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1 Introduction

Tropical geometry has emerged over the past two decades as a vibrant area
bridging combinatorial methods and classical algebraic geometry. At its core,
it studies geometric objects over the tropical semiring T := RU{—o00} equipped
with the binary operations

@y :=max{z,y}, andx Oy =z +y,

where @ plays the role of addition and ® plays the role of multiplication. As
the name suggests, these operations make T into a semiring since the only
element with an additive inverse is —oo since addition is idempotent.

One of the main applications is to study varieties in a valued field by
tropicalizing said variety, which retains some of its original structure and is
easier to study. We will not go into this aspect; however, a thorough discussion
of this can be found in [9)].

As a combinatorial analogue, one can expect to be able to take concepts and
theorems from algebraic geometry to the world of tropical geometry. Among
the rich landscape of tropical analogues of classical theorems, one can find:
the Riemann-Roch theorem as discussed in [5], the tropical analogue to vector
bundles as seen in [1] and a tropical analogue for ¢ classes as found in [4]. In
this paper, we focus on tropicalizing the classical Weil-reciprocity law, a foun-
dational reciprocity statement in algebraic geometry concerning divisors and
evaluations of rational functions on curves. Although previous work (notably
[8]) has established a tropical statement and proof for tropical curves (metric
graphs), the existing argument is somewhat hands-on and does not fully illu-
minate the analogy with the classical push-pull approach on algebraic curves.
Our aim is to develop a proof of the tropical Weil-reciprocity law that closely
parallels the classical strategy, thus making explicit the interplay between al-
gebraic and tropical viewpoints and reinforcing the conceptual unity between
these worlds.

Concretely, we shall prove:

Theorem 1.0.1 (Tropical Weil-reciprocity). Let I' be a compact metric graph
and f, g be rational functions on I'. Then

f(div(g)) = g(div(f))

n,p we define

where if D ="

pel’

To achieve a proof that closely parallels the classical strategy, we first re-
call necessary foundations in polyhedral geometry and define tropical spaces



using an atlas of balanced polyhedral charts. Specializing to dimension one,
we identify a special class of tropical curves with metric graphs and develop
divisors, rational functions, and (pseudo-)harmonic morphisms with push for-
ward and pull back operations analogous to the algebraic case. The core of
the proof constructs, for a given rational function, a suitable morphism to a
line segment and reduces reciprocity to an explicit verification of reciprocity
on said line segment; assembling these pieces yields the general statement on
compact metric graphs.



2 Polyhedral Geometry

Unless otherwise stated, all the definitions and theorems throughout this sec-
tion are taken from [10], except lemma 2.1.6, corollary 2.1.8, corollary 2.1.9,
proposition 2.1.11, lemma 2.1.18, proposition 2.1.22. However, all proofs are
done by myself with a few exceptions that are referenced when the said excep-
tions are mentioned.

2.1 Polyhedra and their properties

A function x : R — R is called integer affine if k(x) = (m, ) + ¢ where ¢ € R,
m € Z" and (-,-) is the standard inner product on R". We define the rational
half-space corresponding to an integer affine function s by

H,:={z € R": k(z) > 0}.

Then a polyhedron ¢ in R"™ is the intersection of finitely many rational half-
spaces and the faces of o are given by intersections o N H_,, where x is an
integer affine function with ¢ C H,. We call the maximal faces of o with
respect to inclusion facets. It is then clear from the definition that intersections
of polyhedra is a polyhedron and the faces of any polyhedron is a polyhedron.
We can also define a polyhedron as a set of the form

o={zxeR": Az < b}

for some integer matrix A and a vector b € R™ where m is the number of
integer affine functions. This notation means that we are taking those x € R™
such that the first entry of Ax is at most the first entry of b and so on. The
rows of A correspond to the negative of the linear part of each integer affine
function making up o and the entries of b correspond to the constant part. We
shall denote a polyhedron given in this form by P(A,b).

We define the dimension of a polyhedron o to be the dimension of the
linear subspace of R™ spanned by vectors of the form x —y where x,y € 0. We
denote the linear subspace by L(o) and the dimension by dim(c), and also we
denote Lz(o) := L(o) N Z™.

According to [12, p.60], we can equivalently define the dimension of a poly-
hedron ¢ by considering the dimension of its affine hull:

k k
aff(o) := {Zaixi20<k<oo, x; €0, o; € R, Z%’:l}

i=1 i=1

An affine set is a translation of a vector subspace and the dimension of such an
affine set is the dimension of the vector subspace. In this case aff(c) = s+ L(0)



for some s € R™, this is because

k k
aff(o) = {s+204i(xi—s):0<k<oo, x; €0, a; €R, Z%Zl}
i=1

i=1

and each x; — s is an element of L(o) for any choice of s € ¢ so aff(o) C
s+ L(o). Conversely, since any difference x — y for x,y € o can be written as
r—y=(xr—3s)— (y—s) we may write any v € L(0) as

k

v = Zai(xi —3)

i=1

for some coefficients a; € R. Therefore, we may write

which lies inside aff(o) by definition since the sum of the coefficients is one; so
we conclude that aff(c) = s + L(o). The advantage of defining the dimension
like this is that we always have o C aff(0) and so by taking the image of o
under an affine transformation aff(o) = R4™() we may always assume that o
is full-dimensional in its ambient space.

Remark 2.1.1. If ¢ is a polyhedron in R” then the empty set and o itself are
faces of o since we have

c=0cNR"=onN{zxeR":(0,z) >0},

d=cnb=0on{zeR":(0,z) > 1}.

Then we see that o lies inside H_,, for both, because in either case H_,, = R"
as H_, ={z € R":(0,z) < ¢} where ¢ =0 or 1 depending on the case.

Example 2.1.2. A square in R? with vertices (41, 41) is a polyhedron since
it is the intersection of rational half-spaces corresponding to the functions
ri(z,y) =x+ 1, ka(z,y) = —x + 1, r3(x,y) = y+ 1 and ky(z,y) = —y + L.
Then, as one might expect, the faces of the square include the edges, as we
can see by looking at the rational half-spaces corresponding to —k; for each
1. However, we note that the vertices are also faces, for example, by looking
at the rational half-space corresponding to —y — x — 2 which gives the vertex
(—=1,-1).

The following definition is taken from [6, p.26].



Definition 2.1.3. Let 0 = H,, N---N Hy, then we say that this is an ir-
redundant representation of o, provided that for each ¢ = 1,...,t we have
o G o=y, is astrict inclusion of sets.

Proposition 2.1.4. If 0 = H,, N ---H,, is an irredundant representation,
then the collection {oc N H_y, }1<i<¢ consists of all facets of o.

Proof. See [6, Theorem 2.6.3]. O

We call a collection X = {oy,...,0;} of polyhedra in R"™ a polyhedral
complex if every non-empty face of each o; is an element of X and every non-
empty intersection o; N o; is a face of both o; and o;. The support of X
is given by |X|:= |J,0; and if |X| is equal to a polyhedron o then we call
X a polyhedral subdivision of o. If all maximal polyhedra (with respect to
inclusion) in X have dimension n, then we say that X is pure of dimension
n. The elements of a polyhedral complex X are called cells, and the maximal
elements are called facets.

Example 2.1.5. If £ is an integer affine function, then the collection
H.:={H. H .,H.NH_.}

is a polyhedral complex with support R™. This will be justified in the proof of
corollary 2.1.9.

Lemma 2.1.6. Let 0,0’ be polyhedra in R™ and F' and F' be faces of o and
o' respectively. Then F N F' is a face of o No’.

Proof. Let F and I’ be associated with the half-spaces H, and H,, respectively.
We now note that the only way that x € F or F' is if x(z) = 0 or £'(z) =0
since this is the only place where H, and H_, coincide. Now we note that
for x € o that k(z) = 0 and &’(x) = 0 if and only if k(z) + «/(z) = 0 since
k(x) > 0 and £'(z) > 0 by assumption. It follows that

FNF =(nNH)N(cNHy)=0NHpp.
This implies FNF" is a face of o after noting k(z)++x'(z) > 0forallz € 0. O

Lemma 2.1.7. If X and Y are two polyhedral complexes in R™ then the col-
lection
XNY:={ond:0ceX o eYond #0}

is a polyhedral complex and |X N Y|=|X|N|Y.

Proof. We first note that X N ) is finite because X and ) are finite, and
consist of polyhedra because intersections of polyhedra are polyhedra. Let
cNo e XNY with o € X and ¢’ € Y and F be a face of o N ¢’ then there



is a half-space H, such that c No’ C H, and c N’ N H_, = F. Now we
must have either o C H, or o’ C H, because if H, cuts o and ¢’ through their
interiors then it will cut o N o’ through its interior contrary to the assumption
that 0 No’ C H,. Now assume without loss of generality that ¢ C H, then
we have

F=onodNH ,=(NH_)Nd.

Now ocNH_, is a face of o hence in X and ¢’ € Y so this implies that FF € XN).
Now let o1 N o] and o9 N g} be two elements of X N'Y with ¢y,09 € X and
01,04 € Y then

(c1Noy) N (o2 Noy) = (o1 Nag) N (o] Noy).

Then o1 N oy is a face of both ¢y and oy and similarly o] N g} is a face of
both ¢} and o). It remains to show that if F' is a face of 0 € X and F’ is
a face of ¢’ € Y then FFN F’ is a face of o N o’. However, this is precisely
lemma 2.1.6. O

We see in lemma 2.1.6 and the proof of lemma 2.1.7 that the faces of an
intersection of two polyhedra o N o’ are exactly of the form F N F’ where F is
a face o and F’ is a face of o’.

Corollary 2.1.8. Let o and o’ be polyhedra in R™ then the faces of o Mo’ are
precisely of the form F N F' where F is a face of o and F' is a face of 0.

Corollary 2.1.9. Any polyhedron o in R™ has finitely many faces.

Proof. Since a polyhedron is an intersection of finitely many half-spaces, using
corollary 2.1.8, it suffices to show that a single half-space has finitely many
faces. Let H, be a half-space and suppose that H,, contains H, so that H_,., N
H,. is a face of H,. Note that x' must be some translation of x otherwise H,.
could not possibly contain H, since it would cut through its interior. Therefore,
every face of H, is of the form H_,_, N H, for some ¢ € R. Now, in order for
re€ H_,,_,NH, and H, C H,, to be true, we must have x(z) = —¢, ¢ > 0
and x(x) > 0. This is only possible if ¢ = 0 so the only faces of H, are (), H,
and H, N H_,. ]

Definition 2.1.10 (Relative interior). Let o be a polyhedron then we define
the relative interior of o, denoted by relint(c), to be the interior of o when
viewed as a subspace of aff(c) =2 RIm™(2),



Figure 1: Illustration of the relative interior, which is coloured in gray, of a
square and its faces, which are in black.

Figure 1 suggests that we can equivalently define the relative interior as
the complement in a polyhedron of all its proper faces. This is indeed the case
and will be the content of the following proposition.

Proposition 2.1.11. Let o be a polyhedron in R™ then we can equivalently
define

relint(o) = o\ U F

Proof. Without loss of generality we may assume that o is full-dimensional
so that we can work with the topological interior. Let relint(c) be the rela-
tive interior of o corresponding to the aff(c) definition and rfint(c) be the
complement in o of all its proper faces. Our goal is then to show that
relint(oc) = rfint(o). Let ¢ = H, N...N H,, be an irredundant represen-
tation of o. Then by proposition 2.1.4 we have that

t C
rfint(o) = o N <U on H_,%>
i=1

t
zaﬂﬂacu{xeR”:m(x)>O}

i=1

t
= ﬂ int H,,
i=1



Notice that in the third line onward it should be {z € ¢ : k;(z) > 0} and not
H,, however, it is fine to replace o by R" here because any x that lies in all
these intersections is already in o by definition. O]

A polyhedral set X in R"™ is a finite union of polyhedra in R"™. Write
X = 01U- - -Uoy then if each o; happens to be of dimension k then we say that X
has pure dimension k. If Y is an open subset of X (with respect to the subspace
topology) then we call Y an open polyhedral set. A polyhedral structure of X
is a polyhedral complex & such that |X'| = X. Given a polyhedral complex X
and any set S C R™ then we define X|g:= {c € X : ¢ C S} which is clearly
seen to be a polyhedral complex.

We state the following proposition and its proof due to [10, Proposition
4.1.1].

Proposition 2.1.12. Let X = oy U ---U oy be a polyhedral set in R™. Then
there exists a polyhedral structure X of X such that X|,, is a subdivision of o;
for each 1.

Proof. Let kq,..., Kk, be a complete collection of integer affine functions such
that any o; can be represented by intersecting half-spaces corresponding to
appropriate choices of x;. We consider the subdivision of R" given by

G=H, N NH,

(where H,, is as in example 2.1.5) which is a polyhedral complex by lemma 2.1.7.
Then we claim that the polyhedral complex X' := G|x satisfies our desired
properties. To prove this it is enough to show that X|,, is a polyhedral sub-
division of ¢; since this would imply that |G|x| includes each o; hence it also
includes X by definition. Let o = o0, and suppose that o = H,, N---N H,,.
Then G|, includes (but is certainly not limited to) all elements of the form

on mHﬂIHi'

>l

Then from this description, taking the union of all these elements it is clear
that we achieve o. The rest of the o; follow by an identical argument so we
conclude that G|x is a polyhedral structure for X. O

Definition 2.1.13 (Balancing). Let X be a pure m-dimensional polyhedral
complex in R™. Then a weight function on X is a function that assigns an
integer w(o) € Z to every facet of 0 € X. A weighted polyhedral complex
(X,w) is a pair that consists of a polyhedral complex X and a weight function
w on X. If it is clear that we are talking about a weighted polyhedral complex,
then we will just simply denote it by X.



If X has non-negative weights then we say that it is balanced if for every
7 € X of dimension m — 1 (or codimension one) the following holds:

Z W(0)Vo/r € Lz(T).

o facet
TCOo

Here v,/; € Z" denotes an integer vector that points from 7 towards o and
satisfies
Lz(O') = Lz<7') + ZUJ/T.

This vector exists because L(o)/L(T) is a one-dimensional vector space, and
there are only two choices for v,/, and only one faces the correct direction.

G

Y

G2

G3

Figure 2: Illustration of the balancing condition.

Example 2.1.14. If we look at figure 2, then place weights one on each facet
01, 09 and o3, the result will be a balanced polyhedral complex. This is because
if we call 7 = {(0,0)} the vertex in the centre (the only codimension one cell),
then vy, = (0,1), v,/r = (1,0) and vy, = (=1, —1) whose sum is clearly
seen to be (0,0) € Ly (7).

If X is a weighted polyhedral complex, then we define its support |X| to
be the union of facets in X with non-zero weight. When talking about the
support of a weighted polyhedral set, we will always assume this definition
and not take the union of all facets as before.

Definition 2.1.15 (Equivalence of complexes). Let X and ) be two weighted
polyhedral complexes in R". We say that X and ) are equivalent if |X| = |}/
and whenever relint(c) Nrelint(7) # () where 0 € X and 7 € Y are facets, their
weights agree.

10



A weighted polyhedral complex £ (of pure dimension the same as X) is a
refinement of X" if |£]| = |X| and for any o € £ with o C |£] (recall that this is
not automatic because we exclude weight zero facets in the support), we have
that o is contained in some 7 € X. If o is a facet (hence 7 must be a facet
since £ and X are pure of the same dimension) then the weights of o and 7
agree.

Example 2.1.16. In figure 3, if we place a common weight of one on each
facet of the polyhedral complexes X and ), then we observe that they are
equivalent. We note that one is not a refinement of the other because not all
facets of one are contained in a facet of the other.

Figure 3: Example of two equivalent polyhedral complexes

Proposition 2.1.17. Let L be a refinement of a weighted polyhedral complex
X. Then L is balanced if and only if X is balanced.

Proof. The direction where we first assume that X is balanced is done in [9,
Lemma 3.6.2]. Conversely, if X' is not balanced, then there is a codimension one
cell 0 € X for which the balancing condition does not hold. Let M, » : L —+ X
be the function that sends a polyhedron 7 € L to the smallest polyhedron in X
that contains it. Then, since L is a refinement, there must exist a codimension
one cell 7 € £ such that M, x(7) = 0. We can then follow the argument in
[9, Lemma 3.6.2] to see that £ is not balanced at 7. O

Lemma 2.1.18. Let o and 7 be full-dimensional polyhedra in R™. Then

relint(o) Nrelint(7) # 0 <= o N7 is full-dimensional in R"™.

Proof. Suppose that relint(c) N relint(7) is non-empty, then we note that
relint(o) N relint(7) is an open set in R™, hence it spans R". However, we

11



also see that it is also contained inside ¢ N 7 which implies that ¢ N 7 must
also be full dimensional. Conversely, if o N 7 is full-dimensional then

relint(c N 7) = int(o N 7) = int(o) Nint(7) = relint(o) N relint(7).

Looking at the extreme right and left we observe that relint(o) N relint(7) is
non-empty since relint(c N 7) is non-empty. [

Proposition 2.1.19. Let X and ) be two weighted polyhedral complexes. Then
X and Y are equivalent if and only if they have a common refinement.

Proof. First, assume that X and ) are equivalent, then consider the polyhedral
complex Z := X N ). Note that the facets of Z are of the form ¢ N7 where
o € X and 7 € Y are facets such that relint(o) Nrelint(7) # () according to
lemma 2.1.18. Therefore, we may place weights on the facets of Z that match
the weights of the facets of X and ) that make up its composition. Then it is
clear that under this weighting, Z is a common refinement of X and ).

On the other hand, let £ be a common refinement of X and ) then we
have

X[ = [£] = [V

so the first condition is clear. Next, let 0 € & and 7 € Y with relint(o) N
relint(7) # (. Taking p € relint(o) N relint(7), there exists a facet p € L
that contains p with p C ¢’ and p C 7’ for some facets ¢’ € X and 7" € ).
However, note that the relative interiors of polyhedra in a polyhedral complex
are disjoint because the intersection of two polyhedra in a complex is a face of
both by definition. Therefore, we must have o0 = ¢’ and 7 = 7" and since L is
a common refinement, the weight of p is the same as those of ¢ and 7. O

We obtain two corollaries for free from combining both proposition 2.1.19
and proposition 2.1.17.

Corollary 2.1.20. Let L be a common refinement of a weighted polyhedral
complex X. Then X and L are equivalent complezes.

Corollary 2.1.21. If the balancing condition holds for a weighted polyhedral
complex X then any equivalent complex is also balanced.

Proposition 2.1.22. Let o be a polyhedron in R™ then given a point p € o
we consider the set

Star,(p) :={v €R":p+e-v €0 fore >0 sufficiently small}.

This set is a polyhedron in R™.

12



Proof. If p lies in the interior of ¢ then this set is simply R"™ so let us assume
that p lies on the boundary of 0. Let o = H,,N---NH,, with x;(z) = (m;, 2)+¢;
and set K;(z) = k;(z) — ¢;. Let {k1,..., K} be the set of all functions where
ki(p) = 0 (this set is non-empty because by assumption p lies on the boundary)

then we claim that ,

Star,(p) = m Hg,.

i=1
Let v € Star,(p) then there exists some € > 0 such that x;(p+¢-v) > 0. This

means that
(ms,p) + ¢; +e{my,v) > 0.

Then by assumption we have that ;(p) = 0 so that (m;,v) > 0 which im-
plies that £;(v) > 0 which further implies that Star,(p) C Hg N --- N Hg,.
Conversely, let v € Hi N --- N Hi, and let € > 0 to be determined then for
1 <i <t we have

ki(p+e-v) = (m;,p) + ¢; + e(m;,v) = e(m;,v) >0

for any choice of € > 0, so the issue arises when we consider x; for ¢ > t. Let
i >t and set K;(p) = §; > 0 and then

Ki(p+e-v) =6 +e(my,v).

If (m;,v) > 0 then we are done since any choice of ¢ will do the job, otherwise
let € be small enough such that

Then we have that
Ki(p+e-v) =08 +e(my,v) =6 —e|{(my,v)|> 0.

It then follows that by choosing & small enough that x;(p + ¢ - v) > 0 for all
which implies that p + ¢ - v € o. This then shows the desired equality, which
implies that Star,(p) is a polyhedron. O]

Remark 2.1.23. In fact, we see that Star,(p) is a cone, which means that it
is a polyhedron that contains all the rays R>ox where x € Star,(p) since we
can always choose a sufficiently small e.

We call Star,(p) the star of o at p. If X is an open polyhedral set we can
construct a similar set which we shall also call the star of X at a point p € X.

13



Definition 2.1.24. Let X be an open polyhedral set of the polyhedral set
Y =0,U---Uog; and p a point in X. Then we define

Starx(p) := Star,, (p) U - - - U Star,, (p)
to be the star of X at p.

Note that this definition only depends on the ambient polyhedral set. In-
deed, when constructing the star of an open polyhedral set, we only care about
what happens locally at p so it does not matter whether we are looking at X
or Y to construct it. Furthermore, if p € o; for some ¢ then we note that
Star,, (p) = 0 therefore contributes nothing and if p lies in the relative interior
of some polyhedron o; then Star,, (p) = RI™(@) as one would expect.

-——

Figure 4: The star of the polyhedron at the point labeled P.

14



3 Tropical Spaces

The strategy we will proceed with is to define what a tropical space should
look like locally, by means of an atlas of charts. Therefore, we shall start with
defining exactly what these local building blocks actually are. All definitions
are again from [10], however all theorems, lemmas, and propositions in this
section are either said in passing in [10, Section 6], or set as an exercise,
with a few exceptions. We make those statements precise by giving a precise
statement and their proof.

3.1 Building Blocks

Definition 3.1.1 (Open polyhedral sets). Let T = RU{—o0}, topologized to
be homeomorphic to a half-line. Define [n] := {1,...,n} then the space T"
has a natural decomposition as

™ =[] Ri,
I1C[n]

where
Ry={(z;) eT": 2, = —00 <= i€}

can be identified with R* M| by removing each z; for i € I. We also define

Tr:={(z;) € T":2;=—occforiel}

which can similarly be naturally identified with T* /I Then a rational poly-
hedron in T" is the closure (in T") of a usual polyhedron in R; = R" VI for
some I C [n] and we call I the sedentarity of the polyhedron. A finite union of
polyhedra in T" is a polyhedral set in T™ and an open set of a polyhedral set
is said to be an open polyhedral set in T". Let X be an open polyhedral set,
then we say that a point z € X is of sedentarity I if x € X NRR;. We denote
the sedentarity of a point x € X by sed(x) and similarly for a polyhedron &
by sed(7).

Example 3.1.2. Figure 5 depicts a polyhedron in T"™ that is induced by the
polyhedron in Ry = R? that is the intersection of the two half-spaces {y < 1}
and {x < 1}.

15



—O0

Figure 5: Example of a polyhedron in T?.

If X is an open polyhedral set in T™ or R"™ then there is a dense open
subset of points in X that have an open neighbourhood that is homeomorphic
to an open in R™ for some m. These points are called generic points and
the set of them is denoted by X&". If p is a generic point that has an open
neighbourhood that is homeomorphic to an open in R™ for some m, then we
call m the dimension of X at p, denoted by dimx(p). Note that this is well-
defined, since open subsets of R™ cannot be homeomorphic to ones in R if
n # m. Now we get a locally constant function dimy : X&" — Z>, and we call
its maximum the dimension of X, denoted by dim(X). If dimy is constant,
then we say that X is of pure dimension dim(X).

If o is a polyhedron in R™ then we have two notions of dimension of o.
The one imposed as above and the dimension of the linear subspace that it
generates. We show that these two definitions coincide.

Proposition 3.1.3. Let o be a polyhedron in R™ then the dimension of o when
considered as an open polyhedral set coincides with the dimension of the linear
subspace spanned by o.

Proof. Let ki be the dimension of ¢ when considered as an open polyhedral
set and ko be the dimension of L(o). We firstly have ko > k; because if z € o
has an open neighbourhood that is isomorphic to an open of R* then L(o)
must at least have dimension k; because it contains this open neighbourhood.

16



Conversely, we see that relint(c) C aff(c) = R*? is open in ¢ hence is isomor-
phic to an open subset of R*2 so we have k; > ks since k; is the maximum of
the function dim, : 08" — Z. We conclude that k; = ky as desired. ]

Definition 3.1.4 (Weights). A weight function on an open polyhedral set X
in T" is a locally constant function w : X#"™ — Z, or in other words a choice of
integer for every connected component of X&". An open polyhedral set in T"
equipped with a weight function is said to be a weighted open polyhedral set
in T, and if all weights are non-negative, then it is said to be effective. The
same can be said for open polyhedral sets in R".

We shall henceforth assume that all weights are non-zero.

Proposition 3.1.5. Let o be a polyhedron in Ry for some J C [n] and &
its closure in T". Then @ N Ry for any I C [n] is a polyhedron in R—HI,
Additionally, if sed() C I we have g "Ry =5 N Ty.

Proof. 1f it is not the case that sed(a) C I then @ N R; is empty (which is
a polyhedron) since all points in @ will have —oco in coordinates outside of
I, so we henceforth assume that sed(g) C I. When we take the closure of
a polyhedron in R™ then the only points we introduce by taking the closure
in T™ are points with —oo so @ N R; is just the projection of o to R* VI, In
particular, it is enough to show that the projection of a polyhedron in R™ to
R™ is again a polyhedron for which, by induction, it is enough to show this
for m =n — 1. Let o be given by the inequalities

(mi, ) + bz, < a;

where m; € Z™, b; € Z, and a; € R. Depending on the sign of b; we get
inequalities of the form

(mj, x) 4+ a;/b; > x, if b; > 0;

(m}, x) +a; /by < xy if by < 0;
(my, ) < ay, if by = 0;

where m; = —m,;/b; for all i. We can combine the first two to get the set of
inequalities
(m’s; —mj, x) < a;/b; — a;/b;.

Then these sets of inequalities and the third type define the projection of o.
Moving onto the second claim, we see that @ NR; C @ N T, since the closure
of an intersection is contained in the intersection of the closures. Conversely,
if x € 3 N'T; then there is a sequence (xy)g>o in o C Rgeq(z) that converges to
x. We can then project this sequence down to @ N R; which still converges to
x since the Ith coordinates of z are all —oco by assumption. O]
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Corollary 3.1.6. Let 0 C R; and 7 C Ry be polyhedra for some I,J C [n],
then we have

cNT=aNTNRpy.
In particular, the intersection of polyhedra in T™ is a polyhedron in T", and if
I =J then

ocNT=0NT.

Proof. Suppose that we know the proposition when at least one of o or 7 is
a half-space, then we know it is true for all polyhedra. Indeed, write 7 =
H,, N---NH,g, then we have

GNT=5NH, N...NH,

=6NH, NRy,;NH,N---NH,,

ZﬁﬂHmﬂH@ﬂR[UJﬂH%ﬂ'”ﬂH,{t

=oNH,N---NH, NRpy
=aN7TNRy;.

The first and last equality uses the case I = J for the decomposition of 7
and the rest is a repeated use of proposition 3.1.5 and the special case of the
statement of this proposition. Now assume that 7 = H, is a half space then
oNTNR;u; CaNT and the right-hand side is closed in T" sod N TN R;y; C
o N 7. Conversely, letting x € @ N7 then there exists a sequence (x;);>¢ in
o NRR;ns that converges to x, and if x € R for some K D I U.J then without
loss of generality we may assume that the K coordinates of x; are strictly
decreasing towards —oo by choosing a subsequence of (x;);>o. Then looking at
the proof of proposition 3.1.5 we see that TNR;~; is a half-space in R;~; which
we will denote by H,,. Then necessarily the linear part of s’ has all coordinates
in K negative and if we focus on the [n|\K coordinates of x'(x;) as i — o0
then it is bounded while the K coordinate approach oo and so will eventually
dominate the bounded portion for large enough . Therefore, for large enough
i we will have £/'(z;) > 0 which implies that x; € H,s for sufficiently large
1. Now we have that for sufficiently large ¢ every x; € @ N7 N Ryy; so that
T E€ETNTNR L.
Now for the other claim we note that

TNTNRu; = @NRy) N (FNR L)

which is a closure of the intersection of two polyhedra in R;,;. Then for the
other claim we see that

cNTNR;=@NR)NFTNR) =onN7
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since for polyhedra o C R; we always have 0 =7 N R;. O

Corollary 3.1.7. Let X be a polyhedral set in T" then we can decompose X
as Urcn X1 where each Xy is a polyhedral set in Tj.

Proof. Define X; := X NR; (where the closure is taken in Tj) then if X =
01 U ---Uo; where each o; is a polyhedron in T" then

XﬂR[:mﬂRIU---UUZORI

is a polyhedral set in T; since each o; NR; is a polyhedron in R" ! by propo-
sition 3.1.5, therefore o; N R is a polyhedron in T;. Additionally, we note that
0; VT is closed in T; hence o; NIR; C o; N T;. Therefore,

XNR;CcXnNT; CX.

Moreover, any point x € X lies in some Ry hence X = U, X7 as desired. [

Corollary 3.1.8. Let X be an open polyhedral set in T™ then we can decompose
X as Urcin X1 where each X is an open polyhedral set in T;.

Proof. Suppose that X is an open subset of the polyhedral set Y in T". Then
it is enough to show that X; := X NR; is an open subset of Y; = Y NR; since
Y} is a polyhedral set in T; by corollary 3.1.7. To that end, let x € X; then
if z € X NR; then we can find an open containing it that is fully contained
inside X NRR; since X NR; is open in Y NRR;. Then the only problem occurs if
x is a limit point of X NR;, in which case there are some coordinates of = that
are —oo apart from those in I. Let J C [n]| be sedentarity of z and denote
the jth coordinates by z; for j € J. Then there exists some set of the form
[—00,1;) such that {1} x -+ x {&;_1} x [—00,l;) X {zj11} x - x {z,} C X.
It cannot be the case that no matter how small [; we make that this is not
fully contained in X; because this would necessarily subdivide a region around
x into infinitely many parts in Y7 which is impossible since Y7 is only a finite
union of polyhedra. We do this for every x; for j € J and for the remaining
ones we just take a usual open in X NR; as it is already open in Y NR;. Then

taking the product of all of these opens will be an open around x contained in
X7. [

Definition 3.1.9. Let @ be a polyhedron in T™ where ¢ is a polyhedron in
R; for some I C [n]. We have three types of faces of o, the faces that are the
closures in T" of the original faces of o, the closures of non-empty sets of the
form @ NR; for some J D I and lastly the sets of the form 7TNR; where 7 C o
is a face and J D I. Faces of the first kind are called finite faces, whereas those
of the second and third kinds are called infinite faces (these are all polyhedra
by proposition 3.1.5).
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A polyhedral complex in T" is defined analogously to the case of R" just
replaced with polyhedra in T" and their faces. If X is an open polyhedral set
then a polyhedral structure for it is a structure for the ambient polyhedral set.

We take inspiration from proposition 2.1.11 and define the relative interior
of a polyhedron in T" as the complement in said polyhedron of all its proper
faces.

Remark 3.1.10. We note that [10] excluded faces of the third type; however,
we found it much more natural, especially when proving the following lemmas,
to include these faces.

Example 3.1.11. Observe figure 6, it depicts the polyhedron given in figure 5
with all its faces labelled red.

—0o0

03

g2 01

Figure 6: A polyhedron in T? with all its faces labelled in red.

The face labelled o3 is an example of a face of the first type, the face
labelled o5 is a face of the second type, and lastly o is a face of the third type.

Lemma 3.1.12. Let @ be a polyhedron in T™. Then a face of a face of T is a
face of G.
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Proof. Let 7 C T C @ be such that 7 is a face of & and 7/ is a face of 7.
Let 7 be a face of ¢ so that 7 is a finite face of . Then if 77/ is a finite face
of 7 then 7/ is a face of & because a face of a face of a polyhedron is a face of

the polyhedron when we are in R™. If 7/ is an infinite face, say 7/ = 7" N R;
for some finite face 7" of 7. Then we observe that 7" is a finite face of & and
by definition an infinite face of 7" is also a face of 7.

Let 7 = 7" N R; be an infinite face of @ with 7" a finite face of @. Then an
infinite face of 7 is of the form 7 N R; where 7 is a finite face of 77 hence a
finite face of @ which implies that 77 N R is a face of 3. Then a finite face of
T is just the same but with J = I so again a face of 7. n

Remark 3.1.13. Much like in the case of R™ any polyhedron in T™ has finitely
many faces because any finite face of @ is induced from faces of ¢ of which
there are finitely many by corollary 2.1.9. Then there are finitely many infinite
faces because there are only finitely many choices for I C [n].

Lemma 3.1.14. Let o be a polyhedron in R™ and 7 : R™ — R™ be a projection,
then any face of w(o) is a projection of some face of o.

Proof. Firstly, by induction, it is enough to consider the case where m = n—1.
Let 7 = w(0) N H_,, be a face of (o) then 7~ '(H,) is a half space, since we
may consider the function «/'(x) = (m,x) + ¢ where m is equal to the linear
part of x in the first n — 1 coordinates and the last coordinate we set to zero
while ¢ takes the same value. Then any point p € o lies in this new half space
since 7(p) lies in w(o) and the last coordinate of p does not matter. It follows
that 7 = o N H_, projects to 7. ]

Remark 3.1.15. Note that projections of faces are not necessarily faces of
the projection. Consider a square-based pyramid in R*® whose apex is a 0-
dimensional face, then the projection down to the base is not a face of the
projection since the projection of the apex will lie in the interior of the base.

Proposition 3.1.16. Let X = {oy,...,0,} be a polyhedral complezx in Ry for
some I C [n]. Then the collection

X = {7;: 1 <i<t}U{infinite faces of 77 : 1 < i <t}
15 a polyhedral complex in T™.

Proof. Let 0;,0; € X then by proposition 3.1.6 we have 7, No; =0, No; is a
face of both. Then we note that if J C K C [n]| then 7; "R, "R =7; N Ry
since the left-hand side is the projection to R ; followed by the one to R while
the right-hand side is the projection directly to Ry. Now let Ji, Jo C [n] be
arbitrary, then

FiﬁRJl mU_ijJQ :ﬁﬂRJl ﬂU_ijszRJlqu :UimajﬂRJlujg

21



The right-hand side is a face of both the inputs on the left-hand side, since by
lemma 3.1.14 the faces of 7; "R, are of the form 7N Ry where 7 is a face
of 0, and K D J; which is exactly the form the right hand side takes. The
same argument follows for o; NR;,. This shows that the intersection of any
two elements of X is a face of both.

Now for the second condition, let &@; € X then any face of it already lies
inside X by construction. Similarly, any face of &; N R is of the form 7 N Ry
for some K O J and 7 a face of o; which also lies inside X by construction. [

Proposition 3.1.17. Let X and Y be two complexes in T™, then the intersec-
tion
XNY:={egN7:5€X,7€V,oNT#0}

15 a polyhedral complex in T™.

Proof. Let @ € X and T € ) and suppose that ¢ C R; and 7 C R;. Then a
finite face of @ N7 is the closure of a face of N7 N Ry, ; by proposition 3.1.6.
Then by the proof of lemma 2.1.7 faces of N7TNR s are of the form FNTNR
where F'is a face of N R,y or ¢ N F' N R,y where F’ is a face of TN Ry ;.
Assume we are in the first case, then the argument is identical for the second.

Then we may write F' = Fn R;u; where F is a face of o by lemma 3.1.14.
Then it follows that

Fﬂ?leuj:EﬂFﬂRluJ:?mF

which is an element of X N'). Next, for the other condition it is enough to
show that if ' is a face of 7 € X and I’ is a face of 7 € ) then FN F’ is a
face of @ NT. Suppose both are finite faces, then write F' = o where o is a
face of o and I’ = 7z where 75 is a face of 7 then

FNF =rN7m NRpy.

We then observe that o7 MR,y and T/ NR; is a face of o and 7 respectively
which implies by the proof of lemma 2.1.7 that F'N F” is a finite face of a N 7T
which we see by using the description of @ N7 given in proposition 3.1.6. Now
suppose that I = 7z N R is an infinite face of 7, then

FNF =6rNTw NRg =0 N7 NRyugk

and the right-hand side is an infinite face of @ N7 by again using a similar
description. The case of two infinite faces is identical as the previous case
except [ is replaced by some K’ D [ in the final equality which is still an
infinite face. m

Corollary 3.1.18. Every polyhedral set has a polyhedral structure.
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Proof. We can follow the same proof as proposition 3.1.7 using proposition 3.1.17
and the complexes H,,, . .., H,, where k1, ..., K, are a complete set of functions
that represent every polyhedron in a given polyhedral set. This works because
if 7 and T are polyhedra in T" of the same sedentarity, then by corollary 3.1.6

ocNT=0NT.

In particular if 7 is a polyhedron that makes up our polyhedral set then the
intersection H,, N --- N H,, contains elements of the form & intersected with
extra items for which the union of all such elements give @ which implies the
desired result. O

Let X be a pure n dimensional open polyhedral set and P be the ambient
polyhedral set. Then any polyhedron in P that has a non-empty intersection
with X necessarily is n dimensional by proposition 3.1.3 so we may force P to
be pure n dimensional by removing any polyhedra that do not intersect with
X. This forms a new polyhedral set P’ of which X is still an open subset,
and any polyhedral structure of P’ is necessarily purely n dimensional. When
talking about the structure of a pure dimensional open polyhedral set, then
we will always assume this structure to be pure of the same dimension.

With this we wish to define the codimension of a point p in a pure dimen-
sional open polyhedral set X, denoted by codimy (p), as the minimum of the
codimension of the cells whose relative interior contains p for the structure
constructed in corollary 3.1.18. This comes with the question if every point p
lies in the relative interior of some cell of the structure. We shall address this
in proposition 3.1.19.

Proposition 3.1.19. Let X be a pure n dimensional open polyhedral set and
X a structure of X. Then for any point p € X there exists a celld € X that
contains p in its relative interior.

Proof. Let a5 € X be a polyhedron that contains p. If p is not already in the
relative interior of &g then p lies inside a proper face of 7y, say o7. We again
check if p lies in the relative interior, if not then it lies in a proper face of
5. We get a chain of faces of oy which eventually must terminate since any
polyhedron in T" has finitely many faces. Therefore, there must eventually
exist some o; that contains p in its relative interior. O

Remark 3.1.20. According to [10] the definition of the codimension is in-
dependent of the choice of polyhedral structure. It is unknown whether or
not this is true, as there was no proof given nor could we come up with one
or a counterexample, therefore, we comprise by choosing a specific polyhedral
structure.
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Note that p € X" if and only if codimx(p) = 0. Indeed, if p € X&" then
any polyhedron that contains it in its relative interior must be of dimension
dim(X). On the other hand, if codimy(p) = 0 then there is a polyhedron
whose relative interior contains p and is of dimension dim(X).

Lemma 3.1.21. Let 0 C R; and 7 C R be two polyhedra with ¢ = 7. Then
I=Jando=r.

Proof. First, suppose that there is some m € I such that m ¢ J, and let x € 7.
Then, by assumption x € 7 and since m ¢ J, there must be some sequence
(xk)k>0 with x; € 7 whose mth coordinates are all finite. In particular, we
have x; € 7 C @ but the mth coordinates of any x € @ must be —oo since @
is of sedentarity I and m € I. This shows that we must have I C J and we
can prove the reverse inclusion in exactly the same way, so this implies that
I = J. Then we achieve ¢ = 7 be noting that ¢ = @ N R; and similarly for 7,
then intersecting both sides of ¢ = 7 with R;. O]

Proposition 3.1.22. Let X be a polyhedral set in T, X be a polyhedral struc-
ture of X and I C [n] be such that X "Ry is non-empty. Then the collection

XNR;:={c:75€ X and o C R}

s a polyhedral structure for X NR;.

Proof. Firstly, let 0,7 € X NR;thence N7 =0cN7s0ocN7 e XNR; and
we wish to show that ¢ N7 is a face of ¢ and 7. To that end, suppose that
oN7T = FNR; for some face ' of ¢ (an infinite face of o) for some J D I.
Then by lemma 3.1.21 we must have I = J which implies that 7 N7 = F
hence F is a face of 7. Now F cannot be an infinite face of sedentarity J 2 I
of 7 since F is of sedentarity I. Therefore, F is a face of sedentarity I of 7
which implies it is a finite face hence F' is a face of both ¢ and 7. Then by
lemma 3.1.21 we have 0 N7 = F' so in this case ¢ N 7 is a face of both. If F'is
instead a face of 7 then we can make a near identical argument. Next if c N7
is a finite face of & and 7 say o N7 = F then we achieve 0 N7 = F which is a
face of both.

The last two arguments imply that X N R; is a polyhedral structure so
it remains to show that |X NR;| = X NR;. It is clear by definition that
| X NR;| € X NR; since X is a structure for X and X NRR; only considers
those polyhedra of sedentarity I so it is contained in R;. Conversely, let
xr € X NR; then there exists a polyhedron ¢ € X that contains x since X is
a structure for X. Now since X is a complex we must have @ NR; € X hence
g NR; € X NR; and it also contains x which implies that = € |X NR;|. We
conclude that X N R; is a polyhedral structure of X NR; as desired. ]
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Definition 3.1.23 (Star). Let z € X be a point of sedentarity I then by
proposition 3.1.5 we have that X NRR; is an open polyhedral set in R; that
contains x. We can then form the star of X NR; at x, that is a union of finitely
many cones, which is often called a fan, in R; from which we define

Starx (z) := Starxng, ().

The m-dimensional part of Stary(z) is the closure of dimgtgrx(x) (m) in Ry

(which may be empty) and is denoted by Starx (z)™. If non-empty, this is an
m-dimensional polyhedral set in R; and it inherits a weight function from the
weights around the point x since a weight function must be locally constant.

Definition 3.1.24. Any polyhedral structure £ of Stary(z)™) inherits its
weight function by assigning w(o) = w(p) for any p € relint(o) and p € X.
Any two weighted polyhedral structures obtained this way are equivalent, so
one being balanced is equivalent to the other being balanced. We say that
Starx ()™ is balanced if any choice of polyhedral structure of it is balanced.
If X is pure m-dimensional and Starx(z)™ is either empty or balanced for
every x € X, then we say that X is a balanced open polyhedral set.

Definition 3.1.25 (Morphisms of open polyhedral sets in T"). A map F :
R"™ — R™ is said to be affine Z-linear if it is of the form = — Az + b where
A is a matrix with integer entries and b € R™. Then a map f : R* — T™
is said to be affine Z-linear if it is the composition of an affine Z-linear map
F :R"™ — R; followed by the inclusion R; < T™ for some I C [m)].

If X CT"and Y C T™ are two open polyhedral sets, then a continuous
map f : X — Y is a tropical morphism if it is locally affine Z-linear in the
following sense: For each point z € X there is an open neighbourhood U
containing = such that for all I C [n] with U NR; non-empty, the map f|yng,
is the restriction of an affine Z-linear map from R; — T™.

If X and Y are weighted open polyhedral sets, then a tropical isomorphism
f: X — Y is a tropical morphism with an inverse tropical morphism g : ¥ —
X and the weight of x and f(x) match for all z € X&". Note that the fact that
f is a homeomorphism implies that z is generic if and only if f(x) is generic.

Example 3.1.26. We have that R = T\{—occ} and T are open polyhedral sets
in T and a morphism f : R — T consists of a choice of base point in T and the
slope of f. There can be no slope changes because if there were, then locally
around where this change happens f cannot be affine Z-linear. Similarly, if we
look at a tropical morphism f : R™ — T then this is equivalent to choosing a
base point in T and choosing the slope of f along the standard basis vectors
of R™.

Definition 3.1.27 (Tropical structures). Let X be a topological space. A
tropical structure on X is a collection of maps ¢; : U; — V; with the following
properties:
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The collection {U;}; forms an open covering of X.

Each Vj is an effective and balanced open polyhedral set in T" for some
n.

Each ¢; is a homeomorphism.
e For every pair ¢, j with U; N U; # 0 the map
piop; oi(UinNT;) = iU N T;)
is a tropical isomorphism of balanced open polyhedral sets in T".

Two tropical structures on a topological space X are said to be equivalent if
their union is also a tropical structure for X. A topological space X equipped
with an equivalence class of tropical structures is said to be a tropical space,
and if ¢ is a map in the structure that contains a point x € X then ¢ is said to
be a chart at x. If X is non-empty and all V; happen to be pure of dimension
n, then we say that X is of dimension n.

Example 3.1.28. We give a few examples of tropical spaces.

e Every effectively weighted and balanced open polyhedral set X in T" can
be equipped with the global chart id : X — X, therefore, every effective
weighted open polyhedral set in T" is a tropical space. Furthermore, if
X is pure of dimension n, then so is its tropical space.

e If X is a tropical space and U C X is open, then U is a tropical space
by equipping it with the charts of X restricted to U.

Definition 3.1.29 (Morphisms of tropical spaces). Let X and Y be tropical
spaces. Then a continuous map f : X — Y is said to be a tropical morphism if
for any pair of charts ¢ : U — V for X and ¢ : U' — V' for Y the composition

o foe i p(f AU NT) = V.

is a tropical morphism of open polyhedral sets. It is an isomorphism if it is a
homeomorphism and these maps are tropical isomorphisms onto their image.

3.2 Tropical polynomials

The vanishing set of a tropical polynomial is an important example of a tropical
space, similar to algebraic geometry. We place two binary operations on the
set T:

r@y:=max{z,y} and Oy =z +y,
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where & plays the role of addition and ® the role of multiplication. These
turn T into a semiring, which we call the tropical numbers. Note that the
tropical numbers has no additive inverses except the additive neutral element
—o0 because

r@®r=max{zr,z} =z,

so the existence of an additive inverse implies x = —co. Now we shall consider
tropical polynomials, which are functions f : R™ — R of the form
flz) = @ ¢y @ 2 = max{c, + (u, ) buer (1)
uel

where [ is some finite subset of Z" and ¢, € R and z* means 27" ® --- ® z}".
Unlike algebraic geometry, the vanishing set of a tropical polynomial f is
defined as the set of all x € R™ such that f(z) is attained by at least two
monomials in equation 1. If f(z) = apa™ + - + a, is a polynomial over an
algebraically closed valued field K with valuation v, not tropical, then we can
tropicalize it by considering the tropical polynomial

trop(f)(z) := max{v(a;) + (n — i) - T}o<i<n.
Then it turns out that V' (f) and V (trop(f)) are closely related, which one can
see more details of in [9]. We can extend this to multivariate polynomials in the
exact same way. For example, the multivariate polynomial f(z,y) =x+y+c

over C with the trivial valuation tropicalizes to the tropical line given in the
second example of example 3.2.1.

Example 3.2.1.
e Consider f(z) = 22 ®2©® 2 ® 0 = max{2x,z + 2,0}. The maximum

occurs twice at x = —2, and z = 2.

e Consider f(z,y) = x ®y @& 0 = max{z,y,0}. The maximum occurs at
least twice in the sets, {v =0,y <0}, {y = 0,2 <0}, {x = y,z,y > 0}.
We call this the tropical line, and it is illustrated in figure 10.

Figure 7: Illustration of the tropical line.
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Notice that each example can be given the structure of a polyhedral com-
plex, this is not a coincidence, and in fact the zero set of any tropical polyno-
mial can be assigned a polyhedral complex. As a matter of fact, according to
[9, Proposition 3.3.2], the following theorem is true:

Theorem 3.2.2. Let f be a tropical polynomial in n variables. Then V(f)
15 the support of a effectively weighted balanced polyhedral complex pure of
dimension n — 1.

We note that V(f) is not initially a complex in T™ but only in R", however,
by taking the closure and inheriting the weights it naturally becomes one in
T™. It remains balanced because if we take the star around any point of higher
sedentarity (in other words, points that get added by taking the closure) then
the result is empty since it must be lower dimensional than V'(f). In particular,

if f is a tropical polynomial then V(f) (where the closure is taken in T") is a
balanced open polyhedral set, hence is automatically a tropical space.

3.3 Regularity

When we later talk about tropical curves, regularity will act as our notion of
a smooth curve. We remark that [10] has a separate notion of smoothness for
arbitrary tropical spaces, but this requires a large detour, fortunately, regular-
ity implies smoothness for curves (according to [10]) so in this way we bypass
said detour. We cite the following proposition and its proof, which one can
find at [10, Proposition 7.2.3].

Proposition 3.3.1. Let X be an open polyhedral set in TV of pure dimension
n. Then the following conditions are equivalent:

e For every I C [n] such that X "Ry # () we have

dim(X NR;) =n — |I].

e For each stratum T; such that X N'T; # () we have

dim(X NT;) <n—|I].

e For each point p € X we have

Ised(p)| < codimy(p).

Proof. See [10, Proposition 7.2.3]. O
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Definition 3.3.2 (Regularity at infinity). Let X be an open polyhedral set
pure of dimension n. Then X is called regular at infinity if the conditions of
proposition 3.3.1 hold. A tropical space X is called regular at infinity if there
exists a tropical structure {¢; : U; — V;}; where each V; is regular at infinity.

Example 3.3.3. The following examples are taken from [10, Example 7.2.5].

e Any bounded pure m dimensional polyhedron in Ry = R"™ induces a
polyhedron that is regular at infinity in T". This is because the seden-
tarity of any point is () which is certainly has fewer elements than the
codimension.

e Figure 8 depicts a polyhedron that is regular at infinity because the
sedentarity of the single point in Ry is [2] while the codimension is
two. The sedentarity of the rest of the points is () so condition three of
proposition 3.3.1 is automatically satisfied for these points.

—0o0

—00

Figure 8: Polyhedron in T? that is regular at infinity.

e Figure 9 depicts a polyhedron in T? that is irregular at infinity because
the sedentarity of the point in Ry is [2] while the codimension is only 1.
However, if we instead consider that it is a tropical space, we find that
it is isomorphic to T!, which means that it is regular as a tropical space
but not as an open polyhedral set.

e If o is a bounded m dimensional polyhedron in R; for some I # () then
it will not be regular because this would imply that

m =dim(c NR;) =m — [1].

However if we consider it as a tropical subspace of T; then it will be
regular since we are now in the Ry case from the first example.
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—00

Figure 9: Polyhedron in T? that is not regular at infinity.

3.4 Tropical Curves

An important class of tropical spaces are tropical curves, and in most literature
one will find these to be defined as a metric graph. It turns out that this also
happens in our case, however one must impose the notion of regularity.

Definition 3.4.1. A tropical curve is a connected tropical space of dimension
one.

We shall adopt the following definition of a CW-complex from [7].
Definition 3.4.2 (CW-Complex). We define a CW-complex inductively.
1. Let Xy be a discrete set of points that we call O-cells.

2. We form the n-skeleton X, from X,,_; by attaching n-cells {e }, (each of
which is homeomorphic to the interior of the n-disk) through a continuous
map ¢, : 0ely = X,_; for each . In particular, X,, := X, 1| |, en/~
where ~ is the equivalence relation = ~ ¢, (z) for every = € del.

3. This inductive process can either terminate at some n, in which case we
set X = X, for some non-negative integer n, or this can go on indefinitely
for which we set X = J,, X,,. In the second case we give it the topology
that U C X is open (resp. closed) if and only if U N X, is open (resp.
closed) for every n.

If we terminate the process in definition 3.4.2 early, say X = X,,, then we
say that the CW-complex X has dimension n. We shall only concern ourselves
with one-dimensional CW-complexes as they will be important when we go on
to define a metric graph.
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Remark 3.4.3. Note that if X is non-empty, then X, must be non-empty.
Indeed, let n > 0 be the minimal integer such that X,, # 0 and X,,_; = 0.
Then there must exist some gluing map ¢, : 9e” — X" ! however such a
map cannot exist if X! is empty.

On the other hand, the empty set is a CW-complex with no cells.

Example 3.4.4. A 1-dimensional CW-complex can be thought of as a graph.
The 0-cells are the vertices and the 1-cells are the edges. Indeed, by definition
1 cells are open intervals, and the gluing action is precisely choosing to which
vertices the end points of this open interval should be attached to.

We say that a 1-dimensional CW-complex is finite if there are finitely many
vertices and edges. The valency of a vertex is the size of its equivalence class
minus one (since the vertex itself is in its own equivalence class), and if a point
is in the interior of an edge then we say it is of valency two.

Definition 3.4.5 (Metric graph). A topological space G is said to be a metric
graph if it is a connected one-dimensional finite CW-complex that is equipped
with a complete metric on G\ {1-valent vertices}.

A metric graph with open ends is a metric graph with some 1-valent vertices
removed. We exclude the case of a single edge with both endpoints removed;
however, we still allow a single edge that is subdivided by a vertex. Henceforth,
we will always assume that when referring to metric graphs, we are always
talking about one that may have open ends.

Two metric graphs are said to be isomorphic if there exists a homeomor-
phism between the two, which becomes an isometry after removing all 1-valent
vertices. Note that edges can be identified with (—oo, 0], [~00, 0] and [0, ] de-
pending on if it is an open end, closed end or an inner edge in which case [ is
its length.

According to [10, Proposition 8.15] every tropical curve that is regular at
infinity can be realized as a metric graph. We will leave this statement as a
black box, however the details of how one can go about proving this can be
found in [10, Exercise 8.1.6].

Theorem 3.4.6. There is a bijection between isomorphism classes of reqular
tropical curves and isomorphism classes of metric graphs.

The discussion in [10, p.211] gives a very concrete discussion on how one
can go from a metric graph I' to its tropical curve under the bijection. Then
for the other direction we shall give a concrete example.

Example 3.4.7. We go through how to turn the tropical line in figure 10 into
a metric graph.

31



Figure 10: The tropical line in T2

According to [10, p.211], any regular tropical curve is necessarily smooth,
which means that all weights are one so we in fact do not need to consider
weights at all. Now, denoting the standard basis vectors in R? by e;, we define
the length of —e;, —ey and ey +e5 to all be one. This gives us a unique complete
metric on the tropical line (excluding the vertices at —oo), hence turns it into
a metric graph.

This process is very much the same for all tropical curves as they all locally
look like the fan generated by —ey, ..., —e,,e1 + - -+ e, for some n which we
denote by L(n+1), or T in the case of 1-valent vertices which, for convenience,
we denote by L(1). We again define the metric to give a length of 1 for each
e; which gives the tropical curve a unique complete metric.
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4 Metric Graphs

All definitions, unless otherwise stated, will henceforth be taken from [2]. How-
ever, all proofs are done by myself.

Let I' be a metric graph, then we set V(I') and E(I") to be its vertex and
edge sets respectively. Note that we can always subdivide any edge by adding
a vertex to its interior, or remove any 2-valent vertex by completing the edge
it lies on.

Definition 4.0.1 (Morphisms of metric graphs). Let I" and I be two metric
graphs and ¢ : I — I' be a continuous map. Let V(') and V(I") be vertex
sets for each metric graph. Then ¢ is said to be a (V(I"), V(I'))-morphism if:

e We have o(V(I")) c V(T).
e We have o 1 (E(T")) C E(I).

e The restriction of ¢ to any edge ¢ of I' is a dilation by some factor
de () € Z>o. This dilation is called the degree of ¢ along ¢'.

The map ¢ is simply called a morphism if there exists a vertex set of [V and I'
such that the above holds. It is called finite if all dilations are non-zero.

Remark 4.0.2. Note that if ¢ were a morphism of metric graphs which had
an inverse morphism ¢! then the dilation factor must have been one which
makes ¢ an isometry, hence matches the definition in the previous section.

This then raises the question of whether or not the category of metric
graphs, which we denote by M, and the category of regular tropical curves,
which we denote by 78, are equivalent. In the case that we make a functor
F : M — T8 that is the identity on both objects and morphisms, this will
not result in an equivalence of categories. Take for example, the metric graphs
L(3) and L(4) except we cut off the rays so that they are a length of one.
The morphism (of metric graphs) mapping the points (—1,0,0) — (—1,0),
(0,-1,0) = (—=1,0), (0,0,—1) ~ (0,—1) and (1,1,1) — (0,—1) is perfectly
valid, since all lengths are one. However, if we want to transfer this to a
morphism of tropical curves then we will want an affine transformation that
reflects exactly this map. In other words, if we denote the map by = — Az +b

where
_fa b c (D
A= (d . f) and b = (bg)
then we would require the following equalities to be satisfied:

—a+b1:—1, —d+b2:O,

—b+b1:—1, —€+b2:O,
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_C+b1:07 _f+62:_17
a+b+c+b =0, d+e+ f+b=—1.

This then forces by = —1/2, which implies that a, b, ¢ are non-integers which
is already a problem. Unfortunately, this means that our choice of F' is not an
equivalence, whether or not there exists some choice of functor that works is
unknown, however more than likely an equivalence would require the change
up in the definitions of morphisms of both metric graphs and tropical curves.
In particular, if we allow real dilations and real entries then we do get an
equivalence. Every metric graph is given charts to L(n) for some n, so it is
enough to look at maps from an open around (0,0) in L(n) to an open around
(0,0) in L(m) for some n,m > 1. These maps must send (0,0) in L(n) to
(0,0) in L(m), otherwise we just choose L(2) for our chart. Any morphism
of metric graphs with real dilations is a morphism of tropical cures with real
entries, because we get a near identical line of inequalities as in the previous
example, from which it is easy to extract the required entries of A and b.
This implies that F' is at least well-defined, then faithfulness is clear from
the fact that F' is the identity on morphisms and fullness is satisfied because
every possible continuous map takes the form of a morphism of metric graphs
with real dilations. Therefore, in the case that we allow real values, F' is an
equivalence of categories. Whether or not having real dilations and real entries
is the right thing to impose is hard to say, since almost all sources impose their
integer variants. Nonetheless, there is still some value in exploring the integer
variants since this is how morphisms on metric graphs are defined in most
sources, and tropical curves are often defined to be metric graphs to begin
with.

Definition 4.0.3. Let r € Z~( then consider the convex hull in R? of (0,0)
and a point different from (0, 0), we shall call this a branch. The star with r
branches, denoted by S,., is a union of r branches, no two of which are parallel.

If I is a metric graph and p € T' is a point, then there exists a neighbour-
hood U, around p that is homeomorphic to some S, where r is the valency of
p. The set of tangent directions at p is given by T,(T") := 1i_n>qu (U, \ {p}),
where 7y takes all path components of its input and the limit is taken over all
the neighbourhoods of p. The size of T,,(I") is naturally the valency of p.

Let ¢ : I' — I' be a morphism of metric graphs, p’ € I/, ' € T/(I") and
¢’ € E(I") be the edge in the direction of v'. Then we define d,/ (@) := de (@)
and this induces a map

dp(p') - {v' € Tp’(rl) tdy (@) #0} — T,(T)

in the obvious way. The reason we exclude those that have dilation zero is
because this implies that an edge gets mapped to a vertex.
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Definition 4.0.4 (Harmonic morphisms). Let ¢ : IV — I' be a morphism of
metric graphs and p’ € IV, Then we say that the morphism is harmonic at p’
if for any choice v € T,y (I") the quantity

dp’(@) = Z dU/(SO)

v'edp(p')~1(v)

evaluates to the same value. If ¢ is surjective and harmonic at all p’ € I then
we say that ¢ is a harmonic morphism.

Proposition 4.0.5. Let p : IV — T" be a harmonic morphism then the quantity

Z dy ()

p'Ep~1(p)

is independent of the choice of p € I'. We call this quantity the degree of ¢,
denoted by deg(¢p).

Proof. 1t is enough to show this for points along an edge e € E(I") since we
can inductively extend it to all points of I'. Let p € e be a vertex and g € e
be an interior point, then it is enough to show that the degree of ¢ is the
same for both of these. We will temporarily introduce the notation deg, ()
for the degree of ¢ with respect to p. To that end, let py,...,p, be vertices in
['" that map to p and ey, ..., e1,, be all edges incident to p; that map to e,
€1, - .., €am, be all the edges incident to p, that map to e, and so on. Then
by choosing the direction v € T,(I") (which is allowed since ¢ is harmonic)
pointing towards e we may write

deg, () = > Z de,, ()

i=1 j=1

where we take it with respect to the point p. This matches the degree of ¢
when considering the point g because e;; are by definition all the edges that
map to e, and no matter which direction we choose, we will get the dilations
as above since it is an interior point. O

Definition 4.0.6 (Rational functions). Let I" be a metric graph and U C I’
an open subset, then a continuous function f : U — R is said to be a rational
function if it is piecewise affine with integer slopes. Recall that every edge
can be identified with [—o0, 0], (—00,0] or [0,1], so we can equivalently say
piecewise affine with integer slopes along every edge. We denote the set of
rational functions of I' by Rat(I").

Note that the term piecewise affine implies that there are only finitely
many slope changes. The definition of rational functions mimics the idea of

35



tropicalizing rational functions on an algebraic variety. If f/g is a quotient
of two polynomials on an algebraic variety over an algebraically closed and
valued field, then we can tropicalize it to trop(f) — trop(g) which is piecewise
affine with integer slopes.

5—

— ---0

Figure 11: Example of a rational function f on the interval [0, 5].

Let I" be a metric graph; then we define Div(I") to be the free abelian group
of I with its elements being called divisors. If D € Div(T") is a divisor, then
deg(D) is the sum of all its coefficients.

The order of a rational function f of a metric graph I' is the sum of its
outgoing slopes from the point p, which we denote by ord,(f). The divisor
associated with f, denoted by div(f), is defined by

div(f) = ord,(f)(p).

pel’

Note that we can equivalently write

div(f) = ) div(fl).
)

ecE(T

If we take the rational function in figure 11 then the order of f at any point
that lies on a linear part of f is zero. Then for the other points we have

Ordo(f> = 27 ordl(f) = —2, OI‘dQ(f) = 2, ord2.5(f) = —2, ord3_5(f) = —2,
ordy(f) = 2 and lastly ord;(f) = 0. This gives us
div(f) =2(0) — 2(1) + 2(2) — 2(2.5) — 2(3.5) + 2(4).

Notice that in this case deg(div(f)) = 0. This is not a coincidence, and as it
turns out, if I' is a compact metric graph this will always be the case.
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Proposition 4.0.7. Let I' be a compact metric graph and f : I' — R a rational
function. Then we have deg(div(f)) = 0.

Proof. Without loss of generality, we may assume that f is linear along every
edge of I' by adding vertices whenever f changes slope. Then it is enough to
show that deg(div(f|.)) for any edge e € E(I) is zero. However, by assumption
f is linear on every edge so the only points that contribute to div(f|.) are the
endpoints of the edge e. Since I' is compact, every edge will have two different
end points or is a loop. In the case of a loop, since we subdivided I' so that
f has no slope changes along an edge, so f maps this loop to a single point
which means div(f|.) = 0 in this case. In the case that e has two different end
points, they both have opposite outgoing slopes, so their sum vanishes. O

Definition 4.0.8. Let ¢ : IV — I be a harmonic morphism then we define the
push-forward ¢, : Div(I”) — Div(I") and the pull-back ¢* : Div(I") — Div(I")
by

0.() = (p(p) and ©*(p) = > dy(p)(p)

p'ep~t(p)

where we extend it linearly to all divisors. We also note that if D € Div(I") and
D" € Div(I"”) then deg(¢*(D)) = deg(y)deg(D) and deg(p.(D)) = deg(D)
which matches the classical case. We may also define the push-forward of
rational functions ¢, : Rat(I") — Rat(I') and the pull-back ¢* : Rat(I') —
Rat(I') by

PN = Y dy(p)f() and ¢*(f) = fo .

p'€p~1(p)

Note that the push-forward of rational functions is well-defined because
dy () is constant if p’ € o~ '(p) where p varies along an edge of I'. Since the
sum of piecewise integral affine functions is again piecewise integral affine, the
push-forward is piecewise integral affine on each edge, hence the whole metric
graph. Additionally, the pull-back is well-defined because by definition it is
a dilation on edges. The definition for push-forward and pull-back of divisors
are taken from [2], however, the definition for push-forward and pull-back of
functions were made to satisfy the desired properties in the next section.
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5 Weil-Reciprocity
In classical algebraic geometry, the Weil-reciprocity law is stated (due to [11])

as follows:

Theorem 5.0.1 (Weil-reciprocity law). Let C' be a smooth projective curve
over a field K and let f,g € K(C)* be functions such that div(f) and div(g)
have disjoint support. Then we have

f(div(g)) = g(div(f))

n,p we define

f(D):= 1T rto)m. (2)

peC

where if D =)

peC

A possible approach to proving this is as in [11, Exercise 2.11] where one
defines a morphism ¢g : ¢ — P! from the function g and use that the push
forward and pullback ’play nicely’ with (2). That is if ¢ : C — C’ is a
morphism of smooth curves then

f(@™D") = (p.f)(D') and f'(p.D) = (" f')(D)

where ¢* and ¢, are the classical pull-back and push-forward respectively. We
will follow this same approach to prove an analogue of Weil-reciprocity in the
tropical world. This, of course, comes with many things that one must define,
most of which we have done in previous sections.

Although our definition of a tropical curve will be slightly more general
than in [8], there exists a statement and a proof of a tropical analogue of
Weil-reciprocity given in it, however the proof does not provide much insight
into the interplay between the classical and tropical worlds. We hope that by
tropicalizing the classical proof of Weil-reciprocity, we will remedy this.

We will start by stating what we aim to prove, the statement of which is
inspired by [8, Theorem 2|. In the tropical world, multiplication is replaced by
addition, so a natural analogue to theorem 5.0.1 is the following theorem.

Theorem 5.0.2 (Tropical Weil-reciprocity). Let I' be a compact metric graph
and f, g be rational functions on I'. Then

f(div(g)) = g(div(f))

npp we define

F(D) =) f(p) ny

pel’

where if D ="

pel’
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Example 5.0.3. We begin with an
law in action.

example of the tropical Weil-reciprocity
6 4 & 6 ?
P 0!
' ~ I
[ P
1] 7 '
/ 1 1
1] L] 7 1
' \ ' \
1 \ 1 1
3 — \ . 3 — 4 \
\ " . 1
\ ~ ’ 1
‘\ ,’/ Y 1 |\
\ ’ A ,/ \
v o '
0 T | 0
0 3 6

—

3 6
div(f) = 3(0) — 4(1) — 2(3) +4(4) — (6) div(g) = —(0) +2(2) +2(4) — 9(5) + 6(6)

Figure 12: Two rational functions on the same metric graph, and their
divisors.

equal.

We now compute f(div(g)) and g(div(f)) and see that they are indeed

o f(div(g)) = —f(0) +2f(2) +2f(4) — 9f(5) +6/(6) =9
o g(div(f)) = 39(0) —4g(1) — 29(3) + 4g(4) — g(6) =9

Unless otherwise stated, the discussions that follow in this section are en-

tirely my own work. We shall now go through with establishing the remaining
tools that we require in order to prove theorem 5.0.2 here.

Lemma 5.0.4. Let I',)T" be metric graphs and ¢ : I'" — ' a harmonic mor-
phism. Then for any rational functions f € Rat(I'), g € Rat(I") we have

prdiv(f) = div(e"f) and ¢.div(g) = div(p.g).
Proof. Let p’ € I then by definition we have

prdiv(f)(p) = dyy (p)ordy) (f)-
On the other hand, let eq,...,e,, be all edges incident to p’ with non-zero
degrees with respect to ¢. If we then denote the slope of f along some edge
e € I' by A.(f), then we may write
div(f o ) (p) = de, () - Dpen) (f) + -+ + de, (0) - Dipie,) ()
Then group up the edges eq, ..
unique edge. In other words, ey,

., em by declaring that each group maps to a
..., em, map to the same edge, €,,, 11,
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all map to the same edge, until the last group e,,4+1,...,€n. Then we may
rewrite

div(f o) (p) = (de, () + - + de,, (0) - Dpen) (f) + -+
+ (demt+1 (QD) +eet dem (@)) ’ A‘P(emt+1)(f)'

However by harmonicity we may rewrite this to

div(fop)(p)) = dp’(w)Aw(el)(f) +oot dp’(SD>A<P(6mt+1)(f) = dp’(SD)OIdw(P/)(f)'

The last equality is because harmonic morphisms are surjective so we achieve
all edges incident to ¢(p’), hence all outgoing slopes of f from ¢(p’). Then for
the next claim we have

p.divig)(p) = > ordy(g). (3)
p'Ep~1(p)

On the other hand, the slope of p,g along an edge e € I' is the sum of the
slopes of ¢ along the edges that map to e under . This is because on the
interior of an edge d,y () is the degree of the said edge, and under the dilation,
we divide the slopes of g by the degree of the edge to get the new slope. Since
the push-forward requires multiplying by the degree of the edge, we recover
the slopes of g. Then it follows that the order at a point is the sum of the
orders as in (3). O

Lemma 5.0.5. Let ¢ : IV — T" be a harmonic morphism of metric graphs.
Then for any rational functions f € Rat(I'), g € Rat(I") and divisors D €
Rat(T"), D’ € Div(I") we have

9(¢"D) = (¢.g)(D) and f(p.D") = (¢" f)(D").

Proof. Note that as functions on divisors, ¢*, ¢, and any rational function is
linear, so we may assume that D = (p) and D’ = (p') are single points. We
first prove the equality on the left, and to that end we have

g @) =g | D_ du()®)

p'Ep~1(p)

= > gp)-dy(p)

p'Ep~1(p)

which is exactly the evaluation of ¢,g at p. Next we have

flo(0) = (fo)(P) = (¢ /) (D)

which proves the desired result. O]
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Next, we construct a harmonic morphism out of a rational function, and
we will illustrate how to do this in general in the following excursion.

Figure 13 illustrates the construction of a morphism associated to the ra-
tional function f whose domain is a line segment, which we shall call I". Here
we place vertices on I' on the end points of every slope change and the points
that map to the same value as these slope changes, in particular the vertices
occur at f~1({0,41,—2}) which can be seen in the second image.

1

f ll lQ 13

€1 €2 €3 €4 €5 €6

Figure 13: Hlustration of the construction of a morphism from a rational
function.

In this case there were no slopes that are 0, however if this happened to
be the case then we collapse this line segment down to a single point (in other
words we set its degree to 0). The lengths of ey, ..., e may vary depending on
how steep we choose the slopes of f to be. In any case, the edge e; corresponds
to the segment going from 0 to —1 in the codomain of f, the edge e; corresponds
to the segment going from —1 to 0, the edge e5 the segment from 0 to 1, and so
forth. The edges are then mapped to the corresponding edge in the codomain
of f , for example, we map ey to the edge l5. All that remains is to choose the
lengths of 1, ls and I3 so that f is harmonic. If we denote the lengths of an
edge e; by d., and similarly dj; for the others then this is equivalent to asking

dy _dy dy _dy | dy
dee de2 de5 des d€4

Then we require that each fraction is a positive integer, since they represent
the dilations of the morphism f . However, this is not always possible, for
example if f happened to force d,, = 1 and d,, = v/2 then we must have that
d.. /d., = v/2 must be rational, which is not the case. Nevertheless, none of
the lemmas that were proven in this section explicitly required the harmonic
morphism to have integer dilations. This leads to the following definition.

Definition 5.0.6. Let I, I" be metric graphs and ¢ : [ — I" a continuous
map. Then ¢ is said to be a pseudo-morphism if it is a morphism in the regular
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sense, except the dilations are allowed to be any nonnegative real number.
Additionally, ¢ is said to be pseudo-harmonic if is it a pseudo-morphism and
is harmonic in the sense of definition 4.0.4. We also call a function f:I' -+ R
a psuedo-rational function if it is a rational function, possibly with real slopes.

Now, given any rational function f, it is always possible to construct a
pseudo-harmonic morphism f from it. For instance, if we have a look at the
earlier example, then we can choose

1 /1 1\ ! 1 /1 1\ !
d =1d. = — [ —+ — dd,=—|(-—+— .
ll ’ l2 deﬁ (d32 + d€5 ) o l3 d€6 <d€3 + d64 )

This will always be possible given any metric graph and rational function
f because we will always get a chain of equalities in the shape of the above
example. Now if we denote the codomain of f by I', then there exists a pseudo-
rational function iy : I' = R such that f*z = f which essentially undoes the
dilations. The last ingredient to prove is that Weil-reciprocity is true for any
line segment, since given any metric graph I" and an f € Rat(I") then the
codomain of f is a line segment. The following proof is taken from [g].

Lemma 5.0.7. Let ' be a compact line segment, and f,g € Rat(I") then
f(div(g)) = g(div([)).

Proof. Let x1 < --- < x; be a complete list of points in I'" of the poles and
zeroes of f and g. Then on each interval [z;, z;41] for 1 < i <t — 1 we have
that f and g are both linear, so we denote the slope of f and ¢ on said interval
by «; and ; respectively. Then we have

.

f(div(g)) = Buf(z1) + Y (Bi — Bic) f(ws) — Bi—1f ()

i

Bi(f(xi) — f(xi1))

1

—_

I|
N

t—

—_

i

and similarly
g(div(f)) = Z ai(9(xi) — g(Tit1))-

Now we can rewrite

o — Ti) = fl@a) g 5, = 9(xin) — g(=i)

Tip1 — T4 Tit1 — L4

Plugging these into f(div(g)) and g(div(g)) we see that they are equal by
changing the position of the z;,; — z; in the denominator. O
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Remark 5.0.8. Note that lemma 5.0.7 is not necessarily true if I' is not
compact. For example, we follow the same notation as in the proof with
I' = (a, b] for some —oo < a,b < oo with slopes ag, By for f, g on the interval
(@, x1]. Then by following the proof we get

Fdiv() = ~of () + 3 (@) ~ f(ain)
= —Bof(xl) + iai(g(%) - g($i+1))
= —fBof (1) + aog(z1) + g(div(f)).

In particular, if f(div(g)) = g(div(f)) then we must have By f(z1) = aog(z1).
However, this is certainly not true for all rational functions f,g € Rat(T).
This is the reason we must restrict ourselves to compact metric graphs in
theorem 5.0.2.

Now we are in a position to prove the general Weil-reciprocity law for
compact metric graphs. For convenience, we shall state it again and then
prove it.

Theorem 5.0.9 (Tropical Weil-reciprocity). Let I' be a compact metric graph
and f, g be rational functions on I'. Then

f(div(g)) = g(div(f))

n,p we define

=> fp)-n

pel

where if D =)

pel’

Proof. Let I" be a compact metric graph and f, g € Rat(I"). Then we have

f(div(g)) = f(div(gi,)
= (g+J)div(ig
= ig(div (g f
= (§"ig)div(f
= g(div(f)).

These equalities follow from lemma 5.0.7 and the properties of the push-
forward and pull-back that we proved in the earlier portions of this section. [

)
)
)
)
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6 Conclusion and Discussion

In this paper, we set out to transfer the classical Weil-reciprocity law into
the tropical setting, aiming for a proof that closely parallels the algebraic-
geometric argument and thereby illustrating the interplay between classical
and tropical worlds. After laying the groundwork in polyhedral geometry and
formalizing tropical spaces via charts and balancing conditions, we specialized
to tropical curves realized as metric graphs. We then developed notions of
divisors, rational functions, and harmonic morphisms on metric graphs, and
defined push-forward and pull-back operations in analogy with the classical
case. The centrepiece is the proof of the tropical Weil-reciprocity theorem,
which verifies that for any two rational functions f, g on a compact metric
graph I' one has

f(div(g)) = g(div(f))

which is identical to the classical case. Our approach mirrors the classical
push and pull argument by constructing, for a rational function, a suitable
(pseudo-)harmonic morphism to a line segment and then invoking reciprocity
on said segment using lemma 5.0.7.

This viewpoint hopefully offers conceptual clarity compared to the proof
given in [8], emphasizing how tropical analogues of push-forwards and pull-
backs behave much like their algebraic counterparts under appropriate defini-
tions. It also highlights why compactness is crucial; as noted in remark 5.0.8,
the statement fails for non-compact graphs, reflecting subtle boundary be-
haviour in the tropical context.

There remain natural avenues for further exploration. One may investigate
whether some variation of the tropical Weil-reciprocity law exists for non-
compact metric graphs. Additionally, we may investigate concepts that are
reliant on Weil-reciprocity, for example, the Deligne pairing (as seen in [3,
pp.366-368]) since we know what tropical line bundles are due to [1].

Ultimately, this work contributes to the growing corpus of tropical ana-
logues of classical theorems and concepts (e.g., Riemann—Roch, vector bundles,
-classes, etc., as pointed out in the introduction), illustrating that tropical
geometry not only provides combinatorial counterparts but often recapitulates
the structural essence of algebraic phenomena. We hope that the methods and
insights developed here will serve as a template for further tropicalization of
classical results, enriching both worlds, the tropical and classical perspectives.
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