-sight comoving distance χ is given by

χ(z) = c
∫ t0

t

dt′

a(t′)
= c∆t+

1
2H0c∆t2 + O(∆t3), (2.39)

which becomes, upon substituting ∆t(z),

χ(z) =
c

H0

[
z − 1

2(1 + q0)z
2+

+
1
6(1 + q0 + 3q2

0 − j0)z
3 + O(z4)

]
. (2.40)
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Equations (2.36)-(2.40) follow the approach of Baumann [2022, Eqs. (2.71)-
(2.75)].

For a flat universe (k = 0), the luminosity distance is related to χ byDL(z) =
(1 + z)χ(z). Plugging in the expansion yields

DL(z) =
c z

H0

[
1 + 1

2(1 − q0) z−

− 1
6
(
1 − q0 − 3q2

0 + j0
)
z2 + O(z3)

]
. (2.41)

In the case k ̸= 0 curvature enters at third order in z:

DL(z) =
c z

H0

[
1 + 1

2(1 − q0) z−

− 1
6
(
1 − q0 − 3q2

0 + j0 − Ωk,0
)
z2 + O(z3)

]
,

(2.42)

where Ωk,0 ≡ − k c2

H2
0 a2

0
[Visser, 2004, Eq. (46)].

The expansions of angular diameter distance DA(z) and transverse comoving
distance DM (z) can be easily obtained using Eq. (2.31).
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3 Chasing H0

In our physical theories, fundamental constants serve as essential bridges be-
tween theoretical models and the empirical reality we observe. Among these,
the Hubble constant holds a central role in cosmology, setting the scale for the
age of the Universe, providing the basis for distance measurements, and an-
choring our understanding of cosmic evolution. Accurately measuring H0 has
been a challenge for over nearly a century, and today, the tension between dif-
ferent measurements suggests that our current cosmological standard model
may be missing important pieces or there are unaccounted systematics in
some of the measurements.

3.1 Origins and Interpretations of H0

The concept of the Hubble constant emerged during a revolutionary period
in early 20th–century astronomy. In 1912, Henrietta Swan Leavitt’s discov-
ery of the period–luminosity relation for Cepheid variable stars [Leavitt and
Pickering, 1912] set an important basis for extragalactic distance measures.
Shortly after, Vesto Slipher systematically measured redshifts of spiral neb-
ulae, showing that most galaxies recede from Earth [Slipher, 1917]. Building
upon Einstein’s general relativity, Georges Lemâıtre independently theorized
in 1927 that galaxies’ recession reflects the expansion of space itself, deriving
a linear velocity–distance relation (see Eq. (2.7)) [Lemâıtre, 1927]. In 1929,
Edwin Hubble empirically confirmed this relation [Hubble, 1929], applying
Leavitt’s period–luminosity relation and Slipher’s redshifts, establishing the
observational basis for what became known as Hubble’s law (see Fig. 3.1).1
He measured H0 to be approximately 570 km s−1 Mpc−1, a value nearly an
order of magnitude higher than current estimates. 2

1Notably, Hubble cited neither Leavitt nor Slipher in his 1929 paper.
2Due to miscalibrated Cepheid distances, having mistakenly included fainter W Virginis

stars, which led to underestimated distances and an inflated H0 [Bartelmann, 2022].
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Figure 3.1: Recession velocity versus distance for nearby galaxies, as presented
in Fig. 1 of Hubble [1929]. The black dots and a solid line represent individual
nebulae, open circles and a dashed line show the result from grouping them, and
the cross indicates the average velocity of 22 nebulae whose individual distances
were not determined [Hubble, 1929]. Hubble also omitted data points that did not
support the linear trend he was aiming to demonstrate.

The Hubble constant sets the characteristic time scale for cosmic expansion.
In the simplest case of constant expansion, the age of the Universe is t0 ∝
1/H0. 3

There are two principal ways to interpret the Hubble constant H0:

• Geometric interpretation: From a geometric perspective, H0 sets
the absolute distance scale in the Universe. This follows from the gen-
eralized Hubble law:

χ(z) = c
∫ z

0

dz′

H(z′)
,

where χ(z) is the line-of-sight comoving distance introduced in Sec. 2.3.1.
In the low redshift limit z ≪ 1, this expression reduces to χ(z) ≈
cz/H0 (see Eq. (2.7)). When properly calibrated this approach allows
for a model–independent determination of cosmic distances, once H(z)
is known observationally. This approach is used for late time determi-
nations of H0, such as those from the local distance ladder.

3In a matter–dominated universe, gravity decelerates the expansion, leading to t0 <
1/H0. In contrast, a dark energy dominated universe experiences accelerated expansion,
yielding t0 > 1/H0. The precise age of the Universe thus depends on the relative contri-
butions of matter (Ωm) and dark energy (ΩΛ) in the Friedmann equations.
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• Dynamical interpretation: Dynamically, H0 describes the speed of
cosmic expansion at low redshift, appearing in the Friedmann equation:

H(z)2 = H2
0
[
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩX,0X(z)

]
,

(3.1)

where Ωm,0, Ωr,0, and ΩX,0 are the present-day density parameters for
matter, radiation, and any additional energy components beyond the
standard matter and radiation content. The function X(z) encodes the
redshift dependence of such contributions, e.g. dark energy, curvature
or modified gravity, with X(z) = 1 corresponding to a cosmological
constant [Renzi and Silvestri, 2023].

There is usually a tradeoff between calibration and model dependence in
determining H0. Early time approaches, such as those based on the CMB
sound horizon, are calibration free but usually rely on cosmological model
assumptions. In contrast, late time methods, including the local distance
ladder, are model independent but require careful calibration. The next
section will explore the variety of paths towards H0.

3.2 Measuring H0

3.2.1 Direct Measurements using the Distance Ladder
The cosmic distance ladder is the direct or local route towards H0, but to
measure the Hubble constant one must observe distant enough objects, whose
recession velocities are dominated by the cosmic expansion, i.e. galaxies in
the Hubble flow (z ≳ 0.01), where peculiar velocities (∼ 300−600 km/s)
contribute less than about ten per cent to their redshift [Bartelmann, 2022].
Since direct geometric measurements to such high redshift objects are not
possible with current measurement technology, a ladder of distance indicators
needs to be climbed. Each rung of the ladder extends further into the cosmos
and relies on calibration from the rung below. The modern distance ladder
usually consists out of three rungs (see Figure 3.2).

3.2.1.1 Overview of the 3 Rungs

First Rung: The first rung is the basis for the distance ladder and builds
upon geometrical methods such as parallax, eclipsing binaries and observa-
tions of masers to set the zero point of the ladder [Riess et al., 2022]. The
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objective of the first rung is the calibration of secondary distance indicators
like Cepheid and Mira variables, TRGB, and JAGB stars. Precise mea-
surements from GAIA give parallax distances to nearby galactic cepheids
[Riess et al., 2021]. The Large Magellanic Cloud (LMC), at a distance of
about 50 kpc, serves as a key anchor galaxy, where detached eclipsing bina-
ries (DEBs) enable an independent geometric distance measurement with 1%
precision [Pietrzyński et al., 2019]. Another important anchor is NGC 4258,
located at 7.6 Mpc, where VLBI observations of water-maser orbits yield a
similarly precise geometric distance [Humphreys et al., 2013]. Early-type
DEB programmes in M31 and M33 promise two further geometric anchors
within the coming years [Di Valentino et al., 2025]. The first rung extends
until redshifts of z ≲ 0.002 or distance of a few Mpc [Perivolaropoulos, 2024].

The secondary distance indicators can be seen in more distant galaxies, each
of them comes with its own characteristics and systematics.

• Cepheids are young, bright and massive, pulsating stars.4 They show
a clear relation between pulsation period and luminosity, making them
adequate standard candles. Cepheids are typically found in star form-
ing regions of late type galaxies. Their main systematics include a
dependence on metallicity, crowding in dense fields, and extinction ef-
fects because of dust.[Freedman and Madore, 2010, Gieren et al., 2018,
Riess et al., 2016]. Additional challenges include the complexity of
the calibration process, which involves multiple choices, such as period
cuts, completeness thresholds, and artificial star corrections, and the
fact that Cepheids are not simple standard candles, but require detailed
modelling and multi step standardization. [Freedman et al., 2025]

• Miras are pulsating stars with a long period on the asymptotic giant
branch (AGB) and are particularly bright in the near infrared. They
can be found in older and intermediate-age stellar populations. Cur-
rent challenges include distinguishing between carbon- and oxygen-rich
types, limited calibration to short-period O-rich Miras, and larger scat-
ter among long-period or C-rich Miras due to effects like hot-bottom
burning5. [Huang et al., 2020, 2024]

4The pulsation is driven by the κ-mechanism: in regions where helium is partially ion-
ized, compression increases the opacity, trapping radiation and raising local temperature
and pressure. That leads to an expansion of the outer layers, which leads to cooling and
a drop in opacity, allowing heat to escape, leading to contraction.

5Hot-bottom burning occurs in massive AGB stars when the base of the convective
envelope reaches temperatures high enough for hydrogen fusion, increasing luminosity and
changing the P-L relation.
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• Tip of the Red Giant Branch (TRGB) stars show a sharp lu-
minosity cutoff at the onset of helium burning in low mass red giant
stars.6 They can be found in the outer halos of both early and late
type galaxies, often in regions with low extinction. The TRGB magni-
tude is the inflection point of a red giant branch luminosity function,
usually measured with edge detection algorithms or a maximum likeli-
hood fit. In the Cousins I band (HST/ACS F814W, JWST/NIRCam
F090W) the corresponding absolute magnitude MI is nearly indepen-
dent of metallicity for old, metal-poor stars [Di Valentino et al., 2025].
After geometric calibration TRGB distances can set the absolute scale
for SNe Ia or surface-brightness fluctuations (SBF)7, allowing for two in-
dependent routes to H0. Recent JWST observations extend the method
to ∼ 50 Mpc. Important systematics come from stellar population ef-
fects, photometric precision, and edge detection algorithms. [Beaton
et al., 2016, Freedman et al., 2019, Madore et al., 2009]

• J-band AGB (JAGB) stars are rich in carbon, thermally pulsing
AGB stars that show a narrow luminosity distribution in the near in-
frared J band. They are identified by their infrared colors, and can
be found in intermediate age stellar populations across diverse types of
galaxies. They are about a magnitude brighter than TRGB stars and
require only single epoch photometry observations. The method mea-
sures the peak of the ”J-region” luminosity function in an outer-disk
field to minimise crowding and reddening [Di Valentino et al., 2025].
Systematic effects such as metallicity, star formation history, popula-
tion selection appear to have a relatively small impact. Remaining
challenges are, next to the novelty of the method, internal reddening,
and the need for careful population selection. [Freedman and Madore,
2023, Freedman et al., 2025]

Second Rung: The purpose of the second rung is to use stellar distance
indicators (cepheids, TRGB/JAGB, etc.), calibrated via geometric methods
in the first rung, to in turn calibrate Type Ia supernovae (SNe Ia), which
can then act as bright standardizeable candles far into the Hubble flow. Sne Ia
originate in binary systems where a carbon-oxygen white dwarf accretes mass
from a companion. When the white dwarf gets close to the Chandrasekhar
limit of approximately 1.4 M⊙, the electron degeneracy pressure in the core

6This helium flash occurs at nearly the same luminosity for all such stars, making the
cutoff a reliable standard candle.

7An important advantage over Cepheids, which are absent in the old stellar populations
of early-type galaxies used for SBF measurements.

24



Valentin Reichel

can no longer stabilize it, leading to a collapse that burns roughly half of the
star’s mass into iron group elements (mainly 56Ni). Because the explosion
always stars close to this critical mass, the peak luminosity lies in a narrow
range. With some residual differences, e.g. brighter events trap radiation
longer and therefore fade more slowly.8 Correcting each SN Ia for light curve
stretch and color residues reduces the intrinsic scatter from 0.5 mag to less
than 0.1 mag, making them standardizeable candles, once an external zero
point is set. The procedure usually involves three steps:

1. Anchor selection: Identify galaxies that host both SNe Ia and sec-
ondary distance indicators (Cepheids, TRGB, Miras, or JAGB). The
calibrated indicators provide a distance modulus, µcal, accurate to a few
percent at typical distances of approximately 10 − 40 Mpc (0.002 ≲ z ≲
0.01) [Perivolaropoulos, 2024].

2. Light-curve standardization: Fitting the SN Ia light curve (e.g.,
with SALT3 [Kenworthy et al., 2021]) to obtain the peak magnitude
mB, the stretch parameter x1 and the color parameter c. The apparent
magnitude is then ”standardized” with the Tripp relation, [Tripp and
Branch, 1998]

mcorr
B = mB + αx1 − β c , (3.2)

where the parameters α and β describe empirical correlations of lumi-
nosity with stretch and color, respectively, and are fitted simultaneously
with the anchor sample. Additional corrections for selection effects and
host galaxy biases are applied separately, typically as part of a distance
bias correction term derived from simulations.9 [Brout et al., 2022]

3. Absolute magnitude calibration: For each anchor galaxy the fidu-
cial absolute magnitude is

M0
B = mcorr

B − µcal, (3.3)

where mcorr
B is the stretch- and color-corrected peak magnitude from

Eq. (3.2). By fitting all anchor SNe Ia together, one obtains best fit
values for the standardisation parameters α, β, and the fiducial absolute
magnitude M0

B. Once these three parameters are fixed, any SN Ia with
8This width-luminosity connection is quantified by the Philips relation, L ∝ τ1.7

[Phillips, 1993].
9In practice, the standardization model also applies a host mass correction, often writ-

ten as a term γ Θ(M⋆ − 1010 M⊙), and a simulation based bias correction δµbias that
accounts for selection effects, light curve sampling, and survey calibration. Both terms are
folded into the distance modulus estimate, see Kessler et al. [2019] for details.
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a well measured light curve gives a distance modulus and thus extends
the ladder deep into the Hubble flow.

An important assumption is that any dependence on dust, metallicity, or
redshift has been absorbed by the empirical corrections applied to the SNe Ia
magnitudes, so that the global standardization parameters α, β, and the
fiducial absolute magnitude M0

B can be treated as universal across the full
SN Ia sample.

Third Rung: With the fiducial absolute magnitude M0
B now calibrated

by the second rung, one can determine the Hubble constant from SNe Ia
magnitudes in the Hubble flow (0.023 ≲ z ≲ 0.15; following Riess et al.
[2016]) by combining the observed, standardized magnitudes to the theo-
retical model derived from the cosmographic expansion of the luminosity
distance in Eq. (2.42),

mB,th(z) = M0
B − 5 log10(H0)+ 5 log10 [DL(z; q0, j0)] + 25, (3.4)

where DL is the cosmographic expansion of the Hubble free luminosity dis-
tance introduced in Sec. 2.4. Here, the degeneracy between H0 and MB is
evident, requiring the external calibration of the absolute magnitude via the
distance ladder. The best fit parameters are obtained by minimizing the
quadratic form

χ2(H0, q0, j0) =
(
mcorr

B − mB,th
)T

C−1
(
mcorr

B − mB,th
)
, (3.5)

where mcorr
B is the vector of corrected magnitudes, mB,th the model vector

evaluated at the redshifts zi, and C is the full covariance matrix. Using
the full covariance ensures that photometric calibration errors, model un-
certainties, and sample selection correlations are propagated into the final
uncertainty on H0. [Riess et al., 2022]

Since each rung carries its own systematics, the overall uncertainty accumu-
lates from multiple sources: (i) imperfect corrections or residual trends in the
standardization of SNe Ia, (ii) uncertainties in the calibration of secondary
distance indicators, (iii) influence of peculiar velocity corrections, especially
at lower redshifts, (iv) dependence on the chosen redshift limit of the Hub-
ble flow sample. The distance ladder requires calibration, but is in principle
model independent, it just relies on the cosmological principle, without re-
quiring a specific model for the expansion history.
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Figure 3.2: Three-rung Cepheid based distance ladder from the SH0ES collab-
oration used to determine H0. On the bottom left are the geometric distance
anchors (Milky Way, LMC, M31, NGC 4258) to calibrate Cepheid absolute mag-
nitudes. In the middle panel the calibrated Cepheid distances set the absolute
magnitude of SNe Ia observed in the same host galaxies (42 hosts). In the top
right the calibrated SNe Ia are used to trace the magnitude-redshift relation in the
Hubble flow (0.023 < z < 0.15). Figure taken from Riess et al. [2022, Fig. 12].

3.2.1.2 Complementary Distance Indicators

Within the local, direct route to determining H0, several secondary tech-
niques complement the SN Ia ladder, offering independent cross checks and
refinements to supernova based distances.

Surface Brightness Fluctuations (SBF): SBFs use how grainy a galaxy
appears as a measure of distance. The mean surface brightness is dominated
by the brightest red giant stars. In more distant galaxies more individual
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stars can crowd into each pixel of the detector. The surface brightness per
pixel stays the same, but the Poisson granularity is smoothed out. Every time
the distance doubles, approximately four times as many stars fall into each
pixel. The fluctuation signal therefore scales as 1/D.10 One can measure
the amplitude of the fluctuations in the image power spectrum and calibrate
it with nearby Cepheid or TRGB anchor galaxies. This gives an absolute
distance measurement. Combining this distance with measures of the reces-
sion velocity, give a point in the Hubble diagram. The method works best
in dust free, early type galaxies. It is mainly limited by sky subtraction,
precise modelling of the point-spread function, residual globular cluster and
background variance, internal extinction, and a color dependent zero point
connected to the metallicity of the red giant branch. [Cantiello and Blakeslee,
2023, Freedman and Madore, 2023]

Tully-Fisher (TF): The TF relation is an empirical correlation between
the rotational velocity of spiral galaxies and their luminosity, giving a model
independent way to estimate distances. The more recent Radial TF (RTF)
relation generalizes this by showing that TF-like correlations hold at multi-
ple radii within spiral galaxies. Using a large local galaxy sample, the RTF
method allows for constraints on possible spatial variations in the local ex-
pansion rate. Recent work shows that within the distance range of 10-140
Mpc, deviations in the locally inferred Hubble parameter are limited to just a
few percent, this puts strong bounds on the possibility of local structure sig-
nificantly biasing expansion rate measurements. [Haridasu et al., 2024] The
TF relation requireds calibration using intermediate distance indicators to
set the zero point. Similar scaling relations also exist for early type galaxies,
i.e. the Fundamental Plane (FP), which links the size, surface bright-
ness, and velocity dispersion. The FP typically shows larger scatter than the
TF relation and is more sensititve to stellar population effects like age and
metallicity variations. [Graves et al., 2009]

Planetary Nebula Luminosity Function: Evolved low mass stars go
through the planetary nebula phase, producing a luminosity function whose
bright end shows a sharp cut off. The brightest nebulae emit strong and
narrow emission lines, that stand out in narrow band images. This makes
it possible to detect them even in distant galaxies. Since the cut off lumi-

10Each star’s flux scales as F ∝1/D2, and the number of stars in a pixel scale as N ∝D2.
Hence, the mean surface brightness is ⟨S⟩ = NF ∝ const. Poisson statistics give a variance
σ2 = NF 2 ∝ D−2, so the rms fluctuation is σ ∝ 1/D. The SBF signal is σ/⟨S⟩, and
therefore scales as 1/D.
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nosity can be calibrated, the apparent magnitude of the brightest planetary
nebulae can be converted into a distance. [Bartelmann, 2022] Sources of un-
certainty for the method are metallicity and age dependence of the cut off,
internal dust extinction, and contamination with HII regions or photometric
incompleteness.[Ciardullo, 2022]

L-σ Scaling for HII galaxies: Young, compact HII galaxies host intense
starbursts in massive stellar clusters, which leads to strong emission lines. A
tight empirical correlation exists between the luminosity of the Balmer lines
and the gas velocity dispersion, called the L-σ relation. This scaling makes
them promising standard candles, independent of redshift, for measuring
cosmic distances. But, the relation also requires a zero point calibration
from independently known distance measures. Then, the method can trace
the Hubble flow even at high redshift, offering a complementary measurement
to SNe Ia. [Chávez et al., 2014]

3.2.2 Inverse Distance Ladder: Sound Horizon Based
H0 Measurements

An alternative to the local, direct determination of H0 is the inverse distance
ladder, which infers the Hubble constant by anchoring cosmological distance
measures using the sound horizon scale.

3.2.2.1 The Sound Horizon at Recombination

The sound horizon r∗ refers to the maximum (comoving) distance acoustic
waves could have propagated in the early universe baryon–photon plasma
before recombination (last scattering) at redshift z∗. It acts as a standard
ruler, whose imprint can be found in the CMB power spectrum and the late
time clustering of galaxies. It is formally given by

r∗ =
∫ ∞

z∗

cs(z)

H(z)
dz, (3.6)

where cs is the sound speed in the photon–baryon plasma.11 Importantly,
here the expansion history H(z) enters at early times. In standard ΛCDM
cosmology the speed of sound cs is given by

cs(z) =
c√

3(1 + 3Ωb,0
4Ωr,0(1+z))

, (3.7)

11Because baryons are tightly coupled to photons by Thomson scattering until recom-
bination, the effective sound speed in the primordial plasma remains below c.
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where Ωb,0 and Ωr,0 refer to the present day baryon and radiation content
respectively. Given the results of Planck Collaboration [2018] one obtains

r∗ ≈ (147.09 ± 0.26)Mpc. (3.8)

3.2.2.2 H0 from the CMB

The angular scale of the first acoustic peak in the CMB temperature power
spectrum directly reflects the sound horizon at last scattering, since these
modes have undergone exactly one compression cycle by z∗. The observed
angular scale

θ∗ =
r∗

DM (z∗)
, (3.9)

relates the comoving sound horizon r∗ to the transverse comoving distance

DM (z∗) =
c

H0

∫ z∗

0

dz

E(z)
, (3.10)

here a flat geometry is assumed and the expansion history of late times
enters the integral. One then can combine a precise measurement of θ∗ with
a model for DM (z∗), which depends on H0, to infer H0. But, if one rewrites
the observable θ∗ as

θ∗ =
r∗H0
c

(∫ z∗

0

dz

E(z)

)−1
, (3.11)

the degeneracy between r∗ and H0 becomes obvious. A bigger H0 can be
accounted for by a smaller r∗ and vice versa. To break the degeneracy, either
additional data has to be added, or one has to theoretically predict r∗ from
a model for early universe physics.

In practice the θ∗ measurement is extremely robust, cross checks between
Planck, Atacama Cosmology Telescope (ACT) and South Pole Telescope
(SPT) show sub-percent agreement in the acoustic peak positions [Aiola,
2020, Planck Collaboration, 2018]. The remaining uncertainty on the CMB
inferred H0 is dominated by modelling assumptions rather than instrumen-
tal effects (foreground residuals, beam calibration and lensing systematics),
which shift θ∗ by ≲ 0.2% [Planck Collaboration, 2018]. The largest changes
arises from early Universe parameters that set the physical sound horizon
r∗ [Addison et al., 2018, Efstathiou and Gratton, 2021]. Consequently the
quoted systematic error on CMB H0 is below 1 km s−1 Mpc−1, to change the
result the underlying cosmological model would need to be changed.
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3.2.2.3 H0 from BAO

Baryonic acoustic oscillations offer an independent confirmation of the sound
horizon at late times, which can be observed as a peak in the two-point
correlation function of galaxy clustering. BAO measurements constrain the
combination of a distance and the sound horizon. Along the line-of-sight
BAO data yieldDH/rd and the transverse BAO scale givesDM /rd. 12 When
the line-of-sight and transverse BAO scales cannot be resolved individually, a
volume-averaged distance measurement is reported. In the BAO observables
a similar degeneracy between the sound horizon and H0 becomes apparent,

DM (z)

rd
=

c

rdH0

∫ z

0

dz

E(z)
, (3.12)

DH(z)

rd
=

c

rdH(z)
. (3.13)

In both cases only the combination rdH0 appears, making it difficult to dis-
entangle them without external constraints or model assumptions. Although
these indirect soundhorizon-based approaches achieve a high precision in the
inferred Hubble constant, they are sensitive to the cosmological model used.

Although sound horizon methods have sub-percent statistical precision, they
remain model dependent. The value of the standard ruler rd is computed
assuming ΛCDM, so any change to early time physics (extra relativistic
species, early dark energy episodes, non standard recombination) rescales rd

and shifts the inferred H0 by the same factor [Bernal et al., 2016, Knox and
Millea, 2020, Poulin et al., 2019]. BAO analyses carry additional uncertain-
ties in their distance measurements coming from (i) nonlinear evolution and
scale dependent bias; (ii) tracer dependent halo occupation variations; (iii)
observational effects such as fibre assignment, imaging depth or redshift fail-
ures; (iv) and from the specific template cosmology adopted in the model fit.
[DESI Collaboration, 2025b]

3.2.3 One-Step Methods towards H0

Instead of having to climb the local distance ladder, several one-step methods
aim to measure H0 directly by determining absolute distances at high red-
shifts. These methods don’t rely on the calibration of intermediate distance

12BAO are sensitive to a slightly later epoch than the CMB power spectrum, namely
the drag epoch (zd ≈ 1059), when baryons decoupled from the Compton drag of photons.
This occurs after recombination (z∗ ≈ 1090). Consequently, the sound horizon at the drag
epoch rd is approximately two percent larger than that at recombination r∗.
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indicators (Cepheids, TRGB, etc.), and thus are free from the associated sys-
tematics and astrophysical assumptions. As a tradeoff they therefore have
larger uncertainties, but provide crucial independent cross checks of the lad-
der based measurements. Several one-step methods were briefly introduced
in Chapter 2 as part of the modern distance ladder classification. In this sec-
tion, the focus is on how these techniques are used to directly determine H0,
outlining their strengths, limitations, and current constraints.

3.2.3.1 Strong Lensing Time Delays

This method requires a variable background source, which is usually a quasar,
and a strong enough gravitational lens. The light connected to the multiple
images has to travel different paths in spacetime and reaches the observer
at different times. Originally, Refsdal [1964] showed that the measured time
delay

∆tAB =
D∆t

c
∆ϕAB, (3.14)

where D∆t is the time-delay distance, and ∆ϕAB is the Fermat potential
difference between images A and B. The Fermat potential consists of a
geometric and a potential term,

ϕ(θ) = 1
2

(
θ − β

)2
− ψ(θ), (3.15)

where β is the source’s angular position without lensing, θ is the position
with lensing, and ψ is the gravitational potential of the lens. The time-delay
distance is given by

D∆t = (1 + zd)
DdDs
Dds

, (3.16)

here Dd, Ds and Dds are the angular diameter distances of the lens, source,
and between lens and source, respectively. [Birrer et al., 2024] Since D∆t

is an absolute distance measure, the Hubble constant can be inferred via
D∆t ∝ H−1

0 .

The method uses the thin lens and single plane approximation of general
relativity, the entire light deflection is caused by a two dimensional potential
from the lens, and light rays are assumed to make only small angles with the
optical axis. Inference ofD∆t requires three practical steps [Birrer et al., 2024,
Kochanek, 2002]: (1) high cadence photometry to measure the time delays
precisely, (2) deep imaging and stellar velocity dispersion spectroscopy to fix
the lens mass profile, and (3) a characterization of foreground and background
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structure to estimate the external convergence κext, which encapsulates the
mass along the line of sight.
The principal degeneracy, the mass-sheet degeneracy (MSD) [Falco et al.,
1985], arises because a uniform rescaling of the projected mass density leaves
image positions unchanged, but rescales the predicted delays and hence also
H0. Combining imaging with stellar kinematics constrains the internal MSD,
whereas wide-field spectroscopy or weak lensing maps help constrain κext.
Secondary systematics include microlensing, halo substructure, and various
sources of measurement noise.[Birrer et al., 2024]

3.2.3.2 Gravitational Waves Standard Sirens

Mergers of neutron star (BNS) or black hole binaries (BBH) act as standard
sirens. The observed strain h obeys

h ∝ M5/3f2/3

DL
, (3.17)

where M ≡ (m1m2)3/5(m1 +m2)−1/5 is the chirp mass, the combination
of the component masses that controls the frequency evolution of the in-
spiral, and f the GW frequency. The accumulated phase over many GW
cycles depends primarily on M, in GWTC-1 the fractional uncertainty on
the chirp mass ranges from ∼ 0.1% for the BNS GW170817 up to ∼ 15-18%
for the most massive systems such as GW170729, with typical BBH events
measured at the ∼ 3-10% level [LIGO and Virgo Collaboration, 2019]. With
the chirp mass determined from the waveform, the overall amplitude con-
tains essentially a single unknown scale. To leading order, and accounting
for the detector network geometry, it provides a direct measurement of the
luminosity distance DL, although in practice it is partially degenerate with
the binary’s inclination [Schutz, 1986]. The luminosity distance is less con-
strained, with fractional uncertainties typically in the ∼ 25-50% range for
BBH mergers and ∼ 20-35% for the BNS event GW170817 [LIGO and Virgo
Collaboration, 2019].

To test the Hubble law one also needs a redshift. Three complementary
approaches are used:

Bright sirens: If a merger produces an electromagnetic (EM) counterpart
(e.g. the kilonova of GW170817), the host galaxy can be identified spectro-
scopically, providing a direct redshift and a single siren H0 estimate [LIGO
and Virgo Collaboration, 2017].
Dark sirens: For the more numerous BBH mergers that lack an EM signal
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the redshift is obtained statistically. One may (i) correlate the GW locali-
sation volume with a galaxy catalogue [Borghi et al., 2024] or (ii) fit a pop-
ulation model whose source frame mass distribution is mapped to detector
frame masses through the cosmology [Farr et al., 2019]. Combining several
bright and dark sirens already improves the posterior over GW170817 alone
[LIGO and VIRGO Collaboration, 2021].
Spectral sirens: A sharp feature in the source frame mass spectrum of
binary black holes (e.g. the pair-instability cutoff) shifts with redshift, so
fitting its position across many mergers provides a redshift estimate directly
from GW data and thus an independent H0 constraint [Ezquiaga and Holz,
2022].

Systematic errors mainly come from: (i) the inclination-distance degeneracy
for bright sirens [Vitale and Chen, 2018], (ii) incompleteness and photomet-
ric redshift uncertainties in host galaxies catalogues for dark sirens [Gray,
2020], (iii) uncertainty in detector strain calibration [Viets, 2018], and (iv)
assumptions about the binary mass- and spin population that enter dark
siren analyses [Borghi et al., 2024].

Standard sirens are among the most promising methods to independently
constrain H0, as detectors become more sensitive and the event rate (espe-
cially of bright sirens) increases.

3.2.3.3 Water Megamaser as Standard Rulers

Some active galaxies host bright water megamaser13 moving in edge-on,
nearly Keplarian disks. VLBI trace the orbital motion of the maser giv-
ing both their angular size on the sky and their line of sight velocities. For a
maser spot at true radius r, the orbital velocity and centripetal acceleration
follow from Newtonian dynamics,

v∥(r) =

√
GM•
r

sin i, a(r) =
GM•
r2 , (3.18)

where M• is the black hole mass and i the disk inclination. By combining
velocity and acceleration measurements from spectral monitoring one gets
the the physical radius r of the orbit. Combined with the angular separation
θ from VLBI the angular diameter distance can be estimated via DA =
r/θ. [Pesce and et al., 2020] Each maser galaxy therefore supplies a direct,
ladder free distance measurement, which one can combine with its CMB
frame recession velocity for a point in the Hubble diagram.

13These masers come from microwave emission due to rotational transitions of excited
water molecules in dense, warm gas near active galactic nuclei.

34



Valentin Reichel

Some important systematics include: (i) peculiar velocities of the host galax-
ies; (ii) disk-model systematics such as warps and inclination gradients; (iii)
the small sample size of masers; and (iv) uncertainties from environmental
effects if a maser galaxy is in a galaxy group whose dynamics are not well
understood. [Pesce and et al., 2020]

3.2.3.4 Sunyaev-Zel’dovich (SZ) + X-Ray Cluster Distances

Inverse Compton scattering from CMB photons off hot electrons in the in-
tracluster medium of galaxy cluster, leads to a frequency dependent change
in the CMB spectrum.14 This is called the thermal SZ effect. The actual
observable is the integrated Compton parameter,

Y =
∫
dΩ y(θ) =

1
D2

A

∫
dV

kB Te ne σT

mec2
, (3.19)

which is the line-of-sight electron pressure15 summed over the projected area
of the cluster. Here Te and ne are the electron temperature and density, σT

is the Thomson cross-section [Bartelmann, 2022]. One can also observe the
X-ray surface brightness of the same cluster, which is given by

IX =
1

4π(1 + z)4

∫
dl jX . (3.20)

Here, the bremsstrahlung emissivity jX scales as jX ∝ n2
e

√
Te.16 If one as-

sumes a model for the electron temperature and density profiles, the two ob-
servables from Eqs. (3.19) and (3.20) can be combined to get a measurement
of angular diameter distance, and therefore the Hubble constant [Bartelmann,
2022].

The method is observationally interesting because the amplitude of the ther-
mal SZ effect is independent of redshift, allowing high redshift cluster to
contribute equally to the signal. The main systematics come from the de-
pendence on the model of the cluster’s geometry and thermodynamics. Ad-
ditional complications come from gas clumping, substructure, or line-of-sight
contamination, which are difficult to fully correct.[Reese, 2004]

14Below 217 GHz the scattering removes photons from the CMB line of sight (a temper-
ature decrement), whereas at higher frequencies there is an increment in temperatures.

15Since, ne σT dl is the scatter probability and kB Te/mec2 is the energy gain per scatter.
16Bremsstrahlung is a two body process involving electrons and ions, in a fully ionized

plasma, the ion density is proportional to the electron density.
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3.2.3.5 Cosmic Chronometer (CC)

CC are an interesting direct cosmological probe of the Hubble function H(z).
CC data is also used in this work and will be dealt with in some more detail
in later chapters. The method, pioneered by Jimenez and Loeb [2002], relies
on the fact that one can write the Hubble parameter as

H(z) = − 1
1 + z

dz

dt
, (3.21)

which shows that determining H(z) reduces to estimating the differential age
evolution dt of the Universe as a function of redshift dz. Since redshift is
directly observable, the challenge is a reliable measure of dt, which requires
a sample of astrophysical objects that act as standard clocks, or ”cosmic
chronometers”. [Moresco et al., 2022] Then one can either parametrically or
non-parametrically reconstruct H(z = 0) to infer the Hubble constant.

Massive (logM⋆/M⊙ ≳ 10.6), passively, evolving galaxies make ideal CC.
They formed rapidly at z ≳ 2 and have evolved quietly, so the age difference
between two narrow redshift bins reflects the cosmic look-back time with
minimal internal scatter. Galaxy ages are inferred from age, sensitive spectral
features, most commonly the 4000 Å break, Balmer absorption lines, or full
spectral fitting, calibrated against stellar-population synthesis (SPS) models.
[Moresco et al., 2022]

The CC technique assumes (i) homogeneity and isotropy and (ii) that the se-
lected galaxies share a common, nearly coeval formation epoch. The principal
sources of systematic uncertainty are the degeneracy between SPS models,
metallicity and the assumed initial mass function (IMF). Additional biases
can arise if the supposedly passive spectra still contain even a small fraction
of light from young stars, and if ”progenitor bias”17 is present. [Moresco
et al., 2020a, 2018]

Future high-S/N surveys (X-Shooter, MOONS, Euclid, ATLAS Probe) promise
large, uniform CC datasets and better metallicity/SPS calibration. This can
lead to a model-independent H0 measurements at the ≲ 3% level.[Moresco
et al., 2022]

3.2.3.6 Expanding Photosphere Method (EPM)

The EPM uses time-resolved spectroscopy and photometry of a single Type II
SN (SN II) and converts these into a luminosity distance. The method as

17That is when galaxies selected at high redshift do not evolve directly into those ob-
served at lower redshift because their star formation histories differ.
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explained by Vogl et al. [2025] treats a SN II as an approximately spheri-
cally expanding shell. At each time the specific flux fλ,obs, from multi-band
photometry, is measured, as well as the photospheric velocity vph, from the
blueshift of emission features in the SN spectra. Radiative transer models are
used to reproduce the observed spectrum and give the surface photospheric
flux fλ,em,ph. Assuming spherical symmetry one can relate luminosity to
radius via

Lλ,em = 4π R2
ph fλ,em,ph. (3.22)

In a self-similar(homologous) expansion, each layer moves at constant speed,
the radius grows linearly with time and velocity,

Rph(t) =
vph (t− t0)

1 + z
, (3.23)

where t0 is the time of the explosion, usually not known. It can be elimi-
nated by defining the photospheric angular size θ = Rph/DL = (fλ,obs(1 +
z)/fλ,em,ph)

1/2. In the end one has multiple measurements at different times
of the rate of growth θ/vph = D−1

L (t − t0)/(1 + z). The slope of a fit
straight line is inversely proportional to the luminosity distance and the in-
tercept gives the explosion time t0. Therefore, this method gives a direct
distance measure and does not require external calibrators. The luminosity
distance, is connected to the Hubble constant via the cosmographic expan-
sion of Eq. (2.42). [Vogl et al., 2025] The main advantages of the EPM are,
next to the one step approach, its independent systematics compared to ob-
servations of SN Ia, making it a valuable cross check. Furthermore, the EPM
does not rely on any cosmological model assumptions.

The main uncertainties of the EPM come from approximations in the ra-
diative transfer modelling and in the SN’s geometry. Interactions outside
the SN, assumptions about the host galaxy extinction, calibration or pass-
band errors in the photometric system, can influence the inferred luminosity
distance and therefore also H0 at roughly few percent level. [Vogl et al.,
2025]

3.2.3.7 Gamma-Ray Attenuation

Gamma-ray attenuation refers to the dimming of high-energy photons (from
gamma-ray bursts or blazars) as they move through intergalactic space and
collide with photons from the extragalactic background light (EBL), which is
in the ultraviolet to infrared part of the spectrum. Each collision between a
γ-ray and an EBL-photon produces an electron-positron pair. Therefore, the
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gamma-ray signal gets dimmer, depending on the photon energies, the den-
sity of the EBL, and the distance traversed by the gamma rays. The opacity
of pair production reflects the line-of-sight integral of the EBL photon field,
so the energy-redshift pattern of the dimming encodes the cosmic expansion.
A faster expansion shortens path lengths and reduces opacity, while the mat-
ter density shapes the redshift evolution of the EBL. [Domı́nguez et al., 2019]
Observed blazar spectra are translated into optical depths and compared with
semiempirical EBL templates embedded in a flat ΛCDM background. The
energy at which the optical depth reaches unity defines the cosmic gamma-
ray horizon, i.e. the distance beyond which the universe becomes opaque to
gamma-rays due to the damping of EBL. With a Bayesian approach, vary-
ing H0 and Ωm,0, and marginalizing over nuissane parameters describing the
evolving EBL emissivity, one can constrain the Hubble constant that best
fits the observed pattern.[Domı́nguez et al., 2019] The method can probe
very high redshifts (up to z ≈ 5). The main systematics stem from the ac-
curate modelling of the EBL, and the assumptions on the source’s spectra.
Currently, there is only a limited number of events, but future gamma-ray
telescopes like the Cherenkov Telescope Array will improve statistics and
energy reach. [Perivolaropoulos, 2024].

3.2.3.8 Sound Horizon at Matter-Radiation Equality

Instead of using the sound horizon at recombination one can also use the
sound horizon at a different epoch, e.g. the matter radiation equality at zeq.
The method uses the fact that the comoving wavenumber keq fixes the
turnover of the linear matter power spectrum. In ΛCDM this scale obeys
keq ∝ Ω1/2

m,0H0. By fitting the shape of the galaxy power spectrum, marginal-
izing over the oscillatory BAO component, one isolates keq, and for Ωm,0
complementary SN data is used, this in combination fixes H0. [Philcox et al.,
2022]

Because the matter radiation equality horizon is fixed by the background ex-
pansion once radiation stops to dominate, its scale is largely immune to mod-
ifications of pre-recombination physics. The method assumes a flat ΛCDM
model. Observationally, the turnover wavenumber must be isolated from
galaxy power spectra on quasi-linear scales: perturbative corrections, scale-
dependent bias, redshift-space distortions and survey window effects all have
to be controlled. Wrongly modelled non-linear behavior can shift keq and
therefore H0. [Philcox et al., 2022].
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3.2.3.9 Breaking the BAO rd −H0 Degeneracy

In recent years there has been efforts to break the rd −H0 degeneracy in BAO
data, by using complementary cosmological probes. Krolewski et al. [2025]
developed a method to measure H0 independently from the sound horizon
by a bunch of energy density measurements. They combine Big Bang Nucle-
osynthesis (BBN) for an estimate of Ωbh

2. For the baryon-to-matter ratio
they look at the amplitude of the baryonic wiggles in the small scales of the
galaxy power spectrum. And they obtain Ωm from Alcock-Paczynski data
from BAO combined with cosmic void shapes. These four measurements
of energy densities can be inserted into the relation for the critical den-
sity 3c2H2

0 /8πG = ϵγ,0 (ϵb/ϵγ) (ϵm/ϵb)Ω−1
m to constrain H0. Pogosian et al.

[2024] use the transverse BAO scale at multiple redshifts and assume a flat
ΛCDM cosmology. Then they use an additional prior on Ωmh

2 from CMB
data to break the rd −H0 degeneracy. Liu et al. [2025] combine BAO data
with strong lensing distances for a model independent reconstruction of the
sound horizon, which then can be used to infer H0. Schöneberg et al. [2019]
use data from BBN to infer the sound horizon as an independent anchor of
the BAO data. Heavens et al. [2014] break the degneracy by anchoring the
BAO data with Cosmic Chronometers.

For an extensive review ofH0 measurements and more details see Di Valentino
et al. [2025].

3.3 Measured values of H0 and the Hubble
Tension

Figure 3.3 provides an overview of the current state of H0 measurements,
that were discussed in previous section. The results are plotted in the order
in which they were discussed in section 3.2. The most striking feature of
Figure 3.3 is the systematic offset between the locally measured values of H0
and the values inferred from the indirect, model-dependent methods, a dis-
crepancy known as the Hubble tension. Two particular measurements are
highlighted. Firstly, the value obtained by Riess et al. [2022] (R22) (orange
vertical band in Fig. 3.3) using Cepheid calibrated SN gives

HR22
0 = 73.04 ± 1.04 km s−1 Mpc−1, (3.24)

secondly the CMB value by Planck Collaboration [2018] (P18) (blue vertical
band in Fig. 3.3) under the assumption of ΛCDM yields

HP18
0 = 67.4 ± 0.5 km s−1 Mpc−1. (3.25)
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These two values famously differ by over 5σ. It is widely discussed in litera-
ture and some possible solutions to the tension will be reviewed in the next
section.

Another clear trend in the H0 measurements is the variation in uncertainty
across different methodological categories (see Tab. 3.1). The model depen-
dent, indirect methods typically have the largest error bars, with relative
uncertainties below 1%. The distance ladder estimates are intermediate in
precision, with uncertainties around 1 − 4% depending on the calibration and
anchoring technique used. One-step methods generally show the largest un-
certainties, with relative errors of 4 − 20%, but they benefit from independent
systematics and are largely free from calibration and model dependencies.
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Figure 3.3: Overview of the most recent H0 measurements discussed in this work.
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Measurement (Year) H0 [km s−1 Mpc−1] Source

Distance Ladder / Direct
SH0ES HST Cepheids, 3 anchors (2022) 73.04 ± 1.04 Riess et al. [2022]
SH0ES HST Cepheids, 4 anchors (2024) 73.2 ± 0.9 Riess et al. [2024]
SH0ES JWST Cepheids (2024) 73.4 ± 2.1 Riess et al. [2024]
CCHP JWST Cepheids (2025) 72.05 ± 3.60 Freedman et al. [2025]
SH0ES JWST TRGB (2024) 72.2 ± 2.2 Riess et al. [2024]
CCHP JWST TRGB (2025) 68.81 ± 2.22 Freedman et al. [2025]
CCHP HST/JWST TRGB (2025) 70.39 ± 1.94 Freedman et al. [2025]
SH0ES JWST JAGB (2024) 72.1 ± 2.2 Riess et al. [2024]
CCHP JWST JAGB (2025) 67.80 ± 2.72 Freedman et al. [2025]
Mira HST (Huang 2024) 72.37 ± 2.97 Huang et al. [2024]
Type II SN (de Jaeger 2022) 75.4 ± 4.1 de Jaeger et al. [2022]
CSP HST B band (2023) 71.76 ± 1.33 Uddin et al. [2023]
CSP HST H band (2023) 73.22 ± 1.45 Uddin et al. [2023]
Jensen TRGB+SBF (2025) 73.8 ± 2.4 Jensen et al. [2025]
Boubel TF+Cep+TRGB (2024) 73.30 ± 4.08 Boubel et al. [2024]
Said DESI FP+SBF (2024) 76.05 ± 4.90 Said et al. [2025]
Chávez HII L-σ (2024) 73.1 ± 3.9 Chávez et al. [2025]

One-step
TDCOSMO strong grav. lensing (2025) 71.6+3.9

−3.3 Birrer et al. [2025]
GW170817 bright siren (2023) 75.46+5.34

−5.39 Palmese et al. [2024]
GWTC-3 dark sirens (3 evts, 2023) 68.84+15.5

−7.7 Alfradique et al. [2024]
Megamaser CP (2020) 73.9 ± 3.0 Pesce and et al. [2020]
X-ray+tSZ clusters (2021) 67.3+21.3

−13.3 Wan et al. [2021]
Cosmic Chronometers (GP, 2023) 70.7 ± 6.7 Favale et al. [2023]
Cosmic Chronometers (ΛCDM, 2023) 66.7 ± 5.3 Moresco [2023]
SN II EPM (distance-ladder-free, 2024) 74.9 ± 2.7 Vogl et al. [2025]
γ-ray attenuation (2023) 65.6+5.6

−5.0 Domı́nguez et al. [2024]
Equality-scale (BOSS+CBL, 2022) 64.8+2.2

−2.5 Philcox et al. [2022]

Model-dependent / Indirect (ΛCDM)
Planck CMB (2018) 67.4 ± 0.5 Planck Collaboration [2018]
Planck TT+TE+EE+lowE+Lens (2018) 67.66 ± 0.42 Planck Collaboration [2018]
ACT DR6 CMB (2025) 67.62 ± 0.50 Louis et al. [2025]
ACT DR6 + DESI DR2 BAO (2025) 68.43 ± 0.27 Louis et al. [2025]
SPT-3G Pol+Lens+τ (2025) 66.81 ± 0.81 Ge et al. [2025]
eBOSS DR12 Full-Shape BAO (2022) 69.6+1.1

−1.3 Philcox and Ivanov [2022]
SDSS DR16 BAO+Planck+DES (2021) 68.18 ± 0.79 Alam et al. [2021]
DESI DR2+BBN (2025) 68.51 ± 0.58 DESI Collaboration [2025d]
DESI DR2+BBN+θ∗ (2025) 68.45 ± 0.47 DESI Collaboration [2025d]
DESI DR2+Planck CMB (2025) 68.17 ± 0.28 DESI Collaboration [2025d]
DESI DR2+Planck (w0wa, 2025) 63.6+1.6

−2.1 DESI Collaboration [2025d]

Table 3.1: Recent H0 determinations in the order they are described in this work.
Quoted uncertainties are 1σ.

Tension in Calibrators/Anchors
The Hubble tension can be understood as a tension in the calibrators (or an-
chors). As shown in section 3.2.1 the Hubble constant from the distance
ladder is degenerate with the calibration of the absolute magnitude (see
Eq. (3.4)) and H0 from the inverse distance ladder is degenerate with the
value of the sound horizon (see Eq. (3.11)). The SH0ES collaboration cal-
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ibrates an absolute magnitude of MR22
B = −19.253 ± 0.027 mag. Whereas,

Gómez-Valent [2022] combine CMB, BAO, and uncalibrated SNe Ia under
ΛCDM to find rP18

d = 147.17 ± 0.20 Mpc and a corresponding absolute mag-
nitude of MB = −19.403 ± 0.010 mag, this value of MB is again in ∼ 5σ
tension with MR22

B . This tension, is visually presented in Figure 3.4, taken
from Gómez-Valent et al. [2024, Fig. 1]. To resolve the tension, it is clear
that either the sound horizon inferred from early-universe physics must be
reduced, the locally calibrated absolute magnitude must be lowered (i.e it
has some constant positive offset), or both values must shift toward each
other to reach agreement with the data. These possibilities will be explored
in the next section.

Figure 3.4: Hubble tension in terms of the calibrators, the absolute magnitude M
and the value of the sound horizon rd. The grey band shows the degeneracy band
from uncalibrated BAO and SN. Figure taken from Gómez-Valent et al. [2024,
Fig. 1].

3.4 Resolutions to the Tension
The current discrepancy between early- and some late-time measurements
of H0 has inspired a long list of potential resolutions. They fall into two
categories: (i) experimental or methodological approaches that revisit cali-
bration procedures, data reduction, astrophysical assumptions and possible
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unaccounted systematics and (ii) theoretical explanations or changes in fun-
damental physics. This section aims to give a broad overview.

3.4.1 Experimental/Methodological Approaches
Before integrating new physics, it is natural to ask whether unrecognized
systematics could still account for (part of) the ∼ 10% gap between early-
and late-time measurements of H0.

3.4.1.1 Systematics in the Distance Ladder

• Geometric Anchors: The geometric measurements of first rung are
pretty solid and currently limited by (i) GAIA parallaxes for Milkyway
calibrators (ii) geometric distances to anchor galaxies like the LMC
and NGC 4258. GAIA DR3 measures parallaxes extremely precise and
leaves a residual parallax bias of ≲ 4,µas [Lindegren et al., 2021].
For bright Cepheids specifically, the DR3-HST comparison indicates
an additive offset of −14 ± 6µas, which propagates to only a ∼ 0.4%
scale error in distance [Breuval et al., 2025]. Currently, there is an
ongoing debate regarding a magnitude-space recalibration of GAIA
parallaxes proposed by Madore et al. [2025]. Their method modifies
how GAIA parallax zero-points are treated, effectively flattening the
observed Cepheid metallicity dependence in the period-luminosity re-
lation. This adjustment would increase the inferred value of H0 by
approximately 1%. However, Breuval et al. [2025] challenge this ap-
proach. They argue that such a magnitude-space correction is incon-
sistent with both Cepheid distances derived from open clusters and the
resulting negative parallaxes in GAIA data. In 2026 GAIA DR4 will
probably settle this issue with improved parallax measurements. The
distance to the LMC, as an important anchor galaxy to calibrate sec-
ondary indicators, is very robustly measured with a relative precision
below 1% accuracy, using a system of 20 detached eclipsing binaries
(DEBs) [Pietrzyński et al., 2019]. For NGC 4258, Reid et al. [2019]
measure a very precise geometric distance, within 1.5%, using masers.
Taken in combination GAIA parallaxes, LMC distance from DEBs,
and NGC 4258 distance from masers in the SH0ES ladder contribute
1.35 km s−1 Mpc−1 to the final uncertainty in H0 [Riess et al., 2022].

• Secondary indicators:

1. Cepheid ladder and photometric zeropoints: Crowding, ze-
ropoint, and bandpass errors in HST Cepheid photometry were
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long-suspected biases. A JWST cross-check of approximately 1000
Cepheids in NGC 4258 and five SN Ia hosts finds an HST-JWST
mean offset of only 0.03 mag, too small to resolve the Hubble
tension [Riess et al., 2024]. Using only JWST data, SH0ES ob-
tains H0 = 73.4 ± 2.1 (Cepheids). JWST also reduces the period-
luminosity dispersion by a factor of 2.5 and rules out HST crowd-
ing bias at the 8.2 sigma level [Riess et al., 2024]. Metallicity
corrections from GAIA, with a value of about −0.25 mag dex−1 18

are now consistently applied. These corrections affect H0 by only
about 0.5 km s−1 Mpc−1 [Breuval et al., 2024].

2. Population-II calibrators and host-galaxy selection: The
Chicago-Carnegie program (CCHP) uses Population-II tracers that
are less sensitive to dust and metallicity. With 24 SN Ia hosts
(HST and JWST), CCHP finds H0 = 70.39 ± 1.94 from the com-
bined HST and JWST TRGB. Using only JWST TRGB gives
H0 = 68.8 ± 2.2, and using only JWST JAGB yields H0 = 67.8 ±
2.72 [Freedman et al., 2025]. In comparison, Riess et al. [2024]
find H0 = 72.2 ± 2.2 (JAGB) and H0 = 72.1 ± 2.2 (TRGB).
The roughly 3 km s−1 Mpc−1 gap between CCHP and SH0ES may
point to residual stellar-population or SN host selection effects.19

Completing JWST imaging of the remaining HST SN Ia hosts, and
adding new TRGB and JAGB calibrators, will be critical. Using
JWST TRGB-calibrated surface brightness fluctuations (SBF),
SH0ES independently obtains H0 = 73.8 ± 2.4 without relying
on SN Ia [Jensen et al., 2025].

3. Indicator hierarchy: Despite sharing a geometric zero-point, a
ranking persists among indicators: Cepheids > TRGB ≳ JAGB,
in both CCHP and SH0ES analyses. This is plausible since the
tracers probe different stellar populations and face different sys-
tematics. Cepheids are young, metal-rich, and affected by crowd-
ing, while TRGB and JAGB stars are older, metal-poor, and
mostly dust-free, but they require precise color and metallicity
corrections (and age corrections for JAGB). Whether the observed
offsets reflect residual crowding or dust in Cepheids, subtle metal-
licity effects in TRGB/JAGB, or SN host selection remains under
debate. Two newly recognized TRGB systematics, i.e. edge de-

18An increase of 1 dex corresponds to a tenfold increase in the iron-to-hydrogen ratio.
19SH0ES argues that selecting a smaller host galaxy sample in JWST observations (as

done by CCHP) biases the CCHP H0 value.
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tection bias and halo dust extinction, can shift H0 by about 1
percent [Anderson et al., 2024].

4. SN Ia standardization: The standardization of SN Ia magni-
tudes also impacts H0 when derived from the distance ladder. SN
Ia peak luminosities correlate with host galaxy mass, star forma-
tion rate (SFR), and local environment. Light curve standardiza-
tion methods such as SALT3, applied to the Pantheon+ sample
with matched calibrator and Hubble flow selections, reduce host
biases to about 0.05 mag. However, omitting empirical corrections
like the mass step or local SFR can shift H0 by 0.5 percent [Brout
et al., 2022]. When combined with cross-survey zeropoint cali-
bration and light curve model retraining, SN Ia systematics con-
tribute roughly 0.5 km s−1 Mpc−1 to the total SH0ES uncertainty
budget [Riess et al., 2022]. A sharp shift in absolute magnitude
could also occur at very low redshifts (z less than 0.01), possibly
due to differences in SN standardization between the calibrator
and Hubble flow samples. For example, a mismatch in the color
correction or Tripp calibration applied to the two samples could
induce a systematic offset in MB. If the SH0ES calibrated MB

were about 0.2 mag brighter than the true Hubble flow value, it
could explain the difference between the SH0ES and Planck H0
determinations [Gómez-Valent et al., 2024].

Although plenty rigorous cross checks of anchors, Cepheid/TRGB photom-
etry, and SN Ia standardization have moved individual systematics to the
sub-percent level, the distance ladder may still be effected by unidentified
local effects. Such a local bias, like a photometric zeropoint drift, crowd-
ing/reddening effect, or large-scale environmental anomaly, could be imprint-
ing an offset across all rungs of the ladder simultaneously [Perivolaropoulos,
2024].

3.4.1.2 Systematics from the CMB/BAO

H0 inferred from the CMB is sensitive to instrumental systematics, calibra-
tion uncertainties, and most importantly cosmological model assumptions.
Planck’s self consistency check using cross frequency calibration limits hid-
den offsets to ≲ 0.3% [Planck Collaboration, 2018]. Independent CMB ex-
periments like ACT and SPT-3G provide a cross check on Planck’s mea-
surements. Although, they have differences in instrumentation, angular res-
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olution, calibration pipelines, and sky coverage, they all recover consistent
cosmological parameters within 1σ. Notably, both ACT DR6 [Hill et al.,
2025] and SPT-3G [Balkenhol et al., 2023] measure a slightly higher value of
H0. Yet, the overall agreement suggests that instrumental systematics are
well controlled across CMB measurements.

One plausible way to soften the ladder mismatch is that model-dependent as-
sumptions in reconstructing the anisotropic 3-dimensional BAO peak could
bias the recovered BAO measurements, if present and removed could help
soften the tension between BAO/CMB anchors and SN calibrators. There-
fore, also testing on 2-dimensional BAO data is important. [Gómez-Valent
et al., 2024] Recent BAO measurements show a mild tension with Planck
(smaller tension with ACT and SPT-3G), typically favoring a higher H0 by
∼ 1-1.5 km s−1 Mpc−1. The completed BOSS/eBOSS DR12 full-shape analy-
sis yields H0 = 69.6+1.1

−1.3 km s−1 Mpc−1 [Philcox and Ivanov, 2022], while the
latest DESI DR2 BAO data combined with a BBN deuterium prior returns
H0 = 68.51 ± 0.58 km s−1 Mpc−1 [DESI Collaboration, 2025d]. The ∼ 2σ off-
set between DESI DR2 and Planck’s data suggests either residual modelling
systematics in late-time clustering or the need for theoretical extensions of
ΛCDM, which will be briefly mentioned in Sec. 3.4.2.

3.4.1.3 Systematics in the One-Step Methods

Each of the one-step method carry their own independent systematics. Cur-
rently, all the one-step methods still have relatively large uncertainties, in the
approximately 5 − 10% regime, compared to the distance ladder and measure-
ments based on CMB/BAO. A range of new detectors and better statistics
- from the Vera Rubin Observatory LSST (strong lensing and electromag-
netic GW counterparts) and Euclid (particularly for cosmic chronometers
and strong lensing systems), the upgraded ground based GW network (Ad-
vanced Ligo, Einstein Telescope, Cosmic Explorer) and space observations
from LISA (for standard sirens), the next-generation Very Large Array and
the Square Kilometer Array (megamasers), and the Cherenkov Telescope
Array (γ-ray attenuation) - will hopefully push each method below the 5%
level in accuracy to provide multiple independent constrains on the Hubble
tension.

After a decade of intensive re-calibration, the combined effect of all known
experimental and methodological seems unlikely to erase the full tension in
H0. The conclusion of Di Valentino et al. [2025] is that the Hubble tension
almost certainly cannot be explained by experimental errors alone and will
likely require new physics or a coherent late-time effect.
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There seems to be a mild ∼ 2σ inconsistency between DESI DR2 BAO data
and CMB data from Planck under ΛCDM assumptions. This discrepancy
does not map directly onto a single parameter like H0, but rather suggests a
broader mismatch in the parameter space, particularly related to the sound
horizon and expansion history. Interestingly, the tension can be alleviated in
extended cosmological models, such as those allowing for time-varying dark
energy (e.g. w0waCDM with phantom crossing), which bring both datasets
into agreement again. This supports the possibility that new physics, such as
dynamical dark energy, early dark energy, or modifications to gravity, may
be required to consistently explain both BAO and CMB observations.[Ye and
Lin, 2025]

3.4.2 Theoretical Solutions
In the recent years a large range of theoretical models has emerged to (also)
explain the Hubble tension. This section is not complete and is only supposed
to give a broad overview. For more details on the theoretical solutions see
Di Valentino et al. [2021] or Di Valentino et al. [2025].

3.4.2.1 Early Time Modifications

All proposals in this category aim to decrease the sound horizon at re-
combination r∗ (see Eq. (3.6)) by increasing the expansion rate in the pre-
combination time, so that the observation of the CMB angular scale θ∗ stays
the same, but H0 from indirect measurements gets raised (see Eq. (3.11))
by the required ∼ 7%. However, Jedamzik et al. [2021] showed that models
who lift H0 only by shrinking the sound horizon typical clash with BAO or
galaxy-lensing measurements, so they cannot by themselves provide a com-
plete resolution to the tension. Still, the search for a smaller sound horizon
as inspired a variety of early-time proposals, which will be broadly described
in the following section.

Early Dark Energy (EDE): EDE models add an extra energy compo-
nent, typically an axion-like scalar, which behaves like dark energy (w ≃ −1),
while the field is frozen by the Hubble friction. As the universe expand and H
drops to the mass of the field (H∼mϕ), the field rolls toward its minimum,
enters oscillations (w ≃ +1), and its energy density quickly dilutes. With
this mechanism the field contributes a few per cent to the total energy den-
sity before recombination to speed up the expansion enough to decrease the
sound horizon, but doesn’t leave a significant impact on late times. The
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observational bounds from different observables on EDE models are tight-
ening.20 Combined CMB, BAO and SN data constrain fEDE ≲ 0.06, which
in turn limits the boost in the Hubble constant to ∆H0 ≲ 3 km s−1 Mpc−1.
[Di Valentino et al., 2025] For an observational review see McDonough et al.
[2024] and for a theoretical review of EDE see Poulin et al. [2023].

New Early Dark Energy (NEDE): Unlike axion-like EDE, relying on
a slowly rolling scalar filed, NEDE assumes a fast (first order) phase transi-
tion between BBN and recombination. A heavy field initially sits in a false
vacuum, producing an early dark energy plateau. Once a trigger (either ul-
tralight scalar in ”cold” NEDE, or the cooling of the dark sector in ”hot”
NEDE) activates, the potential barrier collapses, bubbles of the true vacuum
nucleate and the false vacuum energy disappears, injecting energy into the
plasma, leading to a fast expansion and thereby decreasing the sound hori-
zon. [Di Valentino et al., 2025] In practice the mechanism can lift the CMB
inferred Hubble constant to H0 ≃ 70-72 km s−1 Mpc−1 [Garny et al., 2025,
Niedermann and Sloth, 2021].

Extra Relativistic Species: The early expansion rate can also be in-
creased by adding a light ultra-relativistic component, therefore increasing
the radiation density. This extra radiation energy density is captured by the
effective number of neutrinos ∆Neff . This quantity positively correlates with
the Hubble constant, via H0 ≃ 5.9 ∆Neff [Di Valentino et al., 2025]. From
this it is clear that to achieve the desired high H0, one would require Neff ≳ 4,
which is experimentally ruled out. Planck data combined with SDSS BAO
and Pantheon SN Ia give Neff = 2.99 ± 0.17, H0 = 67.4 ± 1.1 km s−1 Mpc−1

[Planck Collaboration, 2018]. The latest DESI DR2 BAO, combined with
Planck PR4 + ACT, prefer a slightly higher value Neff = 3.23 ± 0.18 and
H0 = 69.2 ± 1.0 km s−1 Mpc−1 under ΛCDM [DESI Collaboration, 2025a].
While CMB data from ACT DR6 alone gives Neff = 2.86 ± 0.13, and com-
bined with BBN Neff = 2.89 ± 0.11 [Hill et al., 2025].

Changes in Recombination Physics: Instead of adding new energy
components, the sound horizon can also be shortened by changing the mi-
crophysics of recombination. To releave the Hubble tension recombination
would have to happen earlier. Mirpoorian et al. [2025] used a phenomeno-
logical model to show that such a shift in principle can alleviate some of the
Hubble tension. Some physical ideas to make recombination happen earlier

20But, as it happens in theoretical physics, theories can be tweaked to evade given
experimental bounds over and over again.
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include primordial magnetic fields, which lead to baryons clumping together
and recombination happen faster [Jedamzik and Pogosian, 2020], or a hy-
pothetical interaction with a dark component could cool the baryon-photon
fluid quicker.

Varying Fundamental Constants: Small changes in the fine-structure
constant αEM or the effective electron mass me change the hydrogen bind-
ing energy, Thomson scattering, and therefore the recombination timeline.
Speeding up recombination shortens the sound horizon and can therefore in
principle also raise H0 from the indirect measurements. A recent analysis
by Toda and Seto [2025] has combined Planck CMB, Pantheon+ SN and
DESI DR2 BAO data to tighten the joint limits on early-time changes of
both αEM and me. They find that DESI’s new BAO points slightly favor a
heavier effective electron mass while leaving αEM fully consistent with being
constant. Yet, the percent level variations needed for the Hubble tension
remain excluded by this approach, but it can help bring the values of early-
and late-times closer together.

3.4.2.2 Late Time Modifications

A broad range of proposals aiming to resolve the Hubble tension involves
modifying the expansion history at low redshifts, leaving the observed CMB
acoustic scale intact but boosting the model dependent H0 from the indi-
rect measurements to the high local scale by SH0ES. However, the late time
solutions face some severe challenges. Firstly, SH0ES does not directly mea-
sure H0, rather they calibrate the absolute magnitude of SN via their distance
ladder and then convert this into a value of H0 using the cosmographic expan-
sion in a Hubble flow section 0.023 < z < 0.15, i.e. this is not a measurement
of H(z → 0) [Efstathiou, 2021]. Yet, this is what some solutions put as prior
on the SH0ES H0, without checking if their model is actually fitting the SN
data. Any model must fit both the locally calibrated MB and the complete
SN + BAO + CMB distance data, but this is where many theories fail since
the absolute magnitude required to fit the SN + BAO + CMB data is incom-
patible with the absolute magnitude calibrated by the SH0ES team (required
shift of ∼ 0.2 mag). Ideas that just fix the tension in the value of H0, but
leave the tension in MB unadressed cannot be considered solutions to the
Hubble tension. It is likely that late-time solutions, similarly to early-time
solutions, cannot individually resolve the full tension. Potentially, a combi-
nation of effects is required. In the following a brief overview is given of the
main late-time approaches, that can atleast partially alleviate some of the
tension.

50



Valentin Reichel

Late Dark Energy (LDE): As the name makes clear, LDE models change
the expansion at low redshifts (typically z ≲ 1). This is usually done by
letting w(z) vary from the cosmological constant value of w = −1, including
scenarios with transitions from quintessence into the phantom regime. [Di
Valentino et al., 2025] As described above such modifications can raise the
value of H0 based on a cosmological model, but they face 2 major issues:
(i) fitting both the absolute magntiude of calibrated SN and BAO/CMB
data simultaneously and (ii) not introducing new tensions with large-scale
structure observations. Using most recent SN, BAO and CC data, Zhou
et al. [2025] show that even the most flexible late-time w(z) deformations
can lift H0 only to ∼ 69 km s−1 Mpc−1 before clashing with the SN Ia data.21

As such LDE models are unlikely to fully resolve the tension on their own.

Sign-Switching Dark Energy These ideas propose a dark energy density
that has been negative at early times (z ≳ 2), transitioning to a positive
value recently, naturally raising H0 while preserving consistency with CMB
and BAO. An analysis by Akarsu et al. [2023] shows that the ΛsCDM model,
featuring such a sign flip near z† ∼ 1.8, can simultaneously alleviate tensions
in H0, MB, S8, Ly-α BAO, ωb, and the cosmic age, while providing a better
fit to Planck, Pantheon, and BAO data than standard ΛCDM.

Interacting Dark Energy (IDE): IDE solutions allow an energy ex-
change between dark energy and dark matter. The introduced coupling term
leads to a modified background evolution which in principle can raise H0,
without changing early-time physics. The form of the interaction is usually
phenomenological, and the directions of energy flow changes a lot the dynam-
ics and viability of the models. While some IDE scenarios can bring H0 to a
higher value, they often struggle to simultaneously fit SN and full BAO con-
strains. Also, to stay within physically acceptable energy densities and avoid-
ing instabilites requires careful tuning of the interaction form. [Di Valentino
et al., 2025]

Modified Gravity (MG): MG frameworks address the Hubble tension by
using the extra dynamical degrees of freedom that appear once the Einstein-
Hilbert action is extended or its foundational principles are relaxed. In the-
ories like f(R) gravity or their scalar-tensuor duals a non-minimal coupling
between the scalar sector and curvature induces a redshift dependent ”ef-
fective” Hubble constant Heff

0 (z) that converges to the CMB value at high
21Of course under the premise that there are no unaccounted systematics in the data

sets used.
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z and matches the higher local distance ladder value. Horndeski subclasses
that survive the GW170817 speed constraint, e.g. the cubic Galileon, achieve
a similar late-time rescaling. For the teleparallel branch, simple power-law
f(T ) models boost the expansion rate and can ease the H0 tension. Massive
gravity and bimetric gravity can also shift H0. Conclusively, even though a
lot of the models have the possibility of allowing for a higher H0, this does not
mean they resolve the cosmological tension, since many of them have troubles
to be consistent with solar system tests, CMB lensing and BAO data. Fur-
thermore, even though they offer a rich theoretical model space22, they often
require fine-tuning and introduce instabilities. [Di Valentino et al., 2025] Yet,
they remain interesting scenarios to explore to help partially resolve some of
the cosmological tensions with new physics.

Local Void: An interesting approach to change all rungs of the distance
ladder in a coherent matter would be the presence of a local void. In the pres-
ence of a local void the reduced gravitational pull would lead a higher local
expansion rate. So, at a given true luminosity distance objects would show
an increased redshift compared to a FLRW universe. If one interprets these
higher redshifts with the standard FLRW distance-redshift relation, distances
would be underestimated. That would steepen the Hubble diagram resulting
in an artifically higher H0. Infrared galaxy counts and K-band luminosity-
density measurements showed a possible ∼ 20% underdensity extending to
∼ 300 Mpc around the Local Group, sufficient raise the inferred H0 by several
km s−1 Mpc−1 [Keenan et al., 2013]. However, Haslbauer et al. [2020] show
that a such an underdensity is extremely unlikely under ΛCDM, which leads
them to explore alternatives like Milgromian dynamics with sterile neutrinos,
which can accomodate the void, local SN and lensing measurements aswell
as CMB anisotropies. Recent BAO fits to isotropic DV measurements reduce
the DESI BAO - Planck CMB tension to 1σ using void models as a possi-
ble explanation [Banik and Kalaitzidis, 2025]. However, several studies have
shown that data from Pantheon SN do not support the local void hypothesis
as a viable sole resolution to the Hubble tension [Cai et al., 2021, Kenworthy
et al., 2019, Luković et al., 2020]. Also a more recent analysis by Stiskalek
et al. [2025] based on a direct distance indicator Tully-Fisher sample found
that void models are disfavored by the data to resolve the tension completely.

Local Physics Solutions: Instead of changing the global cosmological
model, some authors try to tackle the Hubble tension by local modifications
of gravitational physics or local effects in the expansion. A possibility is

22A blessing and an abyss at the same time.
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a smooth evolution of the SN absolute magntiude MB(z), together with a
slight late-time modified expansion rate, proposed by Alestas et al. [2021].23

In this framework, H must increase at low redshifts to match the SH0ES value
and then dip below ΛCDM at higher z to preserve the BAO measurements
and the angular distance to the angular diameter distance to the CMB. This
would also require a redshift dependence in MB(z) to remain consistent with
the full distance ladder, avoiding tensions at intermediate redshifts. [Gómez-
Valent et al., 2024]

Rotating Universe: An intriguing idea for the Hubble tension, that has
recently received renewed attention, is a rotating universe, as originally pro-
posed by Gödel [1947]. In such a Gödel solution24 a global rotation twists
spacetime everywhere, so that light travelling through it picks up an extra
Doppler-like redshift component beyond the usual expansion. So that objects
at a given true distance appear to recede faster than in a non-rotating FLRW
universe. Analysis by Szigeti et al. [2025] obtains an angular speed today of
ω0 ≲ 0.002 Gyr−1 (roughly one turn in 1012 yr)25 that would resolve the
Hubble tension, while being consistent with local measurements. In further
investigations they want to test their models using rotating N-body simula-
tions to also constrain other cosmological parameters [Szigeti et al., 2025].
A similar analysis by Verma et al. [2025] also favors a rotating cosmology,
influencing the late-time expansion. Future modelling and observations may
provide improved constraints on the rotation parameter and the anisotropy
axis.

Large-Scale Inhomogeneity: If we sit inside (or just outside) a very
extended density pertubation, the light we use to calibrate local distances
would experience a different background than the one probed by the CMB.
A toy model for this is the McVittie metric [McVittie, 1933], which follows
a Schwarzschild metric near a point mass to FLRW at large radii. Photon
geodesics through such a space naturally shift the luminosity-distance rela-
tion in a way that can raise the locally inferred H0. For the effect to matter,
the inhomogeneity must be enormous, comparable to a supercluster in mass
or a gigaparsec void, so that the gravitational field is nearly uniform across
our surveys.26 Since only tidal gradients are observable in GR, a sufficiently

23They achieve this by altering the effective gravitational constant.
24It’s a spatially homogeneous but anisotropic solution falling into the Bianchi Type II

category.
25Such models have a decreasing angular speed with time.
26The associated free-fall time would exceed the age of the universe, leaving no detectable

infall or peculiar velocities.
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smooth inhomogeneity can escape local dynamical tests, while still biasing
the distance ladder.
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4 Measuring H0 from first prin-
ciples

In Section 3.3 it was shown that the Hubble tension can be traced back into
a tension of the calibrator of the local distance ladder, i.e. the absolute mag-
nitude M , and the anchor of the inverse distance ladder, i.e. the comoving
sound horizon scale rd. Furthermore, the direct approach towards H0 can
be considered (quite) model-independent, though it relies on calibration (see
Sec. 3.2.1), while the route using the sound horizon does not require calibra-
tion, but is generally model-dependent (see Sec. 3.2.2). This motivates the
search for a method to determine H0 that:

• is independent from the calibration steps via the local distance ladder,
and the SH0ES calibrated MB,

• does not rely on the CMB inferred value of the sound horizon,

• and does not assume a specific cosmological model.

The original idea proposed by Renzi and Silvestri [2023] utilizes the distance
duality relation (DDR) (see Sec. 2.5), which connects independent distance
measurements, to obtain a calibration-free and model-independent estimate
of H0. Three different cosmological probes are used:

• the transverse and line-of-sight BAO scalesDM (z)/rd andDH(z)/rd =
c/(H(z) rd) (unanchored),

• independent measurements of H(z) from cosmic chronometers,

• uncalibrated, standardized peak apparent magnitudes of SNe Ia mB(z).

These probes span nearly the same redshift range (0 < z ≲ 2), and thus
measure the same volume of the Universe using independent methods. First,
the transverse and radial BAO scales, DM (z)/rd and H(z) rd, can be com-
bined to isolate the product H(z)DM (z), which is independent of the sound
horizon rd,

DM (z)

rd
=

c

H(z) rd
⇒ c = DM (z)H(z). (4.1)
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This combination uses the Alcock-Paczyński (AP) principle, which assumes
statistical isotropy of the observed structures. In practice, the transverse
and radial BAO scales exhibit small residual differences, due to measure-
ment uncertainties and systematics, which lead to mild modulations in the
reconstructed absolute magnitudes across the redshift range. Combining the
two scales reduces the constraining power of the BAO data, but it brings the
advantage that no anchoring with the sound horizon is required. Secondly,
because the BAO and CC data are only given at discrete, non-overlapping
redshifts, one first needs to interpolate the CC measurements to the BAO
redshifts. To do so a non-parametric Gaussian process (GP) reconstruction
of H(z) based on the CC dataset is used. The GP returns, at each BAO
redshift zBAO, a posterior PDF for H(zBAO), from which 104 Monte-Carlo
realizations are drawn at each BAO redshift. The BAO observables DM /rd

and DH/rd are also treated probabilistically, for each zBAO a Gaussian PDF,
centered on the published mean with its quoted 1σ uncertainty, is assumed
and 104 realizations are drawn from that. Then the dependence on H(z) in
the BAO data can be cancelled using the Cosmic Chronometers.1 So that one
gets a direct distance measure [DM (z)]BAO+CC = [DA(z) (1 + z)]BAO+CC
from the combination of BAO and CC data. Or to be more specific at each
BAO redshift one gets a Monte-Carlo ensemble of 104 distance samples.

As a third step, the apparent magnitudes of SN are integrated into the analy-
sis. First, they need to be shifted to the right frame, since they are measured
from Earth they need to be corrected for peculiar motions. The apparent
magnitude measured from Earth m̂B is given by

m̂B(zhel, zHD) = 5 log10

( 1 + zhel
1 + zHD

DL(zHD

)
+M + 25 . (4.2)

To work with the apparent magnitude in the Hubble diagram frame, i.e.
the apparent magnitude corrected for the effect of peculiar motions, the
transformation

mB(zHD) = m̂B(zhel, zHD) − 5 log10

( 1 + zhel
1 + zHD

)
(4.3)

is used. As a second step, the apparent magnitudes mB(z) of the SN data are
also reconstructed at the BAO redshifts using GP, where at each zBAO 104

realizations of mB(z) are drawn. The three datasets then can be combined
for a measure of absolute magnitude at each of the BAO redshifts,

1Since CC directly probe the averaged expansion rate, combining them with BAO data,
which assume an underlying FLRW metric, implicitly assumes that both datasets trace
the same background cosmology. This could be a potential issue in the presence of cosmic
backreaction.
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M
(i)
B (zBAO) = −5 log10

[
(1 + zBAO)

2
[
D

(i)
A (zBAO)

]BAO+CC]
+

+
[
m

(i)
B (zBAO)

]SN
− 25 ,

(4.4)

where the DDR has been used to exchange luminosity distance in Equa-
tion (2.24) for the distance estimate from BAO and CC data. The result{
M

(i)
B

}104

i=1
is a 104-sized Monte-Carlo ensemble of absolute magnitudes at

each BAO redshift. This ensemble fully captures the propagated uncertain-
ties from CC, BAO, and SNe Ia data. Note that the ensembles at different
redshifts remain statistically correlated with each other, as they are all de-
rived from the same underlying GP reconstructions.

From MB to H0

The connecting piece between the absolute magnitude and the Hubble con-
stant is the distance-redshift intercept parameter aB. This quantity is in-
ferred from a sample of low-z SN in the Hubble flow, following Riess et al.
[2016] and Riess et al. [2022] this is taken to be 0.023 < z < 0.15. This red-
shift range allows for a smooth FLRW cosmographic expansion up to third
order redshift (see Eq. (2.42)), without worrying about curvature effects or
higher order terms. Then the observed Hubble diagram is a straight line
whose vertical intercept is

aB = log10
[
cz f(z; q0, j0)

]
− 0.2mB, (4.5)

f(z; q0, j0) ≡ 1 + 1
2(1 − q0)z − 1

6(1 − q0 − 3q2
0 + j0)z

2. (4.6)

The intercept aB is then used to convert estimates of MB into estimates
of H0, since it defines their relation in logarithmic terms,

MB = 5 (log10H0 − aB − 5). (4.7)

This relation also holds at higher redshifts than the ones where the local
quantity aB is inferred. Note that the parameter aB does not bear any phys-
ical meaning, it is simply a convenient quantity linking the SN Ia absolute
magnitude to H0 through Equation (4.7). The cosmologically relevant infor-
mation resides in q0 and j0. The dependence on aB cannot be eliminated if
one wants to infer H0, since only the absolute magnitude is directly measured
from Equation (4.4). There are (at least) two slightly conceptually different
ways to approach the connection between H0 and MB.
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(A) Fixed intercept method. One can adopt a single, externally de-
termined value of the intercept parameter aB measured from a low-redshift
Hubble flow SN subsample. Provided (i) the calibrator SNe (used to de-
termine MB) and (ii) the Hubble flow SNe (used to measure aB) share no
common sources of uncertainty, one can combine a fixed aB with a measured
MB through Equation (4.7), as done in Riess et al. [2016]. This approach
treats MB and aB as statistically independent.

(B) Joint-likelihood method. To account for non-trivial covariance be-
tween the apparent magnitudes of low and high redshift SN, that arise
through shared standardization practices and systematics, a joint likelihood
framework is used to fit the quantities simultaneously [Riess et al., 2022]. The
joint multivariate Gaussian likelihood is constructed from Equations (4.5)
and (4.7),

log Ltot = log LaB (q0, j0) + log LMB
(H0, q0, j0). (4.8)

Finally, the parameters {H0, q0, j0} are sampled with an MCMC using Cobaya.

In summary, the joint-likelihod approach propagates the full covariance be-
tween MB and aB, and thereby ensures that any statistical or systematic
link across the whole redshift range is correctly captured in the final esti-
mate of H0 and its uncertainty. This typically leads to slightly larger but
more realistic error bars.
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5 Data sets

5.1 BAO
In the analysis six BAO data sets are used, obtained from SDSS DR14,
SDSS DR16, DESI DR1, DESI DR2, and two hybrid combinations since the
additional BAO points are very constraining and can be combined, if done
carefully. These datasets provide radial and angular BAO distance measure-
ments at various redshifts, expressed as DH/rd and DM /rd, where DH =
c/H(z), DM = (1 + z)DA(z), and rd is the comoving sound horizon at the
drag epoch. The datasets cover a redshift range from 0.38 ≲ z ≲ 2.5. The
hybrid DESI DR1+SDSS dataset follows the prescription from DESI Col-
laboration [2025b, App. A], combining BAO-only measurements from SDSS
at low redshift with DESI LRG and ELG results at intermediate redshifts,
and Ly-α data from both SDSS and DESI. This approach maximizes effec-
tive volume while preserving radial and transverse distance measurements at
each redshift. For the DESI DR2+SDSS hybrid dataset, a single SDSS BAO-
only point at z = 0.38 has been added, because DESI DR2 does not provide
separate DH and DM measurements at that redshift. In the following Tables
the used BAO measurements are listed.

Tracer z DM /rd DH/rd

BOSS galaxy-galaxy 0.38 10.27 ± 0.15 24.89 ± 0.58
eBOSS galaxy-galaxy 0.51 13.38 ± 0.18 22.43 ± 0.48
BOSS CMASS, eBOSS LRG 0.70 17.65 ± 0.30 19.78 ± 0.46
eBOSS ELG 0.85 19.50 ± 1.00 19.60 ± 2.10
eBOSS QSO 1.48 30.21 ± 0.79 13.23 ± 0.47
eBOSS Ly-α–Ly-α 2.34 37.41 ± 1.86 8.86 ± 0.29
eBOSS Ly-α–QSO 2.35 36.30 ± 1.80 8.20 ± 0.36

Table 5.1: BAO and RSD measurements from SDSS DR14 from various papers
focussing on different tracers: Alam et al. [2017], Bautista et al. [2021], Neveux
et al. [2021], Blomqvist et al. [2019], de Sainte Agathe et al. [2019].
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Tracer z DM /rd DH/rd

Same as DR14 up to z = 1.48
Ly-α–Ly-α 2.33 37.60 ± 1.90 8.93 ± 0.28
Ly-α–quasar 2.330 37.30 ± 1.70 9.08 ± 0.34

Table 5.2: BAO and RSD measurements from SDSS DR16 Alam et al. [2021].

Tracer z DM /rd DH/rd

DESI LRG1 0.510 13.62 ± 0.25 20.98 ± 0.61
DESI LRG2 0.706 16.85 ± 0.32 20.08 ± 0.60
DESI LRG3+ELG1 0.930 21.71 ± 0.28 17.88 ± 0.35
DESI ELG2 1.317 27.79 ± 0.69 13.82 ± 0.42
DESI Ly-α–QSO 2.330 39.71 ± 0.94 8.52 ± 0.17

Table 5.3: DESI DR1 BAO-only measurements from DESI Collaboration [2025c].

Tracer z DM /rd DH/rd

SDSS BAO-only 0.38 10.23 ± 0.17 25.00 ± 0.76
SDSS BAO-only 0.51 13.36 ± 0.21 22.33 ± 0.58
DESI LRG 0.71 16.85 ± 0.32 20.08 ± 0.60
DESI ELG 0.93 21.71 ± 0.28 17.88 ± 0.35
DESI ELG 1.32 27.79 ± 0.69 13.82 ± 0.42
SDSS QSO 1.48 30.69 ± 0.80 13.26 ± 0.55
Ly-α combined 2.33 38.80 ± 0.75 8.72 ± 0.14

Table 5.4: Combined SDSS + DESI DR1 dataset following DESI prescription in
DESI Collaboration [2025c].
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Tracer z DM /rd DH/rd

DESI LRG1 0.510 13.588 ± 0.167 21.863 ± 0.425
DESI LRG2 0.706 17.351 ± 0.177 19.455 ± 0.330
DESI LRG3+ELG1 0.934 21.576 ± 0.152 17.641 ± 0.193
DESI ELG2 1.321 27.601 ± 0.318 14.176 ± 0.221
DESI QS0 1.484 30.512 ± 0.760 12.817 ± 0.516
DESI Ly-α–QSO 2.330 38.988 ± 0.531 8.632 ± 0.101

Table 5.5: DESI DR2 BAO-only measurements from DESI Collaboration
[2025d].

Tracer z DM /rd DH/rd

SDSS BAO-only 0.38 10.23 ± 0.17 25.00 ± 0.76
DESI LRG1 0.510 13.588 ± 0.167 21.863 ± 0.425
DESI LRG2 0.706 17.351 ± 0.177 19.455 ± 0.330
DESI LRG3+ELG1 0.934 21.576 ± 0.152 17.641 ± 0.193
DESI ELG2 1.321 27.601 ± 0.318 14.176 ± 0.221
DESI QS0 1.484 30.512 ± 0.760 12.817 ± 0.516
DESI Ly-α–QSO 2.330 38.988 ± 0.531 8.632 ± 0.101

Table 5.6: DESI DR2 + SDSS at low redshift (z = 0.38) hybrid dataset from
DESI Collaboration [2025d] and Alam et al. [2021].

5.2 Cosmic Chronometer
Cosmic Chronometer, introduced in Section 3.2.3.5, directly probe H(z)
without relying on an explicit cosmological model. In this work 33 CC mea-
surements of H(z) are used, aswell as their 1σ uncertainties reported by the
original authors, in a redshift range from 0 ≲ z ≲ 2 (see Tab. 5.7). To in-
clude correlations, because of shared systematics and data-processing choices,
the full covariance matrix has to be constructed. Following the methodol-
ogy of Moresco et al. [2020b] and the public implementation available at
https://gitlab.com/mmoresco/CCcovariance:

Covtot
ij = Covstat

ij + Covsyst
ij ,

where the systematic part is further decomposed into

Covsyst
ij = Covmet

ij + Covyoung
ij + Covmodel

ij .
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Here, Covmet
ij accounts for uncertainties in stellar metallicity estimation,

and Covyoung
ij models the contamination from residual young stellar popu-

lations [Moresco et al., 2020b]. Both of these are treated as purely diagonal,
as they are uncorrelated between redshift bins. The modeling term Covmodel

ij

captures the systematic uncertainty due to the choice of stellar population
synthesis (SPS) models, initial mass function (IMF), stellar libraries, and star
formation history (SFH). In particular, the IMF term reflects differences be-
tween common IMF choices rather than only one IMF, and its average impact
on H(z) is small compared to the SPS contribution [Moresco, 2023]. It is
assumed to be correlated across all redshifts and is given by [Moresco et al.,
2022],

Covmodel
ij = CovSPS

ij + CovIMF
ij + Covst.lib.

ij + CovSFH
ij ,

where each of the matrices is non-diagonal.
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z H(z) [km s−1 Mpc−1] σH [km s−1 Mpc−1] Reference
0.07 69.0 19.6 Zhang et al. [2014]
0.09 69.0 12.0 Jimenez et al. [2003]
0.12 68.6 26.2 Zhang et al. [2014]
0.17 83.0 8.0 Simon et al. [2005]

0.1791 74.91 3.81 Moresco et al. [2012]
0.1993 74.96 4.90 Moresco et al. [2012]
0.20 72.9 29.6 Zhang et al. [2014]
0.27 77.0 14.0 Simon et al. [2005]
0.28 88.8 36.6 Zhang et al. [2014]

0.3519 82.78 13.95 Moresco et al. [2012]
0.3802 83.0 13.54 Moresco et al. [2016]
0.40 95.0 17.0 Simon et al. [2005]

0.4004 76.97 10.18 Moresco et al. [2016]
0.4247 87.08 11.24 Moresco et al. [2016]
0.4497 92.78 12.9 Moresco et al. [2016]
0.4783 80.91 9.04 Moresco et al. [2016]
0.47 89.0 49.6 Ratsimbazafy et al. [2017]
0.48 97.0 62.0 Stern et al. [2010]

0.5929 103.8 12.50 Moresco et al. [2012]
0.6797 91.6 7.96 Moresco et al. [2012]
0.75 105.0 10.76 Jimenez et al. [2023]

0.7812 104.5 12.20 Moresco et al. [2012]
0.8754 125.1 16.70 Moresco et al. [2012]
0.88 90.0 40.0 Stern et al. [2010]
0.90 117.0 23.0 Simon et al. [2005]
1.037 153.7 19.67 Moresco et al. [2012]
1.26 135.0 65.0 Tomasetti et al. [2023]
1.30 168.0 17.0 Simon et al. [2005]
1.363 160.0 33.58 Moresco [2015]
1.43 177.0 18.00 Simon et al. [2005]
1.53 140.0 14.0 Simon et al. [2005]
1.75 202.0 40.0 Simon et al. [2005]
1.965 186.5 50.43 Moresco [2015]

Table 5.7: Cosmic chronometer H(z) measurements and their 1σ uncertainties
from various sources used in this work.
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5.3 SNe Ia
Two independent Type Ia supernovae datasets are used in this work, that
differ in methodology and redshift cover.

Pantheon+: The Pantheon+ catalogue [Scolnic et al., 2022] consists of
1701 light curves for 1550 spectroscopically confirmed SNe a from 18 differ-
ent surveys. They cover a redshift range of 0.001 ≤ z ≤ 2.26. All photome-
try is cross-calibrated and refit with SALT2 (via SNANA), using rest-frame
300 − 700 nm coverage and −15 to +45 day epochs around the SN peak.
The SN standardization procedure assumed the Tripp (see Eq. (3.2)) with
simulation based bias corrections and a host-mass term [Scolnic et al., 2022].
Compared to Pantheon, Pantheon+ has a larger sample size, especially at
z < 0.01, and an improved treatment of uncertainties in redshift, peculiar
velocity, intrinsic scatter model of SNe, and photometric calibration. The
full covariance matrix is used, which contains calibration, light-curve model,
selection/bias, peculiar velocity, and host-mass systematics.

DES-SN 5Y: The DES-SN 5Y dataset [DES Collaboration, 2024] comes
from observing 10 fields, covering approximately 3 deg2, with approximately
weekly cadence during 2013-2018. Compared to Pantheon+ the DES dataset
is single-instrument. The surveys contain different amount of SNe in differ-
ent redshift ranges (see Fig. 5.1 and Fig. 5.2). The main difference to Pan-
theon+ is that DES uses photometric classification of SNe with SuperNNova
and SCONE, assigning a Type Ia probability. They estimate the contami-
nation with core-collapse SN to be ∼ 6.5% and likely contaminated SN are
weigthed down by increased distance errors [DES Collaboration, 2024]. After
uniform quality cuts and SALT3 light-curve fitting, the DES sample contains
1635 SNe from 0.10 < z < 1.13, as well as an external low-z anchor of 194
Sne (from CfA3, CfA4, CSP(DR3), Foundation SN survey) in the range of
0.025 < z < 0.10, which is not measured by DES directly, for a total of
1829 SNe. Distances are derived with a Tripp standardization including a
host-property step and simulation-based bias corrections within the BEAMS
with Bias Corrections framework. [DES Collaboration, 2024] The full sta-
tistical and systematic covariance matrix covers calibration, intrinsic-scatter
modelling and redshift corrections.
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Figure 5.1: Comparison between the Pantheon+ and DES-SN 5Y redshift dis-
tributions.

Figure 5.2: SNIa data for the apparent corrected magnitude from Pantheon+
and DES-SN 5YR. To avoid overcrowding in the plot, SNe from the DES-SN 5YR
dataset with an error larger than 1 were excluded, resulting in the removal of 75
data points for the plot.
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6 Gaussian Processes

6.1 Fundamentals
A Gaussian Process (GP) is a Bayesian framework for reconstructing func-
tions in a non-parametric way. Instead of specifying a fixed functional form
with a finite number of parameters, a GP defines a probability distribution
over functions, such that any finite set of function values follows a joint
Gaussian distribution [Rasmussen and Williams, 2005].

Formally, a GP can be written as

f(x) ∼ GP
(
m(x), k(x, x′)

)
, (6.1)

where x ∈ RD is the input or training vector of dimension D, m(x) =
E[f(x)] is the mean function, and k(x, x′) = cov (f(x), f(x′)) is the co-
variance function or kernel, which includes information about smoothness,
amplitude, and correlation length of the function values [Rasmussen and
Williams, 2005]. Often the mean function is set to zero, unless there is spe-
cific prior information to motivate a different choice, since the kernel largely
determines the behavior of the model.

In this work, the GP framework is used to interpolate and smooth cosmologi-
cal observables measured at discrete and not matching redshifts. Specifically,

1. the apparent magnitude mB(z) of SN Ia,

2. and H(z) from CC data,

need to be reconstructed at the BAO redshifts, in order to combine them con-
sistently through the distance duality relation in Equation (4.4). Gaussian
Processes provide a principled way to reconstruct these functions, together
with their uncertainties, directly from the data.

6.1.1 Prior and Likelihood
Let the observed dataset be

D = {(xi, yi)}N
i=1, (6.2)
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where yi are noisy measurements of the underlying function f(xi) that should
be reconstructed. Each observation is modelled as

yi = f(xi) + ε, (6.3)

where ε ∼ N (0, Σobs) is the observational noise, with Σobs ∈ RN×N the
observational covariance matrix of the data. The special case of independent
Gaussian noise is Σobs = σ2

nIN .

The GP prior states that the vector of underlying function values at the
training inputs,

f = [f(x1), . . . , f(xN )]
⊤ , (6.4)

is distributed as a multivariate Gaussian,

f ∼ N (0, K(X,X)) . (6.5)

The kernel specifies how correlated the function values are between two input
points xi and xj . [Rasmussen and Williams, 2005]

6.1.2 Posterior and Predictions

For a set of test inputs, X∗ = {x(j)
∗ }M

j=1, where M is the number of locations
at which we want to make predictions, let the corresponding (unobserved)
underlying function values be f∗ = [f(x(1)

∗ ), . . . , f(x(M)
∗ )]⊤. In this work, the

test inputs X∗ correspond to the BAO redshifts, and the vector f∗ contains
the reconstructed mB(z) or H(z) values at those redshifts.

Under the GP prior, the training outputs y (measured at the training in-
puts X) and the function values f∗ at the test inputs are jointly Gaussian
distributed,[

y
f∗

]
∼ N

(
0,
[
K(X,X) + Σobs K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
. (6.6)

Conditioning this joint distribution on the known training data (X, y) and
on the specified test inputs X∗ gives the GP posterior at the test locations

f∗ |X, y,X∗ ∼ N (f̄∗, cov(f∗)) , (6.7)

with predictive mean

f̄∗ = m∗ +K(X∗,X) [K(X,X) + Σobs]
−1 (y − m), (6.8)
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and predictive covariance

cov(f∗) = K(X∗,X∗)−K(X∗,X) [K(X,X) + Σobs]
−1
K(X,X∗).

(6.9)

The predictive mean f̄∗ gives the reconstructed function values at the test
inputs, while the predictive covariance cov(f∗) gives the uncertainties and
correlations between these predictions.1 [Rasmussen and Williams, 2005]
The quality of these predictions depends on the choice of kernel function and
its hyperparameters τ , which determine the structure of the prior covariance
K(X,X). Therefore, in the next section the kernels used in this work are
introduced, before discussing how the kernel hyperparameters get optimized.

6.1.3 Kernels
The most simple kernel is the squared exponential (SE) kernel, also called
the radial basis function (RBF) kernel, defined as

kSE(x, x′) = σ2
M exp

(
−∥x − x′∥2

2ℓ2

)
, (6.10)

where σ2
M is the signal variance and ℓ is the characteristic length scale con-

trolling how quickly correlations decay with distance in input space. The SE
kernel encodes the assumption that the underlying function is smooth and
infinitely differentiable.

RBF kernels can be extended to offer more flexibility in modelling non-
smooth functions, to do this Matérn kernels are used in this work. The
general Matérn kernel with smoothness parameter ν > 0 is

kMatérn(x, x′) = σ2
M

21−ν

Γ(ν)

(√
2ν r
ℓ

)ν

Kν

(√
2ν r
ℓ

)
, (6.11)

where r = ∥x − x′∥, Γ is the gamma function, and Kν is the modified Bessel
function of the second kind. For half-integer ν the expression simplifies to a
product of an exponential and a polynomial. For example, with ν = 3/2:

kν=3/2(x, x′) = σ2
M

(
1 +

√
3r
ℓ

)
exp

(
−

√
3r
ℓ

)
. (6.12)

1That is the big advantage of GPs, more than giving a best fit they provide the pre-
dictive covariance to the predictions.
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While the SE kernel is appropriate for very smooth functions, Matérn kernels
allow for finite differentiability and can better match the statistical proper-
ties of many physical processes. Both, SE and Matérn kernels belong to
the class of stationary kernels, which only depend on the distance ∥x − x′∥.
The choice of kernel, together with its hyperparameters τ , fully specifies the
GP prior covariance K(X,X). [Rasmussen and Williams, 2005] Optimizing
these hyperparameters so that K(X,X) best matches the intrinsic correla-
tion structure of the data, given the observational covariance Σobs, is one of
the most challenging steps in GP regression and will be the focus of the next
section.

6.2 Kernel Optimization: Objective Functions

6.2.1 Log Marginal Likelihood (LML) Method
The most common approach to determine the hyperparameters θ of a GP
kernel is by maximizing the LML of the observed data under the GP model.
The LML is given by

log p(y |X, θ) = −1
2(y − m)⊤

[
K(X,X) + Σobs

]−1
(y − m)−

− 1
2 log det

[
K(X,X) + Σobs

]
− N

2 log(2π) ,

(6.13)

where N is the number of training points, which is the entire dataset for the
LML.

The LML quantifies how plausible the entire observed dataset is under the
GP prior with hyperparameters θ. Therefore, it does not evaluate predic-
tions, instead it asks how well the whole observed data fits the GP model.
Maximizing Equation (6.13) balances how good the fit is (first term) with
model complexity (second term), the latter penalizing overly flexible kernels
via the determinant of the total covariance matrix. In practice, the general
workflow is:

1. Choose a kernel k(x, x′; θ).

2. Compute the LML for the whole dataset for given θ.

3. Determine θ either by:
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• Maximization of the LML (point estimate), or

• Marginalization over θ using its posterior p(θ | y,X) ∝ p(y |X, θ) p(θ),
usually via MCMC sampling.

4. If maximization is used, fix θ to the optimal value and use the kernel in
the GP. If marginalization is used, average predictions over the MCMC
samples of θ.

The advantage of the LML is that it is fully Bayesian and has relatively low
computational cost to implement. Furthermore, it naturally incorporates a
trade-off between data fit and model complexity.

However, the method must be applied with care. Since the LML is computed
using the entire dataset, the GP is effectively trained and evaluated on the
same points. This makes the optimization closer to an interpolation than to a
true test of predictive performance. As a result, the hyperparameters may be
tuned to fit the specific noise realization in the training set, giving an overly
optimistic impression of model performance. If the hyperparameters are fixed
to their maximum-LML values, the resulting predictive uncertainties can be
underestimated, because alternative hyperparameter combinations that also
fit the data well are ignored. The correct procedure is to marginalize over θ
using its posterior distribution, allowing these uncertainties to propagate into
the reconstruction. Hwang et al. [2023] emphasize that the choice of prior
mean m(X) can strongly affect the LML surface and the resulting hyperpa-
rameters. Poorly chosen mean functions can lead to biased reconstructions
and even unphysical features such as oscillations or negative derivatives in
quantities that should be monotonic [Hwang et al., 2023]. Favale et al. [2023]
report that in LML GP reconstructions of H(z) from cosmic chronometers,
the reduced χ2 per degree of freedom χ̃2 can be significantly below 1 for all
kernels tested. While this may partly indicate overestimated observational
uncertainties, it also illustrates that optimizing the LML does not necessarily
guarantee realistic predictive uncertainties.

In summary, the LML method is the conventional choice for GP hyperpa-
rameter optimization, but it must be applied with caution, it evaluates the
plausibility of the observed data under the GP prior, not the GP’s ability to
predict unseen data.

6.2.2 Gaussian Process Monte Carlo (GPMC)
The GPMC method by Renzi and Silvestri [2023] optimizes the kernel by
directly targeting predictive performance and thereby avoiding the problem
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of evaluating the GP on the same points it was trained on. Crucially, in this
method the GP regression is already run inside the optimization loop, for
each trial set of hyperparameters θ, a GP is trained on the training data,
predictions are made for the testing data, and the resulting agreement is
scored via a χ2 likelihood:

−2 ln L(θ) =
[
Ypred(θ) − Ytest

]⊤
Σ−1

[
Ypred(θ) − Ytest

]
, (6.14)

where Σ is the known covariance matrix of the test data, Ypred are the
GP predictions at the test points, and Ytest are the corresponding observed
values.

In practice, the workflow is:

1. Select a training and testing dataset for a given observable.

2. Train a GP with kernel k(τ ) on the training set.

3. From the GP posterior, predict the observable at the testing redshifts.

4. Compare these predictions to the testing dataset by evaluating the χ2

in Eq. (6.14).

5. Adjust τ to minimize χ2, so it is a maximum likelihood estimate
(MLE). There are two options:

• Select the single hyperparameter set τ that minimizes χ2, ignor-
ing the uncertainty in τ , as originally done by Renzi and Silvestri
[2023].

• Ensemble averaging: To capture the uncertainties in the hy-
perparamters one keeps the top N hyperparameter sets ranked
by their χ2. For each set, one computes the GP prediction for
the target function f(z) (e.g. H(z)). Then, the predictions are
stacked and resampled to form the final PDF for f(z). In this
way, one averages over predictions rather than over the hyper-
parameters themselves, so that the nonlinear mapping from τ to
f(z) is correctly preserved.

In the following, different strategies for constructing the training and testing
datasets within the GPMC framework are explored. We first consider the
case where the training and testing sets come from different observational
samples (external dataset), and then look variants where they are drawn
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from the same dataset, using simple train-test splits, K-fold cross-validation,
and leave-one-out validation.

6.2.2.1 Testing with External Dataset

Originally, Renzi and Silvestri [2023] used an external dataset from SNe Ia
as the testing set for the GP optimization of CC data. Specifically, six
measurements of E(z) were employed, which required an extrapolation of
H(z) to z → 0 in order to convert between H(z) and E(z). For the GP
regression of mB(z) from the SNe data2, a binned SNe dataset was used. 3

The main advantage of using a truly out-of-sample dataset is that it provides
a direct test of the GP’s predictive performance on unseen data. Another
advantage of using an external testing set is that it allows the full dataset to
be used for GP training, which is especially important for CC data given the
limited number of available measurements (see Table 5.7, 33 points). The
main drawback is that, when the goal is to analyse the impact of different
dataset combinations on H0 and to test the consistency between SN and
BAO datasets (see Section 5), the inclusion of additional measurements in
the optimization can introduce extra assumptions and systematic effects,
potentially biasing the very datasets one wants to compare. Moreover, there
is no guarantee that the out-of-sample testing data are in any way closer to
the true physical relation than the training data. This concern is particularly
relevant in our case, where we have multiple SN and BAO datasets but only
a single CC dataset for H(z), adding external data to the optimization may
compromise the comparison.

6.2.2.2 Self-Contained Testing on the Optimization Dataset

Simple Train-Test Split In the simplest setup, the dataset is randomly
divided into two subsets: a training set, used to fit the GP and optimize
its hyperparameters, and a test set used to assess predictive performance.
To avoid biased evaluation, both sets should cover the full redshift range.
The optimal train-test ratio depends on dataset size, large samples can be
split more evenly, while small ones require a minimal test fraction to keep
the reconstruction stable. For very sparse datasets, cross-validation is gener-
ally preferable, as it uses all points for both training and evaluation without
permanently discarding data for testing. This consideration is particularly

2Renzi and Silvestri [2023] analyzed the Pantheon SN dataset.
3However, this is not strictly an external dataset, since the same individual SNe still

contribute to the binned points.
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relevant for datasets with few points, such as the Cosmic Chronometer sam-
ple (N = 33), where removing even a small subset substantially reduces the
available information. For the CC data a simple train-test split highly de-
pends on the way the split is done and therefore should not be used. Applying
a simple split to the SN data still produces stable reconstructions that are
almost independent on the way the split is done, but the resulting MB val-
ues, computed via Equation (4.4), exhibit substantially higher correlations
between redshifts compared to cross-validation. This is likely because the
evaluation is based on a single, fixed partition of the dataset, the training set
remains dense across the redshift range, so test points are often located very
close in redshift to training points. In such cases, the GP can interpolate with
minimal uncertainty, which inflates the apparent correlation structure and
yields overly optimistic performance estimates. Cross-validation averages re-
sults over multiple partitions, including configurations where the model must
predict in less densely covered regions, thus providing a more robust and re-
alistic measure of generalization.

K-Fold Cross-Validation (CV) In K-fold CV, the dataset is first split
into K equally sized subsets, or ”folds”. For each run, one fold is kept aside
as the test set while the remaining K − 1 folds are used as the training set.
This process is repeated K times, each time holding out a different fold for
testing, so that every point in the dataset is used once for testing and K − 1
times for training. The log-likelihood from each fold is summed and then
divided by the number of folds used, giving the average log-likelihood, that
is used as the optimization target. Since the average smooths over fold-to-
fold variations, it will generally not match the optimum of any single fold,
and it is likewise not guaranteed to reach the global optimum. Instead, the
optimizer seeks hyperparameters with good average performance across all
splits. Compared to a single train-test split, this approach is more stable and
avoids the problem of the dependency on the specific way the split is done.
It also produces reconstructions that are less correlated than those from a
simple train-test split. In the GPMC framework, an important benefit is
that in Eq. (6.14) the covariance matrix Σ always refers to the test points
of the current fold, as every data point is eventually part of a test fold,
the complete covariance matrix of the dataset is effectively used during the
process. This is an advantage over the simple train-test split or the external
dataset validation, where only the covariance of the specific test set enters
the likelihood.

A slight drawback is the increased computational cost, since K separate GP
fits are required, and the need to choose K carefully. A small K can lead to
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high variance in the estimates (since each test set is large and the training
set is small), while a very large K may result in high computational load and
overly optimistic estimates for some datasets. In many cases, values between
K = 5 and K = 10 give a reasonable balance.

It is good practice to keep a final holdout set that is never seen during train-
ing or testing. This set is then used to select the kernel, choosing the one that
yields the χ2 per degree of freedom closest to unity on the holdout. This is
advisable because, in K-fold CV every data point is used for training in mul-
tiple folds, so evaluating the final model only on the folds risks overestimating
its predictive power, the holdout set provides an unbiased check.

6.3 Implementation

6.3.1 Choice of Method
After testing various GP optimization strategies, the method adopted for the
final reconstructions is the GPMC approach with K-fold CV. This choice is
motivated by the fact that GPMC directly targets predictive accuracy on
unseen data, rather than solely maximizing the LML, which can overfit the
noise in the training sample and underestimate uncertainties. The use of
K-fold CV further improves robustness by averaging predictive performance
over multiple train-test splits, ensuring that the selected hyperparameters
perform consistently well across the dataset and not just for a specific split.
A key advantage is that all data points are used for training while each also
serves once as a test point, this is particularly important for CC data, and
ensures that the full observational covariance matrix of the dataset is taken
into account. About 10 − 20% of the data are used as a final holdout set
for kernel selection. Once the kernel is chosen, the full dataset is retrained
and partioned into K folds. In the choice of K there is a tradeoff, larger K
increase the training fraction but vies smaller test sets, whereas a small K is
computationally cheaper but makes the result more sensitive to the particular
random fold assignment. Compared to train-test split the distribution of
hyperparameters is much more narrow for K-fold CV, particularly for the
SN data. In practice, K = 6 for CC and K = 7 for SN reconstructions are
chosen, as this provides a reasonable balance between computational cost,
stability, and test set size.
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6.3.2 Kernel selection

6.3.2.1 CC dataset

To determine the best kernel for the CC dataset, the Matérn kernels with
smoothness parameters ν ∈ {0.5, 1.5, 2.5, 3.5, 4.5} are tested. For each ν, the
kernel amplitude σM and characteristic length scale ℓ are optimized using
the Optuna optimization framework, maximizing the K-fold cross-validated
log-likelihood on the training subset. Each kernel is then evaluated on 100
random holdout sets (see an example holdout reconstruction in Fig. 6.1),
each containing Nholdout = 6 CC data points. For each holdout set, the GP
is retrained on the complementary training data using the top-N ensemble
from the cross-validation phase, where the top-N ensemble is chosen to be all
trials within a tight band ∆L of the best CV log-likelihood, and predictions
are made for the held-out points. Because of the limited size of the CC data
and uneven redshift coverage the GP hyperparameter landscape is relatively
flat, variations in ℓ can be traded for changes in σM with little change in
the CV score. Predictive performance is quantified by the total χ2

holdout
with respect to the CC observational uncertainties, and an ”effective” value
χ2

eff ≡ χ2
holdout/Nholdout is computed to account for the number of degrees

of freedom. The final metric for each kernel is obtained by averaging these
quantities over all 100 holdout realizations. Table 6.1 reports the results.
The kernel whose mean χ2

eff is closest to unity, is selected for subsequent GP
reconstructions of H(z). According to this the Matérn kernel with ν = 3.5
is preferred.

Kernel Mean χ2
holdout Mean χ2

eff
Matérn(ν = 0.5) 4.086 0.681
Matérn(ν = 1.5) 4.536 0.756
Matérn(ν = 2.5) 4.577 0.763
Matérn(ν = 3.5) 5.892 0.982
Matérn(ν = 4.5) 6.270 1.045

Table 6.1: Results of kernel selection criteria for the CC data. GP performance
is evaluated on 100 random holdout sets (Nholdout = 6 points each) for different
Matérn smoothness parameters ν. The column ”Mean χ2

holdout” reports the average
total χ2 over all holdout sets, while ”Mean χ2

eff” gives the average χ2 per degree
of freedom (χ2

holdout/Nholdout). The best kernel with the mean χ2
eff value closest

to unity is highlighted in bold.
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Figure 6.1: Example GP reconstruction of H(z) from the Cosmic Chronometer
dataset using the GPMC method with K-fold cross-validation (K = 6), shown for
one specific holdout split and a Matérn kernel with ν = 3.5. The solid line is the
ensemble averaged mean from the top-N trials, with shaded bands denoting 1σ,
2σ, and 3σ intervals.

Figure 6.2: GP reconstructions of H(z) from the CC dataset using Matérn
kernels with different smoothness parameters ν. Each curve shows the mean pre-
diction from the top-N hyperparameter (300 trials in total) ensembles selected via
cross-validation (K = 6), with shaded regions indicating the 1σ dispersion across
the ensembles. The ΛCDM model from Planck 2018 is shown for reference.
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Figure 6.3: Histograms of the optimized hyperparameters for CC reconstruction,
obtained from 100 CV trials (K = 6) for each Matérn parameter ν. Solid vertical
lines mark the mean over all trials, dashed lines indicate the mean over the top
ten trials, and the red dashed line is the mean observational error in H(z).
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The reconstructions for the five Matérn kernels are shown in Figure 6.2.
They agree well in the range 0 < z < 1.5, while in regions without data
(z ≲ 0.05 or z ≳ 2) the extrapolations naturally diverge with widening
uncertainties. For ν ≤ 1.5, the reconstructions show unstable behaviour: a
downward drift at high z and, in the case of ν = 0.5, an artificial bump
around 1 < z < 1.5 that closely tracks individual data points. This can be
traced to their hyperparameter posteriors (See Fig. 6.3), which favour short
length scales ℓ and small amplitudes σM , making the GP overly sensitive to
local fluctuations and limiting its extrapolation power.

By contrast, for ν ≥ 2.5 the posteriors shift toward larger ℓ and σM , yielding
smoother reconstructions and more stable high-z behaviour. Among these,
the ν = 3.5 kernel is particularly well balanced, its preferred amplitude
clusters around σM ∼ 20 km s−1 Mpc−1, close to the mean observational
uncertainty of the CC dataset, which explains its good compromise between
local adaptability and long-range stability. Taken together with the holdout
metrics in Table 6.1, these considerations motivate the choice of the ν = 3.5
Matérn kernel for the final CC reconstruction.

6.3.2.2 SN datasets

For the SN datasets the kernel gets selected in an analogous procedure to the
CC. The results for Pantheon+ using the holdout criterion can be seen in
Table 6.2, with the best fitting kernel being the Matérn kernel with ν = 3.5.
The advantage of the SN datasets is that they contain much more points,
making the reconstructions much more stable and essentially kernel indepen-
dent in the regions with data coverage (see Fig. 6.4a and 6.4b). As a result,
fewer optimization trials with Optuna are required for the SN case. The only
notable exception is the very rough kernel with ν = 0.5, which shows an ar-
tificial rise at low redshift and a slight downward trend at high redshift in
both SN datasets, illustrating its poor extrapolation behaviour. The reason
is the same like for the CC, its sample paths are continuous but not differen-
tiable, that’s why it is not very smooth and has a short effective correlation.
The other kernels ν ≥ 1.5 are smoother, with longer ranged correlations,
which leads to a more stable behavior at the boundaries. All kernels ν ≥ 1.5
are visually nearly indistinguishable in the region with data coverage (see
Fig. 6.4a and 6.4b) and show only minor variations in the holdout tests χ2

(see Tab. 6.2 and 6.3). Across tested kernels the hyperparameter distribu-
tions vary only slightly, yielding nearly identical reconstructions. Given these
results and for consistency and comparability between the two SN datasets,
the Matérn kernel with ν = 3.5 for both Pantheon+ and DES is chosen for
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the final reconstructions.

Kernel ν Mean χ2
holdout χ2

eff
Matérn(ν = 0.5) 197.540 1.162
Matérn(ν = 1.5) 179.012 1.053
Matérn(ν = 2.5) 177.838 1.040
Matérn(ν = 3.5) 171.684 1.004
Matérn(ν = 4.5) 171.190 1.007

Table 6.2: For 10 random holdout seeds, 10% of the sample is withheld, the rest
is used for K-fold CV (K=7), and the χ2

holdout is computed on the held-out set.
Each holdout contains 170 SNe. The table reports the mean of χ2

holdout over the
10 holdouts and the corresponding mean reduced value.

Kernel ν Mean χ2
holdout χ2

eff
Matérn(ν = 0.5) 226.005 1.235
Matérn(ν = 1.5) 193.065 1.055
Matérn(ν = 2.5) 186.660 1.020
Matérn(ν = 3.5) 182.085 0.995
Matérn(ν = 4.5) 182.451 0.997

Table 6.3: Mean χ2 values on 10 random holdout sets of the DES-SNY5 sample
(N = 1829). Each holdout contains 183 SNe. While all kernels perform com-
parably and are well calibrated, ν = 4.5 is marginally preferred, with ν = 3.5
essentially indistinguishable.
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(a) Pantheon+ GP reconstructions of mB(z) with varying Matérn smoothness ν.

(b) DES-SN 5Y GP reconstructions of mB(z) with varying Matérn smoothness ν, points
with an error larger than one are omitted in the plot to avoid overcrowding (75 points).

Figure 6.4: SN Ia GP reconstructions of mB(z) with Matérn kernels for
Pantheon+ and DES-SN 5Y across several smoothness parameters (ν ∈
{0.5, 1.5, 2.5, 3.5, 4.5}). In both panels, curves show the GP mean with 1σ bands
from the top-N trials selected via K=7 cross-validation. For DES, training data
extend to zmax ≃ 1.12, curves at higher z are extrapolations and carry larger un-
certainties.
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6.4 Changes in Methodology
Several key methodological changes have been made in this work compared
to Renzi and Silvestri [2023]:

• Internal validation only: No external dataset is used for test points,
training and validation is performed within the same dataset to focus
on testing the consistency between the datasets used and to minimize
bias and systematics from including external data.

• K-fold CV with full training covariance: K-fold cross-validation en-
ables the use of the full observational covariance of the training data.
In Renzi and Silvestri [2023] only the test-point covariance is used.
This choice yields slightly larger error bars here, but more realistic and
robust ones.

• Hyperparameter ensembling: Instead of committing to a single maximum-
likelihood hyperparameter set, predictions are averaged over the top
trials within a fixed ∆L band, capturing hyperparameter uncertainty
and reducing the sensitivity to flat regions of the hyperparameter space.

• Kernel selection via repeated holdouts: A new kernel selection step adds
a χ2 computed on random holdout sets, looping over many holdout re-
alizations reduces sensitivity to any single split, and kernels are ranked
by the mean (reduced) holdout χ2.

• Joint-likelihood method: Rather than fixing aB, a joint likelihood anal-
ysis is performed to account for correlations between low- and high-z
SNe (shared standardization and systematics) and to infer q0 and j0
alongside H0.

• Emphasis on the data-driven quantity: The analysis here highlights the
absolute magnitude MB as the primary data driven outcome, with H0
secondarily derived via log10H0 = aB + 0.2MB + 5.

• Optimization details: The optimization algorithms have been changed
to more effectively sample the hyperparameter space.

• New data: Two new CC measurements at sparsely sampled redshifts are
incorporated together with updated CC systematics and the full covari-
ance matrix; two newer SN catalogues (Pantheon+ and DES-SN 5YR)
with substantially more SNe are used; and five additional BAO datasets
are included (SDSS DR16, DESI DR1, DESI DR1+SDSS, DESI DR2,
DESI DR2+SDSS(z = 0.38)).
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7 Results and Discussion

All results in this chapter follow from the configuration detailed in Sec-
tion 6.3. For clarity, the discussion in this chapter is structured to trace
the analysis workflow.

7.1 Results of this Work
Figure 7.1 shows the final GP reconstruction of H(z) from cosmic chronome-
ters. The reconstruction is well within 1σ of ΛCDM. The mean prediction
lies slightly above the ΛCDM curve in the range 0.5 ≲ z < 2.5, which co-
incides with the region where CC data is sparse. The GP extrapolation of
z → 0 yields H0 = 67.6 ± 7.7 km s−1 Mpc−1, in good agreement with other
non-parametric CC reconstructions of H(z) (e.g., Renzi and Silvestri [2023],
Favale et al. [2023]). The residuals in the bottom panel of Fig. 7.1 exhibit no
systematic offset and are broadly consistent with zero, confirming agreement
between the GP reconstruction and the CC dataset.

In Figure 7.2 the reconstructed angular diameter distance, from the combina-
tion of BAO and CC data, at the BAO redshifts is shown. The BAO datasets
are broadly consistent with slight deviations around z ≈ 0.5 and z ≈ 0.7 be-
tween SDSS DR16 and DESI DR1. These differences have been discussed
here DESI Collaboration [2025c] and removed with the release of DESI DR2.
The known 2σ discrepancy, e.g. see Ye and Lin [2025], between DESI BAO
and CMB data under ΛCDM is not visible here, because of the larger un-
certainty in the CC measurements compared to the CMB. The mild upward
trend of the CC H(z) in Figure 7.1 compared to the ΛCDM expansion rate,
directly translates into the BAO reconstructions to be slightly below the
curve in Figure 7.2. The effect is small and not statistically significant with
current errors.

Figure 7.3 displays the final GP reconstructions of mB(z) for Pantheon+
and DES-SN 5YR datasets. In both cases the residual panels show a sym-
metric scatter about zero with no redshift trends visible, indicating a good
agreement between the GP fit and the SN data. Compared to the CC re-
construction, the SN GP uncertainty bands are much tighter, due to their
much greater data size. Between 1.5 < z < 2.5 the DES uncertainty
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bounds are wider than the ones of Pantheon+, since DES has no data above
z > 1.2. Nevertheless, due to the large number of SN in DES the extrap-
olation remains relatively tight. In Figure 7.4 the two reconstructions are
compared against each other. The residuals in Figure 7.4a show a catalogue
offset, for z ≲ 1.2 the DES points lie systematically below Pantheon+ by
∼ 0.04 mag. This is also clearly visible in Figure 7.4b, where the residual
∆mB(z) ≡ mP+

B (z) −mDES
B (z) is negative over the redshift range in which

DES has data, so that SN from Pantheon+ are slightly brighter (numeri-
cally smaller magnitudes). A localized feature at 0 < z ≲ 0.1 coincides with
the DES anchor subset, in this redshift range DES relies on a few external
samples. For foundation low-z SNe common to both Pantheon+ and DES,
Efstathiou [2025] finds a systematic offset of 0.04-0.05 mag, which matches
the bump in Fig. 7.4b for 0 < z < 0.1. Interestingly, he notes that such a
photometric offset could mimic the effect of dynamical dark energy. Note,
that the anchor induced bump does not directly affect the reconstructions at
the BAO points (see residuals in Figure 7.4a), since the lowest BAO point
is at z ∼ 0.4. Near z ≃ 0.1 the DES anchor subset transitions to the main
DES survey sample. For SNe in common to both the Pantheon+ and the
main DES sample Efstathiou [2025] finds a smaller mean offset of ∼ 0.01 mag,
which can be explained by the different light-curve fitters (SALT2 vs. SALT3)
and varied bias corrections. In Figure 7.4b one can see that the residual be-
tween Pantheon+ and DES in the region 0.1 ≲ z ≲ 1.2 is slightly higher
(few ×10−2 mag). The key reasons are: (i) the catalogues do not contain the
same set of SNe and the GPs are trained on the full catalogues, (ii) there are
processing (fitter and bias corrections) and methodological (photometric ver-
sus spectral confirmation of SNe Ia) differences between the two catalogues,
(iii) here GP means are compared not point estimates, (iv) the GP smoothly
bridges the anchor to the main sample transition, (v) most of the incommon
SN cluster between 0.2 < z < 0.4, in that range the residual is closer to zero,
the SN at higher z are not shared. It is important to note that, especially
at higher redshift, the DES-SN 5YR catalogue does not rely on spectroscopic
confirmation of SN. This opens the possibility of contamination from core
collapse SN, which could bias the sample. The offset in magnitudes can also
be seen in the residuals at the BAO points in Figure 7.4a. At z ≳ 1.5 the
residual in Figure 7.4b turns toward zero and can flip sign, however this
is most likely an artifact of the GP extrapolation in that region and not
statistically significant.

The catalog differences in the reconstructed mB propagate almost one-to-
one into the inferred absolute magnitudes at the BAO redshifts, see Equa-
tion (4.4) where the DA(z) term from BAO+CC is identical for the two SN
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datasets. Figure 7.5 shows that, for 0.38≲ z≲ 1.5, DES has systematically
larger absolute magnitudes than Pantheon+ by ≃ 0.03 − 0.05 mag, mirror-
ing the offset in mB discussed previously. Additionally, a slight modulation
is visible in the reconstructed MB’s in Figure 7.5. This reflects how BAO
measurements are converted into DA, small differences between the trans-
verse and radial BAO scales, which we compress into an isotropic estimate
DA(z)H(z), can shift DA slightly with z. This then propagates into MB via
the DDR used in Equation (4.4). Consistency tests of the DDR in this anal-
ysis are compatible with unity at the 1σ level. Importantly, no clear drift
with redshift is seen, which could indicate a mismatch in how the probes
trace the expansion history or a breakdown of the GP kernel at high red-
shift. The KDE panels in Figure 7.6 make this clear, the individual redshift
colored posteriors cluster around the combined black MCMC posterior with
no systematic tilt. The inferred absolute magnitudes at the highest BAO
redshift carry large uncertainties (see Fig. 7.5 and 7.6) and contribute very
little weight to the final result, removing them does not change the combined
mean or uncertainty in any significant way. The final results for the combined
absolute magnitude are presented in Figure 7.7. Across all dataset combina-
tions the results are consistent at the 1σ level and clearly cluster closer to the
Planck-ΛCDM required absolute magnitude. Quantitatively, the posteriors
lie within 0.1-1.6σ of Planck across BAO choices (DES5YR: 0.47-1.62σ; P+:
0.08-0.81σ). The only mild outlier is the hybrid DESI DR1+SDSS combina-
tion, which shows a small shift relative to the others, likely reflecting details
of how the two BAO sets are merged. In contrast, they are 1.3-3.1σ away
from the SH0ES calibration using the Cepheid distance ladder (DES5YR:
1.34-2.39σ; P+: 2.09-3.10σ). Additionally, also a systematic SN catalogues
offset is present, for every BAO set MDES

B is less negative than MP+
B by

≃ 0.04 mag, matching the ∆mB offset seen earlier (see Tab. 7.1). The ab-
sence of a statistically significant difference between the absolute magnitudes
inferred from the two SN datasets is due to the limited constraining power
of the CC data. With a tighter anchor, such as CMB-calibrated BAO, dif-
ferences between the SN samples could become statistically significant. An
additional interesting consideration interpreting possible differences between
datasets is the sky coverage of the surveys. DES observes on the southern
hemisphere, while DESI and SDSS look at the northern sky, the Pantheon+
catalogue is a bit mixed across hemispheres. In the presence of anisotropies,
such differences in sky coverage could in principle contribute to systematic
shifts between different datasets.
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Figure 7.1: Final GP reconstruction of H(z) from CC data using a Matérn
kernel with ν = 3.5. Hyperparameters are selected via K-fold CV (K = 6), the
mean curve and shaded 1-3σ bands come from the top-N ensemble (trials within
∆L = 0.05 of the best, 300 trials in total). Vertical dotted lines mark DESI DR2
BAO redshifts and the solid black curve shows the Planck ΛCDM prediction. The
lower panel shows Hdata − HGP residuals, with the GP 1σ band and the ΛCDM
minus GP mean difference.
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Figure 7.2: On the top the reconstructed angular diameter distance from six
BAO datasets combined with the GP reconstruction of H(z) from CC at the BAO
redshifts. For each BAO redshift X ≡ c DM /[DH(1 + z)] is sampled and divided
by GP draws of H(z) to obtain DA. The markers are the posterior medians, and
the uncertainty bars are the 16-84% credible intervals. For better visibility points
at same redshift have a tiny horizontal jitter. The dashed curve corresponds to
DA obtained from ΛCDM with values from Planck Collaboration [2018]. In the
bottom the fractional residual with respect to ΛCDM is shown.
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(a) GP reconstruction for Pantheon+ mB(z) with Matérn kernel (ν = 3.5).

(b) GP reconstructions for DES-SN 5Y mB(z) with Matérn kernel (ν = 3.5), with 75
SNe (σmB > 1 mag) omitted in the plot for better visibility.
Figure 7.3: GP reconstructions of mB(z) from top-N ensemble (trials within
∆L = 0.01 of the best, 50 trials total). Shaded bands show 1-3σ, the lower panels
plot ∆mB ≡ mB − mGP

B , and vertical dotted lines mark DESI DR2 redshifts.
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(a) In the top pannel colored ticks indicate which BAO dataset have data at the at redshift.
GP predictions for the apparent magnitudes at the BAO redshifts for all combinations of
SN dataset and BAO redshifts with a fiducial mB curve. The residual panel shows the
difference mP+

B − mDES
B in predictions for the two SN datasets.

(b) GP means and 1σ uncertaintes for SN datasets. Colored bars indicate catalogue red-
shift coverage. In the residual plot the grey band shows σdiff(z) = (σ2

P+(z)+σ2
DES(z))

1/2.

Figure 7.4: Comparison of SN GP reconstructions.
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Figure 7.5: Means with 1σ uncertainties of the reconstructed MB at each BAO
redshift. Results are obtained from the joint BAO+CC angular diameter distance
and SNe Ia reconstructions of mB (DES-SN 5YR and Pantheon+) utilizing the
distance duality relation.
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(a) Using DES-SN 5YR as the SNe sample.

Figure 7.6: KDE plots for reconstructed MB’s at the BAO redshifts, grouped by
BAO dataset. In each panel, semi-transparent colored curves are the per-redshift
posteriors; the solid black curve is the MCMC posterior of the combined MB.

90



Valentin Reichel

(b) Using Pantheon+ as the SNe sample.

Figure 7.6: KDE plots for reconstructed MB’s at the BAO redshifts, grouped by
BAO dataset. In each panel, semi-transparent colored curves are the per-redshift
posteriors; the solid black curve is the MCMC posterior of the combined MB.
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Figure 7.7: Posterior means and 1σ uncertainties of the absolute magnitude MB

obtained from the combination of CC, BAO and SN data via the distance-duality
relation. The vertical axis lists the BAO datasets all combined with the same CC
data, with the two SNIa reconstructions shown side by side. The light green band
marks the calibrated MR22

B = −19.253 ± 0.027 mag inferred by Riess et al. [2022]
using the Cepheid distance ladder, while the light blue band marks the MB =
−19.403 ± 0.010 mag required by the Planck Collaboration [2018] measurements
under ΛCDM.
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BAO / SN MB

[mag]
vs Planck

(σ)
vs SH0ES

(σ)
∆MB

[mag]

SDSS DR14
DES-SN 5YR −19.36 ± 0.05 0.83 1.90
Pantheon+ −19.40 ± 0.05 0.08 2.54 −0.04

SDSS DR16
DES-SN 5YR −19.36 ± 0.05 0.86 1.82
Pantheon+ −19.40 ± 0.05 0.10 2.52 −0.04

DESI DR1
DES-SN 5YR −19.38 ± 0.05 0.47 2.03
Pantheon+ −19.42 ± 0.06 0.30 2.69 −0.04

DESI DR1 + SDSS
DES-SN 5YR −19.33 ± 0.05 1.62 1.34
Pantheon+ −19.36 ± 0.05 0.81 2.09 −0.04

DESI DR2
DES-SN 5YR −19.38 ± 0.05 0.48 2.39
Pantheon+ −19.42 ± 0.05 0.34 3.10 −0.04

DESI DR2 + SDSS
DES-SN 5YR −19.37 ± 0.04 0.81 2.32
Pantheon+ −19.41 ± 0.04 0.09 3.03 −0.04

Table 7.1: Absolute magnitude MB from the joint SN+BAO+CC analysis. The
quoted values are posterior means with 1σ errors, together with their tension in
units of σ with Planck under ΛCDM (MB = −19.40 ± 0.01 mag) and SH0ES
Cepheid calibration (MR22

B = −19.25 ± 0.03 mag). The rightmost column shows
the offset between Pantheon+ and DES-SN 5YR for each BAO dataset.

After estimating MB at the BAO redshifts, the expansion parameters from
the joint likelihood of Equation (4.8) can be estimated to account for the
non-trivial correlation between low and high redshift SNe. The results in
Figure 7.8 and Table 7.2 show that H0 from Pantheon+ is systematically
higher than from DES-SN 5YR by about 1.3-1.4 km s−1 Mpc−1 across all
BAO choices. Yet, the two SN catalogues give statistically consistent results
within 1σ (0.49-0.67σ). Across all dataset combinations, the relative 1σ
error on H0 is between ∼ 2.0 − 2.7%. Each determination is statistically
consistent with the Planck ΛCDM value of H0 (DES5YR: 0.21 to 0.59σ;
P+: 0.19 to 1.26σ from Planck) and shows a 2.3 to 3.6σ tension with the
SH0ES H0 (DES5YR: 2.66 to 3.62σ; P+: 1.90 to 3.10σ). The deceleration
and jerk parameters are nearly identical between catalogues (q0 ≈ −0.57
to −0.58 and j0 ≈ 1), with q0 agreeing well with the result from Riess
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et al. [2022] on Pantheon+, and with j0 only poorly constrained in the low
redshift range 0.023 < z < 0.15. Since q0 and j0 agree between the two SN
datasets, any difference in H0 must enter through the apparent magnitudes
via the intercept, aB(z) = log10

[
c z f(z; q0, j0)

]
− 0.2mB(z). Recall that aB

is determined from the low-z SNe (0.023 < z < 0.15), independent of BAO.
In this range the SN datasets show a photometric offset with mP+

B < mDES
B

(see Figs 7.4b), which translates into to a larger intercept for Pantheon+.
The inferred intercepts are

aDES
B = 0.6981 ± 0.0014,
aP+

B = 0.7146 ± 0.0010,
(7.1)

a tension exceeding 9σ. The Pantheon reference aB = 0.7127 ± 0.0012 [Riess
et al., 2016] lies within 1.2σ of aP+

B . Note that, Pantheon+ contains more
low-z SNe and uses slightly different processing, leading to a different mean
and smaller error.

The aB allows to link the measured absolute magnitudes at the BAO redshifts
to an H0 estimate via Equation (4.7), rewriting this yields

log10H0 = aB + 0.2MB + 5. (7.2)

If one defines all differences as Pantheon+ minus DES, ∆X ≡ XP+ −XDES.
Then the numerical differences are

∆aB = 0.7146 − 0.6981 = +0.0165, ∆MB ≈ −0.040 mag.

Plugging this into Equation (7.2) yields

∆ log10H0 = ∆aB︸ ︷︷ ︸
+0.0165

+ 0.2 ∆MB︸ ︷︷ ︸
−0.008

≈ +0.0085,

so that the difference in the Hubble constant is,

HP+
0

HDES
0

≈ 10 0.0085 ≈ 1.02,

that is the ∼ 2% increase, about +1.3 km s−1 Mpc−1 at h = 0.67, one can
see in Table 7.2. To summarize: mP+

B < mDES
B ⇒ aP+

B > aDES
B and although

MP+
B is more negative (partially loweringH0), the larger intercept dominates,

leaving Pantheon+ with the higher H0.
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Figure 7.8: Posterior means and 1σ uncertainties of H0 obtained from the joint-
likelihood analysis, which combines the low redshift Hubble flow SNe with high-
redshift SN, BAO, and CC data into a single MCMC. The vertical axis lists
the BAO datasets all combined with the same CC data, with the two SNIa re-
constructions shown side by side. The light green band marks the value by
Riess et al. [2022], HR22

0 = 73.04 ± 1.04 km s−1 Mpc−1, while the light blue
band marks the value by Planck Collaboration [2018] under ΛCDM, HP 18

0 =
67.4 ± 0.5 km s−1 Mpc−1.
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BAO / SN H0
[km s−1 Mpc−1] q0 j0

SDSS DR14
Pantheon+ 68.47 ± 1.65 −0.58 ± 0.08 1.00 ± 0.54
DES-SN 5YR 67.05 ± 1.60 −0.57 ± 0.13 1.00 ± 0.55

SDSS DR16
Pantheon+ 68.45 ± 1.67 −0.57 ± 0.08 1.00 ± 0.55
DES-SN 5YR 67.01 ± 1.62 −0.57 ± 0.12 1.03 ± 0.55

DESI DR1
Pantheon+ 67.76 ± 1.83 −0.58 ± 0.08 1.00 ± 0.54
DES-SN 5YR 66.53 ± 1.77 −0.57 ± 0.13 0.99 ± 0.54

DESI DR1+SDSS
Pantheon+ 69.46 ± 1.57 −0.57 ± 0.08 1.00 ± 0.55
DES-SN 5YR 68.14 ± 1.52 −0.58 ± 0.13 1.01 ± 0.54

DESI DR2
Pantheon+ 67.77 ± 1.49 −0.58 ± 0.08 1.01 ± 0.55
DES-SN 5YR 66.47 ± 1.49 −0.58 ± 0.13 1.01 ± 0.55

DESI DR2 + SDSS
Pantheon+ 68.13 ± 1.39 −0.57 ± 0.08 1.00 ± 0.55
DES-SN 5YR 66.82 ± 1.37 −0.57 ± 0.13 1.00 ± 0.54

Table 7.2: Posterior means and 1σ uncertainties for H0, q0, j0 from the joint
likelihood analysis using MCMC. DES systematically smaller values of H0, but
within 1σ of Pantheon+. The q0’s and j0’s are almost identical for all datasets,
while j0 is not getting very constrained in the redshift range of interest.

7.2 Comparison to Similar Methodologies
The result for SDSS DR14 + CC combined with Pantheon+ (MB = −19.40 ±
0.05 mag and H0 = 68.47 ± 1.65 km s−1 Mpc−1) is in excellent agreement
with the similar analysis of Renzi and Silvestri [2023], who report MB =
−19.36 ± 0.05 mag and H0 = 68.5 ± 1.5 km s−1 Mpc−1, using the Pantheon
catalogue instead of Pantheon+ and a slightly different methodology (see
Sec. 6.4).

Using the same idea with the DDR and data from DESI DR1 and Pantheon+,
Guo et al. [2025] obtain H0 = 68.4+1.0

−0.8 km s−1 Mpc−1, consistent with the
67.76 ± 1.83 for the same data in this work. Their noticeably smaller error
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bars likely reflect methodological choices that significantly compress uncer-
tainties: (i) treating the BAO redshifts as independent when combining them
(neglecting correlations between them); (ii) anchoring the SN and CC GP’s
to a ΛCDM (or w0wa) mean, which shrinks variance but also biases the re-
constructions toward the prior mean; (iii) possibly under propagating CC
systematics by not using a full CC covariance. Additionally, an external
prior on aB from Pantheon is used, even though they use the Pantheon+
data, and their per-redshift H0 error appear uneven (e.g. smaller at z = 2.33
than at z = 1.317), a counter intuitive pattern. Despite these caveats, their
H0 remains statistically consistent with the results here at the 1σ level.

A model-independent study by Favale et al. [2023] findsMB = −19.31+0.09
−0.11 mag

and H0 = 71.5 ± 3.1 km s−1 Mpc−1 using Pantheon+ (excluding SNe em-
ployed by SH0ES), BAO data from various surveys, and CC data. In terms
of the absolute magnitude, their host-excluded value is a bit brighter than
the range estimated here, but statistically consistent given the uncertain-
ties. Their corresponding H0 is consequently also higher by 1-1.5σ. The
main reason for this difference is the GP setup, hyperparameters are fixed
by maximizing the log-marginal likelihood, and their reported normalized
χ̃2 values are well below unity, indicating over-smoothed fits and/or inflated
predictive variances. Consistent with this, their Figure 2 shows significant
wiggles in the uncertainties of mB(z) and H(z) dipping at the high red-
shift and turning upward as z→0, this leads to a significant deviation from
ΛCDM and can explain the brighter MB and larger H0.

7.3 Connection to the Hubble Tension
The method in this work relies on uncalibrated SNe Ia (independent of lo-
cally calibrated MB), the combined isotropic BAO observable H(z)DM (z)/c
(independent of sound horizon), and CC data for H(z), all tied together by
the DDR. As a result, the inference of the absolute magnitude MB is robust
against systematic offsets in stellar-population based distance calibrations.
This explains why residual systematic biases in Cepheids, TRGB, or JAGB
(e.g. crowding, metallicity, etc.) do not propagate into the MB here. In-
stead, the analysis remains sensitive only to systematics internal to the SN
standardization itself (e.g. the mass step, local SFR, light curve fitting, bias
corrections), as seen in the ∆MB ∼ 0.04 mag offset between Pantheon+ and
DES-5YR. The calibration free inferred MB (see Tab. 7.1) supports the de-
termination from the inverse distance ladder, which is not surprising since
MB is measured in the range where BAO data exists (0.3 ≲ z ≲ 2.3) and the
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CC reconstruction of H(z) is within 1σ of ΛCDM, whereas the local distance
ladder methods calibrates MB in a much nearer region (0.002 ≲ z ≲ 0.01).
Interestingly, the measured MB is also consistent with the CCHP population-
II calibrations by Freedman et al. [2025] of SNe Ia (TRGB and JAGB). It
remains in 2-3σ tension with the brighter calibration adopted by SH0ES, i.e.
the MB values are fainter by ∼ 0.10-0.17 mag depending on dataset. [Freed-
man et al., 2025] highlights three points that are relevant to this absolute
magnitude discussion: (i) the current calibrator pool is still small, and mod-
est reprocessing or sample changes at the few hundredths of a mag level can
shift the mean MB, (ii) there is evidence for a trend of inferred MB with
host distance in the SH0ES Cepheid sample, possibly linked to resolution
and crowding at d ≳ 20-40 Mpc, and (iii) JWST imaging of the more distant
hosts is expected to reduce both crowding and selection effects Freedman
et al. [2025]. At the same time, several other distance ladder methods inde-
pendent of TRGB or Cepheids (e.g. Miras, Type II SNe, surface-brightness
fluctuations, Tully-Fisher, HII galaxies) still cluster around h ≃ 0.72-0.74
(see Tab. 7.2), although with larger uncertainties. Reconciling the SH0ES
and Planck scales corresponds to a shift in the absolute magnitude scale of
∆M ≈ 0.15 mag. A similar offset is absolute magnitude is required here to
bring the measured MB into agreement with SH0ES, since distance ladder
calibration systematics are included, the remaining source of systematic un-
certainty lies within the SN standardization. But, the persistence of high
late-time H0 values across multiple indicators and methods (see Tab. 3.1),
that do not depend on the Type Ia absolute magnitude, indicates it is more
likely that there is either a physical or systematic offset for the whole lo-
cal distance ladder at very low redshift. Such a shift could be explained
by photons losing energy in our local environment, hypothetically this could
happen due to a crossing into a gravitational field of an extended massive
object. Given the good agreement with the global ΛCDM model, instead
of changing the late time expansion history it might be interesting to look
at nearby modifications of the FLRW metric, an interesting model candi-
date could be the McVittie metric (see Sec. 3.4.2). Recent work by Sah et al.
[2025] finds that the Pantheon+ catalogue itself shows statistically significant
dipolar anisotropies, H0 varies by more than 1.5 km s−1 Mpc−1 in the range
0.023 < z < 0.15, which is larger than the precision measured by SH0ES, and
the deceleration parameter q0 exhibits a redshift dependent dipolar modula-
tion at > 5σ significance. These results suggest that part of the discrepancy
in late universe measurements may be linked to anisotropic bulk flows in
the local Universe, rather than to isotropic modifications of the cosmological
model.
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Early-time modifications raise the CMB inferred H0 primarily by reducing
the sound horizon (see Sec. 3.4.2). A crucial point is that the analysis in this
work does not depend on the sound horizon, so theoretical modifications to
the sound horizon do not affect the inferred MB and H0. Within current
uncertainties, the data favour an absolute magnitude closer to the inverse
distance ladder, i.e. the absolute magnitude one would obtain with the sound
horizon of ΛCDM. Hence, early-time changes that act only through rd seem
insufficient on their own, bringing the measurements together would also
require a shift in the absolute magnitude scale and/or a different coherent
local effect. This does not rule out early-time physics modifications, but it
limits their explanatory power in this context.
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8 Conclusion

This thesis develops and applies the idea by Renzi and Silvestri [2023] for a
calibration free and sound horizon independent route to the Hubble constant
by combining uncalibrated SNe Ia data from Pantheon+ and DES-SN 5Y,
unanchored BAO data from SDSS and DESI, and 33 cosmic chronometers
measurements, under the distance duality relation (DDR). The method is es-
sentially independent of a cosmological model, since Gaussian processes allow
for a non-parametric reconstruction of mB(z) from SNe and H(z) from cos-
mic chronometers. The analysis only depends on a FLRW geometry for the
luminosity distance expansion at low redshift and the DDR assumes standard
photon propagation in a metric theory of gravity. Astrophysical modeling in
the CC data (stellar population synthesis models, initial mass function, stel-
lar libraries, and star formation history), is accounted for through the full
CC covariance matrix,

The GP reconstruction of H(z) from CC agrees with ΛCDM within 1σ over
0 ≲ z ≲ 2.5. BAO and CC give angular diameter distances that are con-
sistent across SDSS and DESI releases, small inconsistencies at low redshifts
between SDSS and DESI DR1 are resolved with DESI DR2. The SN datasets
are statistically consistent, but show a catalogue offset of about 0.04 mag, in-
cluding a low-z feature near the DES anchor subset and a residual offset
at higher z, directly propagating into a nearly constant ∆MB ≃ −0.04 mag
(DES MB is fainter, i.e. less negative) and into a ∼ 2% higher H0 for
Pantheon+ than for DES. The inferred absolute magnitudes cluster around
MB ≃ −19.36 to −19.42 mag (excluding the hybrid DESI DR1+SDSS case
as a mild outlier), close to the value implied by Planck under ΛCDM and in
2-3σ tension with the brighter SH0ES calibration. The joint likelihood over
(H0, q0, j0) yields H0 ≃ 66.5 − 68.5 km s−1 Mpc−1 with 2.0 − 2.7% uncertain-
ties, consistent with the inverse distance ladder and in tension with SH0ES
at the 2.3-3.6σ level. DDR tests show no significant redshift drift, q0 is con-
sistent across datasets and with other literature, while the jerk parameter j0
is only weakly constrained in the low-z range.

It is more accurate to view the discrepancy between early and late time
measurements as an absolute magnitude tension, not only an H0 tension.
The calibration free MB estimated at the BAO redshifts here supports the
inverse distance ladder. To bridge the SH0ES and Planck scales one would
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have to find an explanation why the SH0ES calibrated magnitude is dimmer
by about ∆M ∼ 0.15 mag, mapping to a ∼ 7% higher H0. Since several
non-SN local methods also prefer a higher H0, any resolution likely needs
a coherent effect across the local ladder, possibly a mix of systematics and
variations in the very late-time physics. Early-time changes that only reduce
the sound horizon rd usually leave MB untouched, so they are not sufficient
on their own to reconcile the full set of observables, particularly because the
data driven MB agrees with the inverse distance ladder from the CMB. Any
full explanation must also account for the absolute magnitude scale and the
full SN magnitude-redshift relation.

With only the DDR linking the probes, the pipeline provides data consistency
check. At the BAO redshifts there is no monotonic drift in MB, independent
BAO sets mapped through CC give compatible DA(z), and the small offset in
the SN catalog propagates into a shift in aB and MB. The small modulation
of MB(z) can be explained by compressing the two BAO scales into the
isotropic H(z)DM (z)/c and then converting to DA with CC, which induces
mild redshift dependent shifts within the errors, not a DDR violation. Any
failure of these checks would point to residual systematics or a breakdown of
the minimal assumptions.

Upcoming data will help to specify these conclusions. An increased sample
size for the CC measurements (e.g. from Euclid) will reduce uncertainties
in the reconstruction of the expansion rate. BAO carry much of the con-
straining power in this setup, so the final DESI data will help to tighten
the errorbars. At low redshift, the Zwicky Transient Facility will provide a
much larger and more uniform Hubble flow SN sample (z ≲ 0.1), improv-
ing the intercept aB, reducing sensitivity to catalogue processing differences,
and strengthening cross-checks of SN standardization on the nearby rung.
JWST observations of more distant calibrator hosts will probe crowding,
metallicity, and selection at the few-hundredths of a mag level. Gravita-
tional waves with an electromagnetic counterpart could be easily integrated
into the pipeline, as they directly give a measure of DL(z). Gravitational
waves with an electromagnetic counterpart (bright sirens) fit naturally into
this pipeline, as they provide a direct DL(z) at a known redshift and do not
rely on photon calibration. For events without a counterpart (dark sirens),
statistical redshifts can be used, in parallel, BAO+CC with DDR give a pre-
diction for DL(z), which can be compared to the GW distances. For the
hypothetical inclusion of future redshift drift measurements for H(z) one
should be careful not to use it as a one-to-one replacement for the CC based
H(z) in this pipeline. CC infer a volume averaged expansion rate, whereas
redshift drift measures H(z) along the line-of-sight, so that in the presence
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of cosmic backreaction, the two measurements won’t coincide. As a future
extension, the DDR can be relaxed by introducing a small deviation η(z) via
DL(z) = DA(z)(1 + z)2 η(z) and fitting η(z) jointly, as done in prior DDR
tests by Renzi et al. [2022].

In essence, this work provides a simple, data-driven, and model-independent
reference for checking consistency across late-universe probes, and serves as
one small piece in the broader effort to address the Hubble tension.

”It is the mountains that take me by surprise, they lift me because
they remain tied to their mysterious origins and are unaware of
the final shore.”
— Etel Adnan in Sea and Fog
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A., Kampczyk, P., Knobel, C., Kovač, K., Le Borgne, J.-F., Le Brun, V.,
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