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Abstract. In this thesis, we take a close look at a theorem from Rams
and Schütt [20] which states that a smooth quartic surface in 3-dimensional
projective space over an algebraically closed field of characteristic not equal to 2
or 3 contains at most 64 lines. In Chapter 1, we cover the well-known theorem
that smooth cubic surfaces contain exactly 27 lines. In Chapter 2, we present a
basic introduction into elliptic curves and elliptic surfaces. In Chapter 3, we
follow Rams’ and Schütt’s proof to show the aforementioned theorem while
providing additional details and presenting computations that they omitted.
We improve on one of the intermediate results in [20] and show that if two
inflectious lines on a smooth quartic surface intersect, the surface is projectively
equivalent to the Schur quartic.
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0 INTRODUCTION

It has been known since the 19th century that a smooth cubic surface in 3-dimensional

projective space over an algebraically closed field contains exactly 27 lines, and each of

these lines intersects precisely 10 others. According to George Salmon ([22], p.496), this

was first proven in 1849 in correspondence between him and Arthur Cayley.

Over the course of the following years, much effort has been put into studying the

configurations of these lines, finding symmetries and examples. Notable examples include

the Fermat cubic surface, given by the equation

x3
0 + x3

1 + x3
2 + x3

3 = 0

in P3, which we will study in Chapter 1, and the Clebsch surface, which can be given in P4

by the equations

x0 + x1 + x2 + x3 + x4 = 0

x3
0 + x3

1 + x3
2 + x3

3 + x3
4 = 0

and is isomorphic to a cubic surface in P3 whose 27 lines can all be defined over the number

field Q(
p

5) (see [2, 11, 13]).

A natural question that arises from this result is how far it can be generalised. While

general surfaces of degrees higher than 3 do not contain any lines, there are examples of

surfaces that do, and in these cases one may still be interested in possible numbers and

configurations of lines.

In 1943, Beniamino Segre [26] proved that a smooth surface of degree d ≥ 0 in P3 can

contain at most (d−2)(11d−6) lines in characteristic 0. However, this bound is far from

optimal. For d = 4, this gives 80, but as we will soon see the maximum number of lines on

a smooth quartic surface is actually 64.

Segre also claimed to have proven this maximum for quartic surfaces in the same paper

[26]. However, his proof relied on the claim that any line on such a surface intersects at

most 18 other lines. As Sławomir Rams and Matthias Schütt [21] showed in 2014, this

1



0. INTRODUCTION

claim is false, and in fact there are examples of quartic surfaces which contain a line that

intersect as many as 20 other lines.

Segre’s end result on quartic surfaces is nonetheless correct, as Rams and Schütt [20]

also proved in 2015 in all characteristics except 2 and 3.

In this thesis, we will explore both the cubic and quartic situation.

In the cubic case, we will follow the proof from [5]. We first show that any cubic surface

contains a line. We will do this by defining the set Σ which consists of pairs of a cubic

surface S and a line L such that L ⊂ S and showing that the projection from Σ to the first

component is surjective with the help of a dimension argument.

We then use the existence of a line to examine its possible intersections with other lines.

The key observation is that a given line L ⊂ S gives rise to a morphism π : S →P1 whose

fibres are precisely the conics residual to L in intersections of S with planes containing L.

Any line intersecting L must then occur in a fibre of π.

Since fibres of π are plane conics, they are either smooth or consist of two lines. We then

go on to show that π has exactly five singular fibres, consisting of ten lines, all of which

intersect L. With this observation, we can then show that the surface S must contain

exactly 27 lines.

In order to treat the quartic case, we will follow the arguments from [20] which are based

upon a similar method. In this case, after assuming that a given smooth quartic surface S

contains a line L, the residual curves in the fibres of the corresponding morphism π are

no longer conics, but plane cubic curves. This will allow us to make use of the theory of

elliptic curves and elliptic surfaces.

An elliptic curve is a smooth curve E of genus 1 which contains a designated point O.

Such an elliptic curve admits a group structure with O as its neutral element. Furthermore,

the surface S together with the morphism π is a so called elliptic surface.

In Chapter 2, we will explore some general definitions and theorems about these objects

that will help us understand lines on quartic surfaces. Our main source on elliptic curves

will be [29], and for elliptic surfaces we will draw from [18, 23, 25, 28].

One of the central aspects of elliptic surfaces that play a role in examining lines on

quartic surfaces is the theory of fibre types. Almost all fibres of an elliptic fibration are

smooth, but some are singular. The singular fibres come in different types which have

been classified by Kunihiko Kodaira [14, 15, 16] and André Néron [19]. Similarly to the

situation on cubic surfaces, these singular fibres must contain all the lines intersecting L.
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0. INTRODUCTION

In Chapter 3, we will prove that any smooth quartic surface over an algebraically closed

field of characteristic not equal to 2 or 3 contains at most 64 lines. We will closely follow

the method from [20] while filling in missing details and omitted computations.

We first present the Schur quartic as an example of a smooth quartic that attains the

maximum of 64 lines.

In order to prove the theorem, we need to distinguish between regular and inflectious

lines, which Segre [26] and Rams and Schütt [20] call lines of the first and second kind,

respectively. A line L ⊂ S is called inflectious if every point of intersection of L with a

fibre F of the morphism π : S →P1 associated to L is a point of inflection of F. A regular

line is a line that is not inflectious. A priori, this differs slightly from the definition in [20],

but we will see that the definitions are equivalent.

If L is regular, similar logic as in Chapter 1 can be used to prove that it intersects at

most 18 other lines on S, where we provide computations that were omitted in [20]. We

can then show the main theorem in the case that all lines on S are regular.

If L is inflectious, more work is needed. First we examine which Kodaira types can

occur in fibres of π in this case, which depends on the ramification behaviour of the curve

morphism π|L : L →P1. We then consider the global ramification behaviour of this map,

and show that L intersects more than 18 lines on S if and only the map ramifies at exactly

two points.

This is the only case that differs significantly from the case where L is regular. From

this condition we can derive a simplified equation for S of the form

x2x3
0 + x3x3

1 + x0x1q(x2, x3)+ g(x2, x3)= 0

where q and g are homogeneous polynomials of degrees 2 and 4, respectively. In Proposi-

tion 3.31, we improve on an intermediate result from [20] and show that if two inflectious

lines intersect on a surface of this form, it is projectively equivalent to the Schur quartic.

We also provide additional computations that were omitted in [20] in Lemma 3.35. We

then go on to prove that the maximum of 64 lines still persists in this case.
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1 CUBIC SURFACES

In this chapter we will study lines on cubic surfaces. Let k be an algebraically closed field

not of characteristic 2 or 3. As was mentioned in the introduction, we want to prove the

well known theorem that every smooth cubic surface in P3(k) contains precisely 27 lines.

Some authors require curves and surfaces to always be irreducible. For the purposes

of this thesis, both the term ‘curve’ as well as the term ‘surface’ will include reducible

instances, unless specifically mentioned otherwise.

Before dealing with general surfaces, it is worth looking into an example.

1.1 Example. The Fermat cubic surface

x3
0 + x3

1 + x3
2 + x3

3 = 0

has 27 lines.

Proof. Let X denote the surface in question. First note that X is smooth because the

partial derivatives of x3
0 + x3

1 + x3
2 + x3

3 never simultaneously vanish. Now let L ⊂ P3 be a

line. Then we can write

L = Z(x0 − (a2x2 +a3x3), x1 − (b2x2 +b3x3))

up to some permutation of coordinates. Now L ⊂ X if and only if for all (x0 : x1 : x2 : x3) ∈P3,

if x0 = a2x2+a3x3 and x1 = b2x2+b3x3, then x3
0+x3

1+x3
2+x3

3 = 0. Substituting the first two

equations into the third one gives

0= (a2x2 +a3x3)3 + (b2x2 +b3x3)3 + x3
2 + x3

3

= (a3
2 +b3

2 +1)x3
2 + (3a3

2a3 +3b2
2b3)x2

2x3 + (3a2a2
3 +3b2b2

3)x2x2
3 + (a3

3 +b3
3 +1)x3

3

4



1. CUBIC SURFACES

which is the case for all x2, x3 if and only if all the coefficients of this polynomial expression

vanish. So we get equations

a3
2 +b3

2 =−1 (1.1)

a2
2a3 =−b2

2b3 (1.2)

a2a2
3 =−b2b2

3 (1.3)

a3
3 +b3

3 =−1. (1.4)

Now we claim that a2,a3,b2 and b3 can never be simultaneously non-zero: Indeed, if

that were the case, then squaring Equation (1.2) and dividing by Equation (1.3) would

give a3
2 =−b3

2, which contradicts Equation (1.1). So we can assume that a2 = 0 (all other

cases will be covered by permutations of coordinates). This gives us equations

b3
2 =−1 (1.5)

b2
2b3 = 0 (1.6)

b2b2
3 = 0 (1.7)

a3
3 +b3

3 =−1 (1.8)

Now from Equation (1.5) we can conclude that b2 = ζi for a primitive third root of unity ζ

and i ∈ {0,1,2}. In particular, b2 ̸= 0 and so Equation (1.6) gives us b3 = 0, after which

Equation (1.8) becomes a3
3 =−1, so a3 = ζ j for some j ∈ {0,1,2}. So we obtain nine solutions

to these equations, corresponding to the lines

L i j = Z(x0 +ζ jx3, x1 +ζix2),0≤ i, j ≤ 2.

We can parametrise the line L i j as{
(−ζ j y :−ζix : x : y) : (x : y) ∈P1

}
.

Note that swapping coordinates x0 and x3 is the same as replacing j by 3− j, and swap-

ping x1 and x2 is the same as replacing i by 3− i. Furthermore, swapping the pair (x0, x3)

with the pair (x1, x2) is the same as swapping i and j. Hence, permutations that return

a different set of nine lines are precisely the partitions of (x0, x1, x2, x3) into two groups
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1. CUBIC SURFACES

of two, of which there are three. Therefore, we have precisely 3 · 9 = 27 lines, whose

parametrisations are given by

L i j =
{
(−ζ j y :−ζix : x : y) : (x : y) ∈P1

}
L′

i j =
{
(−ζ j y :−ζix : y : x) : (x : y) ∈P1

}
L′′

i j =
{
(−ζ j y : y :−ζix : x) : (x : y) ∈P1

}

The parametrisations from this proof are very useful in determining the intersections

of those lines. First, looking at lines from the same group of nine, we see that the

lines L i j and L i′ j′ intersect if and only if i = i′ (at the point (0 :−ζi : 1 : 0)) or j = j′ (at the

point (−ζ j : 0 : 0 : 1)). So every line of the form L i j intersects precisely four of the other

lines of the form L i j. Furthermore, by fixing one i, we can see that the three lines L i j

for j = 0,1,2 all pass through the same point (0 :−ζi : 1 : 0), and the same holds if we fix a j.

Now if we again fix a line L i j, it will intersect three lines each from the other two groups.

To see this, first note that for L i j and L′
i′ j′ to intersect at a point P, all four coordinates

must be nonzero. Hence, in the parametrisation for L i j, we can set y= 1 to get

P = (−ζ j :−ζix : x : 1)

for some x ∈ k. Now assuming P also lies on L′
i′ j′ , knowing that the fourth coordinate is 1,

we can write

P = (−ζ j′ y :−ζi′ : y : 1)

for some y ∈ k×. Now since −ζix =−ζi′ , we find that

x = ζi′−i.

Similarly, since −ζ j′ y=−ζ j, we have

y= ζ j− j′ .

But since x and y have to be equal, this point of intersection exists if and only if

j− j′ ≡ i′− i (mod 3)

6



1. CUBIC SURFACES

or equivalently

i+ j ≡ i′+ j′ (mod 3).

So for every fixed index pair (i, j), we find three index pairs (i′, j′) such that L i j and L′
i′ j′

intersect, and the point of intersection is given by

(−ζ j :−ζi′ : ζk : 1)

where k ≡ i′− i ≡ j− j′ (mod 3). This works analogously if we replace L with L′ or L′′ or

vice versa.

So to summarise, each line on the Fermat cubic surface intersects exactly ten other lines.

This is no coincidence: we will soon see that the same thing holds for any cubic surface.

However, we also noticed some points where three lines intersect. To be precise, there are

six such points among the lines L i j, and six each for L′
i j and L′′

i j as well, so a total of 18.

These points are called Eckardt points, and are generally very rare [1.a]. Roughly speaking,

the ten lines intersecting a given line L on a smooth surface S come in pairs, each of which

forms a triangle with L, and an Eckardt point is a degeneration of such a triangle.

It is also worth noting that while the Fermat cubic is defined over Q, the same can be

said for only three out of the 27 lines on it, namely the lines L00,L′
00 and L′′

00. So the

assumption that k is algebraically closed is in general necessary to find all lines on a cubic

surface.

Before we get into the construction of the 27 lines on a cubic surface in general, it

is worth noting that while planes and quadratic surfaces are ruled surfaces and can be

completely covered with lines, general algebraic surfaces of degree higher than 3 contain

no lines at all, as we will see in Remark 1.3 at the end of the next section. Cubic surfaces

therefore represent a special case in between. In contrast to the lower degree cases, it is

not at all trivial that every cubic surface does indeed contain a line. We will present a proof

thereof in the next section.

Both the proof of the existence of a line and the subsequent proof that there exactly 27

lines on a smooth cubic are based primarily on lecture notes ‘Algebraic Geometry’ by

Edixhoven et al[5].

[1.a]In fact, 18 is the highest possible number of Eckardt points on a smooth cubic surface, as we will prove in
Proposition 1.14 at the end of this chapter. Furthermore, most cubic surfaces do not have any Eckardt
points. Indeed, the set of cubic surfaces with Eckardt points has codimension 1 within the set of all cubic
surfaces (see [4] p.440).

7



1. CUBIC SURFACES

1.1 EXISTENCE OF A LINE

In this section, we will prove the following proposition.

1.2 Proposition. Every cubic surface in P3 contains a line.

Note that we do not assume smoothness here. While singular cubics need not contain

exactly 27 lines, they do always contain at least one.

In order to prove Proposition 1.2, we first need to introduce Grassmannians. The goal

is to equip both the set of cubic surfaces and the set of lines in P3 with the structure of

a projective variety. The former case will be quite straight-forward. As for the lines, we

note that lines in P1 are in canonical bijection with 2-dimensional subspaces of k4. Now

let Gr(m,n) be the set of m-dimensional subspaces of kn. An element V ∈ Gr(m,n) can

be represented by a matrix in kn×m of rank m, with the columns forming a basis of V .

The choice of such matrix is not unique; two matrices A,B define the same subspace if

and only if there is an invertible matrix T ∈ GLn(k) such that A = BT. Now for every

index set I = {i1, . . . , im} with 1≤ i1 < ·· · < im ≤ n and matrix A ∈ km×n, we define AI to be

the m×m submatrix of A defined by the rows of indices i1, . . . , im. Considering the set of A

such that AI is invertible, we note that this set is invariant under right multiplication

with elements of GLm(k), so it defines a subset

UI ⊂Gr(m,n).

Furthermore, every m×n matrix of rank m has an invertible m×m submatrix, so these

sets UI cover Gr(m,n). Now we can define maps

ϕI : UI →Am(n−m), A 7→ (AA−1
I ){1,...,n}∖I .

This definition is again invariant under right multiplication by invertible matrices. Indeed,

for T ∈GL(n,k) and A ∈ km×n we have (AT)I = AI T and then

(AT)(AT)−1
I = AT(AI T)−1 = ATT−1 A−1

I = AA−1
I .

So the ϕI are well-defined maps for every index set I, and it can be shown that the ϕI are

bijective, that for index sets I, J the sets ϕI (UI ∩UJ) are open in Am(n−m), and that the

transition functions

ϕJ ◦ϕ−1
I : ϕI (UI ∩UJ)→ϕJ(UI ∩UJ)

8



1. CUBIC SURFACES

are rational maps between open subsets of Am(n−m). This makes Gr(m,n) a smooth variety

of dimension m(n−m). Furthermore, it can be shown that this variety can be embedded

into the projective space PN where N = (n
m

)−1. So as desired, the lines in P3 can be given

the structure of a smooth projective variety of dimension 2(4−2)= 4. For a more in depth

explanation with proofs of the aforementioned results, see [10], chapter 11.

We can now prove Proposition 1.2.

Proof of Proposition 1.2. We have already equipped the set of lines in P3 with the structure

of a projective variety and will now do the same with the set of cubic surfaces. Note that

every cubic surface is defined by a homogeneous polynomial of degree 3 in four variables.

Such a polynomial has
(3+3

3
) = 20 coefficients. Two polynomials define the same surface

if and only if one they differ by an element of k∗, or in other words, if their coefficients

have the same cross-ratio. We can thus naturally identify the set of cubic surfaces in P3

with P19. [1.b]

We now consider the subset

Σ= {(S,L) : L ⊂ S}⊂P19 ×Gr(2,4).

Showing that every cubic surface contains a line is equivalent to showing that the projec-

tion Σ→P19 to the first component is surjective. In order to prove this, we want to make

use of the projective variety structure on P19 ×Gr(2,4).

We can see that Σ is closed in P19 ×Gr(2,4) by considering the standard open cover

of Gr(2,4). For notational convenience, we will only look at U12, but the other opens function

in the same way. An element of U12 is a plane of the form 〈(1,0,a,b), (0,1, c,d)〉 ⊂ k4,

where (a,b, c,d) ∈A4, corresponding to the line L ⊂P2 defined by the parametrisation

{(λ :µ :λa+µc :λb+µd) : (λ :µ) ∈P1}.

For an element [ f ] ∈P19, where [ f ] is the equivalence class of a homogeneous polynomial f ∈
k[x0, x1, x2, x3]3, the pair ([ f ],L) is in Σ if and only if for all (λ :µ) ∈P1

f (λ,µ,λa+µc,λb+µd)= 0.

Looking at this expression as a polynomial in λ and µ, it is homogeneous of degree 3, and

thus has four coefficients, all of which have to vanish. Therefore, Σ∩ (P19 ×U12) is defined

by four polynomial equations in a,b, c,d and the coefficients of f , thus closed in P19 ×U12.

[1.b]Note that the term ‘cubic surface’ in this case includes non-reduced surfaces, such as sets of three (not
necessarily distinct) planes.

9



1. CUBIC SURFACES

The same argument can be used for the other standard open subsets of Gr(2,4), so Σ∩Ui j

is closed in Ui j for all pairs of indices 1 ≤ i < j ≤ 4. Since these open sets cover Gr(2,4),

it follows that Σ is closed in P19 ×Gr(2,4) and of codimension 4, or in other words the

dimension of Σ is 19.

Now, noting that π is a morphism between projective varieties and thus closed, we can

see that the image of π in P19 must have dimension 19, since otherwise, all nonempty fibres

of π would have positive dimension. But that would mean every cubic surface contains

either no lines or infinitely many, contradicting Example 1.1. So the image of Σ under π

has dimension 19 and because it is closed in P19, the morphism π must be surjective.

1.3 Remark. The arguments in this proof give rise to another interesting fact. If we

consider hypersurfaces of degree d in Pn, we can construct a similar projective variety

Σ⊂PN ×Gr(2,n+1)

like above, where now N = (n+d
d

)−1. The dimension of the Grassmannian Gr(2,n+1) is

now 2n−2, and computing the codimension of Σ inside PN ×Gr(2,n+1) in the same way

gives

N +2n−d−3.

Whenever this codimension exceeds the dimension of Gr(2,n+1), it follows that Σ has

a dimension strictly less than N. As a consequence, the general hypersurface in Pn of

degree d contains no lines at all. This is the case whenever d > 2n−3. In particular, by

setting n = 3, we can see that the general surface in P3 of degree higher than 3 does not

contain any lines.

1.4 Remark. We can also conclude from the proof of Proposition 1.2 that no cubic surface

can contain infinitely many lines. Indeed, if there were a cubic surface with infinitely many

lines, then there would be a fibre of the morphism Σ→ P19 that has positive dimension,

which is impossible.

1.2 THE 27 LINES ON A CUBIC SURFACE

In this section, let S be a smooth algebraic surface of degree d ≥ 3 containing a line L ⊂ S.

In the cubic case, such an L always exists by Proposition 1.2. In general, there may be

no lines on S, but under the assumption that there is at least one, we can still draw

conclusions on the number and configuration of lines on S.

10



1. CUBIC SURFACES

With L as a starting point, we first want to find out how many other lines on S could

possibly intersect L. Since two intersecting lines always lie on a common plane, we can

find such lines in the planes through L. The intersection of any plane with S is a plane

curve with the same degree as S. Because S is smooth, we can show that this curve is

reduced, i.e. it does not contain any components with multiplicity higher than 1.

1.5 Lemma. Let H be a plane in P3. Then the intersection H∩S is a reduced plane curve

in H ∼=P2 of degree d.

Proof. After a change of coordinates, we can assume that H is given by the equation x3 = 0.

Now assume there is a plane curve C ⊂ S∩H that is contained in the intersection with

multiplicity at least 2. Let g = 0 be an equation for g in the plane H ≃P2(x0, x1, x2) so that

in P3, C is given by the equations x3 = 0 and g = 0. We can then write an equation for S in

the form

f = x3h1 + g2h2 = 0 (1.9)

for some homogeneous polynomials h1,h2 of fitting degrees. Now consider the surface

defined by the equation h1 = 0. This surface then intersects the curve C in at least one

point P. Now P lies on S, because C is contained in S, and P is a singularity of S: indeed,

the partial derivatives of f are given by

∂

∂xi
f = x3

∂

∂xi
h1 +2gh2

∂

∂xi
g+ g2 ∂

∂xi
h2 for i = 0,1,2 (1.10)

∂

∂x3
f = h1 + g2 ∂

∂x3
h2 (1.11)

and since P is a root of x3,h1 and g, it is also a root of all partial derivatives of f and

thus a singularity of S. But we assumed S to be smooth, so our initial assumption must

have been wrong and the curve C cannot exist. The intersection S∩H is thus a reduced

curve.

Now note that any line in P3 skew to L has a unique intersection with any plane

through L. A choice of such line L′ thus gives us a bijective mapping from L′ to the family

of planes through L. Instead of looking at this family, we can define a morphism S → L′

whose fibres are exactly the curves residual to L in the intersections of S with these planes.

1.6 Proposition. Let S ⊂P3 be a smooth surface of degree at least 3 containing a line L.

Let L′ ⊂P3 be a line skew to L and not contained in S. Then there is a unique morphism

πL,L′ : S → L′

11
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with the property that for every point P ∈ S∖L, the image πL,L′(P) is given as the unique

point of intersection of L′ with the plane through P and L.

Proof. Since the set S∖L is dense in S and morphisms of varieties are continuous, such a

morphism has to be unique if it exists. To prove existence, we can choose coordinates such

that

L = Z(x2, x3)

L′ = Z(x0, x1).

Since L is contained in S, we can write an equation for S of the form

f := x2 g+ x3h = 0

for some homogeneous polynomials g,h of degree degS−1. Given a point P = (w : x : y : z)

not on L, the plane through P and L is given as

Z(zx2 − yx3).

Intersecting this plane with the line L′ gives the point (0 : 0 : y : z). If P lies on S, we

have yg(P)+ zh(P)= 0, and so we can write this as (0 : 0 :−h(P) : g(P)). In particular, we

can extend this definition to L as well, since g and h cannot simultaneously vanish on L.

Indeed, note that the partial derivatives of f are given by

∂ f
∂x0

= x2
∂g
∂x0

+ x3
∂h
∂x0

∂ f
∂x1

= x2
∂g
∂x1

+ x3
∂h
∂x1

∂ f
∂x2

= x2
∂g
∂x0

+ g+ x3
∂h
∂x2

∂ f
∂x3

= x2
∂g
∂x3

+ x3
∂h
∂x3

+h.

If g and h both vanished at some point Q ∈ L, then Q would be a singularity of S, contra-

dicting the assumption that S is smooth. So indeed we obtain a morphism S → L′ with the

desired properties.

In the following, we will always identify L′ with P1. Note that the specific choice of L′ is

irrelevant for our purposes, since the set of fibres of πL,L′ is independent of this choice. We

12



1. CUBIC SURFACES

will thus write πL instead of πL,L′ , and if it is clear from context what L is, we will drop

that index as well and simply write π.

This morphism gives us a precise notion of the residual curves that we mentioned earlier.

For any t ∈ P1, the fibre π−1(t) over t is a plane curve of degree degS−1 which does not

contain L, but together with L forms the complete intersection of some plane H with the

surface S.

For the rest of this chapter, S will be a smooth cubic surface, and L will be a line

contained in S, whose existence is guaranteed by Proposition 1.2. In this case, the residual

curves in the fibres of π will be relatively easy to handle, as they are plane quadrics, which

are either smooth or decompose into two lines. The following lemma immediately gives us

the exact number of singular quadrics.

1.7 Proposition. Let S ⊂P3 be a smooth cubic surface, L a line contained in S, and π=
πL : S → P1 a morphism like in Proposition 1.6. Then there are exactly five distinct ele-

ments t ∈P1 such that π−1(t) is a singular conic.

Proof. First take any plane conic of the form Z( f )⊂P2 for some homogeneous quadratic

polynomial f . Then Z( f ) is smooth if and only if its Hessian is nonzero. Note that the

Hessian is constant, since f has degree 2. If the Hessian is zero, Z( f ) consists of two lines.

This will allow us to characterise fibres of π which contain lines.

Now going back to P3, we choose coordinates such that L = Z(x2, x3). We can write an

equation for S as

f = a00x2
0 +2a01x0x1 +a11x2

1 +2a02x0 +2a12x1 +a22. (1.12)

where the ai j are homogeneous in the variables x2, x3 of fitting degrees. The ai j are

named this way because they will be the entries of the Hessian matrix of f restricted to

any plane through L. Note that in order to write f in this way, we require the assumption

that k does not have characteristic 2.

Now planes containing L are of the form

H(λ:µ) = Z(λx2 +µx3)

for (λ :µ) ∈P1.

Note that there must be at least one value of (λ :µ) such that the corresponding fibre of π

is a smooth conic. If all fibres were singular, then S would contain infinitely many lines,

which is impossible by Remark 1.4. After a linear change in the coordinates x2 and x3, we

can assume that the fibre above (1 : 0) is smooth.

13
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We thus only need to consider the planes H(λ:1). The intersection with S as a subvariety

of H(λ:1) ≃P2 is then given by

f (x0, x1, x2,−λx2)= 0

which we can simplify by using the homogeneity of the ai j to get

x2
(
a00(1,−λ)x2

0 +2a01(1,−λ)x0x1 +a11(1,−λ)x2
1

+ 2a02(1,−λ)x0x2 +2a12(1,−λ)x1x2 +a22(1,−λ)x2
2
)

The factor x2 corresponds to the line L, and the fibre of π above (λ : 1) is given by the

equation

qλ := f (x0,x1,x2,−λx2)
x2

= 0.

We claim that the conics defined by equations of this form are singular for precisely 5

different values of λ. Note that we can write

qλ =
∑
i, j

ai jxix j

and then the conic is singular if and only if

det


a00(1,−λ) a01(1,−λ) a02(1,−λ)

a01(1,−λ) a11(1,−λ) a12(1,−λ)

a02(1,−λ) a12(1,−λ) a22(1,−λ)

= 0. (1.13)

Viewed as polynomials in λ, the coefficients of this matrix have degrees as follows:
1 1 2

1 1 2

2 2 3

 ,

so the determinant defines a degree 5 equation in λ. It should be noted that it is impossible

for this equation to degenerate. The leading coefficient of ai j when viewed as a polynomial

in λ is precisely the value ai j(0,1). So indeed the leading coefficient of Equation (1.13) were

zero, then the Hessian determinant in the fibre above (0 : 1) would also vanish, contrary to

our assumption.

What remains to be shown is that the roots of Equation (1.13) are distinct. Suppose λ1 is

one such root. After a change of coordinates in x2 and x3 we can assume that λ1 = 0, and

the plane H(0:1) is given by the equation x3 = 0. The intersection S∩H(λ1:1) consists of the

line L and two more lines, which we will call L1 and L′
1. We distinguish between two cases.

14
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If the three lines are concurrent, then we can choose coordinates x0, x1 such that the

point of intersection is (1 : 0 : 0 : 0). After a further change in the coordinates x1, x2, we can

assume that the lines are given by L = Z(x2, x3), L1 = Z(x1, x3) and L′
1 = Z(b1x1 +b2x2, x3)

for some (b1 : b2) ∈P1. We can then write the equation for S as

f = x3F +b1x2
1x2 +b2x1x2

2 = 0

for some homogeneous polynomial F of degree 2. In the notation from Eq. (1.12), the

monomial x3 thus divides all ai j with the exception of

a11 = b1x2 + cx3

a12 = 1
2 b2x2

2 +dx2x3 + ex2
3

for some constants c,d, e ∈ k. Now the Hessian of f is given by

−a00a2
12 + x2

3G

for some polynomial G. Note that x3 does not divide a2
12 and only divides a00 with

multiplicity 1, since a00 has degree 1. Therefore, λ divides det(ai j(1,−λ))i j, but λ2 does

not, and so λ1 is indeed a simple root of Equation (1.13).

If the lines are not concurrent, we can use similar reasoning. This time, they intersect

in a proper triangle, whose corners we can assume are given by the points (1 : 0 : 0 : 0),

(0 : 1 : 0 : 0) and (0 : 0 : 1 : 0). The lines are then given by L = Z(x2, x3), L1 = Z(x1, x3)

and L′
1 = Z(x0, x3). So now we can write

f = x3F + x0x1x2

for some homogeneous polynomial F, which means a01 = 1
2 x2 + cx3 for some constant c ∈ k

and all other coefficients are multiples of x3. Similarly to the previous case, the Hessian

of f is given by

−a2
01a22+ x2

3G

for some polynomial G. Again we note that x3 does not divide a2
01, but does divide a22.

However, a22 cannot be a multiple of x2
3 if S is smooth.

15
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To see this, note first that a00 and a11 are multiples of x3 and have degree 1, so they are

constant with respect to x2. We compute the partial derivatives of f :

∂

∂x0
f = 2(a00x0 +a01x1 +a02)

∂

∂x1
f = 2(a01x0 +a11x1 +a02)

∂

∂x2
f = x0x1 +2x0

∂

∂x2
a02 +2x1

∂

∂x2
a12 + ∂

∂x2
a22

∂

∂x3
f = x2

0
∂

∂x3
a00 +2x0x1

∂

∂x3
a01 + x2

1
∂

∂x3
a11 +2x0

∂

∂x3
a02 +2x1

∂

∂x3
a12 + ∂

∂x3
a22

If x2
3 divides a22, then x3 divides ∂

∂x3
a22. But this would imply that every monomial in

these partial derivatives is a multiple of x0, x1 or x3, and then (0 : 0 : 1 : 0) would be a

singular point of S.

So indeed x3 only divides a22 with multiplicity 1, and λ1 is once again a simple root of

the Hessian of f . Since this applies to all roots of f , there are indeed five distinct roots,

corresponding to five distinct fibres of π, each containing two lines intersecting L.

1.8 Remark. Note that lines from different fibres of π cannot intersect each other. They lie

on different planes through L, and their point of intersection would have to lie on L. But

because S is smooth, three concurrent lines on S must be coplanar. In particular, we can

conclude that there exist two disjoint lines on S.

Now, let L0 and M0 be two such disjoint lines. We apply Proposition 1.7 to both of them

separately. Applying it to L0, we obtain five pairs of coplanar lines L i, Ni for i = 1, . . . ,5.

Now for every i, the lines L0, L i and Ni form the complete intersection of S with some

plane. Since M0 intersects this plane and lies on S, it must intersect exactly one of them.

Because L0 and M0 are disjoint, it has to be L i or Ni. Without loss of generality, we can

assume that M0 intersects the lines Ni for every i.

When we apply Proposition 1.7 to M0, we again obtain five singular fibres of πM0 . Each

of these fibres contains one of the lines Ni, and another line Mi. In total, we have now

constructed 17 lines on S. Before we can find the final ten, we need to establish some basic

properties of mutually disjoint lines in P3.

1.9 Lemma. Let L, M, N ⊂P3 be mutually disjoint lines. Then there is exactly one quadric

surface Q that contains L, M, N. The surface Q is precisely the union of all lines passing

through L, M, N.

Proof. Since L and M are disjoint, we claim that we can find homogeneous coordinates such

that L = Z(x0, x1), M = Z(x2, x3) and N = Z(x0 − x2, x1 − x3). This is equivalent to finding

16
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a basis (v1,v2,v3,v4) of k4 such that the two dimensional linear subspaces U ,V ,W ⊂ k4

corresponding to L, M, N are given by

U = 〈v1,v2〉 ,V = 〈v2,v3〉 ,W = 〈v1 +v3,v2 +v4〉 .

Since U∩V = {0} (corresponding to the disjointness of L and M) and their dimensions are 2,

any two bases of U and V joined together form a basis of k4. So, taking a basis (w1,w2)

of W , we can find vectors v1,v2 ∈U ,v3,v4 ∈V such that v1 +v3 = w1 and v2 +v4 = w2. If v1

and v2 were linearly dependent, i.e. λv1 +µv2 = 0, then

λw1 +µw2 =λv3 +µv4 ∈V ,

but because V ∩W = {0}, that implies that w1,w2 are linearly dependent – a contradic-

tion. Thus, both (v1,v2) and (v3,v4) are linearly independent pairs, hence bases of U ,V

respectively, and so indeed (v1,v2,v3,v4) is a basis of k4.

Given these coordinates, we can now explicitly define the quadric surface Q. Let

Q = Z(x0x3 − x1x2).

This Q clearly contains L, M, N. We will postpone the proof of uniqueness for now and first

show that Q is the union of all lines intersecting L, M and N.

Let P be a point on Q, with coordinates (x0 : x1 : x2 : x3) with x0x3 − x1x2 = 0. If P lies

on one of the three lines, say P ∈ L, we can consider the plane through P and M and

note that this plane intersects N, giving us a line through P, M and N, so P is indeed

contained in the union of all lines intersecting L, M, N. From now on assume P lies on

neither of the three lines. At least one coordinate of P has to be nonzero, say without loss

of generality λ := x0 ̸= 0. If x3 ̸= 0, then all coordinates must be nonzero. Writing x2 = rλ for

some r ∈ k× and x1 =µ, it follows that x3 must be equal to rµ and P is given as (λ :µ : rλ : rµ).

In this case, the line Z(µx0 −λx1,µx2 −λx3) passes through P and intersects the lines L,

M and N. On the other hand, if x3 = 0, then either x1 or x2 has to be equal to zero. But

since we assumed that P does not lie on M = Z(x2, x3), it follows that x2 ̸= 0 and so we can

write P in the form P = (λ : 0 : µ : 0) for some λ,µ ∈ k×. Then the line Z(x1, x3) contains P

and intersects L, M and N.

To show the other inclusion, we will look at any quadric surface Q′ containing L, M

and N. Consider a line L′ that intersects L, M and N. Then the set L′∩Q′ contains all three

points of intersection. Using Proposition 7.6 from [9] and the notion of degree introduced

in the preceding definition, we can conclude that degL′ = 1, since L′ is isomorphic to the
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projective line and the degree of a variety depends only on the coordinate ring, hence is

invariant under isomorphism. From the same proposition it is also clear that degQ′ = 2.

It then follows from Theorem 7.7 that L′ must be fully contained in Q′, since otherwise,

their intersection could contain at most two points. So any quadric surface containing L,

M and N also contains all lines passing through them.

In particular, this fact can also be used to show that Q is unique. Indeed, if Q′ is another

quadric surface containing L, M, and N, then Q must be contained in Q′. But since Q is

smooth, equality follows.

This quadric surface is quite useful for examining what can happen if we add a fourth

line.

1.10 Lemma. Suppose L, M, N,O ⊂P3 are mutually disjoint lines. Then

1. If O lies on the quadric Q spanned by L, M, N, then there are infinitely many lines

intersecting L, M, N,O

2. If O is tangent to Q, there is exactly one such line

3. If O does not lie on Q and is also not tangent to it, then there are exactly two such

lines.

Proof. We choose the same coordinates as in the proof of Lemma 1.9. Then Q is the image

of the Segre embedding P1 ×P1 →P3 and the lines L, M, N correspond to the lines

{(0 : 1)}×P1, {(1 : 0}×P1, {(1 : 1)}×P1.

If O ⊂Q, then it corresponds to {P}×P1 for some P ∈P1 and all lines P1 × {R} intersect all

four. If O ̸⊂ Q, then their intersection can only have cardinality 1 or 2, with the former

being the case if and only if O is tangent to Q.

We can now prove the main theorem of this chapter, which was first proven by Cayley

and Salmon in 1849 (see [22], p.496), here presented with a proof following [5].

1.11 Theorem (Cayley, Salmon, 1849). Let S ⊂ P3 be a smooth cubic surface. Then S

contains exactly 27 lines.

Proof. By Proposition 1.2, we know that S contains at least one line. By Remark 1.8, we

also know that there must be two disjoint lines on S. We shall fix two such disjoint lines L0

and M0.

As was explained before, this allows us to construct 15 more lines, which we shall review.
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By Proposition 1.6, the line L0 is intersected by precisely ten other lines on S, which come

in pairs (L i, Ni) for i ∈ {1, . . . ,5} with the property that for each i, there is a plane H ⊂P3

such that the intersection of S with H consists precisely of the three lines L0, L i and Ni.

Given such a plane H, the line M0 must intersect H, and because M0 is contained

in S, the point of intersection must lie on L0, L i or Ni. Since L0 and M0 are disjoint by

assumption, the line M0 must intersect exactly one of L i or Ni.

Without loss of generality, we can assume that M0 intersects Ni for each i, and is disjoint

with all L i.

After applying Proposition 1.6 to the line M0 as well, we find that M0 is intersected by

exactly ten other lines on S, five of which are already given in the lines Ni. Therefore,

there must be five more lines Mi for i ∈ {1, . . . ,5} such that for each i, the three lines M0,

Mi and Ni are coplanar.

We now have the 17 lines

L0, M0,L1, . . . ,L5, M1, . . . , M5, N1, . . . , N5 (1.14)

on S.

Next, we want to prove that S cannot contain more than 27 lines. Let O be any line

on S not among the 17 lines (1.14). We claim that O must intersect precisely three of the

lines Ni.

Assume first that O meets at least four Ni, and assume without loss of generality that

these are given by N1, N2, N3 and N4. Note that the lines Ni are mutually disjoint. Indeed,

two lines Ni and N j with i ̸= j lie in different planes through L0, so if they intersected, we

would have three concurrent lines that are not coplanar, leading to a singularity on S.

Further note that by construction, the four lines N1,. . . , N4 are all intersected by three

different lines in L0, M0, and O. By Lemma 1.10, this implies that N4 must lie on the

quadric surface Q spanned by N1, N2 and N3. By Lemma 1.9, this quadric surface Q also

contains the three lines L0, M0 and O.

This means that the intersection of the surfaces S and Q has degree at least 7. But by

Theorem I.7.7 in [9], this is impossible, since (degQ)(degS) = 6. So O can meet at most

three of the lines Ni.

Now suppose that it meets at most two. Note that O does not intersect L0, since

otherwise it would be equal to L i or Ni for some i. But among each triangle L0,L i, Ni, it
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must intersect exactly one of the three lines, as discussed before. So after renumbering, we

find that O must intersect

L1,L2,L3,L4,L5

or N1,L2,L3,L4,L5

or N1, N2,L3,L4,L5

Since L0 intersects all five lines in either case, and M1 intersects N1 as well as L2,. . . ,L5

(because M1 is disjoint with L0 and Ni for i ̸= 1), this means that M1 intersects at least

four of the five lines in each case. In particular, there are always four disjoint lines that

are all intersected by the three distinct lines L0, M1 and O. With the same reasoning as

above, Lemmas 1.9 and 1.10 imply that this is impossible.

We conclude that O must intersect precisely three among the five lines Ni. Since there

are
(5
3
)= 10 possibilities to choose three among those five lines, there can only be at most

ten additional lines on S, giving us the desired maximum of 17+10= 27.

It only remains to be shown that this maximum is always reached. Consider the line Ni

for a fixed index i. By construction it intersects the lines L0 and M0, as well as L1 and M1.

However, it cannot intersect any of the other lines already constructed, as they all lie in

different planes through L0 or M0.

By Proposition 1.7, there must be six more lines on S intersecting N1. As we have

shown above, any line O on S distinct from the 17 already constructed ones must intersect

precisely three among the lines N1, . . . , N5. Therefore, the six lines intersecting Ni must

each intersect precisely two other lines N j and Nk for distinct indices j,k ̸= i.

Note that if two distinct lines O and O′ were to meet the same three lines Ni, N j and Nk,

then they would both lie on the quadric surface spanned by Ni, N j and Nk, together

with L0 and M0, which leads to a contradiction like above.

Since for each i there are precisely six tuples of indices ( j,k) such that i, j,k are all

distinct, there must be precisely one line intersecting the three lines Ni, N j and Nk for

each such choice of j and k.

For i < j < k, we shall label this line Oi jk. In particular, there are precisely
(5
3
)= 10 such

lines Oi jk. Together with the 17 lines from (1.14), that makes 27 lines.

Because we already established that S cannot contain more than 27 lines, it must contain

exactly 27.

While this does finally prove that there are exactly 27 lines on any smooth cubic surface,

there are still some open questions. In particular, it is not yet fully clear which ten lines
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intersect any of L i, Mi or Oi jk in the notation of the proof above. But we already know

enough about the intersections to answer this question.

Take any line Mi. It has to intersect any triangle (L,L j, N j) exactly once. Since Mi is

disjoint with L and intersects Ni, but no other line N j, it has to intersect all L j for j ̸= i.

Furthermore, the line Oi jk also intersects each of the triangles (L,Lr, Nr) and (M, Mr, Nr)

exactly once. Among the Nr, Oi jk meets exactly the three Ni, N j and Nk, so it must meet

the remaining Lr and Mr for r ̸= i, j,k.

So far, we have found seven intersecting lines for every Oi jk, so it must intersect three

other lines among this group as well. Take for example O123 and note that it forms a

triangle with the lines L4 and M5. Again, we can conclude that each other line on S must

intersect one from this trio. The lines Oi45 for i = 1,2,3 all do not intersect L4 or M5, so

they must intersect L123. Doing this for all indices, we can conclude that the lines Oi jk

and Orst intersect if and only if {i, j,k}∪ {r, s, t} = {1,2,3,4,5}. This gives precisely three

new intersecting lines for each Oi jk, meaning we found all ten for every line on S.

Lastly, let us briefly touch on the subject of Eckardt points, which were mentioned at the

very beginning of this chapter.

1.12 Definition. A point P ∈ S is called an Eckardt point if there are three lines on S

passing through P.

As we have seen previously, the lines on S come in triangles. Whenever two lines

intersect, there is a third line in that same plane also intersecting both. Since each

line intersects ten other lines, it is a part of five different triangles. In total, there are

thus 27·5
3 = 45 triangles of lines on S. An Eckardt point is simply a degeneration of one of

these triangles. However, it is not possible for each triangle to be degenerate at the same

time. In fact, there can be at most 18 Eckardt points on S. To prove this, we will first show

that each line on S can only contain up to two of them.

1.13 Lemma. Let S ⊂P3 be a smooth cubic surface and let L be a line lying on S. Then L

contains at most two Eckardt points.

Proof. Recall the morphism π : S →P1 associated to L as in Proposition 1.6. Restricting it

to L, we obtain a morphism of curves

π : L →P1.

Note that an Eckardt point occurs precisely when a singular fibre of the morphism π : S →
P1 ramified when viewed as a fibre of the morphism π : L → P1. This morphism has

degree 2, since fibres of π are intersections of L with plane quadrics. Since both L and P1
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are genus 0 curves, we can use the Riemann-Hurwitz formula (see Corollary IV.2.4 in [9])

to see that

2g(P1)−2= (degπ)(2g(L)−2)+ ∑
t∈P1

e t −1,

where g is the genus and e t is the ramification index of π at the fibre above t. Note that in

positive characteristic the Riemann-Hurwitz formula is true whenever all ramification is

tame. Since the degree of the morphism L → P1 is 2, wild ramification can only exist in

characteristic 2. Simplifying this equation and substituting g(L)= g(P1)= 0, we get

∑
t∈P1

e t −1= 2.

In other words, there are exactly two ramified fibres, of ramification index 2 each. Whenever

one of these two coincides with a singular fibre of π : S →P1, we obtain an Eckardt point.

In particular, there can be at most two Eckardt points on L.

With the help of this lemma, we can prove the aforementioned maximum.

1.14 Proposition. There can be at most 18 Eckardt points on S.

Proof. By Lemma 1.13, there can be at most two Eckardt points on every line on S. Since

there are 27 lines and each Eckardt point is counted thrice, the maximum number of

Eckardt points on S is
27 ·2

3
= 18.

Note that this upper bound can indeed be obtained, namely by the Fermat cubic from

Example 1.1. The proof of Lemma 1.13 perhaps also illustrates why Eckardt points are so

rare. For an Eckardt point to occur on the line L, the morphism L →P1 has to ramify at

one of only finitely many specified fibres; namely the five singular fibres of S →P1. Indeed,

the set of smooth cubic surfaces with an Eckardt point has codimension 1 in the space of

all cubic surfaces (see [4], p.440).
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Unless otherwise mentioned, let k be an algebraically closed field with char k ̸= 2,3.

In Chapter 1, we proved that every smooth cubic surface in P3 contains exactly 27

lines. To be a bit more precise, we actually proved two separate results, with independent

methods:

1. Every cubic surface contains a line.

2. Every smooth cubic surface S with a line L ⊂ S contains exactly 27 lines.

A natural goal would be to generalise this as much as possible. We have already seen in

Remark 1.3 that the general surface of degree higher than 3 does not contain any lines, so

the first point does not generalise at all. However, for any degree d > 3 there is a positive

dimensional family of smooth surfaces of degree d which do contain lines, and we will

restrict our attention to those.

In Chapter 1, the central observations were Proposition 1.6 and Proposition 1.7. For a

smooth cubic S containing a line L we defined a morphism π whose fibres are plane conics,

and any lines on S intersecting L are components of such fibres. We then went on to prove

that almost all fibres are smooth irreducible conics while exactly five of them decompose

into two lines each.

Proposition 1.6 generalises very easily to all smooth surfaces S of higher degrees, as long

as we assume that S contains a line L. When it comes to Proposition 1.7, we made heavy use

of the fact that when degS = 3, the residual curves in the fibres of the morphism πL : S →P1

are conics. In this case, there are only two different fibre configurations that we need to

distinguish: either the fibre is smooth, or it consists of two lines.

We used the Hessian as a tool to distinguish these cases; a conic has a constant Hessian,

and is smooth if and only if the Hessian is nonzero. For curves of higher degrees, the

Hessian will no longer be constant. Rather than being a measure for the smoothness of the

curve, it will instead determine points of inflection.

Denote by iP (C,D) the intersection multiplicity (see [9], p. 53) of two curves C and D at

a point P in which they intersect.
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2.1 Definition. Let C ⊂P2 be an algebraic curve, P ∈ C a smooth point, and let TP be the

tangent line to C at P. We call P an inflection of C if iP (TP ,C)≥ 3.

2.2 Remark. Some authors may require inflections to be smooth points. We will not make

this distinction. Note that according to the above definition, singular points are always

inflections. Indeed, for any singular point P on a curve C we can find a line L such

that iP (L,C)≥ 3. We further note that every point on a line is an inflection since for any

line L and P ∈ L we have iP (L,L)=∞.

For plane conics, inflection points are not very interesting: when the curve is smooth,

there are no inflections, and when it is singular, it decomposes into two lines and all points

are inflections. This is reflected in the fact that the Hessian is constant. In fact, the

Hessian of a plane curve can generally be used to find its points of inflection.

2.3 Proposition. Let C ⊂ P2 be an algebraic curve and P ∈ C a point. Then P is an

inflection point of C if and only if the Hessian of C vanishes at P.

A proof of this can be found in [7], p. 67. Curves of degree higher than 2 can contain

non-trivial (i.e. not lying on a line component) inflection points, and so while the Hessian

necessarily vanishes along every line, it is no longer a sufficient tool to detect lines, unless

we pay closer attention to the inflection points in general. Specifically if S is a smooth

quartic surface, then the fibres of the morphism π are plane cubic curves. The following

proposition gives the number of inflection points on a plane cubic.

2.4 Proposition. Let C ⊂P2 be an irreducible curve of degree 3.

a) If C is smooth, then C has exactly nine points of inflection.

b) If C has a node, then C has exactly four points of inflection, including the node.

c) If C has a cusp, then C has exactly two points of inflection, including the cusp.

Proof. This follows immediately from the Plücker formulas ([7], p.89). One of these

formulas states that

s∗ = 3n(n−2)−6d−8s,

where C is a curve of degree n, s∗ is the number of smooth inflection points, d is the

number of nodes, and s is the number of cusps. For n = 3, we obtain the desired results.

In Chapter 3, we will see there is an analogue of Proposition 1.7 for smooth quartic

surfaces. However, this will not hold in full generality, as there is a specific type of line

that evades this reasoning.
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2.5 Definition. Let S be a smooth surface in P3 containing a line L. Let π : S →P1 be the

morphism as defined in Proposition 1.6.

Then L is called inflectious if for every P ∈ L, every point of intersection of L with the

fibre CP =π−1({π(P)}) is a point of inflection of CP .

Otherwise we call L regular.

2.6 Remark. This is not standard terminology. Segre [26] introduces regular lines as ‘lines

of the first kind’ and inflectious lines as ‘lines of the second kind’, and Rams and Schütt

[20]use the same terms.

2.7 Remark. There are two different definitions for inflectious lines in the literature. The

definition used here is similar to the one in [26], where a more general formulation applies

to all surfaces in P3 of degree 3 or higher.

Another definition is used in [20], which requires a weaker property of the line L. There,

each fibre F of the morphism π need only intersect L in at least one point which is an

inflection of F. We will see later in Remark 3.4 that these two definitions are equivalent.

The property from Definition 2.5 is used at several different points in [20] without it being

made explicit that it follows from their definition.

On a smooth cubic surface, all lines are regular. When S is a smooth quartic surface

however, inflectious lines exist, and a priori they make it very difficult to count how many

lines on S could intersect them.

Consider a line L ⊂ S with associated morphism π : S → L. If there is fibre F of π that

contains a line L′, then the point of intersection is automatically an inflection of the curve F

by Remark 2.2. Hence such points of inflection in intersections of L with a fibre of π are a

necessary, but not sufficient condition for the existence of lines in that fibre. This helps us

identify fibres that may potentially contain lines so long as L is regular, and in fact this is

good enough to prove a generalised version of Proposition 1.7.

When L is inflectious, every fibre intersects L in points of inflection, and so this condition

loses its usefulness in detecting candidate fibres for containing lines. Smooth quartic

surfaces with inflectious lines thus require a different approach.

This approach will be the theory of elliptic curves and elliptic surfaces. As we will soon

see, smooth plane cubics are examples of elliptic curves, and the morphism π gives S the

structure of an elliptic surface.

In the rest of this chapter, we will give an overview over elliptic curves, elliptic surfaces,

and some core theorems that will help us analyse lines on quartic surfaces. Our primary

source of reference for elliptic curves will be [29], with elliptic surfaces being covered by

[18, 23, 25, 28].
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2.1 ELLIPTIC CURVES

In this section, let k be any field, not necessarily algebraically closed.

2.8 Definition. An elliptic curve over k is a smooth algebraic curve E over k of genus 1

with a designated point O ∈ E(k). We will use both (E,O) and just E as notation for the

curve E with point O depending on the context.

Elliptic curves are often studied over varying ground fields. The points of E over the

field k are denoted by E(k). Since many of these fields are not algebraically closed, the

existence of a point on a curve of genus 1is not always guaranteed. However, even while

working over algebraically closed fields, the inclusion of O is an essential part of this

definition, since O will be the neutral element of a group structure on the points of E. To

define this group structure, we consider the Picard group Pic(E), which is the group of

divisors on E modulo principal divisors. The elements of degree 0 form a subgroup, which

we will denote by Pic0(E). We will then induce a group structure on E with the help of the

following lemma.

2.9 Lemma. ([29]. Chapter III, Proposition 3.4)

Let (E,O) be an elliptic curve. Then the map

σ : E(k)→Pic0(E)

P 7→ [(P)− (O)]

is a bijection.

Here (P) denotes the divisor corresponding to the point P and by [(P)− (O)] we mean the

class of the divisor (P)− (O) modulo principal divisors. This bijection allows us to transfer

the group law from Pic0(E) to E(k).

2.10 Corollary. Let (E,O) be an elliptic curve and P,Q two (not necessarily distinct) points

on E. We define

P +Q =σ−1(σ(P)+σ(Q))

where the addition in the parentheses happens in Pic0(E). Then this operation makes E(k)

into a group with neutral element O.

Proof. This follows immediately from the fact that σ is bijective and σ(O)= 0.

This abstract group structure has a very concrete geometric interpretation in the case

that E is a plane curve, and we will make use of this interpretation later. Note that by the
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genus formula (see Example I.7.2 in [9]), smooth plane curves of genus 1 are precisely the

smooth cubics in P2.

2.11 Proposition. Let (E,O) be an elliptic curve where E ⊂ P2 is a smooth plane cubic

and P and Q be two (not necessarily distinct) points on E. Then there is a unique line L ⊂P2

such that the intersection of L with E is given by the divisor

L = (P)+ (Q)+ (R)

for some R ∈ E. We define P ∗Q to be the point R. Then

P +Q = (P ∗Q)∗O.

Proof. Consider the line L through P and Q, or the tangent line to E at the point P if P =Q.

Since E is a cubic curve, the line L intersects E in a unique third point R, and indeed the

divisor of the intersection is given by (P)+ (Q)+ (R).

Furthermore, we consider the line L′ through R and O (or the tangent at O if R = O),

which intersects E in a third point R′. The point (P ∗Q)∗O is then precisely this point R′.
Since the intersections of E with the lines L and L′ are linearly equivalent, we get the

equation

(P)+ (Q)+ (R)= (O)+ (R)+ (R′) (2.1)

in Pic0(E); or equivalently P+Q = R′ in the group E, which is what we wanted to show.

In particular, this leads to a handy statement about collinear points.

2.12 Corollary. Let (E,O) be an elliptic curve where E ⊂P2 is a smooth plane cubic and O

is an inflection of E. Let L ⊂P2 be any line. Then L intersects E in three (not necessarily

distinct) points P,Q,R and we have

P +Q+R =O.

Proof. We compute

P +Q+R = (((P ∗Q)∗O)∗R)∗O.

Since P,Q and R are collinear, we have P ∗Q = R. Furthermore, (R∗O)∗R is equal to O,

so the term simplifies to O∗O. Since O is a point of inflection, this is equal to O.

As we have seen at the beginning of this chapter, we are particularly interested in points

of inflection of plane cubic curves. Inflections also play a special role in the theory of elliptic
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curves. In practice, the zero point O of a plane elliptic curve E is often taken to be an

inflection of E, and due to Corollary 2.12, we can now see that the inflections of E are

precisely its 3-torsion points.

2.13 Corollary. Let E be a smooth plane cubic. Then E has exactly nine points of inflection.

If O ∈ E is one of them, then the 3-torsion subgroup of the elliptic curve (E,O) consists

precisely of these nine inflection points.

Proof. We have already seen in Proposition 2.4 that a smooth plane cubic has exactly nine

inflection points. By Corollary 2.12, for any inflection point P of E, we have 3P = 0, so P is

indeed a 3-torsion point.

Conversely, if P is a 3-torsion point of E, we know that 3P = O. The tangent L at P

has divisor 2(P)+ (Q) for some point Q ∈ E. By Corollary 2.12, we also have 2P +Q = O.

Taking both equations together, it follows that P =Q, and so P must be a point of inflection

of E.

In general, elliptic curves need not be plane cubics. However, every elliptic curve is

isomorphic to a plane cubic. More specifically, it can described by a very specific kind of

equation.

2.14 Proposition (Weierstrass equation). Let (E,O) be an elliptic curve. Then there is an

isomorphism ϕ : E → C to a smooth projective plane curve C with affine equation of the form

y2 +a1xy+a3 y= x3 +a2x2 +a4x+a6 (2.2)

such that ϕ(O)= (0 : 1 : 0). If furthermore the characteristic of k is not equal to 2 or 3, we

can assume that a1 = a2 = a3 = 0 and so the equation becomes

y2 = x3 +ax+b. (2.3)

An equation of the form Eq. (2.2) is called a Weierstrass equation and Eq. (2.3) is called

a short Weierstrass equation.

2.15 Remark. A curve described by a Weierstrass equation always has exactly one point

at infinity, the point (0 : 1 : 0). When an elliptic curve is given in this form, it is typically

assumed that this is the point O. This point is automatically an inflection, as its tangent is

the line at infinity.

2.16 Remark. If an elliptic curve E over a field of characteristic other than 2 is given by a

short Weierstrass form y2 = x3 +ax+b, it is symmetric across the x-axis. In particular, for

28



2. ELLIPTIC SURFACES

any given point P = (x, y), its inverse −P is given by (x,−y), since the line through these

two points is vertical and meets the projective line at infinity in the point O = (0 : 1 : 0). In

the case that P = (x,0) lies on the x-axis, its tangent is vertical and P =−P. In particular,

the nontrivial 2-torsion points of E are precisely the intersection points of E with the x-axis.

Over an algebraically closed field, they correspond precisely to the three solutions to the

equation x3 +ax+b = 0.

Lastly, there are two important quantities that help explore some properties of curves

defined by Weierstrass equations: the discriminant and the j-invariant, both of which are

given as rational functions in the coefficients of the equation. For precise formulae, see

[29], p.46. Here we only give the formulae for short Weierstrass equations. Note that we

only work with fields of characteristic different from 2 or 3, and any elliptic curve over

such a field is given by a short Weierstrass equation, up to isomorphism.

2.17 Definition. Let y2 = x3 +ax+b be a short Weierstrass equation. Then

∆=−16(4a3 +27b2)

is called the discriminant of this equation and if ∆ ̸= 0, then

j = 1728(4a)3

∆

is called the j-invariant.

As the name might suggest, the j-invariant does not depend on the choice of equation,

but only on the isomorphism class of an elliptic curve. The use for these quantities lies in

the following proposition.

2.18 Proposition ([29], Chapter III, Proposition 1.4). a) Let C be a curve given by a

Weierstrass equation. Let ∆ be the discriminant of this equation. Then C is smooth if

and only if ∆ ̸= 0.

b) Two elliptic curves are isomorphic over the algebraic closure of their ground field if

and only if their j-invariants are equal.

2.2 ELLIPTIC SURFACES

In this section, let k be an algebraically closed field. As was mentioned at the beginning of

this chapter, our goal is to apply the theory of elliptic curves to the morphism π : S →P1

associated to a smooth quartic surface S ⊂P3 containing a line L.
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2.19 Definition. An elliptic surface is a smooth projective surface S with a surjective

morphism π : S → C to a smooth irreducible projective curve C such that all but finitely

many fibres of π are smooth curves of genus 1.

We call π an elliptic fibration and C the base curve of the elliptic surface S.

There are several different ways to think about elliptic surfaces. On the one hand, we

have an algebraic surface S which happens to admit an elliptic fibration π : S → C. On the

other hand, we can also view S as the union of its fibres, or a family of curves, almost all

of which are smooth and of genus 1. Another way of looking at this family of fibres is by

considering the generic fibre, that is the fibre above the generic point of C.

2.20 Definition. Let f : X → Y be a morphism of schemes, and let y ∈ Y . The scheme

theoretic fibre of f above y is the fibre product

X ×Y Spec κ(y)

where κ(y) is the residue field of the point y ∈Y . The fibre above the generic point of Y is

called the generic fibre.

Note that in our case of a morphism f : S → C with a surface S and a curve C, the points

of C as a scheme are precisely the points of C as a projective variety, which are the closed

points, and the generic point η ∈ C. The fibre above any point of C is a scheme over the

residue field of that point. For a closed point in C, its residue field is k, so the fibre above a

closed point is a scheme over k. For the generic point however, we obtain a scheme over

the function field k(C).

It can be shown [2.a] that the scheme theoretic fibre over a closed point P ∈ C is homeo-

morphic as a topological space to π−1({P}) as a closed subvariety of S.

2.21 Example. Consider the quartic surface S ⊂P3 defined by the equation

x2
(
x3

0 − x3
2
)− x3

(
x3

1 − x3
3
)= 0.

This surface is called the Schur quartic, and we will later show that it contains exactly 64

lines. From the equation we can immediately see that it contains the line L = Z(x2, x3). We

can apply the construction from Proposition 1.6 to obtain a morphism

S →P1

(x0 : x1 : x2 : x3) 7→ (x2 : x3)= (
x3

1 − x3
3 : x3

0 − x3
2
)
.

[2.a]See Exercise II.3.10 in [9]
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Let c ∈ k and consider the plane Hc = Z(x3−cx2)P3. The intersection S∩Hc is the quartic

curve in Hc ≃P2(x0, x1, x2) defined by the equation

x2
(
x3

0 − x3
2
)− cx2

(
x3

1 − c3x3
2
)= 0.

This curve contains L as a component. The fibre above the point (1 : c) ∈P2 is the residual

cubic curve defined inside Hc by the equation

(
x3

0 − x3
2
)− c

(
x3

1 − c3x3
2
)= 0. (2.4)

This curve is smooth for almost all choices of c: we compute the partial derivatives

d0 = 3x2
0

d1 = 3cx2
1

d2 = 3
(
c4 −1

)
x2

2.

For c ̸= 0 and c4 ̸= 1, these can never simultaneously vanish. For all such c, the fibre

above (1 : c) is thus smooth. We will examine the singular fibres in more detail later.

Now we want to compute the generic fibre of π. Consider the standard cover of P1 by

the affine open subset U0 = {(c : 1) : c ∈ k} and U1 = {(1 : c) : c ∈ k}, and note that the inverse

images π−1(U0),π−1(U1)⊂ S are both open affine as well; for example π−1(U1)= D(x2)∩S,

where D(x2) is the open subset {x2 ̸= 0} in P3.

Let η ∈ P1 be the generic point of P1, given as a subscheme {η} ≃ Spec k(t) of P1. The

generic fibre is then the fibre product of the map π : S →P1 and the inclusion {η}→P1. This

fibre product is covered by the two affine fibre products of the maps π
∣∣Ui : π−1(Ui)→Ui

and {η}→Ui where i = 0,1. We will explicitly compute this for i = 1.

Note that U1 =Spec k[t] and π−1(U1)=Spec R where R = k[x0, x1, x3]/
((

x3
0 −1

)− x3
(
x3

1 − x3
3
))

.

The restriction of π to a map π−1(U1)→U1 corresponds to the k-algebra-homomorphism

k[t]→ R, t 7→ x3.

The inclusion {η}→U1 corresponds to the inclusion k[t]→ k(t). The fibre product π−1(U1)×U1

{η} is thus given as the spectrum of the tensor product

R⊗k[t] k(t).
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Because t maps to x3 ∈ R, this k-algebra is isomorphic to

k(t)[x0, x1]/
((

x3
0 −1

)− t
(
x3

1 − t3))
.

The generic fibre of π is thus the curve in P2
k(t) defined by the affine equation

(
x3

0 −1
)− t

(
x3

1 − t3)= 0

or the projective equation

(
x3

0 − x3
2
)− t

(
x3

1 − t3x3
2
)= 0. (2.5)

This curve is smooth over k(t). By substituting t = c in Eq. (2.5) we obtain Eq. (2.4), the

equation of the fibre above (1 : c). In this sense, the generic fibre can be seen as a template

for the other fibres of π.

We will see later that there is in fact a 1 : 1-correspondence between elliptic surfaces

over a fixed base curve C and elliptic curves over the function field k(C).

2.2.1 THE GROUP OF SECTIONS

Since almost all fibres of an elliptic fibration π : S → C are smooth, we naturally get a

group structure in each individual smooth fibre so long as there is a uniform choice of one

specified point per fibre. In order to make such a choice, we will make use of the sections

of π. A section of π is a morphism σ : C → S that satisfies π ◦σ = idC. In particular, a

section gives precisely one point per fibre, and after fixing one section o : C → L as the zero

section, we can define a group structure on the set of sections by viewing a section as a

collection of one point on each fibre of π and adding two sections component-wise. In the

following proposition we verify that this addition is well-defined.

2.22 Proposition ([28], Chapter III, Proposition 3.10 (a)). Let π : S → C be an elliptic

fibration with a section o and let σ1,σ2 be two sections of π. Then there is a unique

section σ : C → S such that for any t ∈ C with a smooth fibre above t, we have

σ(t)=σ1(t)+σ2(t),

where the addition is carried out in the elliptic curve given by the fibre above t with zero

point o(t).
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2.23 Corollary. Let π : S → C be an elliptic fibration with a section o. Then the set of

sections of π obtains a natural group structure with the addition defined as above. We call o

the zero section of S.

Proof. This follows immediately from the fact that the points on any given smooth fibre

form a group.

To formalise the idea from earlier that there is a certain equivalence between elliptic

surfaces and their generic fibres, it can be shown that the group structure on the sections

of an elliptic surface S over a curve C is isomorphic to the group structure of the generic

fibre as an elliptic curve over k(C).

2.24 Proposition. Let π : S → C be an elliptic fibration with zero section o. Then the group

of sections as described above is isomorphic to the group of points of the generic fibre as an

elliptic curve over k(C).

Proof. See Chapter III, Proposition 3.10 (c) in [28].

2.2.2 KODAIRA’S CLASSIFICATION OF FIBRES

In this section let k be an algebraically closed field.

As we have seen in Example 2.21, not all fibres of an elliptic fibration are smooth. In fact,

we are particularly interested in the singular fibres, since the the lines intersecting a fixed

line L on a smooth quartic surface S ⊂ P3 all lie in singular fibres of the corresponding

elliptic fibration π : S →P1. Based on the work of Kunihiko Kodaira [14, 15, 16] and André

Néron [19], these singular fibres can be classified into a finite number of different types.

We will only be using Kodaira’s notation.

2.25 Theorem (Classification of fibre types). Let π : S → C be an elliptic fibration. Then

every fibre of π falls under one of the types listed in [28], Chapter IV, Theorem 8.2.

The same source also contains a table with an overview of the fibre types ([28], p.365),

which we will be frequently referring to. This table lists various properties of the fibre

types that we will rely on at many points, such as the group structure on the smooth points

of each singular fibre which is induced by the group of sections.

In the case of a smooth quartic surface S ⊂ P3 and the elliptic fibration π : S → P1

associated to a given line L ⊂ S, only six of these fibre types can occur.

2.26 Example. Let S ⊂P3 be a smooth quartic surface containing a line L ⊂ S. Let π : S →
P1 be the morphism associated to L as defined in Proposition 1.6.
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Then π is an elliptic fibration and each singular fibre of π is of type I1, I2, I3, II, III, or

IV.

Proof. Note that π is an elliptic fibration, since the fibres of π are plane cubic curves,

almost all of which are smooth; and smooth plane cubics have genus 1. Furthermore, the

fibres are reduced by Lemma 1.5.

An irreducible, reduced plane cubic can either be smooth, have a node, or have a cusp,

corresponding to Kodaira types I0, I1 and II respectively. A reducible, reduced plane cubic

can either consist of a line and a smooth conic, or three lines. The first case corresponds to

Kodaira types I2 and III, depending on whether the line intersects the conic transversally

or tangentially. The second case corresponds to Kodaira types I3 and IV, depending on

whether the three lines form a non-degenerate triangle or intersect in a single point.

Nonetheless, the remaining fibre types will still be relevant when we consider base

changes as discussed in the following section.

2.2.3 SMOOTH MINIMAL MODELS AND BASE CHANGE

In this section let k be any field of characteristic not equal to 2,3, not necessarily algebraic-

ally closed.

As was mentioned at the beginning of this chapter, inflection points in the fibres of elliptic

fibrations are of particular interest to us. In the case of a smooth quartic surface S ⊂P3

containing a line L ⊂ S with corresponding elliptic fibration π : S →P1, every line in a fibre

of π necessarily intersects L in a point that is an inflection on the fibre. Furthermore,

Definition 2.5 also warrants a closer look at inflection points in the fibres of π. We have

seen in Corollary 2.13 that inflection points on elliptic curves have an inherent connection

to 3-torsion points. In general, the elliptic fibration π : S →P1 does not necessarily have a

section at all, let alone a 3-torsion section. However, if L is inflectious we can construct

another elliptic surface S′ with fibration π′ : S′ → C which does have 3-torsion sections.

For an elliptic curve, we can ensure the existence of 3-torsion points simply by extending

the ground field. In fact, over an algebraically closed field k, any elliptic curve has an n-

torsion subgroup of order n2 so long as n is not a multiple of char k ([29], chapter III,

Corollary 6.4). In particular, for any elliptic curve E over k, we can always find some

algebraic extension ℓ/k such that E has non-trivial 3-torsion over ℓ. For an elliptic surface,

we can pursue a similar idea, but instead of extending the ground field, we ‘extend’ the

base curve. This is called a base change.
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Let S be an elliptic surface with fibration π : S → C. The analogue of a field extension ℓ/k

would be a morphism of curves ϕ : B → C for some other smooth projective curve B. We

can then obtain a new surface S′ by taking the fibre product

S′ = S×C B //

��

S

��
B // C.

A priori, the fibre of S′ → B above a point P ∈ B is the same as the fibre of π above ϕ(P).

However, the resulting surface S′ might not be smooth. To resolve these possible singular-

ities, we will use blowups.

Let P ∈ S be a point on an algebraic surface S. The blowup of S at P is a surface S̃ with a

morphism ψ : S̃ → S such that ψ induces an isomorphism between S̃∖ψ−1(P) and S∖ {P},

and ψ−1(P) is a curve E ⊂ S̃, which we call the exceptional curve of the blowup. A precise

description of a general blowup can be found in [9], pp. 23-30, 163.

It should be noted that if S admits an elliptic fibration π : S → C to a curve C, then a

blowup of S as an algebraic surface at a point P retains the elliptic fibration by composing

it with the blowup map.

2.27 Definition. An elliptic surface S is called minimal if none of its fibres contain (−1)-

curves, i.e. smooth irreducible curves with genus 0 and self-intersection −1.

Such curves naturally occur when a smooth point of a surface is blown up. In fact,

every (−1)-curve is the exceptional curve of some blowup ([9], chapter V, Theorem 5.7). Thus

by reversing that blowup we obtain a ‘smaller’ surface in the same birational equivalence

class. A surface in general is called minimal if it contains no (−1)-curves at all, but for

elliptic surfaces we only consider (−1)-curves in the fibres. This is because every (−1)-curve

that arises as the result of a blowup of an elliptic surface is automatically contained within

the same fibre as the point that was blown up.

2.28 Definition. Let π̃ : S̃ → C be an elliptic fibration. We say that S is a model of S̃, if S

is an elliptic surface with elliptic fibration π : S → C and a birational map S → S̃ such that

the triangle

S //

π
��

S̃

π̃��
C

commutes.
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A smooth minimal model of S̃ is a model of S̃ that is smooth as an algebraic surface and

minimal as an elliptic surface.

2.29 Proposition (Corollary II.1.3 in [18]). Every elliptic surface over k has a smooth

minimal model, and it is unique up to isomorphism.

Using the language of minimal models, we can define a unique base change by replacing

the fibre product from above by its unique smooth minimal model.

2.30 Definition. Let π : S → C be an elliptic fibration and ϕ : B → C a morphism of curves.

Consider the cartesian diagram

S×C B //

��

S

��
B // C

Let S′ be a smooth minimal model of S×CB. We call S′ the base change of S along ϕ : B → C.

Of course during such a base change, blowups can change the types of some of the

singular fibres. It is thus important to keep track of what happens to singular fibres

under a base change. This is well understood, and depends primarily on the ramification

behaviour in the morphism between the base curves.

2.31 Proposition (Table 3 in [23]). Let π : S → C be an elliptic fibration and ϕ : B → C a

surjective morphism of smooth irreducible curves. Let S′ be the base change of S along ϕ

with elliptic fibration π′ : S′ → B. Let t ∈ B(k) be a point and let e be the ramification index

of ϕ at t. Let Fϕ(t) be the fibre of π above ϕ(t) and let Ft be the fibre of π′ above t.

a) If Fϕ(t) is of type In, then Ft is of type Ien

b) If Fϕ(t) is of type II, then Ft is of type

• I0, if e ≡ 0 (mod 6)
• II, if e ≡ 1 (mod 6)
• IV, if e ≡ 2 (mod 6)
• I∗0 , if e ≡ 3 (mod 6)
• IV∗, if e ≡ 4 (mod 6)
• II∗, if e ≡ 5 (mod 6)

c) If Fϕ(t) is of type III, then Ft is of type

• I0, if e ≡ 0 (mod 4)
• III, if e ≡ 1 (mod 4)
• I∗0 , if e ≡ 2 (mod 4)
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• III∗, if e ≡ 3 (mod 4)

d) If Fϕ(t) is of type IV, then Ft is of type

• I0, if e ≡ 0 (mod 3)
• IV, if e ≡ 1 (mod 3)
• IV∗, if e ≡ 2 (mod 3)
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3 QUARTIC SURFACES

In this entire chapter, assume that k is an algebraically closed field of characteristic not

equal to 2 or 3. We will prove that any smooth quartic surface in P3(k) contains at most 64

lines by following the method from [20].

3.1 SOME EXAMPLES OF LINES ON SMOOTH QUARTICS

While the general smooth quartic contains no lines, there is a family of examples which

each contain sixteen designated lines. We will follow the description from [1]. In particular,

we will be looking at surfaces of the form

S = Z(ϕ−ψ)⊂P3

where ϕ is a homogeneous quartic polynomial in x0, x1 and ψ is a homogeneous quartic

polynomial in x2, x3. Now ϕ cuts out four points on the line Φ = Z(x2, x3), say P1, . . . ,P4

and ψ cuts out the four points Q1, . . . ,Q4 on the line Ψ= Z(x0, x1). No two of the points Pi

or Q i can coincide, or S would be singular. Indeed, for any i and j in {1,2,3,4}, the points Pi

and Q j must differ because the lines Φ and Ψ are disjoint; and if Pi = P j for distinct i

and j, then the surface in P3 defined by ϕ is singular. Because the polynomial ψ contains

no x0 or x1, it follows that S is singular as well. On the other hand, if the points Pi and Q i

are all distinct, then S is smooth.

In this case we see that S contains at least 16 lines, namely the lines PiQ j connecting

the points Pi and Q j, for any i, j ∈ {1, . . . ,4}. Indeed, if

Pi = (0 : 0 : x2 : x3)

Q j = (x0 : x1 : 0 : 0),

then a point on the line PiQ j has projective coordinates (λx0 :λx1 :µx2 :µx3) for some (λ :

µ) ∈P1 and the polynomials ϕ and ψ both vanish at this point.

Now the intersection of S with the tangent plane T of S at a point Pi consists precisely of

the four lines PiQ1, . . . ,PiQ4, and any other line on S cannot pass through Pi, since more
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than two lines on S intersecting in one smooth point must be coplanar. Fixing a line L ⊂ S

that is not among the 16 lines PiQ j thus gives us a homography

ρ : Φ→Ψ

mapping a point P ∈Φ to the point obtained by intersecting the plane through P and L with

the line Ψ. This map sends the points Pi to Qσ(i) for some permutation σ ∈S4. Indeed, the

plane through Pi and Ψ intersects S in four lines, and L must intersect the plane on one of

the lines PiQ j, so ρ(Pi)=Q j. After a coordinate change in x0, x1, we can assume that ρ is

given as P1(x0, x1)→P1(x2, x3), (α :β) 7→ (α :β), that the line L is the line Z(x0 − x2, x1 − x3),

and the polynomials ϕ,ψ satisfy ϕ(α,β) =ψ(α,β) for all (α : β) ∈ P1. The line L is now a

member of a set of four lines Z(x0 − ikx2, x1 − ikx3) for k = 1,2,3,4, which are all contained

in S.

Conversely, if we are given a isomorphism ρ : Φ→Ψwhich maps {P1, . . . ,P4} to {Q1, . . . ,Q4},

then we can obtain four lines in the same way. The number of lines on S is thus 16 plus

four times the number of such isomorphisms.

Note that an isomorphism between two projective lines is determined uniquely by the

images of three different points, so generically there is no isomorphism mapping a given

set of four points to another given set of four points. Since there are no constraints on

the choice of points Pi and Q i, the surface S will generically only contain the 16 already

determined lines.

If there is an isomorphism ρ : Φ→Ψ that maps the set {P1, . . . ,P4} to {Q1, . . . ,Q4}, then ρ

gives a natural bijection between the set of such isomorphisms and the set of automorph-

isms of Φ that permutes the points P1, . . . ,P4.

We thus need to determine the number of automorphisms of the projective line that

permute four given points. Barth [1] achieves this by considering the double cover, an

elliptic curve E with a morphism E →Φ that ramifies precisely above the four points. Then

one can establish a relation between the automorphisms of P1 fixing four points, and the

elliptic curve automorphisms of the double cover.

However, one can also do this more directly. After a change in coordinates, we can

assume that three of the four points are given by 0,1, and ∞. The fourth point is then
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given by some λ ∈ k∖ {0,1}. For each permutation σ of the set {0,1,λ,∞}, we can compute

the unique automorphism f of P1 that satisfies

f (0)=σ(0)

f (1)=σ(1)

f (∞)=σ(∞)

and then determine an equation that λ must fulfil so that f (λ)=σ(λ) is also satisfied.

This is done in detail in Proposition A.1 in the appendix. The conclusion is that there are

either 4, 8, or 12 automorphisms. Since each automorphism corresponds to four lines on

the surface S, and taking into account the possibility that there is no isomorphism Φ→Ψ

that fulfils our conditions, we find that S contains either 16, 32, 48, or 64 lines.

In the computations in Proposition A.1, it is also shown that the maximum number of

lines occurs if and only if in the above notation λ=−ζ or λ=−ζ2, where ζ is a primitive

cube root of unity in k. After a change in coordinates [3.a] the four points 0, 1, −ζ, and ∞ can

be transformed to the four points 0, ζ, 1, ζ2, which are precisely the roots of the polynomial

p(x)= x4 − x.

In particular, we obtain the following example.

3.1 Example. The quartic surface given by the equation

x4
0 − x0x3

1 = x4
2 − x2x3

3

has precisely 64 lines. We will refer to this surface as the Schur quartic.

The name ‘Schur quartic’ is also used in [26] and [20]; it is named after Friedrich Schur

who described it in 1882 [24]. This example will continue to be relevant in this chapter.

3.2 QUARTIC SURFACES WITHOUT INFLECTIOUS LINES

Recall the following definition from Chapter 2.

2.5 Definition. Let S be a smooth surface in P3 containing a line L. Let π : S →P1 be the

morphism as defined in Proposition 1.6.

Then L is called inflectious if for every P ∈ L, every point of intersection of L with the

fibre CP =π−1({π(P)}) is a point of inflection of CP .

Otherwise we call L regular.

[3.a]In fact, this coordinate change can be given explicitly by the matrix
(
ζ2 0
1 ζ−1

)
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3.2 Remark. In Proposition 1.6, the morphism π is not unique, and in fact depends on

the choice of a line L′ skew to L. However, we are primarily interested in the fibres of π,

and the set of fibres is independent of this choice. Therefore, we will accept this slight

imprecision and speak of ‘the’ morphism π associated to L.

The goal of this section is to prove that smooth quartic surfaces in P3 on which all lines

are regular contain at most 64 lines. We follow the method from [20], which is based on

[26].

For smooth quartic surfaces that do not contain any inflectious lines, we can establish

an upper bound on the number of lines with some of the same ideas as in Chapter 1. We

begin by proving an analogue of Proposition 1.7 for quartic surfaces with a regular line,

where we shall provide additional details to the proof in [20].

3.3 Proposition. Let S ⊂P3 be a smooth quartic surface. If L ⊂ S is a regular line, then it

is intersected by at most 18 other lines on S.

Proof. After a coordinate change, we can assume that L is given by

x2 = x3 = 0.

We can then write an equation for S in the form

f := ∑
1≤i+ j≤4

xi
2x j

3αi, j(x0, x1)= 0

where each αi, j is a homogeneous polynomial of degree 4− (i+ j) in the variables x0, x1.

Consider the morphism π : S → P1 from Proposition 1.6. Since π only has finitely many

singular fibres, there exists at least one smooth fibre. After a coordinate transformation

in x2, x3, we can assume this fibre to lie in the plane x2 = 0. Because all lines intersecting L

lie in singular fibres of π, we can restrict our attention to planes of the form Hλ = Z(x3−λx2)

for λ ∈ k. In every such plane, the intersection Hλ ⊂ S is given in Hλ ≃P2(x0, x1, x2) by the

equation

∑
1≤i+ j≤4

λ jxi+ j
2 αi, j(x0, x1)= 0.

This is a plane quartic curve which contains L as a component, represented by the equa-

tion x2 = 0. The residual cubic has equation

∑
1≤i+ j≤4

λ jxi+ j−1
2 αi, j(x0, x1)= 0. (3.1)
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Intersecting this with L, which is given in the plane Hλ by the equation x2 = 0, we obtain

three points given by the cubic equation

gλ(x0, x1)=α1,0(x0, x1)+λα0,1(x0, x1)= 0

on L ≃P1(x0, x1). Now we want to investigate when these points are inflections of Cλ. We

consider the Hessian of Cλ, obtained from Equation (3.1). After restricting it to L, i.e.,

setting x2 = 0, this equation takes the form

hλ(x0, x1)= det


∂2 gλ
∂x2

0

∂2 gλ
∂x0∂x1

∂
∂x0

∑
i+ j=2λ

jαi, j

∂2 gλ
∂x0∂x1

∂2 gλ
∂x2

1

∂
∂x1

∑
i+ j=2λ

jαi, j

∂
∂x0

∑
i+ j=2λ

jαi, j
∂
∂x1

∑
i+ j=2λ

jαi, j 2
∑

i+ j=3λ
jαi, j

= 0.

We now claim that because L is a regular line, the polynomials gλ and hλ cannot have

any common factors in k[x0, x1,λ]. To see this, we first show that gλ is irreducible. Indeed,

since gλ is linear in λ, it can only be reducible if α1,0 and α0,1 have a common factor.

Because the ground field k is algebraically closed, we can write both as the product of

three linear forms. If there is one linear factor that divides both, then after a linear

coordinate change, we can assume that this common factor is x1. Consider the affine open

subset {x0 = 1} of P3. In this subset, the surface S is given by the equation

∑
1≤i+ j≤4

xi
2x j

3αi, j(1, x1)= 0.

Every monomial of this equation is at least quadratic, since α0,1(1, x1) and α1,0(1, x1)

are both multiples of x1. In particular, the origin is a singular point, and consequently,

the point (1 : 0 : 0 : 0) is a singular point on the projective surface S ⊂ P3. Hence, the

polynomial gλ must be irreducible in k[x0, x1,λ]. The only way for gλ and hλ to have

a common factor is thus if hλ is a multiple of gλ. However, if that were the case, then

for every λ ∈ k, the three points on L where gλ vanishes, i.e. the three points in the

intersection of L with the cubic curve Cλ would also be roots of hλ, i.e. inflections of Cλ.

This would then imply that L is inflectious, contrary to our assumption.

With gλ and hλ being coprime, their resultant with respect to x0 is nonzero. Because gλ
and hλ are both homogeneous in x0, x1, the resultant is of the form

r(λ) · xk
1
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for some polynomial r ∈ k[λ] and k ∈N. We can thus compute r as the determinant of the

Sylvester matrix of gλ(x0,1) and hλ(x0,1) with respect to x0. Now, noting that αi, j(x0,1)

has degree at most 4− (i+ j) in x0, the degrees of gλ and hλ are both at most 3. This

results in a 6×6 Sylvester matrix, where the coefficients of gλ have degree at most 1

in λ, and the coefficients of hλ have degree at most 5 in λ. The degree of r(λ) is thus at

most 3 ·1+3 ·5= 18.

As a consequence, at most 18 fibres of π can contain lines. Recall that the number of

lines in any fibre is either zero, one, or three. A priori it might be possible that a given fibre

contributes only one root to the polynomial r(λ), but contains three lines. It thus remains

to prove that this cannot be the case.

Suppose there is a fibre of π that consists of three lines. We can assume that this fibre

lies in the plane Z(x3), corresponding to λ = 0. By Equation (3.1), the residual cubic is

given by

4∑
i=1

xi−1
2 αi,0(x0, x1)= 0. (3.2)

We will now distinguish two different cases.

First we assume that there are two lines in this fibre whose intersection does not lie

on L. In this case, we may assume that within the plane Z(x3) ≃ P2(x0, x1, x2), they are

given by the equations x0 = 0 and x1 = 0, respectively. Because both lines are contained

in the fibre given by Equation (3.2), the polynomial x0x1 must divide
∑4

i=1 xi−1
2 αi,0(x0, x1),

and hence each individual αi,0. We can thus write

α1,0 = bx2
0x1 + cx0c2

1

α2,0 = ax0x1

α3,0 = 0

α4,0 = 0.

A computer-aided computation (see Appendix A.2), which was not provided in [20], then

confirms that indeed 0 is a triple root of r(λ).
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The second case is that two such lines do not exist. In this case, all three lines in the

fibre and L must intersect in one single point, and we can assume that the lines are given

by equations

x1 = 0

bx1 + x2 = 0

cx1 + x2 = 0.

The fibre is thus given by the equation

x1(bx1 + x2)(cx1 + x2)= 0.

After expanding this product, we can write

α1,0 = bcx3
1

α2,0 = (b+ c)x2
1

α3,0 = 0

α4,0 = 0.

Another computer-aided computation (see Appendix A.2), which again was omitted in [20]

will reveal that in this case, 0 is in fact a root of degree 5 of r(λ).

To conclude, every fibre that contains three lines also contributes at least three roots

to r(λ), and thus there can only be at most deg(r)= 18 lines on S intersecting L.

3.4 Remark. This proof also implies that the seemingly weaker definition of an inflec-

tious line from [20], which was mentioned in Remark 2.7, is equivalent to the one from

Definition 2.5.

Indeed, we have implicitly shown that a regular line can only intersect at most 18 fibres

of its corresponding elliptic fibration in a point of inflection. Therefore, a line that is of the

second kind in the sense of [20] must also be inflectious in the sense of Definition 2.5.

For a cubic surface S ⊂P3, recall that lines in fibres of the morphism π : S →P1 always

come in pairs, and a trio of coplanar lines is the complete intersection of S with the

corresponding plane. Whenever there is a plane such that its intersection with S consists

only of lines, every other line on the surface must intersect exactly one of the lines in this

plane. In the case of a smooth quartic surface S ⊂P3, a fibre of π can contain either zero,

one, or three lines, and only the latter case allows us to use this reasoning. However, this

case is common enough to still be useful.
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3.5 Lemma. Let S ⊂P3 be a smooth quartic surface. If a line L ⊂ S is intersected by more

than twelve other lines on S, then three of those lines are coplanar.

Proof. Assume that L is not intersected by three coplanar lines on S. Then all the lines

intersecting L occur in fibres of type I2 or III. Each of those fibres has an Euler-Poincaré

characteristic of at least 2. Since the Euler-Poincaré characteristics of all singular fibres

must add up to e(S)= 24 [3.b], there can be at most twelve such fibres.

Another tool we will use is the flecnodal divisor. The term flecnode classically refers to

a point on a plane curve where an inflection and a node coincide. However, we will use a

more general definition. We consider a point P on a curve C a flecnode if there is a line L

that intersects C with multiplicity 4 at the point P. Note that a flecnode in the classical

sense satisfies this definition, because one can take L to be the tangent line at P of the

branch of C that has an inflection at P. The more general definition also includes cases

such as tacnodes or smooth points on lines. This motivates the following definition of a

flecnodal point on a smooth surface.

3.6 Definition. Let S be a smooth algebraic surface in P3. A point P ∈ S is called a

flecnodal point of S if there exists a line L ⊂P3 such that

iP (L,S)≥ 4.

The definition of a flecnodal point of a surface is closely related to the definition of a

flecnode of a plane curve. Let P ∈ S be a point on S and let H be the tangent plane of S at P.

If L ⊂P3 is a line with iP (L,S)≥ 4, it must be contained in H, and we can compute the local

intersection number iP (L,S)= iP (L,S∩H) within the plane H ∼=P2. Since iP (L,S)≥ 4, the

point P is a flecnode of the plane curve S∩H.

Flecnodal points on S are useful because every point P on a line L ⊂ S is a flecnodal

point. Indeed, the line L itself intersects S with infinite multiplicity at each of its points.

We now consider the following result about flecnodal points.

3.7 Lemma. Let S ⊂ P3 be a smooth projective surface of degree d ≥ 3. Then there is a

surface F ⊂P3 of degree (11d−24) such that the intersection F ∩S consists precisely of the

flecnodal points of S. Furthermore, if the characteristic of k does not divide d(d−1)(d−2),

then S is not a component of F.

[3.b]See [12], p. 12. The Euler characteristic here is obtained via the second Chern number c2(X ), which is
computed on p. 8
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Proof. For the existence and degree of F, see [3], p.102f. In [17], Lemma 2.10, it is

shown that S is not contained in F in characteristic zero. Lastly, the result for positive

characteristic is proven in Theorem 1 in [30].

3.8 Remark. For cubic and quartic surfaces, the assumption that the characteristic p of

the ground field k does not divide d(d−1)(d−2) is equivalent to the assumption that p is

not 2 or 3.

This lemma shows that the locus of the flecnodal points of S is a divisor FS on S of

degree d(11d−24).

3.9 Definition. Let S ⊂P3 be a smooth quartic surface. Then we denote by FS the divisor

of flecnodal points on S and refer to it as the flecnodal divisor.

3.10 Remark. Note that in the case of quartic surfaces, the divisor FS is linearly equivalent

to 20·H for any plane section H ⊂ S, because it arises as the intersection of S with a surface

of degree 11 ·4−24= 20. In particular, for any curve C ⊂ S, the intersection number C ·FS

is given by

C ·FS = C · (20H)= 20(C ·H)= 20degC

where H ⊂ S is a plane section. We will make use of this fact at multiple points.

Immediately we can see that all lines that lie on a smooth surface must be components

of its flecnodal divisor, since all points lying on such lines are flecnodal, as mentioned right

before Lemma 3.7. In particular, we obtain an upper bound on the number of lines on any

smooth surface of degree at least 3.

3.11 Corollary. Let S ⊂P3 be a smooth algebraic surface of degree d ≥ 3. Assume that the

characteristic of k does not divide d(d−1)(d−2). Then S contains at most d(11d−24) lines.

For d = 3, this works out to be 27 and the upper bound is in fact optimal. For quartic

surfaces however, we have 4(11 · 4− 24) = 80, which is strictly larger than the actual

maximum of 64. We can still make use of the flecnodal divisor if we can show that it has

some components which are either duplicates of some lines, or not lines at all.

We will now prove the main theorem of this section, originally proven by Segre [26], but

here presented following the more modern proof from [20].

3.12 Theorem (Segre, 1943). Let S ⊂P3(k) be a smooth quartic surface over an algebraic-

ally closed field k whose characteristic is not 2 or 3. Assume that all lines on S are regular

as per Definition 2.5. Then S contains at most 64 lines.
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Proof. Assume that all lines on S are regular. This proof will be split into several distinct

cases.

Let us first assume that S contains four coplanar lines. Then these four lines form the

intersection of S with some plane. Consequently, all other lines on S must intersect at

least one of these four lines. Since each can only be intersected by at most 15 additional

lines by Proposition 3.3, there can be at most 4+4 ·15= 64 lines on S.

For the rest of the proof, we will always assume that S does not contain four coplanar

lines. In particular, whenever two lines on S intersect in a plane H, the intersection S∩H

consists precisely of the two lines and a smooth conic. Furthermore, by Lemma 3.5, every

line on S intersects at most twelve other lines.

Now we consider the case where S contains two intersecting lines L1 and L2 such that

the coplanar conic is not a component of the flecnodal divisor FS. By Remark 3.10, the

conic then has an intersection number of 40 with FS, and since all lines are components

of FS, the conic can intersect at most 40 lines on S, where L1 and L2 are each included

twice. Since every additional line on S has to intersect either L1, L2 or the conic, there can

be at most 2+2 ·11+ (40−2 ·2)= 60 lines on S.

We can now assume that for any two intersecting lines on S, the corresponding conic is a

component of FS.

If S contains at least eight such pairs, then the eight corresponding conics form com-

ponents of total degree 16 of FS. Since degFS = 80, all other components of FS have a

combined degree of 80−16= 64. Since all lines on S are components of FS, the surface S

can contain at most 64 lines in this case.

The last remaining case is that S contains exactly n pairs of incident lines where 0≤ n ≤ 7.

Any line on S that is not contained in any of these n pairs intersects no other line on S.

Consider now the Picard group of S. Note that any set of r disjoint lines on S is Z-linearly

independent in PicS. Indeed, let L1, . . . ,Lr ⊂ S be mutually disjoint lines, and assume we

have a relation

a1LA +·· ·+arLr = 0

with coefficients a j ∈Z. Then we can intersect the divisor on the left hand side with any

line L j for some fixed j ∈ {1, . . . , r}. Because L j ·L i = 0 for all i ̸= j and L j ·L j = −2, we

conclude −2a j = 0 and thus a j = 0. Because this holds for all j, the lines are linearly

independent in PicS.

In particular, such a set of r mutually disjoint lines forms a free sub-Z-module of PicS

of rank r. Consequently, r is less than or equal to the rank of PicS. Because PicS has

47



3. QUARTIC SURFACES

rank at most 22 [3.c], there can be at most 22 pairwise skew lines on S. Thus in total,the

surface S contains at most 2n+22≤ 36 lines in this case.

3.3 FIBRE TYPES

As mentioned before, inflectious lines evade the reasoning from Proposition 3.3. If a

line L on a smooth quartic surface S ⊂P3 is regular, then we saw in Proposition 3.3 that

there can be at most 18 fibres of the morphism πL : S → P1 from Proposition 1.6 which

intersect L in a point that is an inflection of the fibre. These are the only fibres in which

lines can occur. On the other hand, if L is inflectious, every fibre of π is a priori a potential

candidate for containing lines. In order to establish a sharp upper bound on the lines

intersecting an inflectious line L, we thus need to examine more closely which Kodaira

types the fibres of the morphism π can have. This depends on the ramification of the curve

morphism πL|L : L →P1.

Our goal now is to make use of the theory of elliptic surfaces, but a priori the elliptic

fibration π does not necessarily have a section. To deal with this problem, we will use a

base change as described in Chapter 2.

3.13 Proposition. Let S ⊂P3 be a smooth quartic surface containing an inflectious line L.

Consider the morphism π=πL : S →P1 from Proposition 1.6, which makes S into an elliptic

surface. Then there exist a smooth curve B and a base change

S2 //

π2

��

S

π
��

B
ϕ
// P1

such that the elliptic fibration S2 → B in the diagram above has non-trivial 3-torsion

sections.

Proof. Let S ⊂P3 be a smooth quartic surface containing an inflectious line L and let π=πL

be the associated elliptic fibration.

Consider the morphism of curves L →P1 induced by π, and the fibre product

S×P1 L //

��

S

��
L // P1.

[3.c]This holds for all K3 surfaces, see [12], Remark 1.3.7. For complex K3 surfaces, this bound can be improved
to 20 ([12], p.11).
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Consider now the identity L → L and the inclusion map L → S. The diagram

L

��

&&

S×P1 L //

��

S

��
L // P1

commutes and the universal property gives a morphism L → S×P1 L which by construction

is a section of the fibration S×P1 L → L. By Proposition 2.29, we can find a smooth minimal

elliptic surface S1 over L that is a model of S×P1 L with a section.

Now note that the morphism L → P1 has degree 3 and corresponds to a field exten-

sion k(L)/k(t) of degree 3. Because the characteristic of k is not 3, this extension is

separable. Its Galois closure is the function field k(B) of some smooth curve B, and any

embedding k(L)→ k(B) corresponds to a curve morphism B → L. Because [k(L) : k(t)]= 3,

there are three such embeddings. After fixing one, we can do another base change, by

considering the cartesian diagram

S1 ×L C //

��

S1

��
B // L.

For each of the three morphisms B → L, we obtain a map B → S1 by composing it with the

section L → S1. Similarly to the construction above, by the universal property of the fibre

product, these three maps B → S1, together with the identity map B → B, induce three

different sections B → S1 ×L B. After replacing the elliptic surface S1 ×L B with a smooth

minimal model, the sections are retained and we have a commutative base change diagram

S2 //

��

S1 //

��

S

��
B // L // P1,

where the dashed arrows represent rational maps.

We shall fix the three sections and call them o, σ1, and σ2. Let o be the zero section. We

now claim that σ1 and σ2 are 3-torsion sections and each other’s inverses. It is enough to

show this on the smooth fibres of S2 → B.
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Let F be such a smooth fibre, and let O,Σ1,Σ2 be the three points on F intersected

by o,σ1,σ2 respectively. Consider the base change diagram

S2
Φ //

π2

��

S

π
��

B
ϕ
// P1.

Note that this base change preserves all but finitely many smooth fibres of π. More

precisely, Let P ∈ B such that the map ϕ is unramified at P and let F be the fibre of π2

above P. Then the rational map Φ induces an isomorphism from F to the fibre FS of π

above ϕ(P). By construction, the three points O,Σ1, and Σ2 then correspond to the three

points of intersection of FS and L. In particular, they are collinear. Furthermore, since L

is inflectious, all three points are points of inflection of F. Since O is the zero point of the

elliptic curve F, we can conclude by Corollary 2.12 that

O =O+Σ1 +Σ2 =Σ1 +Σ2.

By Corollary 2.13 it follows that they are indeed 3-torsion points of F.

Note that ϕ can only ramify at finitely many points, and therefore this holds for all but

finitely many smooth fibres of π2. Therefore, indeed σ1 and σ2 are 3-torsion sections and

each other’s inverses.

3.14 Remark. Because the group of sections of an elliptic surface induces a group structure

on the smooth points of each singular fibre by Theorem 5.22 in [25], and because 3-torsion

sections are disjoint outside of characteristic 3 by Proposition 6.33 (v) in [25], S2 can only

contain singular fibres which admit non-trivial 3-torsion. By Table 4.1 on page 365 in [28],

this leaves only fibres of type In, IV, and IV∗.

Note that Proposition 2.31 tells us exactly how singular fibres behave under such a base

change S2 99K S. In particular, the important factor is the local ramification behaviour

of the morphisms of base curves L →P1 and B → L. We can use this to draw conclusions

about the possible types of singular fibres on S.

However, before doing so, we can place some inherent restrictions on how an inflectious

line can intersect singular fibres. Assume that S ⊂P3 is a smooth quartic surface containg

an inflectious line L. Let I0 ⊂ S be the set of inflection points on the smooth fibres. Further

let L0 consist of those points of L such that the corresponding fibre of π is smooth. Note

that L0 is dense in L because its complement consists of only finitely many points. Since L0
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is contained in I0 by definition, because L is inflectious, it follows that the closure of L0,

which is L, must be contained in the closure of I0.

The following lemma gives some information on how this closure can intersect singular

fibres.

3.15 Lemma. Let I0 be the set of points P ∈ S such that P lies on a smooth fibre of π and

is an inflection of this fibre. Consider the closure I of I0. Then the following holds for any

singular fibre F of π. Note that by ‘smooth point’, we mean a point that is smooth on the

fibre F.

a) If F is of type I1, then F ∩ I contains at most three smooth points.

b) If F is of type I2, then F ∩ I contains at most three smooth points, all of which lie on

the line component.

c) If F is of type I3, then F ∩ I consists of three smooth points on each line.

d) If F is of type II, then F ∩ I contains exactly one smooth point.

e) If F is of type III, then F ∩ I contains exactly one smooth point, which lies on the line

component.

f) If F is of type IV, then F ∩ I contains at most one smooth point on each line.

Proof. We will provide a sketch of the proof, expanding on a brief argument from [20].

By taking a sufficiently general plane section of S, we can find a curve D ⊂ S such that D

is smooth and intersects F transversally. Considering the morphism π : S → P1 and its

restriction π |D : D →P1, we have a base change

S×P1 D //

ρ

��

S

π
��

D
π|D

// P1.

Similarly to the the proof of Proposition 3.13, the inclusion D → S together with the identity

map on D induces a section τ : D → S×P1 D of ρ.

Like we did before, we can replace the fibre product S ×P1 D with a smooth minimal

model, an elliptic surface S′ above D, and refer to this as the base change.

Because D intersects F transversally, the map D →P1 is unramified at the transversal

point of intersection on F. In particular, the fibre F is isomorphic to the corresponding

fibre on the base change.
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The section τ does not necessarily intersect each smooth fibre in a point of inflection, so

the inflections do not necessarily form the 3-torsion subgroup of any smooth fibre when

this section is chosen as the zero section. However, they do form a coset of the 3-torsion

subgroup, as we will now show.

For ease of notation, let s ∈ D be the point above which the fibre F lies. Note that on

a smooth fibre, if τ(s) is a point of inflection, then by Corollary 2.12, any three collinear

points add up to zero (i.e. to τ(s)). Because the choice of a different zero point of such a

curve corresponds to a translation in its Picard group by the definition in Corollary 2.10,

even if τ(s) is not a point of inflection, any three collinear points add up to the same point,

which we will refer to as L. In particular, this implies that for any inflection P on a smooth

fibre, it holds that 3P = L, and the inflection points on a smooth fibre are precisely the

translation of the 3-torsion group by L.

This property also carries over to the smooth part of the singular fibres in the sense

that the points in F ∩ I that are smooth points of F are precisely those points P such

that 3P = L, where L still denotes the sum of any three collinear points. Now consider each

type separately, noting that the group structure on the fibre is given by Table 4.1 in [28].

a) A fibre of type I1 has precisely three 3-torsion points on its smooth part. Any coset of

this must also consist of three points on the smooth part of the fibre.

b) A type I2 fibre has three 3-torsion points, so there are three smooth points in F ∩ I.

We want to show that these smooth points all lie on the line component.

We claim the point L which is the sum of any three collinear points must lie on the

line component. To see this, consider the proof of Corollary 2.12, while dropping the

assumption that O is an inflection. It follows that the sum of any three collinear

points is τ(s)∗τ(s), which is obtained by considering the tangent at τ(s) and then

taking the third point of intersection of that tangent with the curve. Because this

tangent intersects the conic with multiplicity 2, this point must always lie on the

line component.

Because the component group of F is Z/2Z, for any smooth point P ∈ F, the point 3P

lies on the same component as P. In particular, all points that satisfy 3P = L must

lie on the line component of F.

c) If F has type I3, note that the 3-torsion subgroup of F has order 9, consisting of three

points per component. The same must hold for any coset of this subgroup.

d) If F has type II, then there is no non-trivial 3-torsion, so there can be only one smooth

point of F in the intersection F ∩ I.

52



3. QUARTIC SURFACES

e) For type III, we can use the same argument as for type I2, except the 3-torsion

subgroup is trivial in this case, so there is only one instead of three smooth points on

the line component.

f) Similarly, type IV is analogous with type I3 with the difference being that there

is only one 3-torsion point per component rather than three. The coset thus also

consists of one smooth point per component.

3.16 Remark. The corresponding result in [20] extends also to the singular points of each

fibre. It is claimed that the singular points of each fibre F are also contained in the set F∩I,

except in the case of type I3.

Note that I intersects each fibre with multiplicity 9, and since for a fibre F of type I3 the

set F ∩ I already contains nine smooth points, it cannot also contain any of the three nodes.

This is an important observation that we will use later.

In all other cases, we are content with the observation that the singular points could,

but do not necessarily need to, be included in the set F ∩ I. This will be sufficient for our

purposes.

With this lemma in mind, we can now analyse the possible types of singular fibres

depending on the ramification behaviour. Recall that a priori, the possible fibre types

are I1, I2, I3, II, III, and IV as we saw in Example 2.26.

3.17 Lemma. Let S ⊂P3 be a smooth quartic surface containing a line L with corresponding

elliptic fibration π : S → P1. Let F be a singular fibre of π such that the map L → P1 is

unramified at F. Then F is of type I1, I3, or IV.

Proof. Since F is an unramified fibre, it meets L in three distinct points. These points

must be smooth points of F, since the intersection multiplicity at a singular point would be

higher than one, so there could not be three distinct intersection points.

We want to show that this rules out fibres of type II, III, and I2.

Indeed, consider first the case that F has type II. By Lemma 3.15, there is only one

smooth point on F that can be intersected by L.

If F were of type III or I2, then if the fibre were to be unramified, the line L would

have to intersect it in two distinct smooth points on the conic. This is impossible by

Lemma 3.15.

Now we consider ramified fibres. These fall into two different categories, with different

geometric behaviours. Namely, the degree 3 morphism L →P1 can have either zero, one or
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two preimages at a ramified fibre. In order to make it easier to speak about the different

types of ramification, we shall use the following terminology.

3.18 Definition. Let ϕ : C1 → C2 be a curve morphism of degree 3. We say that ϕ is totally

ramified at a point P ∈ C2 if its ramification index is 3, i.e. it has one preimage under ϕ.

If P has ramification index 2, i.e. precisely two preimages under ϕ, then we call it partially

ramified.

Note that while ‘total ramification’ is standard terminology, ‘partial ramification’ is not.

It simply happens to be useful in the case of degree 3 morphisms due to the limited number

of possible ramification indices.

Before examining how local ramification indices affect possible fibre types, it is worth

noting that there cannot be any points in P1 that ramify with index 6 in the Galois

closure B → P1. This is an important observation which is implicitly used in [20] while

dealing with ramified fibres, without ever being explicitly stated. We shall give a proof

here.

3.19 Lemma. Let ϕ : C1 → C2 be a morphism of smooth curves such that the corresponding

extension of function fields k(C1)/k(C2) is Galois and its Galois group is the symmetric

group S3.

Then ϕ does not admit ramification of index 6.

Proof. Note that the order of the symmetric group S3 is 6, and thus so is the degree of the

morphism ϕ. In particular, if there is a point P ∈ C2 such that ϕ ramifies above P with

index 6, it follows that P has only one pre-image, say Q ∈ C1.

Consider the decomposition group D of Q [3.d] as defined on page 21 of [27]. Then we can

consider the fixed field kD of this decomposition group in the Galois extension k(C1)/k(C2)

and by loc. cit., the degree of the extension kD /k(C2) is equal to the number of points on C1

lying above P, which in this case is 1, as only Q lies above P. Therefore, the decomposition

group must be equal to the Galois group Gal(k(C1)/k(C2)), which is isomorphic to S3.

Furthermore, the inertia group of Q as defined in loc. cit. is the kernel of a homomorph-

ism ε from D to the Galois group of the extension of the residue fields of the local rings at Q

and P. In this case, both residue fields are equal to the ground field k, and so this Galois

group is trivial. It follows that the kernel of the group homomorphism ε, which is the

inertia group, must be the entire decomposition group. As we have seen, the decomposition

group is isomorphic to S3, and so the same holds for the inertia group.

[3.d]More precisely it would be the decomposition group of the maximal ideal in the local ring of C1 associated
to Q.
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This however leads to a contradiction. To show this, we consider the ramification

groups G i as defined in Proposition 1 in Chapter IV, §1 in [27], where G0 is the aforemen-

tioned inertia group. In the same section of op. cit., it is shown in Corollary 2 that G0

must be cyclic if the characteristic of the ground field k is zero, which is a contradiction. In

positive characteristic, we consider in the same section of op. cit. the Corollaries 1 and 3.

Corollary 3 states that G1, which is a normal subgroup of G0 is a p-group, where p = chark.

Since we assume chark ̸= 2,3, the only possible p-subgroup of S3 is the trivial subgroup {1}.

It follows that the quotient G0/G1 is equal to the group G0 itself, but by Corollary 1, this

quotient must be cyclic. We thus again arrive at a contradiction.

Therefore, ramification of index 6 is impossible.

Note that if the morphism L →P1 is already Galois, then the curve B is equal to L, and

the morphism B →P1 has degree 3. In this case, it is trivial that ramification of index 6

cannot occur. On the other hand, if L →P1 is not Galois, then the field extension k(B)/k(L)

must have Galois group S3, since it arises as the Galois closure of a degree 3 extension.

Therefore, we can apply this lemma to the base change in Proposition 3.13.

3.20 Lemma. Let S ⊂P3 be a smooth quartic surface containing a line L with corresponding

elliptic fibration π : S → P1. Let F be a singular fibre of π such that the map L → P1 is

ramified at F.

a) If L →P1 is partially ramified at the fibre F, then F is of type II.

b) If L →P1 is totally ramified at the fibre F, then F is of type I1, I2, or IV.

Proof. To prove this, we will go through all fibre types that are possible in the fibration S →
P1 and determine under which ramification types they can occur. In the following we will

always assume that F is a fibre of π such that the map L →P1 ramified at F.

We start by considering fibres of type I3. If F is an I3 fibre, it consists of three lines,

intersecting in three distinct points. If L →P1 were to ramify at F, the line L would have

to meet one of the three nodes. By Lemma 3.15, this is impossible.

If F has type IV, then with similar reasoning the line L it must meet the node of F. It

immediately follows that L →P1 is totally ramified at F.

If F has type I2, then note that L can not intersect any smooth points of the conic

component of F by Lemma 3.15. Furthermore, if L intersected both nodes, it would be

equal to the line component of F, which is impossible. It follows that L must intersect one

of the nodes tangentially to the conic, i.e. with multiplicity 3. Therefore, the map L →P1 is

totally ramified at F.
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A similar argument shows that type III does not occur at all. Indeed, the line L can only

intersect the conic component of a fibre F of type III in the tacnode, and would thus have

to be tangential to the conic there. But this would make L identical to the line component

of F, which is impossible.

Now assume that F has type I1, and assume for the sake of contradiction that L →
P1 is partially ramified at F. Let S2 → B be the base change from Proposition 3.13.

Because the ramification is partial, the extension k(L)/k(P1) cannot be Galois, and thus

the extension k(B)/k(L) must have degree 2. If t ∈P1 is the point above which F lies, then

from the fact that B → P1 is Galois, it follows that there must be precisely three points

on B lying above t, all with ramification index 2.

By Proposition 2.31 this leads to three fibres of type I2 on the elliptic surface S2. Since

the component group of a fibre of type I2 is isomorphic to Z/2Z, the three 3-torsion sections

must then intersect the same component of each I2 fibre.

However, we can also show that L must meet the node of F. Indeed because we assumed

the map L → P1 to partially ramify at F, the line L must meet one point of F with

multiplicity 1, and another with multiplicity 2. However, if L were to meet a smooth point

of F with multiplicity 2, then this point could not be an inflection of F, contradicting the

assumption that L is an inflectious line. So L must intersect the node of F transversally to

both branches.

Going from the fibre product S×P1 B to the smooth minimal model S2, each fibre of type I1

gets blown up once, and the two sections of S2 corresponding to the intersection of L with

the node of F intersect each resulting I2-fibre in the exceptional curve, whereas the third

section intersects it in the other component. This directly contradicts the conclusion above

that all three sections must meet the same component. Fibres of type I1 can thus not be

partially ramified.

Lastly, we consider the case that F is of type II. By Proposition 2.31, after the base

change S2 99K S, the fibre gets replaced with fibres of type IV or type I∗0 , depending on

whether the local ramification index of the map B →P1 is 2 or 3 respectively. As discussed

above S2 cannot have fibres of type I∗0 , and thus F must have ramification index 2, i.e. be

partially ramified.

3.21 Remark. Neither here nor in the proof of Lemma 3.17 did we show that the mentioned

fibre types can actually occur in practice, so it should be noted that for each fibre type

listed in the preceding lemmas, there exists an example of a smooth quartic surface in P3

containing an inflectious line such that the corresponding elliptic fibration has a fibre of

the respective type. We will not prove this, however.
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Now that we have examined fibre types dependent on the local ramification behaviour,

we want to look at the global consequences. Notably, the degree of the map L → P1 and

the genera of L and P1 limit the number of ramified fibres. Because all ramification

indices divide 6, and the characteristic of the base field is not 2 or 3, there can be no wild

ramification. We can thus use the Riemann-Hurwitz formula (see [9], Corollary IV.2.4),

and find that

2 · g(L)−2= 3 · (2 · g(P1)−2)+ ∑
P∈B

(eP −1), (3.3)

where eP is the ramification index of the map L → P1 at P and g denotes the genus.

Since g(L)= g(P1)= 0, we find that

∑
P∈B

(eP −1)= 4. (3.4)

Since the ramification index at a point P cannot exceed 3, there are the following three

different ramification configurations.

3.22 Proposition. Let L be a projective curve of genus 0. Then a morphism L → P1 of

degree 3 has

a) two totally ramified points in P1,

b) two partially ramified points and one totally ramified point, or

c) four partially ramified points.

where ‘totally’ and ‘partially’ ramified are defined like in Definition 3.18.

With this knowledge about the global ramification behaviour of π|L and the local in-

formation about which fibre types can occur in which ramified fibres, we will now examine

specifically how many lines can lie in the fibres of π when L is inflectious.

3.4 LINES ON S INTERSECTING THE INFLECTIOUS LINE L

In this section let S ⊂ P3 be a smooth quartic surface containing an inflectious line L.

Regular lines on S intersect at most 18 other lines on S by Proposition 3.3. Segre [26]

claimed to have proven that the same maximum also holds for inflectious lines. Example
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6.9 in [20] shows that this is false by giving a smooth quartic surface with an inflectious

line that is intersected by 20 other lines on the surface. In this section, we will show

that 20 is indeed the correct maximum.

Knowing which fibres S can have over points with each ramification type, we can

now determine the number of lines in the fibres, i.e. the lines on S intersecting L, in

each global ramification configuration. For this, we consider the elliptic surface S2 from

Proposition 3.13. Viewing S2 as an elliptic curve E over k(B) as explained in Chapter 2, we

can identify a 3-torsion subgroup consisting of the three points on the curve corresponding

to the sections o,σ1 and σ2. This subgroup, call it T ⊂ E, induces an isogeny

π : E → E′ (3.5)

to a different elliptic curve E′ over k(B) such that kerπ = T [3.e]. On the group level, E′

can be thought of as the quotient E/T. But more importantly, E′ corresponds to an elliptic

surface S′
2 and we have a rational map

S2 99K S′
2 (3.6)

of elliptic surfaces over B. This map becomes very useful when we take into account the

following observation, which is mentioned, but not proven in [20].

3.23 Lemma. The surfaces S2 and S′
2 have the same Euler-Poincaré characteristic.

Proof. This result can be concluded from Noether’s formula, which may be formulated for

any algebraic surface S as

12χ(S)= K2
S + e(S), (3.7)

where χ(S)= χ(OS) is the characteristic of the structure sheaf on S, which will be defined be-

low; KS is the canonical divisor on S, with K2
S denoting its self-intersection; and lastly e(S)

is the topological Euler-Poincaré characteristic. We refer to p. 472 in [8] for this formulation

of Noether’s formula, where it is proven in Section 6 of Chapter 4.

For a topological space X and a sheaf F on X , the characteristic χ(F ) is defined to be

χ(F )= ∑
i≥0

(−1)i dimk H i(X ,F ),

[3.e]Proposition III.4.12 in [29]
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where H i(X ,F ) is the i-th cohomology group (see Exercise III.5.1 in [9] for this definition).

By Grothendieck’s vanishing theorem (Theorem III.2.7 in [9]) all terms of index i greater

than 2 vanish in the case of a surface, and the sum reduces to

χ(OS)= h0 −h1 +h2,

where hi denotes dimk H i(S,OS).

These numbers hi for i = 0,1,2 can be given explicitly. In Section 6.10 of [23] [3.f] it is

stated that h0 = 1, h1 = g, where g is the genus of the base curve, and h2 = pg, which is

the geometric genus of the surface S.

Applying all of this to the surfaces S2 and S′
2 here, we find that the numbers h0 and h1

must be equal between the two surfaces. Furthermore, the canonical divisor has self-

intersection 0 (see Theorem 6.8 in [23]) on both surfaces. Therefore, it suffices to show that

the geometric genera of the surfaces are equal to then conclude from Noether’s formula

(3.7) that the topological Euler characteristics e(S2) and e(S′
2) must also be equal.

By blowing up S2 along the locus where the rational map S2 99K S′
2 is undefined, we

can obtain another surface B(S2) with a birational morphism B(S2) → S2 such that the

composed map B(S2)→ S2 99K S′
2 is a morphism.

By exercise III.9.3 (a) in [9], this morphism f : B(S2)→ S′
2 is flat.

Generically, f constitutes a 3:1-map, so for any x ∈ B(S2), y = f (x), the degree of the

extension of residue fields k(x)/k(y) is at most 3. Because k does not have characteristic 2

or 3, this extension must be separable.

Furthermore, there is an open subset V ⊂ S′
2, such that for U := f −1(V ), the restric-

tion f
∣∣V
U : U →V has exactly 3 pre-images for every v ∈V . Thus f

∣∣V
U is unramified.

By exercise III.10.3 in [9], it follows that ΩU /V = 0, and thus f
∣∣V
U is smooth of relative

dimension 1.

For each u ∈U ,v = f (u) ∈V , we can conclude, using Proposition III.10.4 in [9], that the

induced map on tangent spaces Tu → Tv is surjective, and thus the map on cotangent

spaces

f ∗ : ΩS′
2/k ⊗k(u)→ΩB(S2)/k ⊗k(u)

is injective for every u ∈U .

It follows that the map on global sections

Γ(V ,ωV )→Γ(V ,ωV )

[3.f]Note that hi in the notation used here corresponds to hi,0 in the notation used in [23]
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is injective as well.

Since V is a dense open subset of S′
2, and nonzero global sections on an invertible sheaf

cannot vanish on a dense open subset, we can conclude that the map of vector spaces

Γ(S′
2,ωS′

2
)→Γ(U ,ωU )

is injective. Because it factors through

f ∗ : Γ(S′
2,ωS′

2
)→Γ(B(S2),ω(B(S2)),

the latter map is injective as well, and thus we find

pg(B(S2))≥ pg(S′
2).

Because S2 and B(S2) are birationally equivalent, they have the same geometric genus

by Theorem II.8.19 in [9], and so we finally conclude that

pg(S2)≥ pg(S′
2).

By Theorem III.6.1 in [29], every isogeny E → E′ of elliptic curves has a corresponding

dual isogeny E′ → E with certain properties. Using this dual isogeny, we can apply the

same logic to obtain the other inequality, and thus

pg(S2)= pg(S′
2).

The Euler characteristic of an elliptic surface is an interesting property because it is

equal to the sum of the Euler characteristics [3.g] of all its fibres by Lemma IV.3.3 in [18].

The Euler characteristic of a fibre depends only on its type, and the numbers are given in

Table IV.3.1 in [18].

In order to draw conclusions from this, we first need to examine how fibres on S cor-

respond to fibres on the elliptic surfaces S2 and S′
2 from above. We correct a small error

in [20] which inadequately dealt with the case where the map L →P1 is not Galois, and

provide some more detail in the proof.

[3.g]Often referred to as Euler numbers.
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3.24 Lemma. Let S2 → B be the base change from Proposition 3.13. Let d be the degree

of the field extension k(B)/k(t). The singular fibres on the elliptic surfaces S2 and S′
2

correspond to the singular fibres of S according to the following table.

Fibre on S Fibre on S2 Fibre on S′
2

Unramified I1 d× I1 d× I3

I3 d× I3 d× I1

IV d× IV d× IV

Ramified I I 3× IV 3× IV

I1
d
3 × I3

d
3 × I9

I2
d
3 × I6

d
3 × I18

IV d
3 × I0

d
3 × I0

Table 3.1.: Singular fibres on S and the corresponding fibres on S2 and S′
2

Proof. The proof of this lemma consists of two separate parts, the base change S2 99K S,

and the isogeny S2 99K S′
2.

For the base change, we use Proposition 2.31. The unramified fibres are replaced by n

fibres of the same type. For the ramified fibres, we need to examine the local ramification

indices. Note that by Lemma 3.20, type II on S only occurs in partly ramified fibres, and

types I1, I2 and IV only occur in totally ramified fibres. Since the extension k(B)/k(P1)

corresponding to the map B → L →P1 is Galois, for any t ∈P1, the local ramification indices

of all points of B above t must be identical.

In particular, fibres of type II on S only occur in the non-Galois case, where B → L is a

map of degree 2, and there are three points on B above such a fibre, all with ramification

index 2 above P1. By Proposition 2.31, the fibre of type II on S gets replaced by three fibres

of type IV on S2.

Ramified fibres of the remaining three types have total ramification which could occur

in both the Galois or the non-Galois case, and we need to treat these cases separately.

If L → P1 is Galois, the map B → L is trivial, and above any totally ramified fibre there

is exactly one fibre of S2 of ramification index 3. By Proposition 2.31, if the fibre on S if

of type In, the resulting fibre on S2 will be of type I3n, and if the fibre on S is of type IV,

the resulting fibre on S2 will be smooth. Note that in the Galois case, n = 3, and so n
3 = 1,

which is consistent with the table.

Lastly, if the morphism L → P1 is not Galois, the Galois closure is a degree 2 morph-

ism B → L, and the composed map B →P1 has degree 6. A priori, a totally ramified point

in P1 could split into one point on B of ramification index 6, or two points of ramification
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index 3 each. However, the first case is not possible, as was discussed ahead of Lemma 3.20.

Hence, the ramified fibres of types I1, I2 and IV of S each split into 2 = n
3 fibres on S2,

and because the local ramification indices are all 3, the types are given as in Table 3.1 by

Proposition 2.31.

This proves the second column of Table 3.1. To examine how fibres change under the 3-

isogeny S2 99K S′
2, we will use section 7.8.1 from [23], which describes the desired behaviour

for fibres of type In. Notably, a fibre of type In on S2 gets replaced by a fibre of type I3n

on S′
2 if the 3-torsion section σ1 meets the zero component of In, and by In/3 otherwise.

Note that σ1 meeting a nonzero component of an In fibre implies that the component group

of the fibre has 3-torsion, and since the component group is Z/nZ, this is equivalent to n

being a multiple of 3, and thus n
3 must be an integer in this case. Consequently, we only

need to examine how the section σ1 meets the fibres on S2, depending on the type of the

corresponding fibre on S.

For an unramified fibre F of type I1, this is obvious, since the fibres above F on S2 are

also of type I1. All sections must necessarily meet the zero component, since it is the only

component available. Therefore, the corresponding fibres on S′
2 must be of type I3.

For an unramified fibre F of type I3, note that on the surface S, the line L meets all three

components of F, since F consists of three lines coplanar to L. On S2, the three points of

intersection of L with F split into the three 3-torsion sections, which all meet different

components of the resulting I3-fibres on S2. In particular, on S′
2, they get replaced by

fibres of type I1.

If F is a ramified fibre of type I1, then note that by Lemma 3.20, the ramification is total.

In particular, the line L intersects a single point on the fibre F with multiplicity 3. Since

the corresponding fibres [3.h] of type I3 on S2 are obtained via a blowup from the I1 fibre on

the fibre product S×P1 C, we can conclude that by construction, the three 3-torsion sections

must intersect the same component of the I3 fibres on S2. Like above, it then follows from

section 7.8.1 in [23] that on S′
2 we obtain fibres of type I9.

The same argument also works in the case of ramified fibres of type I2, since they too

are necessarily totally ramified by Lemma 3.20.

It is interesting to note that in this table, if we compare the Euler numbers of fibres

on S2 and the corresponding fibres on S′
2, almost all of them increase or stay the same.

The only case where the Euler number decreases is that of an unramified fibre of type I3

on S. However, the elliptic surfaces S2 and S′
2 have the same Euler-Poincaré characteristic

by Lemma 3.23, which is equal to the sum of the Euler numbers of the singular fibres.

[3.h]Note that this could be a single fibre in the Galois case, or two fibres in the non-Galois case.
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Hence, the positive change in Euler numbers between S2 and S′
2 that comes from fibres

of types I1 and I2 on S must be offset by an appropriate number of fibres of type I3. We

make this precise in the following lemma.

3.25 Lemma. Fibres of type In, n > 0, on S occur in pairs (I1, I3) and triples (I2, I3, I3).

Proof. Consider Table 3.1 and the Euler numbers of the fibres on S2 and S′
2:

Fibre on S Euler nr on S2 Euler nr on S′
2 Difference

Unramified I1 n 3n +2n

I3 3n n −2n

IV 4n 4n 0

Ramified I I 12 12 0

I1 n 3n +2n

I2 2n 6n +4n

IV 0 0 0

Table 3.2.: Euler numbers of the singular fibres on S2 and S′
2

Since the sums of the Euler numbers of singular fibres on S2 and S′
2 must be equal,

fibres of type I3 and fibres of type I1 and I2 have to balance out in such a way that the

differences add up to zero. Since I1-fibres always contribute 2n to the sum, each I1 fibre

has to be balanced out by precisely one I3-fibre. Similarly, I2-fibres contribute 4n to the

sum and have to be balanced out by two I3-fibres.

With this knowledge, there is very little possible variation left in the number of lines

intersecting the inflectious line L.

3.26 Proposition (Rams, Schütt, 2015). Let S ⊂P3 be a smooth quartic surface containing

a line L that is inflectious in the sense of Definition 2.5. Then L is intersected by precisely

a) 12 other lines on S if L →P1 has no totally ramified points,

b) 15 or 16 lines if L →P1 has one totally ramified point, and

c) 18, 19 or 20 lines if L →P1 has two totally ramified points.

Proof. Let π : S →P1 be the elliptic fibration corresponding to L.

Recall Lemmas 3.17 and 3.20, which state that type II fibres of π occur if and only if the

fibre is partly ramified. Totally ramified fibres can be of type I1, I2 and IV, and unramified

fibres are of type I1, I3 or IV.
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The set of singular fibres is thus made up of three basic ‘building blocs’. First, we have

pairs of fibres of type II, which have total Euler number 4 and no lines, and make up all

partly ramified fibres. Note that partly ramified fibres indeed only occur in pairs, due

to Proposition 3.22. Secondly, we have triples (I2, I3, I3), which have Euler number 8,

seven lines, and contain one totally ramified fibre. Lastly, there are fibres of type IV,

or pairs (I1, I3), both of which have Euler number 4 and three lines and can be either

unramified or contain exactly one totally ramified fibre. In the following analysis, we will

treat them as equal and only mention the pairs (I1, I3). It should however not be forgotten

that in the following, any pair (I1, I3) (ramified or not) could be replaced by a fibre of type

IV.

Going through the three cases, we can now determine all possibilities.

a) If L →P1 has no totally ramified points, and four partly ramified points, then there

are four fibres of type II, which contribute 8 to e(S)= 24. The remaining 16 are made

up of four unramified pairs (I1, I3), which contain exactly 12 lines.

b) If L →P1 has one totally ramified point, and two partly ramified points, then there

are two fibres of type II, and this time the remaining fibres have a total Euler number

of 20. The one totally ramified fibre now leaves us with two possibilites: there could

be one triple (I2, I3, I3), which would add seven lines for an Euler number of 8, or two

pairs (I1, I3), one containing a ramified I1 and the other unramified, which add only

six lines for the same Euler number. In both cases, the remaining 12 comes from

three unramified pairs (I1, I3), which add another nine lines. Thus in total there can

be either 7+9= 16 or 6+9= 15.

c) If L → P1 has only two totally ramified points, then there are no type II fibres, so

the minimal number of lines is 18, corresponding to six pairs (I1, I3). There are two

independent choices each between one triple (I2, I3, I3) and two pairs (I1, I3). Both

times, similarly to b), choosing the former adds one line to the minimum of 18. There

can thus be 18,19 or 20 fibres.

3.27 Remark. In cases b) and c), the exact number of lines intersecting L solely depends on

the number of fibres of type I2. In particular, in order for an inflectious line to exceed the

maximum of 18 that we established for regular lines, its elliptic fibration needs to contain

at least one fibre of type I2.
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3.5 QUARTIC SURFACES WITH INFLECTIOUS LINES

The detailed analysis from the previous section provides us with all the tools that we need

to prove the maximum of 64 lines on any smooth quartic.

In this section, we will assume that S ∈ P3 is a smooth quartic surface. Due to Pro-

position 3.26, the only case that we still need to consider is the case that S contains an

inflectious line L0 such that the corresponding morphism L0 →P1 has two totally ramified

points. Indeed, because Lemma 3.5 holds for inflectious lines as well, the proof of The-

orem 3.12 is valid for any smooth quartic so long as all of its inflectious lines fall under

the first two cases of Proposition 3.26, i.e. the morphism L0 →P1 has either zero or one

totally ramified points. In this section we are particularly interested in the third case. For

the rest of this section, we will assume that L0 ⊂ S is an inflectious line with this property,

and we will call the associated elliptic fibration π0. Immediately we can use the existence

of the line L0 to simplify the general equation for S significantly.

3.28 Lemma. Let S ⊂ P3 be a smooth quartic surface containing an inflectious line L0

with corresponding elliptic fibration π0 : S →P1. Assume that the restricted morphism of

curves π0|L0 : L0 →P1 has two totally ramified points.

Then S is projectively equivalent to a quartic given by an equation of the form

x2x3
0 + x3x3

1 + x0x1q(x2, x3)+ g(x2, x3)= 0 (3.8)

where q and g are homogeneous polynomials in x2, x3 of degree 2 and 4 respectively.

Proof. Like we have done before, we can assume the line L0 to be Z(x2, x3). An equation

for S can then be written in the form

x2h1 + x3h2 = 0.

Since the morphism L0 → P1 has exactly two ramified points, we can apply a linear

transformation to x2, x3 and assume that the ramified points are zero and infinity, i.e. the

ramified fibres lie in the planes Z(x2) and Z(x3). Since the ramification is total in both

cases, the residual cubic curves in both planes have a triple intersection with L0, so the

equation can be written as

x2r3
0 + x3r3

1 + x2
2s1 + x2x3s2 + x2

3s3 = 0, (3.9)

where the r i are homogeneous linear polynomials in x0, x1 and the si are homogeneous

quadratic polynomials in x0, x1, x2, x3.
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We note that r0 and r1 are linearly independent. Indeed, if we assume otherwise, then

without loss of generality we can write r1 = λr0 for some λ ∈ k. Replacing r1 with λr0 in

Eq. (3.9) and computing the partial derivatives, the only terms in these partial derivatives

that are not divisible by x2 or x3 are r3
0 in the partial derivative by x2, and (λr0)3 in the

partial derivative by x3.

Therefore, any point P on the line L0 that satisfies r0(P)= 0 would be a singularity of S

in this case.

After a linear coordinate transformation in x0, x1, we can assume that r0 = x0 and r1 = x1,

giving us an equation of the form

x2x3
0 + x3x3

1 + x2
2s1 + x2x3s2 + x2

3s3 = 0.

Furthermore, we can make sure that all monomials divisible by x2x2
0 or x3x2

1 vanish,

with the exception of x2x3
0 + x3x3

1. Indeed, we can add terms in x2 and x3 to x0 and x1

without negating the effects of the earlier coordinate transformations. After replacing x0

with x0 + p(x2, x3), the term x2x3
0 becomes

x2x3
0 +3x2x2

0 p(x2, x3)+3x2x0 p(x2, x3)2 + x2 p(x2, x3)3.

Since the characteristic of k is not 3, we can choose p appropriately to eliminate the

multiples of x2x2
0. After doing the same with x1, the equation of S becomes

x2x3
0 + x3x3

1 +ax2
0x2

3 +bx2
1x2

2 + x0 p0(x2, x3)+ x1 p1(x2, x3)+ x0x1q(x2, x3)+ g(x2, x3)= 0,

where pi, q and g are all homogeneous polynomials of fitting degrees. It remains to be

shown that a,b, p0 and p1 are all zero. For this we finally use the assumption that L0 is

inflectious.

Consider at first planes of the form x3 = tx2 with t ∈ k. The intersection of S with this

plane is a quartic curve in P2(x0, x1, x2) given by the equation

x2x3
0 + tx2x3

1 +at2x2
0x2

2 +bx2
1x2

2 + x0 p0(x2, tx2)+ x1 p1(x2, tx2)

+x0x1q(x2, tx2)+ g(x2, tx2)= 0.
(3.10)
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Now note that for any homogeneous polynomial f ∈ k[x1, x2], the polynomial f (x2, tx2) is of

the form F(t)xdeg f
2 for some polynomial F(t) ∈ k[t]. In particular, we can write

pi(x2, tx2)= Pi(t)x3
2 for i = 1,2

q(x2, tx2)=Q(t)x2
2

g(x2, tx2)=G(t)x4
2.

Furthermore note that Polynomial (3.10) is divisible by x2, with x2 = 0 being the equation

of the line L0 in the plane. After dividing by x2, we obtain the equation for the residual

cubic:

x3
0 + tx3

1 +at2x2
0x2 +bx2

1x2 +P0(t)x0x2
2 +P1(t)x1x2

2 +Q(t)x0x1x2 +G(t)x3
2 = 0. (3.11)

To find the points of inflection, we compute the Hessian matrix of this, which is given by
6x0 +2at2x2 Q(t)x2 2at2x0 +2P0(t)x2 +Q(t)x1

Q(t)x2 6tx1 +2bx2 2bx1 +2P1(t)x2 +Q(t)x0

2at2x0 +2P0(t)x2 +Q(t)x1 2bx1 +2P1(t)x2 +Q(t)x0 2P0(t)x0 +2P1(t)x1 +6G(t)x2

 .

Restricted to L0, i.e. substituting x2 = 0, we compute the determinant to be

−6Q(t)2x3
0 + (72tP0(t)−24bQ(t)−24a2t5)x2

0x1

+(72tP1(t)−24b2 −24at3Q(t))x0x2
1 −6tQ(t)2x3

1

(3.12)

This equation defines three points on the line L0 =P1(x0, x1). Since L0 is inflectious, these

must coincide exactly with the three points where the fibre given by Eq. (3.11) meets the

line L0, i.e. the three points given by the equation

x3
0 + tx3

1 = 0. (3.13)

In particular, the Polynomials (3.12) and (3.13) have to be equal up to a constant factor. We

obtain the two equations

72tP0(t)−24bQ(t)−24a2t5 = 0

72tP1(t)−24b2 −24at3Q(t)= 0
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Since these need to hold for every t ∈ k, we can substitute t = 0 in the second equation to

conclude 24b2 = 0, which implies that b = 0 since char k ̸= 2,3. Substituting b = 0 back into

both equations yields

P0(t)= 1
3

a2t4 (3.14)

P1(t)= 1
3

at2Q(t). (3.15)

Analogously to how we showed b = 0, we can show that a = 0 by considering planes of the

form x2 = tx3, and from Eqs. (3.14) and (3.15) it follows that P0(t)= P1(t)= 0. By definition,

this means that p0(x2, tx2)= p1(x2, tx2)= 0, and analogously p0(tx3, x3)= p1(tx3, x3)= 0 for

every value of t, so in particular the polynomials p0 and p1 must be identically zero, which

concludes the proof.

3.29 Remark. Note that a quartic surface S given by an equation like (3.8) automatically

contains the inflectious line L0 = Z(x2, x3) and admits the elliptic fibration π0 : S → P1

corresponding to L0. This morphism π0 can, similarly to the proof of Proposition 1.6, be

given on the open subset S∖L0 of S by

(x0, x1, x2, x3) 7→ (x2, x3).

Furthermore, the restriction π0|L0 : L0 → P1 ramifies exactly above the points (1 : 0)

and (0 : 1) in P1, which correspond to the planes x2 = 0 and x3 = 0 in P3.

Also note that if S is a surface containing a line L with elliptic fibration π that satisfies

the assumptions of Lemma 3.28, then under the projective equivalence, the line L and

morphism π correspond to L0 and π0 as given here.

We will adopt a notation from [20], albeit slightly differently, by including the line L0

and the elliptic fibration π0 in the definition.

3.30 Definition. We define the family Z to consist of all triples of the form (S,L0,π0)

where

• S is a smooth quartic surface in P3 given by an equation like (3.8)

• L0 is the inflectious line Z(x2, x3) contained in S

• π0 is the elliptic fibration given as in Remark 3.29.

For the rest of this section, we will always assume that (S,L0,π0) is a member of the

family Z .
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We now show that unless S is equal to the Schur quartic from Example 3.1, the line L0

cannot be intersected by another inflectious line on S. Rams and Schütt [20] prove a

slightly weaker version of this lemma which only states that unless S is the Schur quartic,

any inflectious line intersecting L0 can only intersect at most 16 lines on S. Of course this

immediately follows from the stronger version.

3.31 Proposition. Let (S,L0,π0) be in the family Z from Definition 3.30.

If a fibre of π0 contains another inflectious line L1, then S is projectively equivalent to the

Schur quartic from Example 3.1.

Proof. Because this proof is rather long, we will only provide a brief overview. The full

proof (including code for the computations for which computer assistance was used) can be

found in Appendix A.3.

The plane that contains L1 can be assumed without loss of generality to be given by an

equation of the form x3 = λx2, where λ is 0 or 1, with λ= 0 representing the case where

the fibre is ramified, and λ= 1 representing the unramified case.

Then the equation of the curve in the intersection of S with such a plane has equation

x2x3
0 +λx2x3

1 + cx0x1x2 +dx4
2 = 0,

where c and d are constants which can be derived from the coefficients of the polynomials q

and g from Polynomial (3.8), depending on the value of λ.

We can then differentiate four subcases of each case, depending on whether c or d vanish.

Both times, three of the four subcases can be ruled out immediately because the resulting

cubic residual to L0 is either irreducible or of a Kodaira type that is incompatible with the

ramification behaviour by Lemmas 3.17 and 3.20.

For the fourth subcase, we consider the cubic residual to the line L1, and by computing

the intersection points with L1 and the Hessian of the residual cubic, we can derive

equations on the coeffients of q and g which must hold in order for L1 to be inflectious.

In the unramified case, this leads to an equation 144= 0, which cannot happen outside

characteristic 2 or 3, thus leading to a contradiction. In the ramified case, we find that q = 0

and g = x4
2 + x4

3, which leads to the Schur quartic.

In particular, since the Schur quartic contains exactly 64 lines, we immediately get the

following corollary.

3.32 Corollary. If there is an inflectious line L1 in a fibre of π0, then S contains at most 64

lines.
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3.33 Remark. This corollary also holds with the weaker version of Proposition 3.31 without

much extra effort, see [20], p.691.

3.34 Remark. Note that regardless of the existence of such a line L1, π0 always has a

fibre of type I3 or IV as seen in the proof Proposition 3.26. If all lines intersecting L0 are

regular, then we can apply the same logic as in Theorem 3.12 to obtain a maximum of

4+ (20−3)+3(18−3)= 66

lines on S.

For the rest of the section, we can thus assume that any two inflectious lines on S are

skew to each other. We can also assume that L0 intersects at least 19 lines. Indeed, as seen

in the proof of Proposition 3.26, π0 has at least one fibre of type IV or I3. Since all lines in

any of these fibres are regular, they intersect at most 18 lines. If L0 also only intersects 18

lines, then with similar reasoning as in Theorem 3.12, S will contain at most 4+4 ·15= 64

lines.

Under the assumption that L0 intersects 19 or 20 lines, we have seen in Remark 3.27

that π0 has at least one fibre of type I2, consisting of a regular line L1, and a conic Q1,

which we will fix for the rest of this section. It should be noted that by Lemma 3.17, the

fibre of type I2 has to be ramified, and in particular, without loss of generality we can

assume that it lies in the plane Z(x3). A first lemma is directed at the conic in this fibre. In

[20] it is only mentioned that one can compute this directly, without providing any details,

which we shall do here.

3.35 Lemma. Let (S,L0,π0) be in the family Z from Definition 3.30. Assume that π0 has a

fibre of type I2, containing a regular line L1 and a smooth conic Q1.

Then Q1 is not a component of the flecnodal divisor FS of S.

Proof. We will give a brief and informal overview here. The full proof, including code for

computer-aided computations can be found in Appendix A.4.

We can make use of the fact that a quartic surface in the family Z can explicitly be

given with an equation like (3.8), and the knowledge that the fibre of I2 must lie in the

plane x2 = 0 or x3 = 0.

Up to a change a coordinates, one can then give concrete equations for the line L1 and

the conic Q1. After parametrising the points on Q1, one can compute an equation for the

tangent plane T to S at such a point P.

Intersecting T with S gives a quartic curve C, and any line intersecting S with mul-

tiplicity 4 at P must lie in the plane T and intersect the curve C with multiplicity 4

at P.
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It can then be shown that the curve C has a singularity at P, and one can compute

the tangent cone, which consists of two lines. Thus it suffices to compute the intersection

multiplicity of both of these lines with C at P.

One can then compute a polynomial in the homogeneous parameters s and t for the

conic Q1 whose coefficients are polynomials in the coefficients of the equation of S; and a

point on Q1, given by parameters s and t is flecnodal on S if and only if the polynomial

vanishes at these values of s and t.

If Q1 were to be contained in the flecnodal divisor, then this equation would have to be

satisfied for all values of s and t, which implies that all coefficients must be zero. But as

the computations in Appendix A.4 will show, there is at least one coefficient that is always

non-zero, thereby making this impossible.

We will now consider the elliptic fibration associated to L1, and call it π1. The proof

of Lemma 3.20 showed that L0 meets one of the two intersection points of L1 and Q1

tangentially to Q1. In particular, π1 has a fibre F0 of type III, consisting of L0 and Q1.

Because L1 is a regular line, fibres of π1 can a priori be of any Kodaira type from Ex-

ample 2.26. However, we will see that the reducible fibres other than F0 containing a

single line can only occur in triples, and as a consequence, we get the following lemma.

3.36 Lemma. Let (S,L0,π0) be in the family Z , and let L1 be a regular line in a fibre of

type I2 of π0. Then the number of lines intersecting L1 is equal to 3N+1 for some integer N.

Proof. By construction, L1 is intersected by the line L0. We want to define an automorph-

ism σ of S of order 3 and show that it fixes L0 and L1, but does not fix any other line that

intersects L1.

To define σ, let ζ ∈ k be a primitive cube root of unity and consider the automorphism of

order 3

σ : P3 →P3, (x0 : x1 : x2 : x3) 7→ (ζx0 : ζ2x1 : x2 : x3).

This map restricts to an automorphism of S, since for any (x0 : x1 : x2 : x3) satisfying

Polynomial (3.8), the image point (ζx0 : ζ2x1 : x2 : x3) also satisfies the equation, and the

inverse σ2 also restricts to a map S → S.

Next note that the line L0 = Z(x2, x3) is fixed by σ as a set, and so are all planes

through L0, which are of the form ax2 +bx3 = 0. In particular, σ fixes fibres of π0 as sets,

although it does not necessarily fix each component of a reducible fibre. We conclude

that L1 is also fixed by σ as a set, since it occurs in a fibre of π0 together with the conic Q1.

What remains to be shown is that σ does not fix any other lines in the fibres of π1. Let O

be such a line, and assume for the sake of contradiction that σ fixes O as a set. Since
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we have already established that σ fixes planes through L0, it follows that for any such

plane H, the intersection O∩H would also have to be fixed by σ. However, this intersection

consists of a single point, and thus we can conclude that the line O would have to be fixed

pointwise by σ.

This is impossible. Indeed, we can directly compute the fixed points of σ; they are given

by (1 : 0 : 0 : 0), (0 : 1 : 0 : 0), and every point on the line given by x0 = x1 = 0. This line cannot

be contained in S, because if it were, then in the notation of Polynomial (3.8), that would

imply g = 0, and then every partial derivative of the equation of S would vanish along that

line, contradicting the smoothness of S.

Therefore, the automorphism σ cannot fix any lines on S pointwise and in particular it

cannot fix the line O, resulting in the desired contradiction.

Since σ has order 3, it follows that lines intersecting L1 with the exception of L0 must

come in triples.

3.37 Corollary. The line L1 from Lemma 3.36 meets at most 16 other lines on S.

Proof. Since L1 is a regular line, it cannot be intersected by more than 18 lines by Proposi-

tion 3.3. The result then follows from Lemma 3.36.

On the other hand, note that every line on S intersects exactly one of L0, L1 and Q1,

because the union of these three curves is the intersection of S with some plane. Since Q1 is

not a component of the flecnodal divisor by Lemma 3.35, it can only meet at most 2 ·20= 40

lines on S, which includes L0 and L1 with multiplicity 2. With L0 intersecting at most 19

lines besides L1, and Q1 intersecting at most 36 lines besides L0,L1, the only way to reach

more than 64 lines on S is if L1 is intersected by at least 8 lines besides L0. This means

that in the notation of Lemma 3.36, we can restrict our attention to the cases N = 3, N = 4,

and N = 5. In the latter two cases, it will now be fairly simple to prove the main theorem

with the help of the following lemma.

3.38 Lemma. Let (S,L0,π0) ∈Z . Let L1 be a regular line in a fibre of type I2 of π0, and

let π1 : S →P1 be the associated elliptic fibration. If π1 has a fibre of type I3 or IV, then S

contains at most 64 lines.

Proof. Assume that such a fibre exists. Then there is a plane H ⊂ P3 such that the

intersection H∩S consists of four lines, one of which being L1. Each other line on S thus

intersects exactly one of these four. By Corollary 3.37, L1 is met by at most 16, and the
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other three lines by at most 20 lines on S. If at most one line in this fibre is inflectious,

then the number of lines on S is bounded by

4+ (16−3)+2(18−3)+ (20−3)= 64.

If two or more lines in the fibre are inflectious, note that they intersect each other. By

Proposition 3.31, the surface S must then be projectively equivalent to the Schur quartic,

which only contains 64 lines.

3.39 Corollary. If L1 is intersected by more than 10 lines, then S contains at most 64 lines.

Proof. Note that in this case, L1 would be intersected by at least 13 lines by Lemma 3.36.

Assume for the sake of contradiction that π1 has no fibres of type I3 or IV. In particular, π1

has at least 13 fibres of type I2 or III. In both cases, the Euler-Poincaré characteristic of

each such fibre is at least 2, and their sum exceeds e(S)= 24, which is impossible. So, π1

must have at least one I3 or IV fibre, and the result follows from Lemma 3.38.

The only case that remains is the case that L1 is intersected by exactly ten other lines

on S. Here, the existence of a fibre of type I3 or IV is not guaranteed. However, we can

still prove the main result in this case regardless.

3.40 Lemma. Let (S,L0,π0) ∈Z and let L1 be a regular line in a fibre of π0 of type I2. If L1

is intersected by exactly 10 lines, then S contains at most 64 lines.

Proof. Let π1 : S →P1 be the elliptic fibration associated to L1 from Proposition 1.6. If π1

has a fibre of type I3 or IV, the result follows from Lemma 3.38. Assume that this is not

the case, i.e. all lines intersecting L1 occur in fibres of type I2 or III. Every such fibre can

be written as

Fi = L i +Q i, i = 2, . . . ,10

for a line L i and an irreducible conic Q i. Note that if all nine conics Q2, . . . ,Q10 were

contained in the flecnodal divisor, their added degree is 18, which would leave at most 80−
18 = 62 lines on S. We can thus assume that Q2 is not a component of FS. Since the

automorphism σ from the proof of Lemma 3.36 maps planes to planes and fixes L1, it maps

each fibre of π1 to another fibre of π1, and because we know it cannot fix lines in these

fibres, up to renumbering we have

F3 =σF2 F4 =σ2F2

F6 =σF5 F7 =σ2F5

F9 =σF8 F10 =σ2F8.

(3.16)
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Since Q2 is not contained in FS, the same holds for Q3 and Q4. Indeed, any automorph-

ism of S fixes FS, because it is defined in terms of lines and intersection numbers, which

are preserved by σ Since Q2 meets FS with multiplicity 2 ·20= 40 and intersects both L1

and L2 with multiplicity 2 each, it can intersect at most 36 additional lines.

If L2 were a regular line, it would meet at most 18 lines by Proposition 3.3, and since

every line on S must intersect exactly one of L1, L2, Q2, the total number of lines on S

would be bounded by

2+ (10−1)+ (18−1)+36= 64.

For the rest of this proof we will assume, for the sake of contradiction, that S contains

more than 64 lines. In particular, L2 is inflectious and the elliptic fibration corresponding

to L2 has a fibre containing the line L1 and the irreducible conic Q2. By Lemmas 3.17

and 3.20, this fibre must be ramified of type I2. Furthermore, as seen in the proof of

Lemma 3.20, L2 must be tangent to Q2, which implies that F2 is a fibre of type III of π1.

The same holds for F3 =σF2 and F4 =σ2F2.

While a priori the fibres F5, . . . ,F10 could be either of type I2 or III, the latter is impossible.

Indeed, since π1 already has four fibres of type III, those being F2, F3, F4 and the fibre

containing L0, whose Euler-Poincaré characteristics add up to 12, the Euler-Poincaré

characteristics of the remaining fibres can add up to at most 12 as well. This can only

happen if they are all of type I2.

We conclude that the conics Q5, . . . ,Q10 must be contained in FS. If one of them were not

contained in FS, its fibre Fi would be of type III with the same logic that we applied to F2

above, which is impossible.

We now claim that under the assumption that S contains more than 64 lines, there must

be exactly 45 lines skew to L0. Recall Remark 3.34 and note that we can be at most one

line short of the maximum of 66. Similarly to the proof of Corollary 3.39, there must be at

least one fibre of type I3 or IV, which consists of three lines M0, M1, and M2. Because σ

fixes fibres of π0, it must permute the three lines Mi. Note that none of the lines Mi can

be fixed by σ since otherwise the point of intersection L0 ∩Mi would also have to be fixed,

and as we have seen in the proof of Lemma 3.36, none of the points on L0 are fixed by σ.

Now the four lines L0, M0, M1, and M2 together form the intersection of S with some

plane, and therefore every line on S that is skew to L0 must intersect precisely one line Mi.

So let L ⊂ S be a line skew to L0 and assume it intersects the line Mi for a fixed value of i.

Then the line σL intersects σMi, which is distinct from the line Mi. Therefore, the line σL

must also be distinct from L.
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It follows that the number of lines on S skew to L0 must be divisible by 3, since no such

line is fixed by σ and σ has order 3.

We can now decompose the flecnodal divisor of S as

FS =Q5 +·· ·+Q10 +L+R

where L is the divisor of degree 65 containing the lines L0, L1, the 18 lines besides L1

in the fibres of π0, and the 45 lines that are skew to L0, each with mutiplicity 1. Recall

that the flecnodal divisor has degree 80 by Lemma 3.7. We conclude that the degree of the

residual divisor R is 3. Note that a priori it is possible that R contains one or more of the

lines that are included in L.

Next we note that the sum of the conics Q5 +·· ·+Q10 is σ-invariant by Eq. (3.16), and

the divisor L is also σ-invariant, since σ fixes L0, L1 and fibres of π0 and maps sections

of π0 to sections of π0. Because the flecnodal divisor FS as a whole is also σ-invariant, the

same must hold for R.

Consider the intersection L0 ·FS and note that L0 does not intersect any of the con-

ics Q5, . . . ,Q10, because fibres of π1 are pairwise disjoint. Since L2
0 = −2 and L0 meets

exactly 19 of the already counted lines, we find that

20= L0 ·FS = L0 · (Q5 +·· ·+Q10 +L+R)= 19−2+L0 ·R

and it follows that L0 ·R= 3= degR.

We now want to show that every component of R is contained in some fibre of π0.

Let R1, . . . ,Rk be the irreducible components of R. First observe that for any plane H

containing the line L0, the intersection number R ·H must be 3 by Theorem 7.7 in Chapter

I of [9]. But since R ·L0 = 3, it follows that for any fibre F of π0, we have R ·F = 0.

Further note that for each individual component Ri we have Ri ·L0 ≤ Ri ·H for any

plane H containing L0. Because R ·L0 =R ·H, it follows that for each value of i, we must

also have Ri ·L0 = Ri ·H. But then we also find Ri ·F = 0 for any fibre F of π0, and so Ri is

either a component of a fibre or disjoint with all fibres of π0. But because the union of the

fibres of π0 is the entire surface S, the latter case is impossible. Thus R consists only of

components of fibres of π0, as claimed.

However, R cannot be a full fibre of π0. If that were the case, then L2 would intersect R
with multiplicity 1, since L2 is a section of π0. On the other hand, L2 is also skew to
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the conics Q5, . . . ,Q10 because they occur in different fibres of π1. Since L2 intersects at

most 20 other lines on S, itself with multiplicity −2, and R with multiplicity 1, we find

20= L2 ·FS = L2(Q5 +·· ·+Q10 +L+R)≤ 20−2+1= 19,

a contradiction. We conclude that R contains components of different singular fibres of π0.

Furthermore, we show that R cannot contain any irreducible conics. Indeed, the morph-

ism π0 has no fibres of type III by Lemmas 3.17 and 3.20, and the conic in a fibre of type I2

is not contained in the flecnodal divisor by Lemma 3.35. We can conclude that R must

consist of three lines.

Now recall that R is σ-invariant, as we noted earlier in this proof. Because σ permutes

the components of fibres of π0 of types I3 and IV, this means that R cannot contain any

lines in such fibres, since otherwise it would have to contain the full fibre.

This only leaves L1 and possibly a line L′
1 in a second fibre of type I2. However, L1

cannot be a component of R. To see this, note that L1 ·FS = 20, and L1 intersects the

six conics Q5, . . . ,Q10 each with multiplicity 2, as well as 10 other lines on S, each with

multiplicity 1, and lastly itself with multiplicity −2. Thus we find

L1 ·R= L1 ·FS −L1 · (Q5 +·· ·+Q10 +L)= 20− (6 ·2+10−2)= 0.

It follows immediately that R cannot be of the form3L1, since otherwise L1 ·R would be

equal to −6. So π0 must have a second fibre of type I2 containing a line L′
1.

Now if we write R= aL1 +bL′
1 for some a,b ∈Z satisfying a+b = 3, then it follows that

0= L1 · (aL1 +bL′
1)= aL2

1 +bL1 ·L′
1 =−2a+bL1 ·L′

1.

Because L1 and L′
1 lie in different fibres of π0, they must be disjoint, and hence L1 ·L′

1 = 0.

It follows that −2a = 0, and thus a = 0, and so R is equal to 3L′
1.

We conclude that indeed π0 has a second fibre of type I2 containing a line L′
1 and we

have R = 3L′
1. Corollary 3.39 also applies to L′

1, and so we can assume that L′
1 also

intersects at most 10 other lines on S. We compute

L′
1 ·FS = L′

1 ·L+L′
1 · (Q5 +·· ·+Q10)+L′

1 · (3L′
1)≤ 10+12−6= 16< 20,

which is impossible. We conclude that the assumption that S contains more than 64 lines

was false, which completes the proof.
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Taking all the results from this chapter together, we obtain the final theorem of this

thesis.

3.41 Theorem (Rams, Schütt, 2015). Let S ⊂ P3 be a smooth quartic surface over an

algebraically closed field k of characteristic not equal to 2 or 3.

Then S contains at most 64 lines.

Proof. Recall Definition 2.5 of regular and inflectious lines. If all lines on S are regular,

then the result follows from Theorem 3.12.

Note that this proof remains valid if we drop the assumption that all lines are regular

and replace the use of Proposition 3.3 with the added assumption that all lines on S,

regular or not, intersect at most 18 other lines on S.

Thus it only remains to cover the case where S contains at least one line L0 that is

inflectious and intersects at least 19 other lines on S. Let π0 : S → P1 be the elliptic

fibration corresponding to L0 as defined in Proposition 1.6.

By Proposition 3.26, the fact that L0 intersects at least 19 lines implies that the restric-

tion π0|L0 : L0 →P1 has two totally ramified points. By Lemma 3.28 and Remark 3.29 we

can assume that the triple (S,L0,π0) is a member of the family Z from Definition 3.30.

Furthermore, as the proof of Proposition 3.26 has shown, if L0 intersects more than 18

lines, the fibration π0 has at least one fibre of type I2, containing a line L1 and a conic Q1.

By Corollary 3.32, we can assume that this line L1 is regular. Then Corollary 3.39

and Lemma 3.40 prove the theorem in the cases where L1 intersects at least ten other

lines on S.

On the other hand, if L1 intersects fewer than ten other lines on S, then note that by

Lemma 3.36, this number can be at most 7. Further note that any line on S distinct

from L0 and L1 must intersect precisely one of L0, L1, and the conic Q1, as these three

curves together form the intersection of S with some plane.

By Proposition 3.26, the line L0 intersects at most 19 lines besides L1. By Remark 3.10,

the conic Q1 intersects the flecnodal divisor FS from Definition 3.9 with multiplicity 40.

Since FS contains all lines of S as components, and the conic Q1 intersects both L0 and L1

with multiplicity 2, as they are all coplanar, it follows that Q1 can intersect at most 36

lines besides L0 and L1. Lastly by assumption, the line L1 intersects at most 6 other lines

on S besides L0.

In this case, the surface S contains at most

2+19+36+6= 63

lines, which concludes the proof.
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A.1 COMPUTATIONS FOR SECTION 3.1

In this section, let k be an algebraically closed field and P1 the projective line over k. For

ease of notation, we will write t for the point (t : 1) ∈P1 and ∞ for the point (1 : 0). We want

to prove the following statement:

A.1 Proposition. Let k be an algebraically closed field and P1,P2,P3,P4 distinct points

on the projective line P1(k).

Then the number of automorphisms f of P1 with the property that f permutes the points

P1, . . . ,P4 is either 4, 8, or 12.

Proof. After a change in coordinates, we can assume that the four points are given by 0, 1,

∞, and λ for some λ ∈ k∖ {0,1}.

Note that an automorphism of the projective line is uniquely determined by the images

of three points. Thus for any of the 24 permutations of the four points, there can be at most

one automorphism of P1 that respects the permutation.

Given a permutation σ : {0,1,∞,λ}→ {0,1,∞,λ}, we can compute the unique automorph-

ism f of P1 satisfying f (x)=σ(x) for x = 0,1,∞. We can then compute f (λ) and determine

an equation that λ must fulfil so that f (λ)=σ(λ).

For example, let σ be the permutation such that

σ(0)= 0

σ(1)=∞
σ(∞)= 1

σ(λ)=λ.

The corresponding automorphism f of P1 that agrees with σ on 0, 1, and ∞ can be given

(uniquely up to scalar multiplication by a unit in k) as a matrix(
a b

c d

)
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where f ((r : s))= (ar+bs : cr+ds).

Now because f (0)= 0, it follows that (b : d)= (0 : 1), i.e.

b = 0.

Furthermore, since f (1)=∞, we can conclude that (a+b : c+d)= (1 : 0), and thus

c+d = 0.

Lastly, since f (∞)= 1, we must have (a : c)= (1 : 1), i.e.

a = c.

Taking all three equations together, we find that f is given by the matrix(
1 0

1 −1

)
.

We can then compute

f (λ)= (λ :λ−1).

In order for f (λ) to be equal to λ, we must have

λ

λ−1
=λ.

Since λ cannot be equal to 1, this is equivalent to

λ2 −2λ= 0.

We can conclude that for this particular permutation σ an automorphism f respecting σ

exists if and only if λ2 −2λ= 0, i.e. λ= 2.

This computation can be done for each of the 24 permutations of the four points. A

complete list of all automorphisms and the resulting equations can be found in Tables A.1

and A.2. From these computations, we can conclude the following.

If λ satisfies the equation λ2−λ+1= 0, i.e. is equal to −ζ or −ζ2 for some fixed primitive

cubic root of unity in k, then there are exactly 12 automorphisms of the projective line

permuting the four points 0, 1, ∞, and λ.

If λ is equal to −1, 1
2 , or 2, then there are exactly 8 such automorphisms.

In all other cases, there are only 4.
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Permutation
Autormorphism f

in matrix form
f (λ) σ(λ) Equation

(0,1,∞,λ)
(
1 0
0 1

)
λ λ –

(0,1,λ,∞)
(
λ 0
1 λ−1

)
(λ2 : 2λ−1) ∞ 2λ−1= 0

(0,∞,1,λ)
(
1 0
1 −1

)
(λ :λ−1) λ λ2 −2λ= 0

(0,∞,λ,1)
(
λ 0
1 −1

)
(λ2 :λ−1) 1 λ2 −λ+1= 0

(0,λ,1,∞)
(
λ 0
λ 1−λ

)
(λ2 :λ2 −λ+1) ∞ λ2 −λ+1= 0

(0,λ,∞,1)
(
λ 0
0 1

)
λ2 1 λ2 −1= 0

(1,0,∞,λ)
(−1 1

0 1

)
1−λ λ 2λ−1= 0

(1,0,λ,∞)
(
λ −λ
1 −λ

)
∞ ∞ –

(1,∞,0,λ)
(
0 −1
1 −1

)
(1 : 1−λ) λ λ2 −λ+1= 0

(1,∞,λ,0)
(
λ −1
1 −1

)
(λ2 −1 :λ−1) 0 λ2 −1= 0

(1,λ,0,∞)
(

0 λ

1−λ λ

)
(−1 :λ−2) ∞ λ−2= 0

(1,λ,∞,0)
(
λ−1 1

0 1

)
λ2 −λ+1 0 λ2 −λ+1= 0

Table A.1.: Computations for Proposition A.1, part 1. For a permutation
σ of the four points 0, 1, ∞, λ on the projective line, we list the images of
these four points in that order; the automorphism f of P1 that coincides
with the given permutations on the points 0, 1, and ∞; the image of λ
under that automorphism; the desired value of f (λ) (i.e. σ(λ)); and lastly
the equation that λ must satisfy in order for f (λ) to be equal to (σ(λ)).
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Permutation
Autormorphism f

in matrix form
f (λ) σ(λ) Equation

(∞,0,1,λ)
(
1 −1
1 0

)
(λ−1 :λ) λ λ2 −λ+1= 0

(∞,0,λ,1)
(
λ −λ
1 0

)
λ−1 1 λ−2= 0

(∞,1,0,λ)
(
0 1
1 0

)
(1 :λ) λ λ2 −1= 0

(∞,1,λ,0)
(
λ 1−λ
1 0

)
(λ2 −λ+1 :λ) 0 λ2 −λ+1= 0

(∞,λ,0,1)
(
0 λ

1 0

)
1 1 –

(∞,λ,1,0)
(
1 λ−1
1 0

)
(2λ−1 :λ) 0 2λ−1= 0

(λ,0,1,∞)
(−λ λ

−λ 1

)
(λ2 −λ :λ2 −1) ∞ λ2 −1= 0

(λ,0,∞,1)
(−λ λ

0 1

)
−λ2 +λ 1 λ2 −λ+1= 0

(λ,1,0,∞)
(

0 λ

λ−1 1

)
(λ :λ2 −λ+1) ∞ λ2 −λ+1= 0

(λ,1,∞,0)
(
1−λ λ

0 1

)
(λ2 −2λ :−1) 0 λ2 −2λ= 0

(λ,∞,0,1)
(

0 λ

−1 1

)
(λ : 1−λ) 1 2λ−1= 0

(λ,∞,1,0)
(−1 λ

−1 1

)
0 0 –

Table A.2.: Computations for Proposition A.1, part 2. For a permutation
σ of the four points 0, 1, ∞, λ on the projective line, we list the images of
these four points in that order; the automorphism f of P1 that coincides
with the given permutations on the points 0, 1, and ∞; the image of λ
under that automorphism; the desired value of f (λ) (i.e. σ(λ)); and lastly
the equation that λ must satisfy in order for f (λ) to be equal to (σ(λ)).
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A.2 COMPUTATIONS FOR PROPOSITION 3.3

In the proof of Proposition 3.3, we needed to compute the multiplicity of the root 0 of the

polynomial rλ in the case where the fibre in the corresponding plane contains three lines.

In Listing A.1, we provide the code for the case where at least one intersection of the lines

in the fibre is not on L. The output is provided in Listing A.2. The second case of three

concurrent lines whose intersection lies on L is covered in Listings A.3 and A.4.

1 // Se t t i ng up v a r i a b l e s f o r the c o e f f i c i e n t s o f the

po lynomia l s

2 K<a010 , a011 , a012 , a013 , a020 , a021 , a022 , a030 , a031 , a040 ,

3 a100 , a101 , a110 , a111 , a112 , a120 , a121 , a130 ,

4 a200 , a210 , a211 , a220 , a310>

5 := Funct ionFie ld ( Rat i ona l s ( ) ,23) ;

6 R<lambda>:=PolynomialRing (K) ;

7 S<x0 , x1>:=PolynomialRing (R, 2 ) ;

8 T<x>:=PolynomialRing (R) ;

9

10 // Def in ing the po lynomia l s a_ij

11 a01 :=a010*x0^3+a011*x0^2*x1+a012*x0*x1^2+a013*x1^3;

12 a02 :=a020*x0^2+a021*x0*x1+a022*x1^2;

13 a03 :=a030*x0+a031*x1 ;

14 a04 :=a040 ;

15 a10 :=x0*x1 *( a100*x0+a101*x1 ) ;

16 a11 :=a110*x0^2+a111*x0*x1+a112*x1^2;

17 a12 :=a120*x0+a121*x1 ;

18 a13 :=a130 ;

19 a20 :=a200*x0*x1 ;

20 a21 :=a210*x0+a211*x1 ;

21 a22 :=a220 ;

22 a30 := 0 ;

23 a31 :=a310 ;

24 a40 := 0 ;

25

26 // Def in ing the polynomial g_lambda and i t s second

d e r i v a t i v e s

27 g:=a10+a01*lambda ;
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28

29 g0:= Der iva t i v e ( g , x0 ) ;

30 g1:= Der iva t i v e ( g , x1 ) ;

31 g00 := Der iva t i v e ( g0 , x0 ) ;

32 g01 := Der iva t i v e ( g0 , x1 ) ;

33 g11 := Der iva t i v e ( g1 , x1 ) ;

34

35 // Def in ing the remaining e n t r i e s o f the Hess ian matrix

o f C_lambda

36 F2:=a20+a11*lambda+a02*lambda^2;

37 F3:=a30+a21*lambda+a12*lambda^2+a03*lambda^3;

38

39 // Def in ing the matrix and i t s determinant to get

h_lambda

40 M:=Matrix ( [

41 [ g00 , g01 , De r i va t i v e (F2 , x0 ) ] ,

42 [ g01 , g11 , De r i va t i v e (F2 , x1 ) ] ,

43 [ De r i va t i v e (F2 , x0 ) , De r i va t i v e (F2 , x1 ) ,2*F3 ]

44 ] ) ;

45

46 h:=Determinant (M) ;

47

48 // Determining the mu l t i p l i c i t y o f the root 0 o f the

49 // r e s u l t a n t o f g_lambda and h_lambda

50 r e s :=Resu l tant ( Evaluate ( g , [ x , 1 ] ) , Evaluate (h , [ x , 1 ] ) ) ;

51

52 // Pr in t ing the degree and roo t s o f r_lambda

53 Degree ( r e s ) ;

54 Roots ( r e s ) ;

Listing A.1: Magma code to compute the multiplicity of a root of the polynomial r(λ) in the

proof of Proposition 3.3 in the case that the fibre corresponding to this root contains two

lines intersecting in a point not lying on the line L
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1 18

2 [

3 <0, 3>

4 ]

Listing A.2: Output of the code in Listing A.1. Line 1 shows that the degree of the

polynomial rλ is indeed 18. Line 3 shows that 0 is a root of multiplicity 3, as desired.

1 // Se t t i ng up v a r i a b l e s f o r the c o e f f i c i e n t s o f the

po lynomia l s

2 K<b , c ,

3 a010 , a011 , a012 , a013 , a020 , a021 , a022 , a030 , a031 , a040 ,

4 a110 , a111 , a112 , a120 , a121 , a130 , a210 , a211 , a220 , a310>

5 := Funct ionFie ld ( Rat i ona l s ( ) ,23) ;

6 R<lambda>:=PolynomialRing (K) ;

7 S<x0 , x1>:=PolynomialRing (R, 2 ) ;

8 T<x>:=PolynomialRing (R) ;

9

10

11 // Def in ing the po lynomia l s a_ij

12 a01 :=a010*x0^3+a011*x0^2*x1+a012*x0*x1^2+a013*x1^3;

13 a02 :=a020*x0^2+a021*x0*x1+a022*x1^2;

14 a03 :=a030*x0+a031*x1 ;

15 a04 :=a040 ;

16 a10 :=b*c*x1^3;

17 a11 :=a110*x0^2+a111*x0*x1+a112*x1^2;

18 a12 :=a120*x0+a121*x1 ;

19 a13 :=a130 ;

20 a20 := (b+c ) *x1^2;

21 a21 :=a210*x0+a211*x1 ;

22 a22 :=a220 ;

23 a30 :=x1 ;

24 a31 :=a310 ;

25 a40 := 0 ;

26
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27 // Def in ing the polynomial g_lambda and i t s second

d e r i v a t i v e s

28 g:=a10+a01*lambda ;

29

30 g0:= Der iva t i v e ( g , x0 ) ;

31 g1:= Der iva t i v e ( g , x1 ) ;

32 g00 := Der iva t i v e ( g0 , x0 ) ;

33 g01 := Der iva t i v e ( g0 , x1 ) ;

34 g11 := Der iva t i v e ( g1 , x1 ) ;

35

36 // Def in ing the remaining e n t r i e s o f the Hess ian matrix

o f C_lambda

37 F2:=a20+a11*lambda+a02*lambda^2;

38 F3:=a30+a21*lambda+a12*lambda^2+a03*lambda^3;

39

40 // Def in ing the matrix and i t s determinant to get

h_lambda

41 M:=Matrix ( [

42 [ g00 , g01 , De r i va t i v e (F2 , x0 ) ] ,

43 [ g01 , g11 , De r i va t i v e (F2 , x1 ) ] ,

44 [ De r i va t i v e (F2 , x0 ) , De r i va t i v e (F2 , x1 ) ,2*F3 ]

45 ] ) ;

46

47 h:=Determinant (M) ;

48

49 // Determining the mu l t i p l i c i t y o f the root 0 o f the

50 // r e s u l t a n t o f g_lambda and h_lambda

51 r e s :=Resu l tant ( Evaluate ( g , [ x , 1 ] ) , Evaluate (h , [ x , 1 ] ) ) ;

52

53 // Pr in t ing the degree and roo t s o f r_lambda

54 Degree ( r e s ) ;

55 Roots ( r e s ) ;

Listing A.3: Magma code to compute the multiplicity of a root of the polynomial r(λ) in the

proof of Proposition 3.3 in the case that the fibre corresponding to this root contains three

lines which all intersect in a single point that lies on the line L
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1 18

2 [

3 <0, 5>

4 ]

Listing A.4: Output of the code in Listing A.3. Line 1 shows that the degree of the

polynomial rλ is indeed 18. Line 3 shows that 0 is a root of multiplicity 5, as desired.

A.3 PROOF OF PROPOSITION 3.31

In this section we want to prove Proposition 3.31.

3.31 Proposition. Let (S,L0,π0) be in the family Z from Definition 3.30.

If a fibre of π0 contains another inflectious line L1, then S is projectively equivalent to the

Schur quartic from Example 3.1.

We will fix a notation for the coefficients of the polynomials q and g by defining

q(x2, x3)= q0x2
3 + q1x3x2 + q2x2

2

g(x2, x3)= g0x4
3 + g1x3

3x2 + g2x2
3x2

2 + g3x3x3
2 + g4x4

2

Now assume that there is an inflectious line L1 in a fibre of π0. There are two important

cases to consider. The fibre in which L1 lies is either ramified or unramified, in the sense

that the curve morphism π0|L0 : L0 →P1 does or does not ramify at the point above which

the fibre lies. We will be looking at these two cases separately.

A.3.1 UNRAMIFIED FIBRE

In this subsection, we will prove the following.

A.2 Lemma. The statement of Proposition 3.31 holds under the assumption that the fibre

of π0 in which L1 lies is unramified.

Proof. In this case we can assume that the fibre lies in a plane of the form x3 = λx2 for

some nonzero λ ∈ k. After a linear change in coordinates, we can assume λ= 1, i.e. the

plane has equation x2 = x3.

The intersection of S with this plane is given by the equation

x2x3
0 + x2x3

1 + cx0x1x2
2 +dx4

2 = 0
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where

c = q0 + q1 + q2

d = g0 + g1 + g2 + g3 + g4

and after dividing by the factor x2 we obtain the residual cubic

x3
0 + x3

1 +dx3
2 + cx0x1x2 = 0.

We will now distinguish four subcases depending on whether c or d are zero.

a) d = 0 and c ̸= 0. In this case the residual cubic is irreducible. Indeed, after rescaling

x2, we can assume c = 1, and get a cubic curve with equation

x3
0 + x3

1 + x0x1x2 = 0.

We can show that this curve only has one singular point by computing the partial

derivatives, which are

3x2
0 + x1x2

3x2
1 + x0x2

x0x1

In order for x0x1 to vanish, one of x0 or x1 must vanish, but then by the first two

equations, so does the other. This leaves only the point (0 : 0 : 1) as a possibility for a

singularity, and indeed it does lie on the curve. We conclude that the curve is either

irreducible or consists of three lines all meeting in one point. We can rule out the

latter case by considering the line x0 = x1, which intersects the curve not only in the

singular point, but also in the point (1 : 1 :−2).

b) d = 0 and c = 0. In this case, the residual cubic has equation

x3
0 + x3

1 = 0.

This clearly decomposes into the three lines x0 +ζix1 = 0 for i = 0,1,2, where ζ is a

primitive cube root of unity. Since all three of these lines meet in the point (0 : 0 : 1),

which does not lie on L0, we get a fibre of type IV.
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If we consider the elliptic fibration π1 corresponding to the line L1, then π1 has a

ramified fibre of type I3 in this plane. But this is impossible by Lemma 3.20, since

we assume that L1 is inflectious.

c) d ̸= 0 and c = 0. After scaling x2, we can assume d = 1, and the equation for the

residual cubic becomes

x3
0 + x3

1 + x3
2 = 0

which gives a smooth curve outside characteristic 3.

d) d ̸= 0 and c ̸= 0. Then after scaling x2 we can assume d = 1 and get a residual cubic

with equation

x3
0 + x3

1 + x3
2 + cx0x1x2 = 0.

We will examine singularities in this curve. Consider the three partial derivatives

∂

∂x0
= 3x2

0 + cx1x2

∂

∂x1
= 3x2

1 + cx0x2

∂

∂x2
= 3x2

2 + cx0x1

If x0 = 0, then all three cannot simultaneously vanish, and so we can restrict our

attention to the affine patch x0 = 1. We get the three equations

3+ cx1x2 = 0

3x2
1 + cx2 = 0

3x2
2 + cx1 = 0

The first equation implies that both x1 and x2 are nonzero. From the second and

third equation respectively, we conclude that

x2 =−3
c

x2
1 (A.1)

x1 =−3
c

x2
2 (A.2)
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Substituting x2 into the second equation here, we get

x1 =−3
c

(
−3

c
x2

1

)2

=−27
c3 x4

1

so either x1 = 0, which we ruled out above, or 1=−27
c3 x3

1, i.e.

x1 ∈
{
− c

3
,−ζc

3
,−ζ

2c
3

}
where ζ is a primitive cube root of unity. On the one hand, we can substitute this

back into Equation (A.1) to obtain

x2 ∈
{
− c

3
,−ζ

2c
3

,−ζc
3

}
.

On the other hand, if we substitute any of the three points

(1 :− c
3

:− c
3

)

(1 :−ζc
3

:−ζ
2c
3

)

(1 :−ζ
2c
3

:−ζc
3

)

into the equation of the cubic, we get

1− c3

27
− c3

27
+ c3

9
= 0

from which we can conclude

1=− c3

27

and thus the three points above lie on the cubic if and only if c3 =−27, i.e., if c =−3,

−3ζ, or −3ζ2.
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In all three cases, we get the same three singular points, and in all other cases the

cubic is smooth. Without loss of generality, we shall only consider the case c =−3.

The cubic now decomposes into the product of three lines

(x0 + x1 + x2)(x0 +ζx1 +ζ2x2)(x0 +ζ2x1 +ζx2)= 0.

Without loss of generality we can also assume that the line L1 is given by the

equation x0 + x1 + x2 = 0.

We claim that this case is actually impossible if L1 is inflectious.

Consider the elliptic fibration π1 associated to L1. Almost all planes through L1 have

the form

x2 − x3 = m(x0 + x1 + x2)= 0

for some m ∈ k. We compute the intersection of the plane with the surface S by

substituting x3 = x2 −m(x0 + x1 + x2) in the equation of S, and get

0=x2x3
0 + (x2 −m(x0 + x1 + x2))x3

1

+ x0x1
[
q0(x2 −m(x0 + x1 + x2))2 + q1x2(x2 −m(x0 + x1 + x2))+ q2x2

2
]

+ g0(x2 −m(x0 + x1 + x2))4 + g1x2(x2 −m(x0 + x1 + x2))3

+ g2x2
2(x2 −m(x0 + x1 + x2))2 + g3x3

2(x2 −m(x0 + x1 + x2))+ g4x4
2

We expand the powers of (x2 −m(x0 + x1 + x2)) to obtain

0=x2x3
0 + x2x3

1 −m(x0 + x1 + x2)x3
1

+ q0x0x1
[
x2

2 −mx2(x0 + x1 + x2)+m2(x0 + x1 + x2)2]
+ q1x0x1

[
x2

2 −mx2(x0 + x1 + x2)
]

+ q2x0x1x2
2

+ g0
[
x4

2 −4mx3
2(x0 + x1 + x2)+6m2x2

2(x0 + x1 + x2)2

−4m3x2(x0 + x1 + x2)3 +m4(x0 + x1 + x2)4]
+ g1

[
x4

2 −3mx3
2(x0 + x1 + x2)+3m2x2

2(x0 + x1 + x2)2 −m3x2(x0 + x1 + x2)3]
+ g2

[
x4

2 −2mx3
2(x0 + x1 + x2)+m2x2

2(x0 + x1 + x2)2]
+ g3

[
x4

2 − x3
2(x0 + x1 + x2)

]
+ g4x4

2
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This equation must be divisible by (x0 + x1 + x2), since that factor represents the

line L1, which is contained in the fibre. We will thus collect the terms that already

contain the factor, and the terms that don’t. The equation now takes the form

0=x2x3
0 + x2x3

1 + (q0 + q1 + q2)x0x1x2
2 + (g0 + g1 + g2 + g3 + g4)x4

2

m(x0 + x1 + x2)
[−x3

1

− q0x0x1x2 +mq0(x0 + x1 + x2)

−4g0x3
2 +6mg0x2

2(x0 + x1 + x2)−4m2 g0x2(x0 + x1 + x2)2 +m3 g0(x0 + x1 + x2)3

−3g1x3
2 +3mg1x2

2(x0 + x1 + x2)−m2 g1x2(x0 + x1 + x2)2

−2g2x3
2 +mg2x2

2(x0 + x1 + x2)

−g3x3
2
]
.

Since we know that q0 + q1 + q2 = c =−3 and g0 + g1 + g2 + g3 + g4 = d = 1, the first

line of this equation takes the form

x2(x3
0 + x3

1 + x3
2 −3x0x1x2)

of which we already know the factorisation. The residual cubic is thus given by the

equation

0= x2(x0 +ζx1 +ζ2x2)(x0 +ζ2x1 +ζx2)+m[. . . ] (A.3)

To compute the intersection of this cubic with the line L1, we set x0+ x1+ x2 = 0, so a

lot of terms within the square brackets already disappear, and we are left with

0=x2(x0 +ζx1 +ζ2x2)(x0 +ζ2x1 +ζx2)

+m
[−x3

1 − (q0 + q1)x0x1x2 − (4g0 +3g1 +2g2 + g3)x3
2
]

and after substituting x0 =−x1 − x2, the three points in the intersection are given by

the equation

0= x2
(
(ζ−1)x1 + (ζ2 −1)x2

)(
(ζ2 −1)x1 + (ζ−1)x2

)+m(−x3
1 −γx3

2)

where γ= 4g0+3g1+2g2+ g3. After expanding the parentheses, we can write this as

0=−mx3
1 + (m(q0 + q1)+3)(x2

1x2 + x1x2
2)+ (3−mγ)x3

2. (A.4)
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Since L1 is assumed to be inflectious, all three of these points must be inflections of

the residual cubic. We thus compute the Hessian of Eq. (A.3).

This is rather tedious and so we will use a computer for this. Listing A.5 provides

code that computes the Hessian, and then restricts it to the line L1. The output can

be found in Listing A.6.

Now in order for L1 to be inflectious, the points in the intersection of any fibre with L1,

i.e., the points that satisfy Eq. (A.4), must also be inflections of their respective fibre,

i.e. also be roots of the Hessian from Listing A.6.

In particular, the Hessian must be a multiple of Eq. (A.4). If we write this equation

as

0= C0x3
1 +C1x2

1x2 +C2x1x2
2 +C3x3

2

and the Hessian as

0= H0x3
1 +H1x2

1x2 +H2x1x2
2 +H3x3

2

where the Ci and Hi are polynomials in the variables m, qi, and g i. then this implies

that for any i, j ∈ {0,1,2,3}, we must have

CiH j −C jHi = 0.

With this in mind, we can define the polynomials

g i j = CiH j −C jHi

in m, qi, and g i. These polynomials are computed in Listing A.7. Because they

must vanish in every fibre, i.e., for every value of m, we can interpret them as

monovariate polynomials in m, and conclude that each coefficient must vanish. As

we can see in Listing A.8, the polynomial p01 has 144 as the coefficient of the linear

term. This means that because we are not in characteristic 2 or 3, it is impossible for

all coefficients to vanish.

We conclude that L1 cannot be inflectious, contradicting our assumption.

We have thus shown that an inflectious line cannot occur in an unramified fibre of π0,

given that L0 itself is inflectious.

92



A. APPENDIX

1 K<s> := CyclotomicFie ld (3 ) ;

2 R0<m, q0 , q1 , q2 , g0 , g1 , g2 , g3 , g4> := PolynomialRing (K, 9 ) ;

3 R<x0 , x1 , x2> := PolynomialRing (R0 , 3 ) ;

4

5 //Equation o f the r e s i d u a l cub ic

6 c := x2 *( x0 + s *x1 + s^2*x2 ) *( x0 + s^2*x1 + s*x2 )

7 + m*( - x1^3 - q0*x0*x1*x2 + m*q0 *( x0+x1+x2 ) - 4*g0*x2^3

8 + 6*m*g0*x2^2*(x0+x1+x2 ) - 4*m^2*g0*x2 *( x0+x1+x2 )^2

9 + m^3*g0 *( x0+x1+x2 )^3 - 3*g1*x2^3

10 + 3*m*g1*x2^2*(x0+x1+x2 )

11 - m^2*g1*x2 *( x0+x1+x2 )^2 - 2*g2*x2^3

12 + m*g2*x2^2*(x0+x1+x2 ) - g3*x2^3) ;

13

14 // F i r s t De r i v a t i v e s

15 c0 := Der i va t i v e ( c , x0 ) ;

16 c1 := Der i va t i v e ( c , x1 ) ;

17 c2 := Der i va t i v e ( c , x2 ) ;

18

19 //Second De r i v a t i v e s

20 c00 := Der iva t i v e ( c0 , x0 ) ;

21 c01 := Der iva t i v e ( c0 , x1 ) ;

22 c02 := Der iva t i v e ( c0 , x2 ) ;

23 c11 := Der iva t i v e ( c1 , x1 ) ;

24 c12 := Der iva t i v e ( c1 , x2 ) ;

25 c22 := Der iva t i v e ( c2 , x2 ) ;

26

27 //Determinant o f the Hess ian matrix

28 h := c00*c11*c22 + c01*c12*c02 + c02*c01*c12 - c02^2*c11

- c01^2*c22 - c12^2*c00 ;

29

30 // r e s t r i c t h to the l i n e L_1

31 Evaluate (h , [ - x1 - x2 , x1 , x2 ] ) ;

Listing A.5: Magma code for computing the Hessian of the residual cubic in case d), i.e.

under the assumption that the line L1 is given by the equation x0 + x1 + x2 = 0.
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1 (6*m^3*q0^2 + 36*m^2*q0 + 54*m) *x1^3

2

3 + (32*m^5*q0^2*g0 + 8*m^5*q0^2*g1 + 96*m^5*q0*g0 +

4 24*m^5*q0*g1 + 48*m^4*q0*g0 - 24*m^4*q0*g1 - 24*m^4*q0*g

5 + 288*m^4*g0 + 72*m^4*g1 + 2*m^3*q0^3 - 144*m^3*g0

6 - 144*m^3*g1 - 72*m^3*g2 + 10*m^2*q0^2 + 48*m^2*q0

7 + 6*m*q0 + 144*m - 18) *x1^2*x2

8

9 + (32*m^5*q0^2*g0 + 8*m^5*q0^2*g1 - 288*m^5*g0^2

10 - 288*m^5*g0*g1 - 288*m^5*g0*g2 - 288*m^5*g0*g3

11 - 72*m^5*g1*g3 + 24*m^5*g2^2 + 192*m^4*q0*g0

12 + 48*m^4*q0*g1 + 864*m^4*g0 + 216*m^4*g1 + 2*m^3*q0^3

13 - 576*m^3*g0 - 360*m^3*g1 - 144*m^3*g2 + 10*m^2*q0^2

14 + 288*m^2*g0 + 216*m^2*g1 + 144*m^2*g2 + 72*m^2*g3

15 + 6*m*q0 - 18) *x1*x2^2

16

17 + (32*m^5*q0^2*g0 + 8*m^5*q0^2*g1 + 96*m^5*q0*g0^2

18 + 96*m^5*q0*g0*g1 + 96*m^5*q0*g0*g2 + 96*m^5*q0*g0*g3

19 + 24*m^5*q0*g1*g3 - 8*m^5*q0*g2^2 - 48*m^4*q0^2*g0

20 - 24*m^4*q0^2*g1 - 8*m^4*q0^2*g2 - 96*m^4*q0*g0

21 - 24*m^4*q0*g1 + 288*m^4*g0^2 + 288*m^4*g0*g1

22 + 288*m^4*g0*g2 + 288*m^4*g0*g3 + 72*m^4*g1*g3

23 - 24*m^4*g2^2 + 24*m^3*q0^2*g0 + 18*m^3*q0^2*g1

24 + 12*m^3*q0^2*g2 + 6*m^3*q0^2*g3 - 576*m^3*g0

25 - 144*m^3*g1 - 2*m^2*q0^2 + 48*m^2*q0*g0 + 36*m^2*q0*g1

26 + 24*m^2*q0*g2 + 12*m^2*q0*g3 + 432*m^2*g0 + 216*m^2*g1

27 + 72*m^2*g2 - 12*m*q0 - 72*m*g0 - 54*m*g1 - 36*m*g2

28 - 18*m*g3 - 18) *x2^3

Listing A.6: Output of Listing A.5. Linebreaks have been manually edited for readabiltiy

reasons.
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1 K<s> := CyclotomicFie ld (3 ) ;

2 S0<q0 , q1 , q2 , g0 , g1 , g2 , g3 , g4> := PolynomialRing (K, 8 ) ;

3 S<m>:= PolynomialRing ( S0 ) ;

4

5 // Co e f f i c i e n t s o f the r e s i d u a l cub ic r e s t r i c t e d to L_1

6 C0 := -m;

7 C1 := m*( q0+q1 ) + 3 ;

8 C2 := m*( q0+q1 ) + 3 ;

9 C3 := 3 - m*(4* g0 + 3*g1 + 2*g2 + g3 ) ;

10

11 // Co e f f i c i e n t s o f the Hess ian r e s t r i c t e d to L_1

12 H0 := 6*m^3*q0^2 + 36*m^2*q0 + 54*m;

13 H1 := 32*m^5*q0^2*g0 + 8*m^5*q0^2*g1 + 96*m^5*q0*g0

14 + 24*m^5*q0*g1 + 48*m^4*q0*g0 - 24*m^4*q0*g1

15 - 24*m^4*q0*g2 + 288*m^4*g0 + 72*m^4*g1 + 2*m^3*q0^3

16 - 144*m^3*g0 - 144*m^3*g1 - 72*m^3*g2 + 10*m^2*q0^2

17 + 48*m^2*q0 + 6*m*q0 + 144*m - 18 ;

18 H2 := 32*m^5*q0^2*g0 + 8*m^5*q0^2*g1 - 288*m^5*g0^2

19 - 288*m^5*g0*g1 - 288*m^5*g0*g2 - 288*m^5*g0*g3

20 - 72*m^5*g1*g3 + 24*m^5*g2^2 + 192*m^4*q0*g0

21 + 48*m^4*q0*g1 + 864*m^4*g0 + 216*m^4*g1 + 2*m^3*q0^3

22 - 576*m^3*g0 - 360*m^3*g1 - 144*m^3*g2 + 10*m^2*q0^2

23 + 288*m^2*g0 + 216*m^2*g1 + 144*m^2*g2 + 72*m^2*g3

24 + 6*m*q0 - 18 ;

25 H3 := 32*m^5*q0^2*g0 + 8*m^5*q0^2*g1 + 96*m^5*q0*g0^2

26 + 96*m^5*q0*g0*g1 + 96*m^5*q0*g0*g2 + 96*m^5*q0*g0*g3

27 + 24*m^5*q0*g1*g3 - 8*m^5*q0*g2^2 - 48*m^4*q0^2*g0

28 - 24*m^4*q0^2*g1 - 8*m^4*q0^2*g2 - 96*m^4*q0*g0

29 - 24*m^4*q0*g1 + 288*m^4*g0^2 + 288*m^4*g0*g1

30 + 288*m^4*g0*g2 + 288*m^4*g0*g3 + 72*m^4*g1*g3

31 - 24*m^4*g2^2 + 24*m^3*q0^2*g0 + 18*m^3*q0^2*g1

32 + 12*m^3*q0^2*g2 + 6*m^3*q0^2*g3 - 576*m^3*g0

33 - 144*m^3*g1 - 2*m^2*q0^2 + 48*m^2*q0*g0 + 36*m^2*q0*g1

34 + 24*m^2*q0*g2 + 12*m^2*q0*g3 + 432*m^2*g0 + 216*m^2*g1

35 + 72*m^2*g2 - 12*m*q0 - 72*m*g0 - 54*m*g1 - 36*m*g2
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36 - 18*m*g3 - 18 ;

37 //Only p r i n t i n g p_01 to save space

38 H0*C1 - C0*H1 ;

39 //H0*C2 - C0*H2 ;

40 //H0*C3 - C0*H3 ;

41 //H1*C2 - C1*H2 ;

42 //H1*C3 - C1*H3 ;

43 //H2*C3 - C2*H3 ;

Listing A.7: Magma code to compute the polynomials pi j which must vanish in order for

the line L1 to be inflectious. Only p01 is printed because it is sufficient to complete the

argument.

1 (32* q0^2*g0 + 8*q0^2*g1 + 96*q0*g0 + 24*q0*g1 ) *m^6

2 + (48* q0*g0 - 24*q0*g1 - 24*q0*g2 + 288*g0 + 72*g1 ) *m^5

3 + (8* q0^3 + 6*q0^2*q1 - 144*g0 - 144*g1 - 72*g2 ) *m^4

4 + (64* q0^2 + 36*q0*q1 + 48*q0 ) *m^3

5 + (168* q0 + 54*q1 + 144) *m^2

6 + 144*m

Listing A.8: Output of Listing A.7. Linebreaks have been manually edited for readability

reasons
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A.3.2 RAMIFIED FIBRE

In this subsection we prove the second subcase of Proposition 3.31.

A.3 Lemma. The statement of Proposition 3.31 holds under the assumption that the fibre

of π0 in which L1 lies is ramified.

Proof. Because (S,L0,π0) is in the family Z , we know by Remark 3.29 that the ramified

fibre in question must lie in the plane x2 = 0 or x3 = 0. Without loss of generality, we can

assume it to be x3 = 0. The intersection of S with this plane has equation

x2x3
0 + cx0x1x2

2 +dx4
2 = 0

where c = q2 and d = g4. The residual cubic is given by

x3
0 + cx0x1x2 +dx3

2.

We will distinguish the same four subcases as in the unramified case.

a) d = 0 and c = 0. This case is impossible, as it leads to the cubic equation x3
0 = 0, which

is not a reduced curve.

b) d = 0 and c ̸= 0. In this case, the cubic equation becomes

x3
0 + cx0x1x2.

Immediately this splits off a linear factor x0. The conic x2
0 + cx1x2 is smooth, as the

partial derivatives 2x0, cx2 and cx1 cannot simultaneously vanish. Furthermore, the

line and the conic intersect in the two distinct points (0 : 0 : 1 : 0) and (0 : 1 : 0 : 0).

In particular, this gives a ramified fibre of type I2. The fibration corresponding to

the line L1 would then have a (ramified) fibre of type III in this plane, which is

impossible by Lemma 3.20 since L1 is inflectious.

c) d ̸= 0 and c ̸= 0. After scaling x2, we can assume that d = 1. The residual cubic is

now given by

x3
0 + x3

2 + cx0x1x2 = 0.

Up to renaming coordinates, this is identical to subcase a) in the case λ ̸= 0, where it

was shown that this is an irreducible cubic.
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d) d ̸= 0 and c = 0. In this case, we can assume d = 1 and get

x3
0 + x3

2 = 0

as an equation for the residual cubic. Similarly to subcase b) of the case λ ̸= 0, this

gives a fibre of type IV, with the difference being that in this case it is ramified (note

that the intersection point here is (0 : 1 : 0 : 0), which lies on L0). We claim that this

implies that S is projectively equivalent to the Schur quartic from Section 3.1 in this

case.

We will employ a similar method as in case d) of the previous section. Without loss

of generality we shall assume that L1 is given by x0 + x2 = 0 and x3 = 0. Almost all

planes through L1 are given by an equation

x3 = m(x0 + x2)

for some m ∈ k. The intersection of such a plane with S is given by

0=x2x3
0 +m(x0 + x2)x3

1

+ x0x1
[
q0(m(x0 + x2))2 + q1m(x0 + x2)x2 + q2x2

2
]

+ g0(m(x0 + x2))4 + g1(m(x0 + x2))3x2 + g2(m(x0 + x2))2x2
2

+ g3(m(x0 + x2))x3
2 + g4x4

2.

Recall that q2 = c = 0 and g4 = d = 1. After simplifying, this equation takes the form

0=x2x3
0 +mx0x3

1 +mx2x3
1 + x4

2

+m(x0 + x2) [mq0x0x1(x0 + x2)+ q1x0x1x2]

+m(x0 + x2)
[
g0(m(x0 + x2))3 + g1(m(x0 + x2))2x2

+g2(m(x0 + x2))x2
2 + g3x3

2
]

Note that the first line splits off a factor of (x0 + x2) via

(x0 + x2)(x2
0x2 − x0x2

2 +mx3
1 + x3

2)
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and so the residual cubic is given by

0=x2
0x2 − x0x2

2 +mx3
1 + x3

2 (A.5)

+m [mq0x0x1(x0 + x2)+ q1x0x1x2] (A.6)

+m
[
g0(m(x0 + x2))3 + g1(m(x0 + x2))2x2 (A.7)

+g2(m(x0 + x2))x2
2 + g3x3

2
]

(A.8)

We intersect this with the line L1 by substituting x0 =−x2 and get the equation

0= (3+mg3)x3
2 −mq1x1x2

2 +mx3
1. (A.9)

Furthermore, we compute the Hessian of Eq. (A.5). Once again, we will use a

computer. The code can be found in Listing A.9 and the output is given in Listing A.10.

Like we did in the previous section, we will use the notation

0= C0x3
1 +C1x2

1x2 +C2x1x2
2 +C3x3

2

0= H0x3
1 +H1x2

1x2 +H2x1x2
2 +H3x3

2

for the residual cubic restricted to L1 and the Hessian restricted to L1, respectively,

where the Ci and the Hi are polynomials in the variables m, qi, g i. Because these

two polynomials must be multiples of each other, and in this case C1 = 0, it follows

that H1 must also be zero as a univariate polynomial in m. Notice that the coefficient

of m3 in the polynomial H1 is 144q0, and we conclude that q0 must be zero. Similarly,

the coefficient of m2 is 48q1, which must also vanish, and so q1 = 0.

After substituting these two values back into the polynomials Hi, we get

H0 = 0

H1 = 0

H2 = (72g1 g3 −24g2
2)m5 +216g1m4 +144g2m3 +72g3m2

H3 = 0.

Considering like in the previous subsection the polynomial

g02 = H2C0 −H0C2,
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which must be zero as a polynomial in m, note that this is equal to mH2. It follows

that all coefficients of H2 must vanish, and we conclude that g1 = g2 = g3 = 0.

We are left with only g0 and g4 being possibly nonzero. The surface S thus has

equation

x2x3
0 + x3x3

1 + g0x4
3 + g4x4

2 = 0,

and after a change in coordinates we may assume that g0 = g4 = 1. Up to flipping

signs and renaming coordinates, this is exactly the equation of the Schur quartic as

it was defined in Section 3.1.

We conclude that if there is an inflectious line L1 in a ramified fibre of π0, then S must

be the Schur quartic.
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1 K<s> := CyclotomicFie ld (3 ) ;

2 R0<m, q0 , q1 , g0 , g1 , g2 , g3> := PolynomialRing (K, 7 ) ;

3 R<x0 , x1 , x2> := PolynomialRing (R0 , 3 ) ;

4

5 //Equation o f the r e s i d u a l cub ic

6 c := x0^2*x2 - x0*x2^2 + m*x1^3 + x2^3

7 + m*(m*q0*x0*x1 *( x0+x2 ) + q1*x0*x1*x2 )

8 + m*( g0 *(m*( x0+x2 ) )^3 + g1 *(m*( x0+x2 ) )^2*x2

9 + g2 *(m*( x0+x2 ) ) *x2^2 + g3*x2^3) ;

10

11 // F i r s t d e r i v a t i v e s

12 c0 := Der i va t i v e ( c , x0 ) ;

13 c1 := Der i va t i v e ( c , x1 ) ;

14 c2 := Der i va t i v e ( c , x2 ) ;

15

16 //Second d e r i v a t i v e s

17 c00 := Der iva t i v e ( c0 , x0 ) ;

18 c01 := Der iva t i v e ( c0 , x1 ) ;

19 c02 := Der iva t i v e ( c0 , x2 ) ;

20 c11 := Der iva t i v e ( c1 , x1 ) ;

21 c12 := Der iva t i v e ( c1 , x2 ) ;

22 c22 := Der iva t i v e ( c2 , x2 ) ;

23

24 //Compute the determinant o f the Hess ian matrix

25 h := c00*c11*c22 + c01*c12*c02 + c02*c01*c12 - c02*c11*

c02

26 - c01*c01*c22 - c12*c12*c00 ;

27

28 // Re s t r i c t to the l i n e L_1

29 Evaluate (h , [ - x2 , x1 , x2 ] ) ;

Listing A.9: Magma code for computing the Hessian of the residual cubic in the case that

L1 is given by the equation x0 + x2 = 0
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1 ( -6*m^5*q0^2 - 12*m^4*q0*q1 - 6*m^3*q1^2)*x1^3

2 + (24*m^5*q0*g2 - 24*m^5*q1*g1 +

3 72*m^4*q0*g3 - 24*m^4*q1*g2 + 144*m^3*q0

4 + 48*m^2*q1 ) *x1^2*x2 +

5 ( -2*m^5*q0^2*q1 + 72*m^5*g1*g3 - 24*m^5*g2^2

6 - 4*m^4*q0*q1^2 + 216*m^4*g1 -

7 2*m^3*q1^3 + 144*m^3*g2 + 72*m^2*g3 ) *x1*x2^2

8 + ( -6*m^5*q0^2*g3 +

9 8*m^5*q0*q1*g2 - 8*m^5*q1^2*g1 - 18*m^4*q0^2

10 + 12*m^4*q0*q1*g3 -

11 8*m^4*q1^2*g2 + 12*m^3*q0*q1 - 6*m^3*q1^2*g3

12 - 2*m^2*q1^2)*x2^3

Listing A.10: Output of Listing A.9. Linebreaks have been manually edited for readability

reasons.
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A.4 COMPUTATIONS FOR LEMMA 3.35

In this section we want to prove Lemma 3.35.

3.35 Lemma. Let (S,L0,π0) be in the family Z from Definition 3.30. Assume that π0 has a

fibre of type I2, containing a regular line L1 and a smooth conic Q1.

Then Q1 is not a component of the flecnodal divisor FS of S.

From Lemmas 3.17 and 3.20 we know that the fibre of type I2 must be ramified, and as

we have seen in the proof of Lemma 3.28, the ramified fibres of S lie in the planes x2 = 0

and x3 = 0. Without loss of generality we can assume the fibre of type I2 lies in the

plane x3 = 0.

Using the notation from Lemma 3.28, we write the polynomials q and g as

q(x2, x3)= q0x2
3 + q1x2x3 + q2x2

2

g(x2, x3)= g0x4
3 + g1x2x3

3 + g2x2
2x2

3 + g3x3
2x3 + g4x4

3.

As we have seen in Appendix A.3.2, the fibration π0 has a fibre of type I2 in the plane x3 =
0 if and only if g4 = 0 and q2 ̸= 0, corresponding to case b) in Appendix A.3.2. Therefore,

we can assume that the conic is given by the equationsx3 = 0 and x2
0 + q2x1x2 = 0. We can

parametrise this curve; a point P on it has projective coordinates (q2st :−q2s2 : t2 : 0) for

some (s : t) ∈P1.

Our goal is to show that it is impossible for all of these points to simultaneously be

flecnodal points of S.

Consider such a point P. In order for P to be a flecnode, there has to be a line L ⊂ P3

such that L intersects the surface S with multiplicity at least 4 at the point P. This line

must necessarily lie in the tangent plane T = TP (S) of S at P. Within this plane, we can

consider the curve C = S∩T, and then P is a flecnode of S if and only if iP (C,L)≥ 4.

The tangent plane T is given by the polynomial in Listing A.12. We can solve that

equation for x0 so that T is given by

x0 = h(x1, x2, x3)

where h is a polynomial whose coefficients are rational functions in the coefficients of g

and q as well as the parameters s and t. This gives a canonical isomorphism T =
P2(x1, x2, x3).

After substituting h for x0 in the equation for the surface S, we obtain an equa-

tion G(x1, x2, x3)= 0 for the resulting curve S∩T in the plane T =P2(x1, x2, x3).
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We will now consider the affine patch x2 = 1 in this plane and translate the coordinates

so that P is the origin of this affine plane, which corresponds to the point (0 : 0 : 1 : 0) in P3.

Then we can compute the translated affine equation H(x1, x3)= 0 for the curve C in this

new plane A2(x1, x3) with P as its origin.

The polynomial H is computed in Listing A.13 and as we can see in the output in

Listing A.14, there are no linear coefficients, meaning P is a singular point of the curve C =
S∩T. In order to study the local behaviour of C at P, we consider the quadratic part of H,

given in the form

Ax2
1 +Bx1x3 +Cx2

3,

where A, B and C are rational functions in qi, g i, s and t. We compute the discriminant D

of this quadratic polynomial. If u is a square root of D, then the tangents to the two

branches of C at P are given by the equations

x1 = −B+u
2A

x3

x1 = −B−u
2A

x3.

Substituting these two equations back into the equation H, we obtain two univariate

polynomial J(x3) and J(x3), which as we can see in Listing A.16 are of the form

J = J1x3
3 + J2x4

3

J = J1x3
3 + J2x4

3

where Ji and Ji are rational functions in s, t and the coefficients of q and g, as well as u;

and where Ji is the conjugate of Ji with respect to u, i.e. the expression obtained by

replacing all instances of u in Ji with −u.

Now in order for P to be a flecnode of the surface S, it must be a flecnode of the curve C,

and thus one of the two tangents must intersect C with multiplicity 4. This is equivalent to

either J1 or J1 vanishing. Because J1 and J1 are each others conjugates, this is the case if

and only if the norm of J1 with respect to u vanishes. We view the norm as a homogeneous

polynomial in s, t whose coefficients are polynomials in the coefficients of q and g. If every

point on the conic Q1 is to be a flecnode of S, then this norm must vanish for all values of s

and t, which means that all coefficients must vanish.
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In Listing A.18 we can see that one of these coefficients is 768q18
2 . Since q2 is non-zero,

this coefficient is also non-zero outside of characteristic 2 or 3. Therefore, the conic Q1 is

not a component of the flecnodal divisor of S.
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1 // Def ine the po lynomia l s q and g , the su r f a c e S

2 // and int roduce parameters t and s f o r the con i c

3

4 FF:= Rat i ona lF i e l d ( ) ;

5 K<q0 , q1 , q2 , g0 , g1 , g2 , g3>:= Funct ionFie ld (FF, 7 ) ;

6 L<s , t>:= Funct ionFie ld (K, 2 ) ;

7 P3<x0 , x1 , x2 , x3>:= Pro j e c t i v eSpace (L , 3 ) ;

8 g4:= 0 ;

9 q:=q2*x2^2+q1*x2*x3+q0*x3^2;

10 g:=g4*x2^4+g3*x2^3*x3+g2*x2^2*x3^2+g1*x2*x3^3+g0*x3^4;

11 F:=x2*x0^3+x3*x1^3+x0*x1*q+g ;

12 S:=Scheme (P3 ,F) ;

13

14 // Def ine the po int P on S , compute the tangent plane T

15

16 P_coords := [ q2* s *t , - q2* s ^2 , t ^2 , 0 ] ;

17 P:=S ! coords ;

18 T:=TangentSpace (S ,P) ;

19 Def in ingEquat ion (T) ; // p r i n t the equat ion f o r T

Listing A.11: Magma code to compute the tangent plane T of the surface S at the point P

and an equation G = 0 for the curve C in the intersection of T with S.

1 x0 + 1/2* t / s *x1 - 1/2*q2* s / t *x2

2 + ( -1/2* q2* s^6 - 1/2*q1* s^3* t^3

3 + 1/2*g3/q2^2* t ^6) /( s^2* t ^4)*x3

Listing A.12: Output of Listing A.11, giving the polynomial that defines the tangent

plane T. Formatting manually edited.
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1 // I n t e r s e c t T with S by sub s t i t u t i n g x0

2

3 X0:=x0 - Def in ingEquat ion (T) ;

4 G:=Evaluate (F , [ X0 , x1 , x2 , x3 ] ) ;

5

6 // Subs t i tu t e t r an s l a t e d v a r i a b l e s i n to G to g ive an

7 // a f f i n e equat ion H in the v a r i a b l e s x1 , x3

8 // where now P i s the o r i g i n (0 , 0 )

9

10 // Mult ip ly G by 8*q2^6 to s imp l i f y denominators

11

12 H:=Evaluate (8* q2^6*G, [ x0+q2* s *t , x1 - q2* s ^2 , t ^2 , x3 ] ) ;

13 Monomials (H) ;

Listing A.13: Magma code to compute the equation H = 0 for the tranlsation of the

curve T ∩S in the affine plane A2(x1, x3) where P corresponds to the origin. Note that this

code does not compile on its own, but is specifically a continuation of the code given in

Listing A.11.

1 [

2 x1^3*x3 ,

3 x1^2*x3^2 ,

4 x1*x3^3 ,

5 x3^4 ,

6 x1^3 ,

7 x1^2*x3 ,

8 x1*x3^2 ,

9 x3^3 ,

10 x1^2 ,

11 x1*x3 ,

12 x3^2

13 ]

Listing A.14: Output of Listing A.13, giving the monomials of the polynomial H which

defines the curve C in the translated affine plane. Notably the linear coefficients are

absent.
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1 A:= Monomia lCoe f f i c i ent (H, x1^2) ;

2 B:= Monomia lCoe f f i c i ent (H, x1*x3 ) ;

3 C:= Monomia lCoe f f i c i ent (H, x3^2) ;

4 D:=B^2 -4*A*C;

5

6 // Subs t i tu t e the two tangent equat ions back in to H

7

8 preR<U>:=PolynomialRing (L) ;

9 R<u>:=quo<preR |U^2 -D>;

10 X<X0 ,X1 ,X2 ,X3>:= Pro j e c t i v eSpace (R, 3 ) ;

11 J:=Evaluate (H, [ 0 , ( -B+u) /(2*A) * X3 , 0 ,X3 ] ) ;

12

13 Monomials ( J ) ;

Listing A.15: Magma code for computing the quadratic part of the polynomial H and the

discriminant D. Note that the code will not compile on its own, but is a continuation of the

code in Listings A.11 and A.13.

1 [

2 X3^4 ,

3 X3^3

4 ]

Listing A.16: Output of Listing A.15, showing the monomials of the polynomial J, which

represents the intersection of the curve C with one of the two tangent lines at the origin.

The formatting has been manually edited.

1 NormCoeffX3:=Norm( Monomia lCoe f f i c i ent ( J ,X3^3) ) ;

2 Co e f f i c i e n t s ( Numerator (NormCoeffX3 ) ) ;

Listing A.17: Magma code for computing the norm with respect to u of J1. This code will

not compile on its own, but is a continuation of Listings A.11, A.13 and A.15.

1 [

2 768*q2^18

3 [ . . . ]

4 ]

Listing A.18: Output of Listing A.17, which has been manually truncated.

108



B BIBLIOGRAPHY

[1] W. Barth. ‘Lectures on K3- and enriques surfaces’. In: Algebraic Geometry Sitges (Barcelona) 1983.
Ed. by Eduard Casas-Alvero, Gerald Welters and Sebastian Xambó-Descamps. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1985, pp. 21–57. ISBN: 978-3-540-39643-7.

[2] A. Clebsch. ‘Ueber die Anwendung der quadratischen Substitution auf die Gleichungen 5ten Grades und
die geometrische Theorie des ebenen Fünfseits’. In: Mathematische Annalen 4.2 (1871), pp. 284–345.

[3] A. Clebsch. ‘Zur Theorie der algebraischen Flächen’. ger. In: Journal für die reine und angewandte
Mathematik 58 (1861), pp. 93–108. ISSN: 0075-4102.

[4] I. Dolgachev. Classical Algebraic Geometry: A Modern View. Cambridge ; New York : Cambridge
University Press, 2012.

[5] B. Edixhoven et al. Algebraic Geometry. https://webspace.science.uu.nl~kool0009/AG_notes.pdf.
Last accessed: 2025-07-17. 2021.

[6] D. Eisenbud and J. Harris. 3264 and all that: A second course in algebraic geometry. Cambridge
University Press, 2016.

[7] G. Fischer. Plane algebraic curves. Vol. 15. American Mathematical Soc., 2001.
[8] P. Griffiths and J. Harris. Principles of Algebraic Geometry. eng. 1. Aufl. Wiley Classics Library. Wiley-

Interscience, 2011. ISBN: 0471050598.
[9] R. Hartshorne. Algebraic Geometry. Springer-Verlag New York Berlin Heidelberg, 1977.

[10] Brendan Hassett. Introduction to algebraic geometry. Cambridge University Press, 2007.
[11] F. Hirzebruch. ‘Hilbert’s modular group of the field and the cubic diagonal surface of Clebsch and Klein’.

In: Russian Mathematical Surveys 31.5 (1976), p. 96.
[12] D. Huybrechts. Lectures on K3 surfaces. Vol. 158. Cambridge University Press, 2016.
[13] F. Klein. ‘Ueber flächen dritter ordnung’. In: Mathematische Annalen 6.4 (1873), pp. 551–581.
[14] K. Kodaira. ‘On Compact Analytic Surfaces, III’. In: Annals of Mathematics (1963).
[15] K. Kodaira. ‘On Compact Analytic Surfaces: II’. In: Annals of Mathematics (1963).
[16] K. Kodaira. ‘On Compact Complex Analytic Surfaces, I’. In: Annals of Mathematics (1960).
[17] C. McCrory and T. Shifrin. ‘Cusps of the projective Gauss map’. eng. In: Journal of differential geometry

19.1 (1984), pp. 257–276. ISSN: 0022-040X.
[18] R. Miranda. The Basic Theory of Elliptic Surfaces. https://www.math.colostate.edu/~miranda/

BTES-Miranda.pdf . Last accessed: 2025-07-03. 1989.
[19] A. Néron. ‘Modèles minimaux des variétés abéliennes sur les corps locaux et globaux’. In: Publications

Mathématiques de l’IHÉS 21 (1964), pp. 5–128.
[20] S. Rams and M. Schütt. ‘64 lines on smooth quartic surfaces’. In: Mathematische Annalen 362.1 (2015),

pp. 679–698.
[21] S. Rams and M. Schütt. ‘On quartics with lines of the second kind’. In: Advances in Geometry 14.4

(2014), pp. 735–756.

109

https://webspace.science.uu.nl~kool0009/AG_notes.pdf
https://www.math.colostate.edu/~miranda/BTES-Miranda.pdf
https://www.math.colostate.edu/~miranda/BTES-Miranda.pdf


[22] G. Salmon. A treatise on the analytic geometry of three dimensions. Hodges, Smith, and Company, 1865.
[23] M. Schuett and T. Shioda. Elliptic Surfaces. 2010. arXiv: 0907.0298 [math.AG].
[24] F. Schur. ‘Ueber eine besondre Classe von Flächen vierter Ordnung’. In: Mathematische Annalen 20.2

(1882), pp. 254–296.
[25] M. Schütt and T. Shioda. ‘Elliptic Surfaces’. In: Mordell–Weil Lattices. Singapore: Springer Singapore,

2019, pp. 79–114. ISBN: 978-981-32-9301-4. DOI: 10 .1007/978 - 981 - 32 - 9301 - 4_5. URL: https :
//doi.org/10.1007/978-981-32-9301-4_5.

[26] B. Segre. ‘The maximum number of lines lying on a quartic surface’. In: The Quarterly Journal of
Mathematics 14.1 (Jan. 1943), pp. 86–96. ISSN: 0033-5606. DOI: 10.1093/qmath/os-14.1.86. eprint:
https://academic.oup.com/qjmath/article-pdf/os- 14/1/86/4485868/os- 14- 1- 86.pdf. URL:
https://doi.org/10.1093/qmath/os-14.1.86.

[27] Jean-Pierre Serre. Local fields. Vol. 67. Springer Science & Business Media, 2013.
[28] J.H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves. Springer-Verlag New York, Inc.,

1994.
[29] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag New York, Inc., 1986.
[30] J.F. Voloch. ‘Surfaces in P3 over finite fields’. In: Topics in Algebraic and Noncommutative Geometry:

Proc. in Memory of Ruth Michler (C. Melles et al. eds.), Contemp. Math 324 (2003), pp. 219–226.

110

https://arxiv.org/abs/0907.0298
https://doi.org/10.1007/978-981-32-9301-4_5
https://doi.org/10.1007/978-981-32-9301-4_5
https://doi.org/10.1007/978-981-32-9301-4_5
https://doi.org/10.1093/qmath/os-14.1.86
https://academic.oup.com/qjmath/article-pdf/os-14/1/86/4485868/os-14-1-86.pdf
https://doi.org/10.1093/qmath/os-14.1.86

	Introduction
	Cubic Surfaces
	Existence of a line
	The 27 lines on a cubic surface

	Elliptic Surfaces
	Elliptic curves
	Elliptic surfaces

	Quartic Surfaces
	Some examples of lines on smooth quartics
	Quartic surfaces without inflectious lines
	Fibre types
	Lines on S intersecting the inflectious line L
	Quartic surfaces with inflectious lines

	Appendix
	Computations for qs:schur
	Computations for qs:wo:18-lines
	Proof of qs:wi:inflectious-16
	Computations for qs:wi:conic-component-of-F

	 Bibliography

