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Abstract. In this thesis, we take a close look at a theorem from Rams
and Schiitt [20] which states that a smooth quartic surface in 3-dimensional
projective space over an algebraically closed field of characteristic not equal to 2
or 3 contains at most 64 lines. In Chapter |1} we cover the well-known theorem
that smooth cubic surfaces contain exactly 27 lines. In Chapter [2] we present a
basic introduction into elliptic curves and elliptic surfaces. In Chapter[3] we
follow Rams’ and Schiitt’s proof to show the aforementioned theorem while
providing additional details and presenting computations that they omitted.
We improve on one of the intermediate results in [20] and show that if two
inflectious lines on a smooth quartic surface intersect, the surface is projectively
equivalent to the Schur quartic.
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0 INTRODUCTION

It has been known since the 19*" century that a smooth cubic surface in 3-dimensional
projective space over an algebraically closed field contains exactly 27 lines, and each of
these lines intersects precisely 10 others. According to George Salmon ([22]], p.496), this
was first proven in 1849 in correspondence between him and Arthur Cayley.

Over the course of the following years, much effort has been put into studying the
configurations of these lines, finding symmetries and examples. Notable examples include

the Fermat cubic surface, given by the equation

xg +x§ +x§ +x§ =0
in P2, which we will study in Chapter|1] and the Clebsch surface, which can be given in P*
by the equations

Xo+x1+x9+x3+x4=0

xg +x‘;’ +x§ +x§’ +xi =0
and is isomorphic to a cubic surface in P? whose 27 lines can all be defined over the number
field Q(v/5) (see [2, 11, [13]).

A natural question that arises from this result is how far it can be generalised. While
general surfaces of degrees higher than 3 do not contain any lines, there are examples of
surfaces that do, and in these cases one may still be interested in possible numbers and
configurations of lines.

In 1943, Beniamino Segre [26] proved that a smooth surface of degree d =0 in P can
contain at most (d —2)(11d — 6) lines in characteristic 0. However, this bound is far from
optimal. For d =4, this gives 80, but as we will soon see the maximum number of lines on
a smooth quartic surface is actually 64.

Segre also claimed to have proven this maximum for quartic surfaces in the same paper
[26]. However, his proof relied on the claim that any line on such a surface intersects at
most 18 other lines. As Stawomir Rams and Matthias Schiitt [21]] showed in 2014, this
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claim is false, and in fact there are examples of quartic surfaces which contain a line that
intersect as many as 20 other lines.
Segre’s end result on quartic surfaces is nonetheless correct, as Rams and Schiitt [20]

also proved in 2015 in all characteristics except 2 and 3.

In this thesis, we will explore both the cubic and quartic situation.

In the cubic case, we will follow the proof from [5]. We first show that any cubic surface
contains a line. We will do this by defining the set ¥ which consists of pairs of a cubic
surface S and a line L such that L < S and showing that the projection from X to the first
component is surjective with the help of a dimension argument.

We then use the existence of a line to examine its possible intersections with other lines.
The key observation is that a given line L c S gives rise to a morphism 7: S — P! whose
fibres are precisely the conics residual to L in intersections of S with planes containing L.
Any line intersecting L must then occur in a fibre of 7.

Since fibres of 7 are plane conics, they are either smooth or consist of two lines. We then
go on to show that 7 has exactly five singular fibres, consisting of ten lines, all of which
intersect L. With this observation, we can then show that the surface S must contain

exactly 27 lines.

In order to treat the quartic case, we will follow the arguments from [20]] which are based
upon a similar method. In this case, after assuming that a given smooth quartic surface S
contains a line L, the residual curves in the fibres of the corresponding morphism 7 are
no longer conics, but plane cubic curves. This will allow us to make use of the theory of
elliptic curves and elliptic surfaces.

An elliptic curve is a smooth curve E of genus 1 which contains a designated point O.
Such an elliptic curve admits a group structure with O as its neutral element. Furthermore,
the surface S together with the morphism 7 is a so called elliptic surface.

In Chapter[2] we will explore some general definitions and theorems about these objects
that will help us understand lines on quartic surfaces. Our main source on elliptic curves
will be [29]], and for elliptic surfaces we will draw from [|18| 23], |25| 28]].

One of the central aspects of elliptic surfaces that play a role in examining lines on
quartic surfaces is the theory of fibre types. Almost all fibres of an elliptic fibration are
smooth, but some are singular. The singular fibres come in different types which have
been classified by Kunihiko Kodaira [[14}|15]|16]] and André Néron [19]. Similarly to the

situation on cubic surfaces, these singular fibres must contain all the lines intersecting L.
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In Chapter (3] we will prove that any smooth quartic surface over an algebraically closed
field of characteristic not equal to 2 or 3 contains at most 64 lines. We will closely follow
the method from [20] while filling in missing details and omitted computations.

We first present the Schur quartic as an example of a smooth quartic that attains the
maximum of 64 lines.

In order to prove the theorem, we need to distinguish between regular and inflectious
lines, which Segre [26] and Rams and Schiitt [20] call lines of the first and second kind,
respectively. A line L c S is called inflectious if every point of intersection of L with a
fibre F of the morphism 7: S — P! associated to L is a point of inflection of F. A regular
line is a line that is not inflectious. A priori, this differs slightly from the definition in [20],
but we will see that the definitions are equivalent.

If L is regular, similar logic as in Chapter [I] can be used to prove that it intersects at
most 18 other lines on S, where we provide computations that were omitted in [20]. We
can then show the main theorem in the case that all lines on S are regular.

If L is inflectious, more work is needed. First we examine which Kodaira types can
occur in fibres of 7 in this case, which depends on the ramification behaviour of the curve
morphism 7|z, : L — P!. We then consider the global ramification behaviour of this map,
and show that L intersects more than 18 lines on S if and only the map ramifies at exactly
two points.

This is the only case that differs significantly from the case where L is regular. From

this condition we can derive a simplified equation for S of the form

XX + X347 + %0219 (x2,%3) + (2, %3) = 0
where g and g are homogeneous polynomials of degrees 2 and 4, respectively. In Proposi-
tion we improve on an intermediate result from [20]] and show that if two inflectious
lines intersect on a surface of this form, it is projectively equivalent to the Schur quartic.
We also provide additional computations that were omitted in [20] in Lemma We

then go on to prove that the maximum of 64 lines still persists in this case.



1 CUBIC SURFACES

In this chapter we will study lines on cubic surfaces. Let %2 be an algebraically closed field
not of characteristic 2 or 3. As was mentioned in the introduction, we want to prove the
well known theorem that every smooth cubic surface in P3(k) contains precisely 27 lines.

Some authors require curves and surfaces to always be irreducible. For the purposes
of this thesis, both the term ‘curve’ as well as the term ‘surface’ will include reducible
instances, unless specifically mentioned otherwise.

Before dealing with general surfaces, it is worth looking into an example.
1.1 Example. The Fermat cubic surface

3,,3, .3, ,3_
xy+x]+xy+x3=0

has 27 lines.

Proof. Let X denote the surface in question. First note that X is smooth because the

3 3 3

partial derivatives of xg +x7 + x5 + x5 never simultaneously vanish. Now let L < P3 be a

line. Then we can write
L= Z(x() - (azxz + a3x3),x1 - (b2x2 + b3x3))

up to some permutation of coordinates. Now L c X if and only if for all (xq : x1 : x2 : x3) € P2,
if xo = agx9 +asxsg and x1 = boxg + bgxg, then xg +x? +x§ +x§ = 0. Substituting the first two

equations into the third one gives

0=(agxa + a3x3)3 + (boxg + b3x3)3 +xg + xg

= (@3 + b3 + 1)x5 +(3adas + 3b3b3)x5xs + (3azal + 3bab3)xoxs + (aj + b3 + 1)x5
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which is the case for all x9,x3 if and only if all the coefficients of this polynomial expression

vanish. So we get equations

as+b3=-1 (1.1)
aZaz=—bibs (1.2)
azal = —bob2 (1.3)

aj+b3=-1. (1.4)

Now we claim that ag,a3,b2 and bg can never be simultaneously non-zero: Indeed, if
that were the case, then squaring Equation [(1.2)| and dividing by Equation |(1.3) would
give ag = —bg, which contradicts Equation|(1.1)l So we can assume that ag =0 (all other

cases will be covered by permutations of coordinates). This gives us equations

b3 =-1 (1.5)
b3b3=0 (1.6)
bab%=0 (1.7)

as+b3=-1 (1.8)

Now from Equation [(1.5)| we can conclude that by = ¢’ for a primitive third root of unity ¢
and i € {0,1,2}. In particular, by # 0 and so Equation |(1.6)| gives us bs = 0, after which
Equation [(1.8) becomes ag = -1, so a3 = ¢/ for some j € {0,1,2}. So we obtain nine solutions

to these equations, corresponding to the lines
Lij=2Z(xo+{x3,%1+('x2),0<i,j<2.
We can parametrise the line L;; as
{(—(jy:—Cix:x:y):(x:y)eJP’l}.

Note that swapping coordinates xy and x3 is the same as replacing j by 3 —j, and swap-
ping x1 and x2 is the same as replacing i by 3 —i. Furthermore, swapping the pair (xg,x3)
with the pair (x1,x2) is the same as swapping i and j. Hence, permutations that return

a different set of nine lines are precisely the partitions of (xg,x1,x2,x3) into two groups
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of two, of which there are three. Therefore, we have precisely 3-9 = 27 lines, whose

parametrisations are given by
Li;= {(—ij : —(ix:x:y):(x:y) EPI}
L,ij {(—(jy:—(ix:y:x):(x:y)EIP’l}
{(—(jy:y:—(ix:x):(x:y)GIP’l}

L
O

The parametrisations from this proof are very useful in determining the intersections
of those lines. First, looking at lines from the same group of nine, we see that the
lines L;; and L; 7 intersect if and only if i =i’ (at the point (0: —{*:1:0)) or j = j’ (at the
point (—¢7:0:0:1)). So every line of the form L; ;j intersects precisely four of the other
lines of the form L;;. Furthermore, by fixing one i, we can see that the three lines L;;
for j =0,1,2 all pass through the same point (0: —¢* : 1:0), and the same holds if we fix a J.

Now if we again fix a line L;, it will intersect three lines each from the other two groups.
To see this, first note that for L;; and L’i,j, to intersect at a point P, all four coordinates

must be nonzero. Hence, in the parametrisation for L, ;, we can set y = 1 to get
P=(—(j:—(ix:x:1)

for some x € k. Now assuming P also lies on L’i,j,, knowing that the fourth coordinate is 1,

we can write
P =(—[j’y : —(i’ iy 1)

for some y € £*. Now since —(’x = —Ci’, we find that
x=¢"0
Similarly, since e ’ y= —{’, we have
y=¢7,
But since x and y have to be equal, this point of intersection exists if and only if

j—Jj =i'—i(mod 3)
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or equivalently

i+j=i'"+j (mod 3).

So for every fixed index pair (i, j), we find three index pairs (i’, ;') such that L;; and L’i,j,

intersect, and the point of intersection is given by
(- —(il k1)

where £ =i'—i =j—j (mod 3). This works analogously if we replace L with L’ or L"” or
vice versa.

So to summarise, each line on the Fermat cubic surface intersects exactly ten other lines.
This is no coincidence: we will soon see that the same thing holds for any cubic surface.
However, we also noticed some points where three lines intersect. To be precise, there are
six such points among the lines L;;, and six each for L’ij and lelj as well, so a total of 18.
These points are called Eckardt points, and are generally very rare Roughly speaking,
the ten lines intersecting a given line L on a smooth surface S come in pairs, each of which
forms a triangle with L, and an Eckardt point is a degeneration of such a triangle.

It is also worth noting that while the Fermat cubic is defined over Q, the same can be
said for only three out of the 27 lines on it, namely the lines LOO,L’00 and L’éo. So the
assumption that % is algebraically closed is in general necessary to find all lines on a cubic
surface.

Before we get into the construction of the 27 lines on a cubic surface in general, it
is worth noting that while planes and quadratic surfaces are ruled surfaces and can be
completely covered with lines, general algebraic surfaces of degree higher than 3 contain
no lines at all, as we will see in Remark [1.3]at the end of the next section. Cubic surfaces
therefore represent a special case in between. In contrast to the lower degree cases, it is
not at all trivial that every cubic surface does indeed contain a line. We will present a proof
thereof in the next section.

Both the proof of the existence of a line and the subsequent proof that there exactly 27
lines on a smooth cubic are based primarily on lecture notes ‘Algebraic Geometry’ by
Edixhoven et al[5]].

[+.a][n fact, 18 is the highest possible number of Eckardt points on a smooth cubic surface, as we will prove in
Proposition [1.14] at the end of this chapter. Furthermore, most cubic surfaces do not have any Eckardt
points. Indeed, the set of cubic surfaces with Eckardt points has codimension 1 within the set of all cubic
surfaces (see [4] p.440).
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1.1 EXISTENCE OF A LINE

In this section, we will prove the following proposition.
1.2 Proposition. Every cubic surface in P? contains a line.

Note that we do not assume smoothness here. While singular cubics need not contain
exactly 27 lines, they do always contain at least one.

In order to prove Proposition[1.2] we first need to introduce Grassmannians. The goal
is to equip both the set of cubic surfaces and the set of lines in P? with the structure of
a projective variety. The former case will be quite straight-forward. As for the lines, we
note that lines in P! are in canonical bijection with 2-dimensional subspaces of 4. Now
let Gr(m,n) be the set of m-dimensional subspaces of £”. An element V € Gr(m,n) can
be represented by a matrix in £**™ of rank m, with the columns forming a basis of V.
The choice of such matrix is not unique; two matrices A,B define the same subspace if
and only if there is an invertible matrix T € GL, (k) such that A = BT. Now for every
index set I ={iy,...,i} withl1<i;<---<i,, <n and matrix A € 2™*", we define A to be
the m x m submatrix of A defined by the rows of indices i1,...,i,,. Considering the set of A
such that Ay is invertible, we note that this set is invariant under right multiplication

with elements of GL,,(k), so it defines a subset
Ur c Gr(m,n).

Furthermore, every m x n matrix of rank m has an invertible m x m submatrix, so these

sets Uy cover Gr(m,n). Now we can define maps
@r: Up— A" ™ A~ (AA D, -

This definition is again invariant under right multiplication by invertible matrices. Indeed,
for T € GL(n,k) and A € K™*" we have (AT); = A;T and then

(ATYAT);' =ATAT) ' =ATT A = AAT

So the ¢ are well-defined maps for every index set I, and it can be shown that the ¢y are
bijective, that for index sets I,J the sets ¢;(U; nUy) are open in A™"~™ and that the
transition functions

pgo <Pf1 crUrnUyg) — osUrnUy)
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are rational maps between open subsets of A™"~™)_ This makes Gr(m,n) a smooth variety
of dimension m(n —m). Furthermore, it can be shown that this variety can be embedded
into the projective space P where N = (,':L) —1. So as desired, the lines in P? can be given
the structure of a smooth projective variety of dimension 2(4 —2) = 4. For a more in depth
explanation with proofs of the aforementioned results, see [10], chapter 11.

We can now prove Proposition

Proof of Proposition We have already equipped the set of lines in P? with the structure
of a projective variety and will now do the same with the set of cubic surfaces. Note that
every cubic surface is defined by a homogeneous polynomial of degree 3 in four variables.
Such a polynomial has (3;:3) =20 coefficients. Two polynomials define the same surface
if and only if one they differ by an element of £*, or in other words, if their coefficients
have the same cross-ratio. We can thus naturally identify the set of cubic surfaces in P3

with P19,

We now consider the subset
2 ={(S,L):Lc8)cPY xGr(2,4).

Showing that every cubic surface contains a line is equivalent to showing that the projec-
tion X — P to the first component is surjective. In order to prove this, we want to make
use of the projective variety structure on P x Gr(2,4).

We can see that X is closed in P'° x Gr(2,4) by considering the standard open cover
of Gr(2,4). For notational convenience, we will only look at U792, but the other opens function
in the same way. An element of Ujs is a plane of the form ((1,0,a,b),(0,1,¢,d)) c k4,
where (a,b,c,d) € A%, corresponding to the line L c P? defined by the parametrisation

{A:p:da+pc: Ab+pud):(A: p)e P}

For an element [f] € P19, where [f]is the equivalence class of a homogeneous polynomial f €
klxo,x1,%2,x3]3, the pair ([f],L) is in X if and only if for all (A: p) € P!

FQ, ,Aa + pe, Ab + pd) = 0.

Looking at this expression as a polynomial in A and g, it is homogeneous of degree 3, and
thus has four coefficients, all of which have to vanish. Therefore, £ N (P9 x Uyy) is defined

by four polynomial equations in a,b,c,d and the coefficients of f, thus closed in P19 x Uys.

[1.bINote that the term ‘cubic surface’ in this case includes non-reduced surfaces, such as sets of three (not
necessarily distinct) planes.
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The same argument can be used for the other standard open subsets of Gr(2,4), so ZnU;;
is closed in U;; for all pairs of indices 1 <i < j < 4. Since these open sets cover Gr(2,4),
it follows that X is closed in P! x Gr(2,4) and of codimension 4, or in other words the
dimension of X is 19.

Now, noting that 7 is a morphism between projective varieties and thus closed, we can
see that the image of 7 in P19 must have dimension 19, since otherwise, all nonempty fibres
of 7 would have positive dimension. But that would mean every cubic surface contains
either no lines or infinitely many, contradicting Example So the image of Z under n

has dimension 19 and because it is closed in P'?, the morphism 7 must be surjective. [

1.3 Remark. The arguments in this proof give rise to another interesting fact. If we

consider hypersurfaces of degree d in P, we can construct a similar projective variety

YcPY xGr(2,n+1)

like above, where now N = (n;d) —1. The dimension of the Grassmannian Gr(2,n + 1) is

now 2n — 2, and computing the codimension of X inside PV x Gr(2,n + 1) in the same way
gives
N+2n-d-3.

Whenever this codimension exceeds the dimension of Gr(2,n + 1), it follows that X~ has
a dimension strictly less than N. As a consequence, the general hypersurface in P" of
degree d contains no lines at all. This is the case whenever d > 2n — 3. In particular, by
setting n = 3, we can see that the general surface in P? of degree higher than 3 does not

contain any lines.

1.4 Remark. We can also conclude from the proof of Proposition|1.2|that no cubic surface
can contain infinitely many lines. Indeed, if there were a cubic surface with infinitely many
lines, then there would be a fibre of the morphism X — P! that has positive dimension,

which is impossible.

1.2 THE 27 LINES ON A CUBIC SURFACE

In this section, let S be a smooth algebraic surface of degree d = 3 containing a line L c S.
In the cubic case, such an L always exists by Proposition In general, there may be
no lines on S, but under the assumption that there is at least one, we can still draw

conclusions on the number and configuration of lines on S.

10
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With L as a starting point, we first want to find out how many other lines on S could
possibly intersect L. Since two intersecting lines always lie on a common plane, we can
find such lines in the planes through L. The intersection of any plane with S is a plane
curve with the same degree as S. Because S is smooth, we can show that this curve is

reduced, i.e. it does not contain any components with multiplicity higher than 1.

1.5 Lemma. Let H be a plane in P3. Then the intersection HN S is a reduced plane curve
in H=P? of degree d.

Proof. After a change of coordinates, we can assume that H is given by the equation x3 = 0.
Now assume there is a plane curve C ¢ S N H that is contained in the intersection with
multiplicity at least 2. Let g = 0 be an equation for g in the plane H = P2(x0,x1,%9) so that
in P2, C is given by the equations x3 = 0 and g = 0. We can then write an equation for S in

the form
f=x3h1+g%ha=0 (1.9)

for some homogeneous polynomials h1,hg of fitting degrees. Now consider the surface
defined by the equation A1 = 0. This surface then intersects the curve C in at least one
point P. Now P lies on S, because C is contained in S, and P is a singularity of S: indeed,

the partial derivatives of f are given by

3 3 o 0
—f=x3—h1+2g8ho—g+g>—hs fori=0,1,2 (1.10)
0x; 0x; 0x; 0x;

3 5 0

~—f=h1+g8°—hs (1.11)
0x3 0x3

and since P is a root of x3,h1 and g, it is also a root of all partial derivatives of f and
thus a singularity of S. But we assumed S to be smooth, so our initial assumption must
have been wrong and the curve C cannot exist. The intersection S N H is thus a reduced

curve. O

Now note that any line in P? skew to L has a unique intersection with any plane
through L. A choice of such line L’ thus gives us a bijective mapping from L’ to the family
of planes through L. Instead of looking at this family, we can define a morphism S — L'

whose fibres are exactly the curves residual to L in the intersections of S with these planes.

1.6 Proposition. Let S c P be a smooth surface of degree at least 3 containing a line L.

Let L' c P be a line skew to L and not contained in S. Then there is a unique morphism

app:S—L

11
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with the property that for every point P € S \ L, the image n1, 1,(P) is given as the unique
point of intersection of L' with the plane through P and L.

Proof. Since the set S \ L is dense in S and morphisms of varieties are continuous, such a
morphism has to be unique if it exists. To prove existence, we can choose coordinates such
that

L =Z(x2,x3)
L' =Z(xg,x1).

Since L is contained in S, we can write an equation for S of the form
fi=x08+x3h=0

for some homogeneous polynomials g,/ of degree degS — 1. Given a point P=(w :x:y:2)

not on L, the plane through P and L is given as
Z(zx9 — yx3).

Intersecting this plane with the line L’ gives the point (0:0:y:z). If P lies on S, we
have yg(P)+zh(P) =0, and so we can write this as (0:0: —A(P): g(P)). In particular, we
can extend this definition to L as well, since g and 2 cannot simultaneously vanish on L.

Indeed, note that the partial derivatives of f are given by

of og oh

— =X9— +tX3—
0xo 0xg 0xo

of 0g oh
L o= 4 xa—o
0x1 2 0x1 3 0x1

of 0g 0
I — — + o+ _
0x2 2 0xg g%s 0xo

If g and A both vanished at some point @ € L, then @ would be a singularity of S, contra-
dicting the assumption that S is smooth. So indeed we obtain a morphism S — L’ with the

desired properties. O

In the following, we will always identify L’ with P!. Note that the specific choice of L’ is

irrelevant for our purposes, since the set of fibres of 7z, 7/ is independent of this choice. We

12
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will thus write 77, instead of 77, 7/, and if it is clear from context what L is, we will drop
that index as well and simply write 7.

This morphism gives us a precise notion of the residual curves that we mentioned earlier.
For any ¢ € P, the fibre n71(¢) over t is a plane curve of degree degS — 1 which does not
contain L, but together with L forms the complete intersection of some plane H with the
surface S.

For the rest of this chapter, S will be a smooth cubic surface, and L will be a line
contained in S, whose existence is guaranteed by Proposition In this case, the residual
curves in the fibres of 7 will be relatively easy to handle, as they are plane quadrics, which
are either smooth or decompose into two lines. The following lemma immediately gives us

the exact number of singular quadrics.

1.7 Proposition. Let S c P? be a smooth cubic surface, L a line contained in S, and 7 =
n1.: S — P! a morphism like in Proposition Then there are exactly five distinct ele-

ments t € P! such that n~1(t) is a singular conic.

Proof. First take any plane conic of the form Z(f) c P? for some homogeneous quadratic
polynomial f. Then Z(f) is smooth if and only if its Hessian is nonzero. Note that the
Hessian is constant, since f has degree 2. If the Hessian is zero, Z(f) consists of two lines.
This will allow us to characterise fibres of 7 which contain lines.

Now going back to P2, we choose coordinates such that L = Z(xg,x3). We can write an

equation for S as
f= aoox% +2a01x0x1 + a11x% +2a02x0 +2a192x1 + a99. (1.12)

where the a;; are homogeneous in the variables xo,x3 of fitting degrees. The a;; are
named this way because they will be the entries of the Hessian matrix of f restricted to
any plane through L. Note that in order to write f in this way, we require the assumption
that £ does not have characteristic 2.

Now planes containing L are of the form
H(A:u) =Z(Axg + ,Ux3)

for (A:u)e PL

Note that there must be at least one value of (1 : u) such that the corresponding fibre of ©
is a smooth conic. If all fibres were singular, then S would contain infinitely many lines,
which is impossible by Remark [1.4] After a linear change in the coordinates x2 and x3, we

can assume that the fibre above (1:0) is smooth.

13



1. CUBIC SURFACES

We thus only need to consider the planes H(;.1). The intersection with S as a subvariety
of H(y.1) = P? is then given by

f(x()axlaan _AxQ) =0

which we can simplify by using the homogeneity of the a;; to get

x2 (@00(1, = )xj +2a01(1,— Dxox1 +a11(l, —)a]

+ 2a02(1, —A)xox2 + 2a12(1, —V)x122 + ag2(1, —)L)x%)

The factor x9 corresponds to the line L, and the fibre of 7 above (A1 : 1) is given by the

equation

o [(xo,%1,X2,—Axg) _
qri=—""r—p = 0.

We claim that the conics defined by equations of this form are singular for precisely 5

different values of 1. Note that we can write

Q=) aijxix;
i

and then the conic is singular if and only if

aoo(1,—-1) ao1(1,-1) agz2(1,-1)
det|ap1(1,-1) a11(1,-1) ai12(1,-2)|=0. (1.13)
ap2(1,-1) a12(1,-1) ag(1,-1)

Viewed as polynomials in A, the coefficients of this matrix have degrees as follows:

11
11
2 2

W N DN

so the determinant defines a degree 5 equation in A. It should be noted that it is impossible
for this equation to degenerate. The leading coefficient of a;; when viewed as a polynomial
in A is precisely the value a;;(0,1). So indeed the leading coefficient of Equation were
zero, then the Hessian determinant in the fibre above (0 : 1) would also vanish, contrary to
our assumption.

What remains to be shown is that the roots of Equation are distinct. Suppose 11 is
one such root. After a change of coordinates in x2 and x3 we can assume that 1; =0, and
the plane Hg.j) is given by the equation x3 = 0. The intersection S N H,,.1) consists of the

line L and two more lines, which we will call L1 and L. We distinguish between two cases.

14



1. CUBIC SURFACES

If the three lines are concurrent, then we can choose coordinates xo,x1 such that the
point of intersection is (1:0:0:0). After a further change in the coordinates x1,x2, we can
assume that the lines are given by L = Z(x9,x3), L1 = Z(x1,x3) and L’1 =Z(b1x1+ boxo,x3)

for some (b1 : by) € PL. We can then write the equation for S as
f =x3F + blx%X2 + nglxg =0

for some homogeneous polynomial F' of degree 2. In the notation from Eq. (1.12), the

monomial x3 thus divides all a;; with the exception of

ail = blxz +cx3

aig = %bzxg +dx9xs + ex%
for some constants ¢,d,e € k. Now the Hessian of f is given by
—ot()oa?[2 + x%G

for some polynomial G. Note that x3 does not divide a%z and only divides agy with
multiplicity 1, since ago has degree 1. Therefore, A divides det(a;;(1,-1));;, but A2 does
not, and so 1; is indeed a simple root of Equation [(1.13)|

If the lines are not concurrent, we can use similar reasoning. This time, they intersect
in a proper triangle, whose corners we can assume are given by the points (1:0:0:0),
(0:1:0:0)and (0:0:1:0). The lines are then given by L = Z(x9,x3), L1 = Z(x1,x3)

and L} = Z(xo,x3). So now we can write
f =x3F + xgx1x9

for some homogeneous polynomial F', which means a¢; = %xg + cxg for some constant c € &
and all other coefficients are multiples of x3. Similarly to the previous case, the Hessian
of f is given by

2 2
—agpa22+x5G

for some polynomial G. Again we note that x3 does not divide a%l, but does divide ag9.

However, age cannot be a multiple of xg if S is smooth.

15



1. CUBIC SURFACES

To see this, note first that agg and a1 are multiples of x5 and have degree 1, so they are

constant with respect to xo. We compute the partial derivatives of f:

0
—f =2(agoxo +ap1x1 +ao2)

0x
0
—f =2(ao1x0 +a11%1 +ap2)
0x1
f= +2 9 +2 +
- XoX Xo——Qa X1—Qa —Qa
o2g 0X1 0 3 102 150,012 ¥ 5,022
9 f= 2 0 +2 9 + 2 0 +2 9 +2 9 + 9
-— x a XoX1—a x -—a Xo——Qa X1—a -—Qa
o%s 0 305 200 0%15 a0 +E g —an 035 202 1505112 F 52,022

If x3 divides agg, then x3 divides 3 a22 But this would imply that every monomial in
these partial derivatives is a multlple of xg, x1 or x3, and then (0:0:1:0) would be a
singular point of S.

So indeed x3 only divides agg with multiplicity 1, and A; is once again a simple root of
the Hessian of f. Since this applies to all roots of f, there are indeed five distinct roots,

corresponding to five distinct fibres of 7, each containing two lines intersecting L. O

1.8 Remark. Note that lines from different fibres of 7 cannot intersect each other. They lie
on different planes through L, and their point of intersection would have to lie on L. But
because S is smooth, three concurrent lines on S must be coplanar. In particular, we can

conclude that there exist two disjoint lines on S.

Now, let Ly and M, be two such disjoint lines. We apply Proposition [1.7]to both of them
separately. Applying it to Lo, we obtain five pairs of coplanar lines L;,N; fori =1,...,5.
Now for every i, the lines Lo, L; and N; form the complete intersection of S with some
plane. Since M intersects this plane and lies on S, it must intersect exactly one of them.
Because Lo and M are disjoint, it has to be L; or N;. Without loss of generality, we can
assume that M intersects the lines N; for every i.

When we apply Proposition to My, we again obtain five singular fibres of 7),. Each
of these fibres contains one of the lines N;, and another line M;. In total, we have now
constructed 17 lines on S. Before we can find the final ten, we need to establish some basic

properties of mutually disjoint lines in P3.

1.9 Lemma. Let L,M,N c P? be mutually disjoint lines. Then there is exactly one quadric
surface @ that contains L,M,N. The surface Q is precisely the union of all lines passing
through L,M,N.

Proof. Since L and M are disjoint, we claim that we can find homogeneous coordinates such
that L = Z(x¢,x1), M = Z(x2,x3) and N = Z(xo —x9,x1 —x3). This is equivalent to finding

16
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a basis (v1,v9,v3,v4) of £ such that the two dimensional linear subspaces U,V,W c k*

corresponding to L,M,N are given by
U =(v1,v2),V =(vg,v3),W = (v1 +v3,02 + vg) .

Since U NV = {0} (corresponding to the disjointness of L and M) and their dimensions are 2,
any two bases of U and V joined together form a basis of £%. So, taking a basis (w1, w2)
of W, we can find vectors vy,ve € U,v3,v4 €V such that vi +vg =wqi and ve +v4 =ws. If v

and v were linearly dependent, i.e. Avy + pvg =0, then
Awi +pwe = Avs + pvg €V,

but because V N W = {0}, that implies that w;,ws are linearly dependent — a contradic-
tion. Thus, both (v1,v2) and (vs,v4) are linearly independent pairs, hence bases of U,V
respectively, and so indeed (v1,v2,v3,v4) is a basis of 5

Given these coordinates, we can now explicitly define the quadric surface @. Let
Q = Z(xox3 — x1X2).

This @ clearly contains L,M,N. We will postpone the proof of uniqueness for now and first
show that @ is the union of all lines intersecting L, M and N.

Let P be a point on @, with coordinates (xg : x1 : x2 : x3) with xgx3 —x1x9 = 0. If P lies
on one of the three lines, say P € L, we can consider the plane through P and M and
note that this plane intersects N, giving us a line through P, M and N, so P is indeed
contained in the union of all lines intersecting L, M, N. From now on assume P lies on
neither of the three lines. At least one coordinate of P has to be nonzero, say without loss
of generality A :=xy # 0. If x5 # 0, then all coordinates must be nonzero. Writing xo =r A for
some r € kX and x1 = , it follows that x3 must be equal to rp and P is givenas (A: p:rd:ry).
In this case, the line Z(uxg — Ax1, uxe — Axs) passes through P and intersects the lines L,
M and N. On the other hand, if xg = 0, then either x; or x9 has to be equal to zero. But
since we assumed that P does not lie on M = Z(x9,x3), it follows that x9 # 0 and so we can
write P in the form P =(1:0: pu:0) for some A,y € k. Then the line Z(x1,x3) contains P
and intersects L, M and N.

To show the other inclusion, we will look at any quadric surface ' containing L, M
and N. Consider a line L’ that intersects L, M and N. Then the set L' @’ contains all three
points of intersection. Using Proposition 7.6 from [9] and the notion of degree introduced

in the preceding definition, we can conclude that degL’ = 1, since L’ is isomorphic to the
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projective line and the degree of a variety depends only on the coordinate ring, hence is
invariant under isomorphism. From the same proposition it is also clear that deg@’ = 2.
It then follows from Theorem 7.7 that L' must be fully contained in @', since otherwise,
their intersection could contain at most two points. So any quadric surface containing L,
M and N also contains all lines passing through them.

In particular, this fact can also be used to show that @ is unique. Indeed, if @' is another
quadric surface containing L, M, and N, then @ must be contained in '. But since @ is

smooth, equality follows. O

This quadric surface is quite useful for examining what can happen if we add a fourth

line.
1.10 Lemma. Suppose L,M,N,O c P3 are mutually disjoint lines. Then

1. If O lies on the quadric @ spanned by L,M,N, then there are infinitely many lines
intersecting L,M,N,O

2. If O is tangent to Q, there is exactly one such line

3. If O does not lie on @ and is also not tangent to it, then there are exactly two such

lines.

Proof. We choose the same coordinates as in the proof of Lemma Then @ is the image
of the Segre embedding P! x P! — P3 and the lines L, M, N correspond to the lines

{0: 1) x P {(1: 0} x PL,{(1: 1)} x PL.

If O c , then it corresponds to {P} x P! for some P € P! and all lines P! x {R} intersect all
four. If O ¢ @, then their intersection can only have cardinality 1 or 2, with the former

being the case if and only if O is tangent to @. O

We can now prove the main theorem of this chapter, which was first proven by Cayley

and Salmon in 1849 (see [22]], p.496), here presented with a proof following [5].

1.11 Theorem (Cayley, Salmon, 1849). Let S c P? be a smooth cubic surface. Then S

contains exactly 27 lines.

Proof. By Proposition[1.2] we know that S contains at least one line. By Remark [1.8] we
also know that there must be two disjoint lines on S. We shall fix two such disjoint lines L
and M.

As was explained before, this allows us to construct 15 more lines, which we shall review.

18
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By Proposition[I.6] the line L is intersected by precisely ten other lines on S, which come
in pairs (L;,N;) for i € {1,...,5} with the property that for each i, there is a plane H c P3
such that the intersection of S with H consists precisely of the three lines L, L; and N;.

Given such a plane H, the line My must intersect H, and because My is contained
in S, the point of intersection must lie on Lg, L; or N;. Since Ly and M are disjoint by
assumption, the line My must intersect exactly one of L; or N;.

Without loss of generality, we can assume that M intersects NV; for each i, and is disjoint
with all L;.

After applying Proposition to the line My as well, we find that M is intersected by
exactly ten other lines on S, five of which are already given in the lines N;. Therefore,
there must be five more lines M; for i € {1,...,5} such that for each i, the three lines M),
M; and N; are coplanar.

We now have the 17 lines
Ly,My,L+,...,.L5,M4,...,Ms5,N1,...,N5 (1.14)

on S.

Next, we want to prove that S cannot contain more than 27 lines. Let O be any line
on S not among the 17 lines (I.14). We claim that O must intersect precisely three of the
lines N;.

Assume first that O meets at least four N;, and assume without loss of generality that
these are given by N1, Ng, N3 and N4. Note that the lines N; are mutually disjoint. Indeed,
two lines N; and N; with i # j lie in different planes through Ly, so if they intersected, we
would have three concurrent lines that are not coplanar, leading to a singularity on S.

Further note that by construction, the four lines Ny,..., N4 are all intersected by three
different lines in Lo, My, and O. By Lemma this implies that N4 must lie on the
quadric surface @ spanned by N1, Ng and N3. By Lemma|[1.9] this quadric surface @ also
contains the three lines Ly, My and O.

This means that the intersection of the surfaces S and @ has degree at least 7. But by
Theorem 1.7.7 in [9]], this is impossible, since (deg®)(degS) = 6. So O can meet at most
three of the lines N;.

Now suppose that it meets at most two. Note that O does not intersect Lg, since

otherwise it would be equal to L; or N; for some i. But among each triangle Lo,L;,N;, it
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must intersect exactly one of the three lines, as discussed before. So after renumbering, we
find that O must intersect

Li,Ly,L3,L4,L5
or N1,Lg,L3,L4,Ls
or N1,Ng,L3,L4,Ls

Since L intersects all five lines in either case, and M intersects N1 as well as Lo,. .. ,L5
(because M is disjoint with Lo and N; for i # 1), this means that M intersects at least
four of the five lines in each case. In particular, there are always four disjoint lines that
are all intersected by the three distinct lines Ly, M1 and O. With the same reasoning as
above, Lemmas[1.9]and imply that this is impossible.

We conclude that O must intersect precisely three among the five lines N;. Since there
are (g) =10 possibilities to choose three among those five lines, there can only be at most
ten additional lines on S, giving us the desired maximum of 17 + 10 = 27.

It only remains to be shown that this maximum is always reached. Consider the line N;
for a fixed index i. By construction it intersects the lines Ly and My, as well as L1 and M.
However, it cannot intersect any of the other lines already constructed, as they all lie in
different planes through L or M.

By Proposition there must be six more lines on S intersecting N;. As we have
shown above, any line O on S distinct from the 17 already constructed ones must intersect
precisely three among the lines Ni,...,N5. Therefore, the six lines intersecting N; must
each intersect precisely two other lines NV; and N}, for distinct indices j, k& # i.

Note that if two distinct lines O and O’ were to meet the same three lines N;, N; and Ny,
then they would both lie on the quadric surface spanned by N;, N; and Ny, together
with Lo and M, which leads to a contradiction like above.

Since for each i there are precisely six tuples of indices (j,%) such that i,j,k are all
distinct, there must be precisely one line intersecting the three lines N;, N; and N, for
each such choice of j and k.

For i < j <k, we shall label this line O, .. In particular, there are precisely (g) =10 such
lines O; ;.. Together with the 17 lines from (1.14), that makes 27 lines.

Because we already established that S cannot contain more than 27 lines, it must contain
exactly 27. O

While this does finally prove that there are exactly 27 lines on any smooth cubic surface,

there are still some open questions. In particular, it is not yet fully clear which ten lines
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intersect any of L;, M; or O;j; in the notation of the proof above. But we already know
enough about the intersections to answer this question.

Take any line M;. It has to intersect any triangle (L,L;,N;) exactly once. Since M; is
disjoint with L and intersects N;, but no other line N}, it has to intersect all L for j # i.

Furthermore, the line O; j;, also intersects each of the triangles (L,L,,N,) and (M,M,,N,)
exactly once. Among the N, O;j; meets exactly the three N;, N; and Ny, so it must meet
the remaining L, and M, for r #1i,j,k.

So far, we have found seven intersecting lines for every O;jz, so it must intersect three
other lines among this group as well. Take for example O;193 and note that it forms a
triangle with the lines L4 and M5. Again, we can conclude that each other line on S must
intersect one from this trio. The lines O;45 for i = 1,2,3 all do not intersect L4 or M5, so
they must intersect L123. Doing this for all indices, we can conclude that the lines O,
and O,s; intersect if and only if {i,j,k}u{r,s,t} ={1,2,3,4,5}. This gives precisely three
new intersecting lines for each O;;;, meaning we found all ten for every line on S.

Lastly, let us briefly touch on the subject of Eckardt points, which were mentioned at the

very beginning of this chapter.

1.12 Definition. A point P € S is called an Eckardt point if there are three lines on S
passing through P.

As we have seen previously, the lines on S come in triangles. Whenever two lines
intersect, there is a third line in that same plane also intersecting both. Since each
line intersects ten other lines, it is a part of five different triangles. In total, there are
thus 2?,)—5 =45 triangles of lines on S. An Eckardt point is simply a degeneration of one of
these triangles. However, it is not possible for each triangle to be degenerate at the same
time. In fact, there can be at most 18 Eckardt points on S. To prove this, we will first show

that each line on S can only contain up to two of them.

1.13 Lemma. Let S c P3 be a smooth cubic surface and let L be a line lying on S. Then L

contains at most two Eckardt points.

Proof. Recall the morphism 7: S — P! associated to L as in Proposition Restricting it

to L, we obtain a morphism of curves
n: L —PL

Note that an Eckardt point occurs precisely when a singular fibre of the morphism 7: S —
P! ramified when viewed as a fibre of the morphism n: L — P!. This morphism has

degree 2, since fibres of 7 are intersections of L with plane quadrics. Since both L and P!
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are genus 0 curves, we can use the Riemann-Hurwitz formula (see Corollary IV.2.4 in [9])
to see that

2g(P1) -2 = (degn)(2g(L)-2)+ Y e;—1,
teP!
where g is the genus and e; is the ramification index of 7 at the fibre above ¢. Note that in
positive characteristic the Riemann-Hurwitz formula is true whenever all ramification is
tame. Since the degree of the morphism L — P! is 2, wild ramification can only exist in

characteristic 2. Simplifying this equation and substituting g(L) = g(P!) = 0, we get

Z er— 1=2.

teP!
In other words, there are exactly two ramified fibres, of ramification index 2 each. Whenever
one of these two coincides with a singular fibre of 7: S — P!, we obtain an Eckardt point.

In particular, there can be at most two Eckardt points on L. O
With the help of this lemma, we can prove the aforementioned maximum.
1.14 Proposition. There can be at most 18 Eckardt points on S.

Proof. By Lemma(1.13] there can be at most two Eckardt points on every line on S. Since
there are 27 lines and each Eckardt point is counted thrice, the maximum number of
Eckardt points on S is
27-2
— =18.
3

O

Note that this upper bound can indeed be obtained, namely by the Fermat cubic from
Example The proof of Lemma perhaps also illustrates why Eckardt points are so
rare. For an Eckardt point to occur on the line L, the morphism L — P! has to ramify at
one of only finitely many specified fibres; namely the five singular fibres of S — P!, Indeed,
the set of smooth cubic surfaces with an Eckardt point has codimension 1 in the space of

all cubic surfaces (see [4], p.440).
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Unless otherwise mentioned, let £ be an algebraically closed field with char & # 2, 3.
In Chapter (1, we proved that every smooth cubic surface in P? contains exactly 27
lines. To be a bit more precise, we actually proved two separate results, with independent

methods:
1. Every cubic surface contains a line.
2. Every smooth cubic surface S with a line L < S contains exactly 27 lines.

A natural goal would be to generalise this as much as possible. We have already seen in
Remark that the general surface of degree higher than 3 does not contain any lines, so
the first point does not generalise at all. However, for any degree d > 3 there is a positive
dimensional family of smooth surfaces of degree d which do contain lines, and we will
restrict our attention to those.

In Chapter[1} the central observations were Proposition [1.6|and Proposition For a
smooth cubic S containing a line L we defined a morphism 7 whose fibres are plane conics,
and any lines on S intersecting L are components of such fibres. We then went on to prove
that almost all fibres are smooth irreducible conics while exactly five of them decompose
into two lines each.

Proposition [1.6|generalises very easily to all smooth surfaces S of higher degrees, as long
as we assume that S contains a line L. When it comes to Proposition[I1.7, we made heavy use
of the fact that when deg S = 3, the residual curves in the fibres of the morphism nz,: S — P!
are conics. In this case, there are only two different fibre configurations that we need to
distinguish: either the fibre is smooth, or it consists of two lines.

We used the Hessian as a tool to distinguish these cases; a conic has a constant Hessian,
and is smooth if and only if the Hessian is nonzero. For curves of higher degrees, the
Hessian will no longer be constant. Rather than being a measure for the smoothness of the
curve, it will instead determine points of inflection.

Denote by i p(C, D) the intersection multiplicity (see [9], p. 53) of two curves C and D at

a point P in which they intersect.
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2.1 Definition. Let C c P2 be an algebraic curve, P € C a smooth point, and let T'p be the
tangent line to C at P. We call P an inflection of C if i p(Tp,C) = 3.

2.2 Remark. Some authors may require inflections to be smooth points. We will not make
this distinction. Note that according to the above definition, singular points are always
inflections. Indeed, for any singular point P on a curve C we can find a line L such
that ip(L,C) = 3. We further note that every point on a line is an inflection since for any
line L and P € L. we have ip(L,L) = co.

For plane conics, inflection points are not very interesting: when the curve is smooth,
there are no inflections, and when it is singular, it decomposes into two lines and all points
are inflections. This is reflected in the fact that the Hessian is constant. In fact, the

Hessian of a plane curve can generally be used to find its points of inflection.

2.3 Proposition. Let C c P2 be an algebraic curve and P € C a point. Then P is an

inflection point of C if and only if the Hessian of C vanishes at P.

A proof of this can be found in [7]], p. 67. Curves of degree higher than 2 can contain
non-trivial (i.e. not lying on a line component) inflection points, and so while the Hessian
necessarily vanishes along every line, it is no longer a sufficient tool to detect lines, unless
we pay closer attention to the inflection points in general. Specifically if S is a smooth
quartic surface, then the fibres of the morphism 7 are plane cubic curves. The following

proposition gives the number of inflection points on a plane cubic.

2.4 Proposition. Let C c P? be an irreducible curve of degree 3.
a) If C is smooth, then C has exactly nine points of inflection.
b) If C has a node, then C has exactly four points of inflection, including the node.
¢) If C has a cusp, then C has exactly two points of inflection, including the cusp.

Proof. This follows immediately from the Plicker formulas ([7], p.89). One of these
formulas states that
s*=3n(n-2)-6d —8s,

where C is a curve of degree n, s* is the number of smooth inflection points, d is the

number of nodes, and s is the number of cusps. For n = 3, we obtain the desired results. [

In Chapter (3] we will see there is an analogue of Proposition for smooth quartic
surfaces. However, this will not hold in full generality, as there is a specific type of line

that evades this reasoning.
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2.5 Definition. Let S be a smooth surface in P? containing a line L. Let 7: S — P! be the
morphism as defined in Proposition

Then L is called inflectious if for every P € L, every point of intersection of L with the
fibre Cp = n~L({n(P)}) is a point of inflection of Cp.

Otherwise we call L regular.

2.6 Remark. This is not standard terminology. Segre [26] introduces regular lines as ‘lines
of the first kind’ and inflectious lines as ‘lines of the second kind’, and Rams and Schiitt

[20]use the same terms.

2.7 Remark. There are two different definitions for inflectious lines in the literature. The
definition used here is similar to the one in [26], where a more general formulation applies
to all surfaces in P of degree 3 or higher.

Another definition is used in [20], which requires a weaker property of the line L. There,
each fibre F' of the morphism 7 need only intersect L in at least one point which is an
inflection of F. We will see later in Remark [3.4] that these two definitions are equivalent.
The property from Definition is used at several different points in [20] without it being

made explicit that it follows from their definition.

On a smooth cubic surface, all lines are regular. When S is a smooth quartic surface
however, inflectious lines exist, and a priori they make it very difficult to count how many
lines on S could intersect them.

Consider a line L ¢ S with associated morphism x: S — L. If there is fibre F' of 7 that
contains a line L', then the point of intersection is automatically an inflection of the curve F
by Remark [2.2] Hence such points of inflection in intersections of L with a fibre of 7 are a
necessary, but not sufficient condition for the existence of lines in that fibre. This helps us
identify fibres that may potentially contain lines so long as L is regular, and in fact this is
good enough to prove a generalised version of Proposition (1.7

When L is inflectious, every fibre intersects L in points of inflection, and so this condition
loses its usefulness in detecting candidate fibres for containing lines. Smooth quartic
surfaces with inflectious lines thus require a different approach.

This approach will be the theory of elliptic curves and elliptic surfaces. As we will soon
see, smooth plane cubics are examples of elliptic curves, and the morphism 7 gives S the
structure of an elliptic surface.

In the rest of this chapter, we will give an overview over elliptic curves, elliptic surfaces,
and some core theorems that will help us analyse lines on quartic surfaces. Our primary
source of reference for elliptic curves will be [29], with elliptic surfaces being covered by
1823, 25, 28]
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2. ELLIPTIC SURFACES

2.1 ELLIPTIC CURVES

In this section, let £ be any field, not necessarily algebraically closed.

2.8 Definition. An elliptic curve over £ is a smooth algebraic curve E over % of genus 1
with a designated point O € E(k). We will use both (£,0) and just E as notation for the

curve E with point O depending on the context.

Elliptic curves are often studied over varying ground fields. The points of E over the
field £ are denoted by E(k). Since many of these fields are not algebraically closed, the
existence of a point on a curve of genus 1lis not always guaranteed. However, even while
working over algebraically closed fields, the inclusion of O is an essential part of this
definition, since O will be the neutral element of a group structure on the points of E. To
define this group structure, we consider the Picard group Pic(E), which is the group of
divisors on E modulo principal divisors. The elements of degree 0 form a subgroup, which
we will denote by Pic®(E). We will then induce a group structure on E with the help of the

following lemma.
2.9 Lemma. (/29]. Chapter III, Proposition 3.4)

Let (E,0) be an elliptic curve. Then the map

o: E(k)— Pic%(E)
P—[(P)-(0)]

is a bijection.

Here (P) denotes the divisor corresponding to the point P and by [(P)—(O)] we mean the
class of the divisor (P)— (0O) modulo principal divisors. This bijection allows us to transfer
the group law from Pic’(E) to E(k).

2.10 Corollary. Let (E,O) be an elliptic curve and P,Q two (not necessarily distinct) points
on E. We define
P+Q=0"Y(0(P)+0(Q))

where the addition in the parentheses happens in Pic’(E). Then this operation makes E(k)

into a group with neutral element O.
Proof. This follows immediately from the fact that o is bijective and o(0O) = 0. O

This abstract group structure has a very concrete geometric interpretation in the case

that E is a plane curve, and we will make use of this interpretation later. Note that by the
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2. ELLIPTIC SURFACES

genus formula (see Example 1.7.2 in [[9]]), smooth plane curves of genus 1 are precisely the

smooth cubics in P2.

2.11 Proposition. Let (E,0) be an elliptic curve where E c P2 is a smooth plane cubic
and P and @ be two (not necessarily distinct) points on E. Then there is a unique line L c P?

such that the intersection of L with E is given by the divisor
L={P)+(@)+(R)

for some R € E. We define P = Q to be the point R. Then
P+@Q=P=*Q)*0.

Proof. Consider the line L through P and @, or the tangent line to E at the point P if P = @.
Since E is a cubic curve, the line L intersects E in a unique third point R, and indeed the
divisor of the intersection is given by (P)+ (@) + (R).

Furthermore, we consider the line L’ through R and O (or the tangent at O if R = 0),
which intersects E in a third point R’. The point (P * @) * O is then precisely this point R’.
Since the intersections of E with the lines L and L’ are linearly equivalent, we get the

equation
P)+(@)+(R)=(0)+(R)+(R) (2.1)

in Pic%(E); or equivalently P +@ = R’ in the group E, which is what we wanted to show. [

In particular, this leads to a handy statement about collinear points.

2.12 Corollary. Let (E,O) be an elliptic curve where E cP? is a smooth plane cubic and O
is an inflection of E. Let L c P? be any line. Then L intersects E in three (not necessarily
distinct) points P,Q,R and we have

P+Q+R=0.
Proof. We compute
P+Q+R=(P+xQ)+x0)xR)=O0.

Since P,® and R are collinear, we have P * @ = R. Furthermore, (R * O) * R is equal to O,

so the term simplifies to O * O. Since O is a point of inflection, this is equal to O. O

As we have seen at the beginning of this chapter, we are particularly interested in points

of inflection of plane cubic curves. Inflections also play a special role in the theory of elliptic
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2. ELLIPTIC SURFACES

curves. In practice, the zero point O of a plane elliptic curve E is often taken to be an
inflection of E, and due to Corollary [2.12] we can now see that the inflections of E are

precisely its 3-torsion points.

2.13 Corollary. Let E be a smooth plane cubic. Then E has exactly nine points of inflection.
If O € E is one of them, then the 3-torsion subgroup of the elliptic curve (E,Q) consists

precisely of these nine inflection points.

Proof. We have already seen in Proposition that a smooth plane cubic has exactly nine
inflection points. By Corollary [2.12] for any inflection point P of E, we have 3P =0, so P is
indeed a 3-torsion point.

Conversely, if P is a 3-torsion point of E, we know that 3P = O. The tangent L at P
has divisor 2(P) + (@) for some point @ € E. By Corollary [2.12] we also have 2P +@ = O.
Taking both equations together, it follows that P = @, and so P must be a point of inflection
of E. O

In general, elliptic curves need not be plane cubics. However, every elliptic curve is
isomorphic to a plane cubic. More specifically, it can described by a very specific kind of

equation.

2.14 Proposition (Weierstrass equation). Let (E,O) be an elliptic curve. Then there is an

isomorphism ¢: E — C to a smooth projective plane curve C with affine equation of the form

3

y2+a1xy+a3y:x +a2x2+a4x+a6 2.2)

such that ¢(O)=(0:1:0). If furthermore the characteristic of k is not equal to 2 or 3, we

can assume that a1 = ag = asg =0 and so the equation becomes

3tax+b. (2.3)

yi=x
An equation of the form Eq. (2.2) is called a Weierstrass equation and Eq. (2.3) is called

a short Weierstrass equation.

2.15 Remark. A curve described by a Weierstrass equation always has exactly one point
at infinity, the point (0:1:0). When an elliptic curve is given in this form, it is typically
assumed that this is the point O. This point is automatically an inflection, as its tangent is
the line at infinity.

2.16 Remark. If an elliptic curve E over a field of characteristic other than 2 is given by a

3

short Weierstrass form y2 = x3 + ax + b, it is symmetric across the x-axis. In particular, for
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any given point P = (x,y), its inverse —P is given by (x,—y), since the line through these
two points is vertical and meets the projective line at infinity in the point O =(0:1:0). In
the case that P = (x,0) lies on the x-axis, its tangent is vertical and P = —P. In particular,
the nontrivial 2-torsion points of E are precisely the intersection points of E with the x-axis.
Over an algebraically closed field, they correspond precisely to the three solutions to the

equation x3 +ax+b =0.

Lastly, there are two important quantities that help explore some properties of curves
defined by Weierstrass equations: the discriminant and the j-invariant, both of which are
given as rational functions in the coefficients of the equation. For precise formulae, see
[29], p.46. Here we only give the formulae for short Weierstrass equations. Note that we
only work with fields of characteristic different from 2 or 3, and any elliptic curve over

such a field is given by a short Weierstrass equation, up to isomorphism.

2.17 Definition. Let y? = x3 + ax + b be a short Weierstrass equation. Then
A = -16(4a® +27b%)

is called the discriminant of this equation and if A # 0, then

. 1728(4a)?
AR

is called the j-invariant.

As the name might suggest, the j-invariant does not depend on the choice of equation,
but only on the isomorphism class of an elliptic curve. The use for these quantities lies in

the following proposition.

2.18 Proposition ([29], Chapter III, Proposition 1.4). a) Let C be a curve given by a
Weierstrass equation. Let A be the discriminant of this equation. Then C is smooth if
and only if A #0.

b) Two elliptic curves are isomorphic over the algebraic closure of their ground field if

and only if their j-invariants are equal.

2.2 ELLIPTIC SURFACES

In this section, let %2 be an algebraically closed field. As was mentioned at the beginning of
this chapter, our goal is to apply the theory of elliptic curves to the morphism 7: S — P!

associated to a smooth quartic surface S c P? containing a line L.
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2. ELLIPTIC SURFACES

2.19 Definition. An elliptic surface is a smooth projective surface S with a surjective
morphism 7: S — C to a smooth irreducible projective curve C such that all but finitely
many fibres of 7 are smooth curves of genus 1.

We call 7 an elliptic fibration and C the base curve of the elliptic surface S.

There are several different ways to think about elliptic surfaces. On the one hand, we
have an algebraic surface S which happens to admit an elliptic fibration 7: S — C. On the
other hand, we can also view S as the union of its fibres, or a family of curves, almost all
of which are smooth and of genus 1. Another way of looking at this family of fibres is by

considering the generic fibre, that is the fibre above the generic point of C.

2.20 Definition. Let f: X — Y be a morphism of schemes, and let y € Y. The scheme
theoretic fibre of f above y is the fibre product

X xy Spec x(y)

where x(y) is the residue field of the point y € Y. The fibre above the generic point of Y is
called the generic fibre.

Note that in our case of a morphism f: S — C with a surface S and a curve C, the points
of C as a scheme are precisely the points of C as a projective variety, which are the closed
points, and the generic point n € C. The fibre above any point of C is a scheme over the
residue field of that point. For a closed point in C, its residue field is %, so the fibre above a
closed point is a scheme over k. For the generic point however, we obtain a scheme over
the function field £(C).

It can be shown that the scheme theoretic fibre over a closed point P € C is homeo-

morphic as a topological space to 77 1({P}) as a closed subvariety of S.

2.21 Example. Consider the quartic surface S c P? defined by the equation
xp (g — x3) — a5 (2] —23) = 0.

This surface is called the Schur quartic, and we will later show that it contains exactly 64
lines. From the equation we can immediately see that it contains the line L = Z(x2,x3). We

can apply the construction from Proposition to obtain a morphism

S — P!

3 _.3..3 .3
(x0 1 1 29 1 x3) — (xg 1 x3) = (] — x5 : 265 — x5) .

[2.algee Exercise I1.3.10 in [9]
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Let ¢ € £ and consider the plane H, = Z(x3—cx2)P3. The intersection SN H, is the quartic
curve in H, =~ P2%(xq,x1,x2) defined by the equation

X9 (xg —xg) —cXx9 (x? - c3x§’) =0.
This curve contains L as a component. The fibre above the point (1 : ¢) € P? is the residual

cubic curve defined inside H,. by the equation
(xg - xg) -c (x? - c3x§) =0. (2.4)
This curve is smooth for almost all choices of ¢: we compute the partial derivatives

do= ng
di= SCx%

do = 3(04— l)xg

For ¢ # 0 and c* # 1, these can never simultaneously vanish. For all such ¢, the fibre
above (1:¢) is thus smooth. We will examine the singular fibres in more detail later.

Now we want to compute the generic fibre of 7. Consider the standard cover of P! by
the affine open subset Ug={(c:1):c€k}and U; ={(1:¢):c €k}, and note that the inverse
images 7~ H(Uy),n~1(U1) S are both open affine as well; for example 77 1(U;) = D(x2)N S,
where D(x2) is the open subset {xs # 0} in P3.

Let 17 € P! be the generic point of P!, given as a subscheme {1} = Spec k(¢) of P1. The
generic fibre is then the fibre product of the map n: S — P! and the inclusion {n}— PL. This
fibre product is covered by the two affine fibre products of the maps = |Ui s (U - U;
and {n} — U; where i =0,1. We will explicitly compute this for i = 1.

Note that U; = Spec k[¢] and n~1(U;) = Spec R where R = klxo,x1,x3)/ ((x3 — 1) — x5 («? — x3)).

The restriction of 77 to a map 7~ 1(U;) — Uj corresponds to the k-algebra-homomorphism
k[t] —’R,t*—> X3.

The inclusion {n} — U corresponds to the inclusion k[¢] — k(¢). The fibre product 7~ (U7)x U,

{n} is thus given as the spectrum of the tensor product

R ®L[t] k(t).
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Because t maps to x3 € R, this k-algebra is isomorphic to

E®)xo, %1V ((x5 - 1) — ¢ (« - 7).

The generic fibre of 7 is thus the curve in ]P’;f;( 5 defined by the affine equation

(xg—1) - t(x7-¢°) =0
or the projective equation
(xg - xg) —t (x? - t3x§’) =0. 2.5)

This curve is smooth over k(¢). By substituting ¢ = ¢ in Eq. (2.5) we obtain Eq. (2.4), the
equation of the fibre above (1:¢). In this sense, the generic fibre can be seen as a template
for the other fibres of 7.

We will see later that there is in fact a 1 : 1-correspondence between elliptic surfaces

over a fixed base curve C and elliptic curves over the function field £(C).

2.2.1 THE GROUP OF SECTIONS

Since almost all fibres of an elliptic fibration 7: S — C are smooth, we naturally get a
group structure in each individual smooth fibre so long as there is a uniform choice of one
specified point per fibre. In order to make such a choice, we will make use of the sections
of 1. A section of 7 is a morphism ¢: C — S that satisfies 1oo =id¢. In particular, a
section gives precisely one point per fibre, and after fixing one section o: C — L as the zero
section, we can define a group structure on the set of sections by viewing a section as a
collection of one point on each fibre of 7 and adding two sections component-wise. In the

following proposition we verify that this addition is well-defined.

2.22 Proposition ([28]], Chapter III, Proposition 3.10 (a)). Let n: S — C be an elliptic
fibration with a section o and let 01,02 be two sections of n. Then there is a unique

section g : C — S such that for any t € C with a smooth fibre above t, we have
o(t)=o1(t) +o2(t),

where the addition is carried out in the elliptic curve given by the fibre above t with zero

point o(t).
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2.23 Corollary. Let n: S — C be an elliptic fibration with a section o. Then the set of
sections of m obtains a natural group structure with the addition defined as above. We call o

the zero section of S.

Proof. This follows immediately from the fact that the points on any given smooth fibre
form a group. O

To formalise the idea from earlier that there is a certain equivalence between elliptic
surfaces and their generic fibres, it can be shown that the group structure on the sections
of an elliptic surface S over a curve C is isomorphic to the group structure of the generic

fibre as an elliptic curve over £(C).

2.24 Proposition. Let n: S — C be an elliptic fibration with zero section o. Then the group
of sections as described above is isomorphic to the group of points of the generic fibre as an

elliptic curve over k(C).

Proof. See Chapter III, Proposition 3.10 (c) in [|28]. O

2.2.2 KODAIRA’S CLASSIFICATION OF FIBRES

In this section let £ be an algebraically closed field.

As we have seen in Example not all fibres of an elliptic fibration are smooth. In fact,
we are particularly interested in the singular fibres, since the the lines intersecting a fixed
line L on a smooth quartic surface S c P? all lie in singular fibres of the corresponding
elliptic fibration 7: S — P!. Based on the work of Kunihiko Kodaira [14, 15, 16] and André
Néron [19], these singular fibres can be classified into a finite number of different types.

We will only be using Kodaira’s notation.

2.25 Theorem (Classification of fibre types). Let n: S — C be an elliptic fibration. Then
every fibre of ©t falls under one of the types listed in [28], Chapter IV, Theorem 8.2.

The same source also contains a table with an overview of the fibre types ([28]], p.365),
which we will be frequently referring to. This table lists various properties of the fibre
types that we will rely on at many points, such as the group structure on the smooth points
of each singular fibre which is induced by the group of sections.

In the case of a smooth quartic surface S c P? and the elliptic fibration 7#: S — P!

associated to a given line L c S, only six of these fibre types can occur.

2.26 Example. Let S c P2 be a smooth quartic surface containing a line Lc S. Let n: S —
P! be the morphism associated to L as defined in Proposition
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Then 7 is an elliptic fibration and each singular fibre of 7 is of type I1,19,13, II, III, or
1v.

Proof. Note that 7 is an elliptic fibration, since the fibres of 7 are plane cubic curves,
almost all of which are smooth; and smooth plane cubics have genus 1. Furthermore, the
fibres are reduced by Lemma (1.5

An irreducible, reduced plane cubic can either be smooth, have a node, or have a cusp,
corresponding to Kodaira types I, and IT respectively. A reducible, reduced plane cubic
can either consist of a line and a smooth conic, or three lines. The first case corresponds to
Kodaira types I9 and I1I, depending on whether the line intersects the conic transversally
or tangentially. The second case corresponds to Kodaira types I3 and IV, depending on

whether the three lines form a non-degenerate triangle or intersect in a single point. [

Nonetheless, the remaining fibre types will still be relevant when we consider base

changes as discussed in the following section.

2.2.3 SMOOTH MINIMAL MODELS AND BASE CHANGE

In this section let £ be any field of characteristic not equal to 2,3, not necessarily algebraic-
ally closed.

As was mentioned at the beginning of this chapter, inflection points in the fibres of elliptic
fibrations are of particular interest to us. In the case of a smooth quartic surface S c P
containing a line L c S with corresponding elliptic fibration 7: S — P!, every line in a fibre
of 7 necessarily intersects L in a point that is an inflection on the fibre. Furthermore,
Definition |2.5| also warrants a closer look at inflection points in the fibres of 7. We have
seen in Corollary [2.13|that inflection points on elliptic curves have an inherent connection
to 3-torsion points. In general, the elliptic fibration 7: S — P! does not necessarily have a
section at all, let alone a 3-torsion section. However, if L is inflectious we can construct
another elliptic surface S’ with fibration 7': S’ — C which does have 3-torsion sections.

For an elliptic curve, we can ensure the existence of 3-torsion points simply by extending
the ground field. In fact, over an algebraically closed field %, any elliptic curve has an n-
torsion subgroup of order n? so long as n is not a multiple of char % ([29], chapter III,
Corollary 6.4). In particular, for any elliptic curve E over k, we can always find some
algebraic extension ¢/k such that E has non-trivial 3-torsion over ¢. For an elliptic surface,
we can pursue a similar idea, but instead of extending the ground field, we ‘extend’ the

base curve. This is called a base change.
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Let S be an elliptic surface with fibration 7: S — C. The analogue of a field extension ¢/k
would be a morphism of curves ¢: B — C for some other smooth projective curve B. We

can then obtain a new surface S’ by taking the fibre product

S'=Sx¢cB——S8

|

B C.

A priori, the fibre of S’ — B above a point P € B is the same as the fibre of 7 above ¢(P).
However, the resulting surface S’ might not be smooth. To resolve these possible singular-
ities, we will use blowups.

Let P € S be a point on an algebraic surface S. The blowup of S at P is a surface S with a
morphism 1: S — S such that ¥ induces an isomorphism between S \. ¢~ 1(P) and S \ {P},
and ¢~ 1(P) is a curve E c §, which we call the exceptional curve of the blowup. A precise
description of a general blowup can be found in [9]], pp. 23-30, 163.

It should be noted that if S admits an elliptic fibration 7: S — C to a curve C, then a
blowup of S as an algebraic surface at a point P retains the elliptic fibration by composing

it with the blowup map.

2.27 Definition. An elliptic surface S is called minimal if none of its fibres contain (—1)-

curves, i.e. smooth irreducible curves with genus 0 and self-intersection —1.

Such curves naturally occur when a smooth point of a surface is blown up. In fact,
every (—1)-curve is the exceptional curve of some blowup ([9], chapter V, Theorem 5.7). Thus
by reversing that blowup we obtain a ‘smaller’ surface in the same birational equivalence
class. A surface in general is called minimal if it contains no (—1)-curves at all, but for
elliptic surfaces we only consider (—1)-curves in the fibres. This is because every (-1)-curve
that arises as the result of a blowup of an elliptic surface is automatically contained within

the same fibre as the point that was blown up.

2.28 Definition. Let 7i: S — C be an elliptic fibration. We say that S is a model of S, if S
is an elliptic surface with elliptic fibration 7: S — C and a birational map S — S such that

the triangle

commutes.
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A smooth minimal model of S is a model of S that is smooth as an algebraic surface and

minimal as an elliptic surface.

2.29 Proposition (Corollary I1.1.3 in [18]). Every elliptic surface over k has a smooth

minimal model, and it is unique up to isomorphism.

Using the language of minimal models, we can define a unique base change by replacing

the fibre product from above by its unique smooth minimal model.

2.30 Definition. Let n: S — C be an elliptic fibration and ¢: B — C a morphism of curves.

Consider the cartesian diagram

SxcB——=S
B C

Let S’ be a smooth minimal model of S xcB. We call S’ the base change of S along ¢: B — C.

Of course during such a base change, blowups can change the types of some of the
singular fibres. It is thus important to keep track of what happens to singular fibres
under a base change. This is well understood, and depends primarily on the ramification

behaviour in the morphism between the base curves.

2.31 Proposition (Table 3 in [23]]). Let n: S — C be an elliptic fibration and ¢: B—C a
surjective morphism of smooth irreducible curves. Let S’ be the base change of S along ¢
with elliptic fibration n': S’ — B. Let t € B(k) be a point and let e be the ramification index
of ¢ at t. Let F ) be the fibre of n above ¢(t) and let Fy be the fibre of n’ above t.

a) If Fyy) is of type I, then Fy is of type 1.,

b) If F ) is of type I, then F; is of type

e Iy, ife=0 (mod 6)
e I, ife=1 (mod 6)
e IV, if e=2 (mod 6)
e I, ife=3 (mod 6)
IV*, if e=4 (mod 6)
e II* ife=5 (mod 6)

c) If F ) is of type 111, then F; is of type

o Io,ife=0(mod 4)
e III,ife=1 (mod 4)
e I, ife=2(mod 4)

36



2. ELLIPTIC SURFACES

e IIT*, if e =3 (mod 4)

d) If F ) is of type IV, then Fy is of type

e Iy, ife=0(mod 3)
e IV,ife=1 (mod 3)
e IV*, ife=2 (mod 3)
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In this entire chapter, assume that % is an algebraically closed field of characteristic not
equal to 2 or 3. We will prove that any smooth quartic surface in P3(k) contains at most 64

lines by following the method from [20].

3.1 SOME EXAMPLES OF LINES ON SMOOTH QUARTICS

While the general smooth quartic contains no lines, there is a family of examples which
each contain sixteen designated lines. We will follow the description from [1]. In particular,

we will be looking at surfaces of the form
S=Z@-y)cP?

where ¢ is a homogeneous quartic polynomial in xp,x; and ¥ is a homogeneous quartic
polynomial in x2,x3. Now ¢ cuts out four points on the line ® = Z(x9,x3), say Pi,...,P4
and v cuts out the four points Q1,...,Q4 on the line ¥ = Z(xg,x1). No two of the points P;
or @; can coincide, or S would be singular. Indeed, for any i and j in {1,2, 3,4}, the points P;
and @; must differ because the lines ® and ¥ are disjoint; and if P; = P; for distinct i
and j, then the surface in P? defined by ¢ is singular. Because the polynomial 1 contains
no xg or x1, it follows that S is singular as well. On the other hand, if the points P; and @;
are all distinct, then S is smooth.

In this case we see that S contains at least 16 lines, namely the lines m connecting

the points P; and @, for any i,j € ({1,...,4}. Indeed, if

P;=(0:0:x9:x3)

Q;=(xp:x1:0:0),
then a point on the line P;@; has projective coordinates (Axo : Ax1 : pxg : px3) for some (A :
) € P and the polynomials ¢ and v both vanish at this point.

Now the intersection of S with the tangent plane T of S at a point P; consists precisely of

the four lines P;Q1,...,P;®4, and any other line on S cannot pass through P;, since more
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than two lines on S intersecting in one smooth point must be coplanar. Fixing a line L ¢ S

that is not among the 16 lines P;@; thus gives us a homography
p:d—-VY

mapping a point P € ® to the point obtained by intersecting the plane through P and L with
the line V. This map sends the points P; to @ 4(;) for some permutation o € G4. Indeed, the
plane through P; and V¥ intersects S in four lines, and L must intersect the plane on one of
the lines ITQj, so p(P;) = Q;. After a coordinate change in xo,x1, we can assume that p is
given as P(xg, x1) — P1(x2,x3),(a : B)— (a: B), that the line L is the line Z(xg —x2,x1 — x3),
and the polynomials ¢, satisfy ¢(a, B) = w(a, B) for all (a : f) € P1. The line L is now a

kxo,x1—1%x3) for k= 1,2,3,4, which are all contained

member of a set of four lines Z(xy —i
in S.

Conversely, if we are given a isomorphism p: ® — ¥ which maps {P1,...,P4} to {Q1,...,Q4},
then we can obtain four lines in the same way. The number of lines on S is thus 16 plus
four times the number of such isomorphisms.

Note that an isomorphism between two projective lines is determined uniquely by the
images of three different points, so generically there is no isomorphism mapping a given
set of four points to another given set of four points. Since there are no constraints on
the choice of points P; and @;, the surface S will generically only contain the 16 already
determined lines.

If there is an isomorphism p: ® — ¥ that maps the set {P1,...,P4} to {@1,...,Q4}, then p
gives a natural bijection between the set of such isomorphisms and the set of automorph-
isms of ® that permutes the points P1,...,P4.

We thus need to determine the number of automorphisms of the projective line that
permute four given points. Barth [[1]] achieves this by considering the double cover, an
elliptic curve E with a morphism E — ® that ramifies precisely above the four points. Then
one can establish a relation between the automorphisms of P! fixing four points, and the
elliptic curve automorphisms of the double cover.

However, one can also do this more directly. After a change in coordinates, we can

assume that three of the four points are given by 0,1, and co. The fourth point is then
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given by some 1 € £~ {0,1}. For each permutation o of the set {0,1,1,00}, we can compute

the unique automorphism f of P! that satisfies

f(0)=0(0)
f)=0(1)
f(c0) = o(c0)

and then determine an equation that A must fulfil so that /(1) = g(7) is also satisfied.

This is done in detail in Proposition[A.1]in the appendix. The conclusion is that there are
either 4, 8, or 12 automorphisms. Since each automorphism corresponds to four lines on
the surface S, and taking into account the possibility that there is no isomorphism ® — ¥
that fulfils our conditions, we find that S contains either 16, 32, 48, or 64 lines.

In the computations in Proposition it is also shown that the maximum number of
lines occurs if and only if in the above notation A = —{ or A = —(2, where { is a primitive
cube root of unity in k. After a change in coordinates the four points 0, 1, —{, and oo can
be transformed to the four points 0, {, 1, {2, which are precisely the roots of the polynomial
plx)=x*—x.

In particular, we obtain the following example.

3.1 Example. The quartic surface given by the equation
xé - xox? = xé - xgxg

has precisely 64 lines. We will refer to this surface as the Schur quartic.

The name ‘Schur quartic’ is also used in [26] and [20]; it is named after Friedrich Schur

who described it in 1882 [|24]. This example will continue to be relevant in this chapter.

3.2 QUARTIC SURFACES WITHOUT INFLECTIOUS LINES

Recall the following definition from Chapter

2.5 Definition. Let S be a smooth surface in P? containing a line L. Let 7: S — P! be the
morphism as defined in Proposition

Then L is called inflectious if for every P € L, every point of intersection of L with the
fibre Cp = n~L({n(P)}) is a point of inflection of Cp.

Otherwise we call L regular.

2 0)

[3.a]In fact, this coordinate change can be given explicitly by the matrix ( 1 (-1
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3.2 Remark. In Proposition the morphism 7 is not unique, and in fact depends on
the choice of a line L’ skew to L. However, we are primarily interested in the fibres of 7,
and the set of fibres is independent of this choice. Therefore, we will accept this slight

imprecision and speak of ‘the’ morphism 7 associated to L.

The goal of this section is to prove that smooth quartic surfaces in ?® on which all lines
are regular contain at most 64 lines. We follow the method from [20], which is based on
[26].

For smooth quartic surfaces that do not contain any inflectious lines, we can establish
an upper bound on the number of lines with some of the same ideas as in Chapter |1} We
begin by proving an analogue of Proposition for quartic surfaces with a regular line,

where we shall provide additional details to the proof in [20].

3.3 Proposition. Let S c P? be a smooth quartic surface. If L S is a regular line, then it

is intersected by at most 18 other lines on S.

Proof. After a coordinate change, we can assume that L is given by
x9 =x3 =0.
We can then write an equation for S in the form

f = Z x;xéai,j(xo,xl) =0
1<i+j<4
where each «; ; is a homogeneous polynomial of degree 4 — (i + j) in the variables xo,x1.
Consider the morphism 7: S — P! from Proposition Since 7 only has finitely many
singular fibres, there exists at least one smooth fibre. After a coordinate transformation
in x9,x3, we can assume this fibre to lie in the plane xg = 0. Because all lines intersecting L
lie in singular fibres of 7, we can restrict our attention to planes of the form H) = Z(x3—Ax9)
for A € k. In every such plane, the intersection H; c S is given in Hj = P?(xo,x1,x2) by the

equation

j i+j
Z /1]362 Jai,j(xo,xl) =0.
1<i+j<4

This is a plane quartic curve which contains L as a component, represented by the equa-

tion x9 = 0. The residual cubic has equation

Z ij;j_lai,j(xo,xl):O. 3.1)

1<i+j<4
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Intersecting this with L, which is given in the plane H, by the equation xg = 0, we obtain

three points given by the cubic equation
galxg,x1) = a1,0(x0,x1) + Aap,1(x0,x1) =0

on L = PY(x,x1). Now we want to investigate when these points are inflections of C ;. We
consider the Hessian of C), obtained from Equation After restricting it to L, i.e.,

setting x9 = 0, this equation takes the form

02g1 azgﬂl 0 Je: -
ox? 0x00x1 0_96()Zi+j:2/1 @i,
_ ga ga 9 Ja: | =
ha(xp,x1) =det Dx00x1 W a—xIZi+j:2/1 i, j =0.

3 ' 3 ; ;
3 mivj=2 M @i e Yi=e My 24 =3 M ayj

We now claim that because L is a regular line, the polynomials g, and A, cannot have
any common factors in k[xg,x1,A]. To see this, we first show that g, is irreducible. Indeed,
since g, is linear in A, it can only be reducible if a;9 and ag ;1 have a common factor.
Because the ground field % is algebraically closed, we can write both as the product of
three linear forms. If there is one linear factor that divides both, then after a linear
coordinate change, we can assume that this common factor is x1. Consider the affine open

subset {xo = 1} of P2. In this subset, the surface S is given by the equation

> xéxéai,j(l,xl) =0.
1<i+j<4

Every monomial of this equation is at least quadratic, since @ 1(1,x1) and aj0(1,x1)
are both multiples of x;. In particular, the origin is a singular point, and consequently,
the point (1:0:0:0) is a singular point on the projective surface S c P3. Hence, the
polynomial g, must be irreducible in k[xg,x1,A]. The only way for g, and h, to have
a common factor is thus if 4, is a multiple of g;. However, if that were the case, then
for every A € k, the three points on L where g, vanishes, i.e. the three points in the
intersection of L with the cubic curve C, would also be roots of 4, i.e. inflections of C}.
This would then imply that L is inflectious, contrary to our assumption.

With g, and A, being coprime, their resultant with respect to x( is nonzero. Because g

and A ) are both homogeneous in xg,x1, the resultant is of the form

r(A)-x%
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for some polynomial r € k[A] and £ € N. We can thus compute r as the determinant of the
Sylvester matrix of g(xo,1) and A ,(xo,1) with respect to xo. Now, noting that a; ;(xg,1)
has degree at most 4 — (i + j) in xo, the degrees of g, and A, are both at most 3. This
results in a 6 x 6 Sylvester matrix, where the coefficients of g, have degree at most 1
in A, and the coefficients of &) have degree at most 5 in 1. The degree of r(1) is thus at
most 3:-1+3-5=18.
As a consequence, at most 18 fibres of 7 can contain lines. Recall that the number of
lines in any fibre is either zero, one, or three. A priori it might be possible that a given fibre
contributes only one root to the polynomial (1), but contains three lines. It thus remains
to prove that this cannot be the case.
Suppose there is a fibre of 7 that consists of three lines. We can assume that this fibre
lies in the plane Z(x3), corresponding to A = 0. By Equation the residual cubic is
given by
4
Y xba; o(x0,21) = 0. (3.2)
i=1

We will now distinguish two different cases.

First we assume that there are two lines in this fibre whose intersection does not lie
on L. In this case, we may assume that within the plane Z(x3) = P%(x,x1,x2), they are
given by the equations xo = 0 and x; = 0, respectively. Because both lines are contained
in the fibre given by Equation the polynomial x¢x; must divide Z?leé_lai,o(xo,xl),

and hence each individual a; . We can thus write

a1 = bxgxy + cxocs
@2,0 = AX0X1
ago=0

Q40 = 0.

A computer-aided computation (see Appendix[A.2), which was not provided in [20]], then

confirms that indeed 0 is a triple root of r(A).
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The second case is that two such lines do not exist. In this case, all three lines in the
fibre and L must intersect in one single point, and we can assume that the lines are given

by equations

x1=0
bx1+x9=0
cx1+x9=0.

The fibre is thus given by the equation
x1(bx1 +x2)(cx1 +x2) = 0.
After expanding this product, we can write

a1o0= bcx“i’
@20 = b+ c)x%
aso=0

Q40 = 0.

Another computer-aided computation (see Appendix[A.2), which again was omitted in [20]
will reveal that in this case, 0 is in fact a root of degree 5 of r(A).
To conclude, every fibre that contains three lines also contributes at least three roots

to r(1), and thus there can only be at most deg(r) = 18 lines on S intersecting L. O

3.4 Remark. This proof also implies that the seemingly weaker definition of an inflec-
tious line from [20], which was mentioned in Remark [2.7] is equivalent to the one from
Definition

Indeed, we have implicitly shown that a regular line can only intersect at most 18 fibres
of its corresponding elliptic fibration in a point of inflection. Therefore, a line that is of the
second kind in the sense of [20] must also be inflectious in the sense of Definition

For a cubic surface S c P?, recall that lines in fibres of the morphism 7: S — P! always
come in pairs, and a trio of coplanar lines is the complete intersection of S with the
corresponding plane. Whenever there is a plane such that its intersection with S consists
only of lines, every other line on the surface must intersect exactly one of the lines in this
plane. In the case of a smooth quartic surface S cP3, a fibre of 7 can contain either zero,
one, or three lines, and only the latter case allows us to use this reasoning. However, this

case is common enough to still be useful.
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3.5 Lemma. Let S c P? be a smooth quartic surface. If a line L c S is intersected by more

than twelve other lines on S, then three of those lines are coplanar.

Proof. Assume that L is not intersected by three coplanar lines on S. Then all the lines
intersecting L occur in fibres of type I or I1I. Each of those fibres has an Euler-Poincaré
characteristic of at least 2. Since the Euler-Poincaré characteristics of all singular fibres
must add up to e(S) = 24 3-°] there can be at most twelve such fibres. O

Another tool we will use is the flecnodal divisor. The term flecnode classically refers to
a point on a plane curve where an inflection and a node coincide. However, we will use a
more general definition. We consider a point P on a curve C a flecnode if there is a line L
that intersects C with multiplicity 4 at the point P. Note that a flecnode in the classical
sense satisfies this definition, because one can take L to be the tangent line at P of the
branch of C that has an inflection at P. The more general definition also includes cases
such as tacnodes or smooth points on lines. This motivates the following definition of a

flecnodal point on a smooth surface.

3.6 Definition. Let S be a smooth algebraic surface in P3. A point P € S is called a
flecnodal point of S if there exists a line L c P? such that

ip(L,S)=4.

The definition of a flecnodal point of a surface is closely related to the definition of a
flecnode of a plane curve. Let P € S be a point on S and let H be the tangent plane of S at P.
If L c P is a line with i p(L,S) = 4, it must be contained in H, and we can compute the local
intersection number i p(L,S) = i p(L,S N H) within the plane H = P2. Since ip(L,S) = 4, the
point P is a flecnode of the plane curve SN H.

Flecnodal points on S are useful because every point P on a line L < S is a flecnodal
point. Indeed, the line L itself intersects S with infinite multiplicity at each of its points.

We now consider the following result about flecnodal points.

3.7 Lemma. Let S c P2 be a smooth projective surface of degree d = 3. Then there is a
surface F < P3 of degree (11d — 24) such that the intersection F 0 S consists precisely of the
flecnodal points of S. Furthermore, if the characteristic of k does not divide d(d — 1)(d — 2),

then S is not a component of F.

[3.b]gee [12], p- 12. The Euler characteristic here is obtained via the second Chern number c9(X), which is
computed on p. 8
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Proof. For the existence and degree of F', see [3]l, p.102f. In [17], Lemma 2.10, it is
shown that S is not contained in F in characteristic zero. Lastly, the result for positive

characteristic is proven in Theorem 1 in [30]. O

3.8 Remark. For cubic and quartic surfaces, the assumption that the characteristic p of
the ground field £ does not divide d(d — 1)(d —2) is equivalent to the assumption that p is

not 2 or 3.

This lemma shows that the locus of the flecnodal points of S is a divisor Fg on S of
degree d(11d —24).

3.9 Definition. Let S c P2 be a smooth quartic surface. Then we denote by Fg the divisor

of flecnodal points on S and refer to it as the flecnodal divisor.

3.10 Remark. Note that in the case of quartic surfaces, the divisor Fg is linearly equivalent
to 20-H for any plane section H c S, because it arises as the intersection of S with a surface
of degree 11-4 —24 = 20. In particular, for any curve C c S, the intersection number C - Fg
is given by

C-Fs=C-(20H)=20(C-H)=20degC

where H c S is a plane section. We will make use of this fact at multiple points.

Immediately we can see that all lines that lie on a smooth surface must be components
of its flecnodal divisor, since all points lying on such lines are flecnodal, as mentioned right
before Lemma In particular, we obtain an upper bound on the number of lines on any

smooth surface of degree at least 3.

3.11 Corollary. Let S c P3 be a smooth algebraic surface of degree d = 3. Assume that the
characteristic of k does not divide d(d —1)(d —2). Then S contains at most d(11d —24) lines.

For d = 3, this works out to be 27 and the upper bound is in fact optimal. For quartic
surfaces however, we have 4(11-4 —24) = 80, which is strictly larger than the actual
maximum of 64. We can still make use of the flecnodal divisor if we can show that it has
some components which are either duplicates of some lines, or not lines at all.

We will now prove the main theorem of this section, originally proven by Segre [26], but

here presented following the more modern proof from [20].

3.12 Theorem (Segre, 1943). Let S c P3(k) be a smooth quartic surface over an algebraic-
ally closed field k whose characteristic is not 2 or 3. Assume that all lines on S are regular
as per Definition Then S contains at most 64 lines.
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Proof. Assume that all lines on S are regular. This proof will be split into several distinct
cases.

Let us first assume that S contains four coplanar lines. Then these four lines form the
intersection of S with some plane. Consequently, all other lines on S must intersect at
least one of these four lines. Since each can only be intersected by at most 15 additional
lines by Proposition there can be at most 4+4-15 =64 lines on S.

For the rest of the proof, we will always assume that S does not contain four coplanar
lines. In particular, whenever two lines on S intersect in a plane H, the intersection S N H
consists precisely of the two lines and a smooth conic. Furthermore, by Lemma [3.5] every
line on S intersects at most twelve other lines.

Now we consider the case where S contains two intersecting lines L1 and Lg such that
the coplanar conic is not a component of the flecnodal divisor Fg. By Remark the
conic then has an intersection number of 40 with Fg, and since all lines are components
of Fg, the conic can intersect at most 40 lines on S, where L1 and L9 are each included
twice. Since every additional line on S has to intersect either L1, Lo or the conic, there can
be at most 2+2-11+(40—-2-2) =60 lines on S.

We can now assume that for any two intersecting lines on S, the corresponding conic is a
component of Fg.

If S contains at least eight such pairs, then the eight corresponding conics form com-
ponents of total degree 16 of Fg. Since degFs = 80, all other components of Fg have a
combined degree of 80 — 16 = 64. Since all lines on S are components of Fg, the surface S
can contain at most 64 lines in this case.

The last remaining case is that S contains exactly n pairs of incident lines where 0 <n < 7.
Any line on S that is not contained in any of these n pairs intersects no other line on S.
Consider now the Picard group of S. Note that any set of r disjoint lines on S is Z-linearly
independent in PicS. Indeed, let L1,...,L, c S be mutually disjoint lines, and assume we

have a relation
arLp+---+a,L,=0

with coefficients a; € Z. Then we can intersect the divisor on the left hand side with any
line L; for some fixed j€{1,...,r}. Because L;-L; =0foralli# jand L;-L;=-2, we
conclude —2a; = 0 and thus a; = 0. Because this holds for all j, the lines are linearly
independent in PicS.

In particular, such a set of r mutually disjoint lines forms a free sub-Z-module of PicS

of rank r. Consequently, r is less than or equal to the rank of PicS. Because PicS has

47



3. QUARTIC SURFACES

rank at most 22 there can be at most 22 pairwise skew lines on S. Thus in total,the

surface S contains at most 2n + 22 < 36 lines in this case. O

3.3 FIBRE TYPES

As mentioned before, inflectious lines evade the reasoning from Proposition If a
line L on a smooth quartic surface S c P? is regular, then we saw in Proposition that
there can be at most 18 fibres of the morphism 77,: S — P! from Proposition which
intersect L in a point that is an inflection of the fibre. These are the only fibres in which
lines can occur. On the other hand, if L is inflectious, every fibre of 7 is a priori a potential
candidate for containing lines. In order to establish a sharp upper bound on the lines
intersecting an inflectious line L, we thus need to examine more closely which Kodaira
types the fibres of the morphism 7 can have. This depends on the ramification of the curve
morphism 7z |;, : L — PL

Our goal now is to make use of the theory of elliptic surfaces, but a priori the elliptic
fibration 7 does not necessarily have a section. To deal with this problem, we will use a
base change as described in Chapter [2]

3.13 Proposition. Let S c P be a smooth quartic surface containing an inflectious line L.
Consider the morphism n = n,: S — P! from Proposition which makes S into an elliptic

surface. Then there exist a smooth curve B and a base change

Sg——->8
ﬂzl li‘[
1

such that the elliptic fibration S9 — B in the diagram above has non-trivial 3-torsion

sections.

Proof. Let S c P be a smooth quartic surface containing an inflectious line L and let 7 = 77,
be the associated elliptic fibration.

Consider the morphism of curves L — P! induced by 7, and the fibre product

SxpL——=38

|

L——PL

[3-¢JThis holds for all K3 surfaces, see [12], Remark 1.3.7. For complex K3 surfaces, this bound can be improved
to 20 ([12]], p.11).
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Consider now the identity L — L and the inclusion map L — S. The diagram

L

SxprL —— S

|

L——P!

commutes and the universal property gives a morphism L — S xp1 L which by construction
is a section of the fibration S xp1 L — L. By Proposition[2.29] we can find a smooth minimal
elliptic surface S1 over L that is a model of S xp:1 L with a section.

Now note that the morphism L — P! has degree 3 and corresponds to a field exten-
sion k(L)/k(t) of degree 3. Because the characteristic of & is not 3, this extension is
separable. Its Galois closure is the function field 2(B) of some smooth curve B, and any
embedding k(L) — k(B) corresponds to a curve morphism B — L. Because [k(L): k()] =3,
there are three such embeddings. After fixing one, we can do another base change, by

considering the cartesian diagram

S1xpC——81

|

B L.

For each of the three morphisms B — L, we obtain a map B — S1 by composing it with the
section L — S;. Similarly to the construction above, by the universal property of the fibre
product, these three maps B — S1, together with the identity map B — B, induce three
different sections B — S x, B. After replacing the elliptic surface S; x7, B with a smooth

minimal model, the sections are retained and we have a commutative base change diagram

Sg-->81——-=S8

o

B—>L—>P

where the dashed arrows represent rational maps.

We shall fix the three sections and call them o, 01, and o9. Let o be the zero section. We
now claim that o1 and o9 are 3-torsion sections and each other’s inverses. It is enough to
show this on the smooth fibres of S9 — B.
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Let F' be such a smooth fibre, and let O,%,%9 be the three points on F intersected

by 0,01,02 respectively. Consider the base change diagram

Sy-2~8
7'[2[/ l]‘[

_ P
B— Pl

Note that this base change preserves all but finitely many smooth fibres of 7. More
precisely, Let P € B such that the map ¢ is unramified at P and let F' be the fibre of 72
above P. Then the rational map ® induces an isomorphism from F' to the fibre Fig of ©
above @(P). By construction, the three points O,X, and X9 then correspond to the three
points of intersection of Fig and L. In particular, they are collinear. Furthermore, since L
is inflectious, all three points are points of inflection of F'. Since O is the zero point of the
elliptic curve F, we can conclude by Corollary that

0=0+21+22=21+22.

By Corollary it follows that they are indeed 3-torsion points of F'.
Note that ¢ can only ramify at finitely many points, and therefore this holds for all but
finitely many smooth fibres of 72. Therefore, indeed o1 and o9 are 3-torsion sections and

each other’s inverses. O

3.14 Remark. Because the group of sections of an elliptic surface induces a group structure
on the smooth points of each singular fibre by Theorem 5.22 in [25]], and because 3-torsion
sections are disjoint outside of characteristic 3 by Proposition 6.33 (v) in [25], Sg can only
contain singular fibres which admit non-trivial 3-torsion. By Table 4.1 on page 365 in [28],
this leaves only fibres of type I,,, IV, and IV*.

Note that Proposition tells us exactly how singular fibres behave under such a base
change Sy --+ S. In particular, the important factor is the local ramification behaviour
of the morphisms of base curves L — P! and B — L. We can use this to draw conclusions
about the possible types of singular fibres on S.

However, before doing so, we can place some inherent restrictions on how an inflectious
line can intersect singular fibres. Assume that S c P3 is a smooth quartic surface containg
an inflectious line L. Let I° c S be the set of inflection points on the smooth fibres. Further
let L9 consist of those points of L such that the corresponding fibre of 7 is smooth. Note

that L? is dense in L because its complement consists of only finitely many points. Since L°
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is contained in I° by definition, because L is inflectious, it follows that the closure of L,
which is L, must be contained in the closure of I°.

The following lemma gives some information on how this closure can intersect singular
fibres.

3.15 Lemma. Let I° be the set of points P € S such that P lies on a smooth fibre of m and
is an inflection of this fibre. Consider the closure I of I°. Then the following holds for any

singular fibre F of n. Note that by ‘smooth point’, we mean a point that is smooth on the

fibre F.

a) If F is of type 11, then F N1 contains at most three smooth points.

b) If F is of type I, then F NI contains at most three smooth points, all of which lie on

the line component.
¢) If F is of type I3, then F N1 consists of three smooth points on each line.
d) If F is of type II, then F NI contains exactly one smooth point.

e) If F is of type I, then F NI contains exactly one smooth point, which lies on the line

component.

P If F is of type IV, then F NI contains at most one smooth point on each line.

Proof. We will provide a sketch of the proof, expanding on a brief argument from [20].
By taking a sufficiently general plane section of S, we can find a curve D c S such that D
is smooth and intersects F transversally. Considering the morphism 7: S — P! and its

restriction 7 |p : D — P!, we have a base change

SxpD——>8

A
D —PL
7lp
Similarly to the the proof of Proposition|3.13] the inclusion D — S together with the identity
map on D induces a section 7: D — S xp1 D of p.
Like we did before, we can replace the fibre product S xpi1 D with a smooth minimal
model, an elliptic surface S’ above D, and refer to this as the base change.
Because D intersects F' transversally, the map D — P! is unramified at the transversal
point of intersection on F. In particular, the fibre F is isomorphic to the corresponding

fibre on the base change.
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The section 7 does not necessarily intersect each smooth fibre in a point of inflection, so
the inflections do not necessarily form the 3-torsion subgroup of any smooth fibre when
this section is chosen as the zero section. However, they do form a coset of the 3-torsion
subgroup, as we will now show.

For ease of notation, let s € D be the point above which the fibre F lies. Note that on
a smooth fibre, if 7(s) is a point of inflection, then by Corollary any three collinear
points add up to zero (i.e. to 7(s)). Because the choice of a different zero point of such a
curve corresponds to a translation in its Picard group by the definition in Corollary
even if 7(s) is not a point of inflection, any three collinear points add up to the same point,
which we will refer to as L. In particular, this implies that for any inflection P on a smooth
fibre, it holds that 3P = L, and the inflection points on a smooth fibre are precisely the
translation of the 3-torsion group by L.

This property also carries over to the smooth part of the singular fibres in the sense
that the points in F'Nn I that are smooth points of F' are precisely those points P such
that 3P = L, where L still denotes the sum of any three collinear points. Now consider each

type separately, noting that the group structure on the fibre is given by Table 4.1 in [28].

a) A fibre of type I; has precisely three 3-torsion points on its smooth part. Any coset of

this must also consist of three points on the smooth part of the fibre.

b) A type I9 fibre has three 3-torsion points, so there are three smooth points in F n 1.

We want to show that these smooth points all lie on the line component.

We claim the point L which is the sum of any three collinear points must lie on the
line component. To see this, consider the proof of Corollary [2.12] while dropping the
assumption that O is an inflection. It follows that the sum of any three collinear
points is 7(s) * 7(s), which is obtained by considering the tangent at 7(s) and then
taking the third point of intersection of that tangent with the curve. Because this
tangent intersects the conic with multiplicity 2, this point must always lie on the

line component.

Because the component group of F is Z/27, for any smooth point P € F, the point 3P
lies on the same component as P. In particular, all points that satisfy 3P = L must

lie on the line component of F'.

c) If F has type I3, note that the 3-torsion subgroup of F' has order 9, consisting of three

points per component. The same must hold for any coset of this subgroup.

d) If F has type II, then there is no non-trivial 3-torsion, so there can be only one smooth

point of F' in the intersection F N I.
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e) For type III, we can use the same argument as for type I9, except the 3-torsion
subgroup is trivial in this case, so there is only one instead of three smooth points on

the line component.

f) Similarly, type IV is analogous with type I3 with the difference being that there
is only one 3-torsion point per component rather than three. The coset thus also

consists of one smooth point per component.
O

3.16 Remark. The corresponding result in [20] extends also to the singular points of each
fibre. It is claimed that the singular points of each fibre F' are also contained in the set Fn1,
except in the case of type I3.

Note that I intersects each fibre with multiplicity 9, and since for a fibre F' of type I3 the
set F' NI already contains nine smooth points, it cannot also contain any of the three nodes.
This is an important observation that we will use later.

In all other cases, we are content with the observation that the singular points could,
but do not necessarily need to, be included in the set F'n 1. This will be sufficient for our

purposes.

With this lemma in mind, we can now analyse the possible types of singular fibres
depending on the ramification behaviour. Recall that a priori, the possible fibre types
are I, I, I3, 11, III, and IV as we saw in Example

3.17 Lemma. Let S c P be a smooth quartic surface containing a line L with corresponding
elliptic fibration n: S — PL. Let F be a singular fibre of n such that the map L — P! is
unramified at F. Then F is of type 11, I3, or IV.

Proof. Since F is an unramified fibre, it meets L in three distinct points. These points
must be smooth points of F, since the intersection multiplicity at a singular point would be
higher than one, so there could not be three distinct intersection points.

We want to show that this rules out fibres of type I, III, and I5.

Indeed, consider first the case that F' has type II. By Lemma there is only one
smooth point on F that can be intersected by L.

If F were of type III or I3, then if the fibre were to be unramified, the line L would
have to intersect it in two distinct smooth points on the conic. This is impossible by
Lemma O

Now we consider ramified fibres. These fall into two different categories, with different

geometric behaviours. Namely, the degree 3 morphism L — P! can have either zero, one or
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two preimages at a ramified fibre. In order to make it easier to speak about the different

types of ramification, we shall use the following terminology.

3.18 Definition. Let ¢: C; — Cq be a curve morphism of degree 3. We say that ¢ is totally
ramified at a point P € Cq if its ramification index is 3, i.e. it has one preimage under ¢.
If P has ramification index 2, i.e. precisely two preimages under ¢, then we call it partially

ramified.

Note that while ‘total ramification’ is standard terminology, ‘partial ramification’ is not.
It simply happens to be useful in the case of degree 3 morphisms due to the limited number
of possible ramification indices.

Before examining how local ramification indices affect possible fibre types, it is worth
noting that there cannot be any points in P! that ramify with index 6 in the Galois
closure B — P!. This is an important observation which is implicitly used in [20] while
dealing with ramified fibres, without ever being explicitly stated. We shall give a proof

here.

3.19 Lemma. Let ¢: C1 — Cqo be a morphism of smooth curves such that the corresponding
extension of function fields k(C1)/k(C2) is Galois and its Galois group is the symmetric
group Ss.

Then ¢ does not admit ramification of index 6.

Proof. Note that the order of the symmetric group Sg3 is 6, and thus so is the degree of the
morphism ¢. In particular, if there is a point P € Cy such that ¢ ramifies above P with
index 6, it follows that P has only one pre-image, say @ € C1.

Consider the decomposition group D of @ as defined on page 21 of [27]]. Then we can
consider the fixed field £p of this decomposition group in the Galois extension £(C1)/k(Cs)
and by loc. cit., the degree of the extension kp/k(C2) is equal to the number of points on C;
lying above P, which in this case is 1, as only @ lies above P. Therefore, the decomposition
group must be equal to the Galois group Gal(k(C1)/k(C2)), which is isomorphic to Ss.

Furthermore, the inertia group of @ as defined in loc. cit. is the kernel of a homomorph-
ism € from D to the Galois group of the extension of the residue fields of the local rings at @
and P. In this case, both residue fields are equal to the ground field %, and so this Galois
group is trivial. It follows that the kernel of the group homomorphism &, which is the
inertia group, must be the entire decomposition group. As we have seen, the decomposition

group is isomorphic to S3, and so the same holds for the inertia group.

[3-21More precisely it would be the decomposition group of the maximal ideal in the local ring of C1 associated

to @.
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This however leads to a contradiction. To show this, we consider the ramification
groups G; as defined in Proposition 1 in Chapter IV, §1 in [27], where G is the aforemen-
tioned inertia group. In the same section of op. cit., it is shown in Corollary 2 that G
must be cyclic if the characteristic of the ground field % is zero, which is a contradiction. In
positive characteristic, we consider in the same section of op. cit. the Corollaries 1 and 3.
Corollary 3 states that G1, which is a normal subgroup of G¢ is a p-group, where p = chark.
Since we assume chark # 2,3, the only possible p-subgroup of S3 is the trivial subgroup {1}.
It follows that the quotient G¢/G1 is equal to the group Gy itself, but by Corollary 1, this
quotient must be cyclic. We thus again arrive at a contradiction.

Therefore, ramification of index 6 is impossible. O

Note that if the morphism L — P! is already Galois, then the curve B is equal to L, and
the morphism B — P! has degree 3. In this case, it is trivial that ramification of index 6
cannot occur. On the other hand, if L — P! is not Galois, then the field extension £(B)/k(L)
must have Galois group S3, since it arises as the Galois closure of a degree 3 extension.

Therefore, we can apply this lemma to the base change in Proposition|3.13

3.20 Lemma. Let S c P be a smooth quartic surface containing a line L with corresponding
elliptic fibration m: S — PL. Let F be a singular fibre of n such that the map L — P! is
ramified at F.

a) If L — Pl is partially ramified at the fibre F, then F is of type II.
b) If L —P!is totally ramified at the fibre F, then F is of type 11, 12, or IV.

Proof. To prove this, we will go through all fibre types that are possible in the fibration S —
P! and determine under which ramification types they can occur. In the following we will
always assume that F is a fibre of 7 such that the map L — P! ramified at F.

We start by considering fibres of type I3. If F is an I3 fibre, it consists of three lines,
intersecting in three distinct points. If L — P! were to ramify at F, the line L would have
to meet one of the three nodes. By Lemma this is impossible.

If F has type IV, then with similar reasoning the line L it must meet the node of F'. It
immediately follows that L — P! is totally ramified at F.

If F has type I9, then note that L can not intersect any smooth points of the conic
component of F' by Lemma Furthermore, if L intersected both nodes, it would be
equal to the line component of F', which is impossible. It follows that L must intersect one
of the nodes tangentially to the conic, i.e. with multiplicity 3. Therefore, the map L — P! is
totally ramified at F.
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A similar argument shows that type III does not occur at all. Indeed, the line L can only
intersect the conic component of a fibre F of type III in the tacnode, and would thus have
to be tangential to the conic there. But this would make L identical to the line component
of F', which is impossible.

Now assume that F' has type I1, and assume for the sake of contradiction that L —
P! is partially ramified at F. Let Sy — B be the base change from Proposition
Because the ramification is partial, the extension k(L)/k(P!) cannot be Galois, and thus
the extension k(B)/k(L) must have degree 2. If ¢ € P! is the point above which F lies, then
from the fact that B — P! is Galois, it follows that there must be precisely three points
on B lying above ¢, all with ramification index 2.

By Proposition this leads to three fibres of type I on the elliptic surface Sg. Since
the component group of a fibre of type I is isomorphic to Z/27Z, the three 3-torsion sections
must then intersect the same component of each I fibre.

However, we can also show that L must meet the node of F. Indeed because we assumed
the map L — P! to partially ramify at F, the line L must meet one point of F with
multiplicity 1, and another with multiplicity 2. However, if L were to meet a smooth point
of F' with multiplicity 2, then this point could not be an inflection of F', contradicting the
assumption that L is an inflectious line. So L must intersect the node of F' transversally to
both branches.

Going from the fibre product S xp1 B to the smooth minimal model Sg, each fibre of type I;
gets blown up once, and the two sections of Sg corresponding to the intersection of L with
the node of F' intersect each resulting Io-fibre in the exceptional curve, whereas the third
section intersects it in the other component. This directly contradicts the conclusion above
that all three sections must meet the same component. Fibres of type I; can thus not be
partially ramified.

Lastly, we consider the case that F' is of type II. By Proposition after the base
change Sy --+ S, the fibre gets replaced with fibres of type IV or type I, depending on
whether the local ramification index of the map B — P! is 2 or 3 respectively. As discussed
above Sg cannot have fibres of type I, and thus F' must have ramification index 2, i.e. be

partially ramified. O

3.21 Remark. Neither here nor in the proof of Lemma did we show that the mentioned
fibre types can actually occur in practice, so it should be noted that for each fibre type
listed in the preceding lemmas, there exists an example of a smooth quartic surface in P3
containing an inflectious line such that the corresponding elliptic fibration has a fibre of

the respective type. We will not prove this, however.
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Now that we have examined fibre types dependent on the local ramification behaviour,
we want to look at the global consequences. Notably, the degree of the map L — P! and
the genera of L and P! limit the number of ramified fibres. Because all ramification
indices divide 6, and the characteristic of the base field is not 2 or 3, there can be no wild
ramification. We can thus use the Riemann-Hurwitz formula (see [9]], Corollary IV.2.4),
and find that

2-g(L)-2=3-2-gPH-2)+ Y (ep-1), (3.3)
PeB

where ep is the ramification index of the map L — P! at P and g denotes the genus.
Since g(L) = g(P') = 0, we find that

Y (ep-1)=4. (3.4)

PeB

Since the ramification index at a point P cannot exceed 3, there are the following three

different ramification configurations.

3.22 Proposition. Let L be a projective curve of genus 0. Then a morphism L — P! of
degree 3 has

a) two totally ramified points in P,
b) two partially ramified points and one totally ramified point, or
¢) four partially ramified points.
where ‘totally’ and ‘partially’ ramified are defined like in Definition [3.18|

With this knowledge about the global ramification behaviour of x|y, and the local in-
formation about which fibre types can occur in which ramified fibres, we will now examine

specifically how many lines can lie in the fibres of 7 when L is inflectious.

3.4 LINES ON S INTERSECTING THE INFLECTIOUS LINE L

In this section let S c P2 be a smooth quartic surface containing an inflectious line L.
Regular lines on S intersect at most 18 other lines on S by Proposition Segre [26]

claimed to have proven that the same maximum also holds for inflectious lines. Example
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6.9 in [20] shows that this is false by giving a smooth quartic surface with an inflectious
line that is intersected by 20 other lines on the surface. In this section, we will show
that 20 is indeed the correct maximum.

Knowing which fibres S can have over points with each ramification type, we can
now determine the number of lines in the fibres, i.e. the lines on S intersecting L, in
each global ramification configuration. For this, we consider the elliptic surface Sg from
Proposition [3.13] Viewing Ss as an elliptic curve E over k(B) as explained in Chapter 2| we
can identify a 3-torsion subgroup consisting of the three points on the curve corresponding

to the sections 0,01 and g9. This subgroup, call it T'c E, induces an isogeny
n:E—E' (3.5)

to a different elliptic curve E' over k(B) such that kerz =T On the group level, E’
can be thought of as the quotient E/T. But more importantly, E’ corresponds to an elliptic

surface S, and we have a rational map
Sy --+8, (3.6)

of elliptic surfaces over B. This map becomes very useful when we take into account the

following observation, which is mentioned, but not proven in [20].
3.23 Lemma. The surfaces Se and S’2 have the same Euler-Poincaré characteristic.

Proof. This result can be concluded from Noether’s formula, which may be formulated for

any algebraic surface S as
124(S) = K& +e(S), (3.7)

where y(S) = y(Og) is the characteristic of the structure sheaf on S, which will be defined be-
low; Kg is the canonical divisor on S, with Kg denoting its self-intersection; and lastly e(S)
is the topological Euler-Poincaré characteristic. We refer to p. 472 in [8] for this formulation
of Noether’s formula, where it is proven in Section 6 of Chapter 4.

For a topological space X and a sheaf F on X, the characteristic y(F) is defined to be

x(F) =Y (-1) dimy, H (X, F),

=0

[3-¢]proposition I11.4.12 in [29]
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where H:(X, F) is the i-th cohomology group (see Exercise IIL.5.1 in [9] for this definition).
By Grothendieck’s vanishing theorem (Theorem III1.2.7 in [9]) all terms of index i greater

than 2 vanish in the case of a surface, and the sum reduces to
1(Og)=h° —hl+h2,

where k' denotes dimy, H*(S, Og).

These numbers A’ for i =0,1,2 can be given explicitly. In Section 6.10 of [23] it is
stated that 2% =1, h! = g, where g is the genus of the base curve, and A% =p g» which is
the geometric genus of the surface S.

Applying all of this to the surfaces Sg and Sj, here, we find that the numbers h° and A!
must be equal between the two surfaces. Furthermore, the canonical divisor has self-
intersection O (see Theorem 6.8 in [23]]) on both surfaces. Therefore, it suffices to show that
the geometric genera of the surfaces are equal to then conclude from Noether’s formula
that the topological Euler characteristics e(S2) and e(S;) must also be equal.

By blowing up Sz along the locus where the rational map Sg --» Sj, is undefined, we
can obtain another surface B(S2) with a birational morphism B(Sg) — Sg such that the
composed map B(S2) — S3 --+ S, is a morphism.

By exercise I11.9.3 (a) in [9]l, this morphism f: B(S2) — S’2 is flat.

Generically, f constitutes a 3:1-map, so for any x € B(Ss2),y = f(x), the degree of the
extension of residue fields £(x)/k(y) is at most 3. Because £ does not have characteristic 2
or 3, this extension must be separable.

Furthermore, there is an open subset V c 8., such that for U := f~1(V), the restric-
tion f |‘(§ U — V has exactly 3 pre-images for every v e V. Thus f |g is unramified.

By exercise II1.10.3 in [9], it follows that Qv =0, and thus f |¥] is smooth of relative
dimension 1.

For each u e U,v = f(u) € V, we can conclude, using Proposition II1.10.4 in [9], that the
induced map on tangent spaces T,, — T, is surjective, and thus the map on cotangent
spaces

fr: QS’Q/k ® k(u) — Qps,m © k(u)

is injective for every u € U.

It follows that the map on global sections

r'V,wy)—T(V,0y)

[3-{1Note that 4! in the notation used here corresponds to A50 in the notation used in 1231
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is injective as well.
Since V is a dense open subset of S.,, and nonzero global sections on an invertible sheaf

cannot vanish on a dense open subset, we can conclude that the map of vector spaces
F(S'z,a)s/z) —T'(U,wy)
is injective. Because it factors through
£ F(S’z,ws/z) —T'(B(S2),0B(s,))
the latter map is injective as well, and thus we find
Pg(B(S2)) = p4(Ss).

Because Sg and B(S2) are birationally equivalent, they have the same geometric genus

by Theorem I1.8.19 in 9], and so we finally conclude that
pg(SZ) = pg(S/z)

By Theorem III1.6.1 in [29]], every isogeny E — E' of elliptic curves has a corresponding
dual isogeny E’ — E with certain properties. Using this dual isogeny, we can apply the

same logic to obtain the other inequality, and thus
pg(S2) = pg(S,Q)-

O

The Euler characteristic of an elliptic surface is an interesting property because it is
equal to the sum of the Euler characteristics of all its fibres by Lemma IV.3.3 in [18]].
The Euler characteristic of a fibre depends only on its type, and the numbers are given in
Table IV.3.1 in [18]].

In order to draw conclusions from this, we first need to examine how fibres on S cor-
respond to fibres on the elliptic surfaces S and S ’2 from above. We correct a small error
in [20] which inadequately dealt with the case where the map L — P! is not Galois, and

provide some more detail in the proof.

[3-010ften referred to as Euler numbers.
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3.24 Lemma. Let Sy — B be the base change from Proposition Let d be the degree
of the field extension k(B)/k(t). The singular fibres on the elliptic surfaces S and S'2
correspond to the singular fibres of S according to the following table.

Fibre on S Fibre on Sp Fibre on S;,

Unramified I dx1Iq dxlIg
I3 dxIg dx1Iq
v dxI1V dxI1V
Ramified II 3xIV 3xIV
I %XI3 %xlg
I, %XI(; %x]lg
v %XIO %xlo

Table 3.1.: Singular fibres on S and the corresponding fibres on Sg and S,

Proof. The proof of this lemma consists of two separate parts, the base change Sy --+ S,
and the isogeny Sg --» S

For the base change, we use Proposition[2.31] The unramified fibres are replaced by n
fibres of the same type. For the ramified fibres, we need to examine the local ramification
indices. Note that by Lemma type II on S only occurs in partly ramified fibres, and
types I1,I2 and IV only occur in totally ramified fibres. Since the extension k(B)/k(P1)
corresponding to the map B — L — P! is Galois, for any ¢ € P!, the local ramification indices
of all points of B above ¢ must be identical.

In particular, fibres of type II on S only occur in the non-Galois case, where B — L is a
map of degree 2, and there are three points on B above such a fibre, all with ramification
index 2 above PL. By Proposition the fibre of type II on S gets replaced by three fibres
of type IV on Ss.

Ramified fibres of the remaining three types have total ramification which could occur
in both the Galois or the non-Galois case, and we need to treat these cases separately.
If L — P! is Galois, the map B — L is trivial, and above any totally ramified fibre there
is exactly one fibre of S of ramification index 3. By Proposition if the fibre on S if
of type I,,, the resulting fibre on Sy will be of type I3,, and if the fibre on S is of type IV,
the resulting fibre on So will be smooth. Note that in the Galois case, n =3, and so % =1,
which is consistent with the table.

Lastly, if the morphism L — P! is not Galois, the Galois closure is a degree 2 morph-
ism B — L, and the composed map B — P! has degree 6. A priori, a totally ramified point

in P! could split into one point on B of ramification index 6, or two points of ramification
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index 3 each. However, the first case is not possible, as was discussed ahead of Lemma |(3.20
Hence, the ramified fibres of types I1, I3 and IV of S each split into 2 = % fibres on So,
and because the local ramification indices are all 3, the types are given as in Table [3.1] by
Proposition [2.31]

This proves the second column of Table To examine how fibres change under the 3-
isogeny Sg --» S’z, we will use section 7.8.1 from [|23]], which describes the desired behaviour
for fibres of type I,,. Notably, a fibre of type I,, on So gets replaced by a fibre of type I3,
on S’2 if the 3-torsion section o1 meets the zero component of I,,, and by I,/3 otherwise.
Note that 01 meeting a nonzero component of an I,, fibre implies that the component group
of the fibre has 3-torsion, and since the component group is Z/nZ, this is equivalent to n
being a multiple of 3, and thus § must be an integer in this case. Consequently, we only
need to examine how the section 01 meets the fibres on So, depending on the type of the
corresponding fibre on S.

For an unramified fibre F' of type I1, this is obvious, since the fibres above F on S9 are
also of type I1. All sections must necessarily meet the zero component, since it is the only
component available. Therefore, the corresponding fibres on S, must be of type I3.

For an unramified fibre F of type I3, note that on the surface S, the line L meets all three
components of F, since F' consists of three lines coplanar to L. On So, the three points of
intersection of L with F split into the three 3-torsion sections, which all meet different
components of the resulting I3-fibres on So. In particular, on S/, they get replaced by
fibres of type I.

If F is a ramified fibre of type I, then note that by Lemma [3.20] the ramification is total.
In particular, the line L intersects a single point on the fibre F' with multiplicity 3. Since
the corresponding fibres of type I3 on Sy are obtained via a blowup from the I fibre on
the fibre product S xp1 C, we can conclude that by construction, the three 3-torsion sections
must intersect the same component of the I3 fibres on Sg. Like above, it then follows from
section 7.8.1 in [23] that on S|, we obtain fibres of type Ig.

The same argument also works in the case of ramified fibres of type I, since they too

are necessarily totally ramified by Lemma (3.20 O

It is interesting to note that in this table, if we compare the Euler numbers of fibres
on Sy and the corresponding fibres on S/, almost all of them increase or stay the same.
The only case where the Euler number decreases is that of an unramified fibre of type I3
on S. However, the elliptic surfaces Sg and S|, have the same Euler-Poincaré characteristic
by Lemma which is equal to the sum of the Euler numbers of the singular fibres.

[3-bINote that this could be a single fibre in the Galois case, or two fibres in the non-Galois case.
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Hence, the positive change in Euler numbers between Sy and Sj, that comes from fibres
of types I1 and I3 on S must be offset by an appropriate number of fibres of type I5. We

make this precise in the following lemma.
3.25 Lemma. Fibres of type I,,, n >0, on S occur in pairs (I1,13) and triples (I2,13,13).

Proof. Consider Table and the Euler numbers of the fibres on S2 and Sj:

Fibreon S Euler nron S9 Euler nr on S '2 Difference

Unramified 14 n 3n +2n
I3 3n n —-2n
v 4n 4n 0
Ramified II 12 12 0
I n 3n +2n
I 2n 6n +4n
v 0 0 0

Table 3.2.: Euler numbers of the singular fibres on S and S

Since the sums of the Euler numbers of singular fibres on Sp and S;, must be equal,
fibres of type I3 and fibres of type I; and I9 have to balance out in such a way that the
differences add up to zero. Since I;-fibres always contribute 2n to the sum, each I; fibre
has to be balanced out by precisely one Is-fibre. Similarly, I5-fibres contribute 4n to the
sum and have to be balanced out by two I3-fibres. O

With this knowledge, there is very little possible variation left in the number of lines

intersecting the inflectious line L.

3.26 Proposition (Rams, Schiitt, 2015). Let S ¢ P? be a smooth quartic surface containing
a line L that is inflectious in the sense of Definition Then L is intersected by precisely

a) 12 other lines on S if L — P! has no totally ramified points,
b) 15 or 16 lines if L — P! has one totally ramified point, and
¢) 18, 19 or 20 lines if L — P! has two totally ramified points.

Proof. Let n: S — P! be the elliptic fibration corresponding to L.

Recall Lemmas and which state that type II fibres of 7 occur if and only if the
fibre is partly ramified. Totally ramified fibres can be of type I1, I and IV, and unramified
fibres are of type 11,13 or IV.
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The set of singular fibres is thus made up of three basic ‘building blocs’. First, we have
pairs of fibres of type II, which have total Euler number 4 and no lines, and make up all
partly ramified fibres. Note that partly ramified fibres indeed only occur in pairs, due
to Proposition Secondly, we have triples (I2,I3,I3), which have Euler number 8,
seven lines, and contain one totally ramified fibre. Lastly, there are fibres of type IV,
or pairs (I1,I3), both of which have Euler number 4 and three lines and can be either
unramified or contain exactly one totally ramified fibre. In the following analysis, we will
treat them as equal and only mention the pairs (I1,I3). It should however not be forgotten
that in the following, any pair (/1,3) (ramified or not) could be replaced by a fibre of type
1v.

Going through the three cases, we can now determine all possibilities.

a) If L — P! has no totally ramified points, and four partly ramified points, then there
are four fibres of type II, which contribute 8 to e(S) = 24. The remaining 16 are made

up of four unramified pairs (/1,3), which contain exactly 12 lines.

b) If L — P! has one totally ramified point, and two partly ramified points, then there
are two fibres of type II, and this time the remaining fibres have a total Euler number
of 20. The one totally ramified fibre now leaves us with two possibilites: there could
be one triple (I9,13,13), which would add seven lines for an Euler number of 8, or two
pairs (I1,13), one containing a ramified 1 and the other unramified, which add only
six lines for the same Euler number. In both cases, the remaining 12 comes from
three unramified pairs (I1,13), which add another nine lines. Thus in total there can
be either 7+9=16 or 6 +9 = 15.

¢) If L — P! has only two totally ramified points, then there are no type II fibres, so
the minimal number of lines is 18, corresponding to six pairs (I1,I3). There are two
independent choices each between one triple (I9,13,13) and two pairs (I1,13). Both
times, similarly to b), choosing the former adds one line to the minimum of 18. There
can thus be 18,19 or 20 fibres.

O

3.27 Remark. In cases b) and c), the exact number of lines intersecting L solely depends on
the number of fibres of type I2. In particular, in order for an inflectious line to exceed the
maximum of 18 that we established for regular lines, its elliptic fibration needs to contain

at least one fibre of type Io.
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3.5 QUARTIC SURFACES WITH INFLECTIOUS LINES

The detailed analysis from the previous section provides us with all the tools that we need
to prove the maximum of 64 lines on any smooth quartic.

In this section, we will assume that S € P? is a smooth quartic surface. Due to Pro-
position the only case that we still need to consider is the case that S contains an
inflectious line L such that the corresponding morphism Lo — P! has two totally ramified
points. Indeed, because Lemma holds for inflectious lines as well, the proof of The-
orem [3.12]is valid for any smooth quartic so long as all of its inflectious lines fall under
the first two cases of Proposition i.e. the morphism L — P! has either zero or one
totally ramified points. In this section we are particularly interested in the third case. For
the rest of this section, we will assume that Ly < S is an inflectious line with this property,
and we will call the associated elliptic fibration 7y. Immediately we can use the existence

of the line L to simplify the general equation for S significantly.

3.28 Lemma. Let S c P be a smooth quartic surface containing an inflectious line Ly
with corresponding elliptic fibration ng: S — PL. Assume that the restricted morphism of
curves molr,, : Lo — P! has two totally ramified points.

Then S is projectively equivalent to a quartic given by an equation of the form

x2x3 + x3x§ +x0x1q(x2,x3) + g(x2,x3) =0 (3.8)

where q and g are homogeneous polynomials in x2,x3 of degree 2 and 4 respectively.

Proof. Like we have done before, we can assume the line L to be Z(x2,x3). An equation
for S can then be written in the form

xghl + x3h2 =0.

Since the morphism Lo — P! has exactly two ramified points, we can apply a linear
transformation to xg,x3 and assume that the ramified points are zero and infinity, i.e. the
ramified fibres lie in the planes Z(x2) and Z(x3). Since the ramification is total in both
cases, the residual cubic curves in both planes have a triple intersection with L, so the

equation can be written as
3 3,.2 2. _
Xory+X3r] +x581 +X2x382 +x353 =0, 3.9

where the r; are homogeneous linear polynomials in x,x1 and the s; are homogeneous

quadratic polynomials in xg,x1,x92,x3.
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We note that r¢ and r1 are linearly independent. Indeed, if we assume otherwise, then
without loss of generality we can write r; = Arg for some A € k. Replacing r; with Arg in
Eq. and computing the partial derivatives, the only terms in these partial derivatives
that are not divisible by x2 or x3 are r% in the partial derivative by x2, and (Arg)? in the
partial derivative by xs.

Therefore, any point P on the line L that satisfies ro(P) = 0 would be a singularity of S
in this case.

After a linear coordinate transformation in x¢,x1, we can assume that ro = xg and r1 = x1,

giving us an equation of the form

xgxg + x3x£1" +x§sl +X9X389 +x§.93 =0.

Furthermore, we can make sure that all monomials divisible by xgxg or x3x% vanish,

with the exception of xgxg + xgxi. Indeed, we can add terms in x9 and x3 to x¢ and x1
without negating the effects of the earlier coordinate transformations. After replacing xg

with xg + p(xg,x3), the term xgxg becomes
3 2 2 3
x9xy + 3x2xp(x2,x3) + 3x2x0p(x2,x3)" +x2p(x2,%3)°.

Since the characteristic of % is not 3, we can choose p appropriately to eliminate the

multiples of xzxg. After doing the same with x1, the equation of S becomes
3 3 2.2 2.2 _
X2xg + X3X7 +axgxs + bxixy +xopolrz,x3) +x1p1(x2,x3) + xox1q(x2,%x3) + glx2,x3) = 0,

where p;, ¢ and g are all homogeneous polynomials of fitting degrees. It remains to be
shown that a,b,pg and p; are all zero. For this we finally use the assumption that L is
inflectious.

Consider at first planes of the form x3 = tx9 with ¢ € k. The intersection of S with this

plane is a quartic curve in P2(xo, x1,x2) given by the equation

xgx(?; + tx2x‘;’ + atzxgxg + bx%x% +xopo(xe,txg) +x1p1(x2,tx9)

(3.10)
+x0x1q(x2,tx2) + g(x2,tx2) = 0.
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Now note that for any homogeneous polynomial f € k[x1,x2], the polynomial f(xg,%x9) is of

the form F(t)xgegf for some polynomial F(¢) € k[t]. In particular, we can write
pilxg,txg) = Pi(H)x5 fori=1,2
q(xa,tx2) = Q(t)x2

g(x2,tx9) = G(t)xs.

Furthermore note that Polynomial is divisible by x9, with x9 = 0 being the equation
of the line L in the plane. After dividing by x2, we obtain the equation for the residual

cubic:
3 3 2.2 2 2 2 3 _
Xy +tx] +at“xgxe + bxixg + Po(t)xoxy + P1(£)x1x5 + Q(¢)xox1x2 + G(t)x5 = 0. (3.11)

To find the points of inflection, we compute the Hessian matrix of this, which is given by

6x0 + 2at2x9 Q(t)xg 2at2x0 + 2Po(t)xg + Q()x1
Q(t)xo 6tx1 +2bxg 2bx1 +2P1(t)x2 + Q(#)xo
2at2x0 +2P¢(t)xg + Q(t)x1 2bx1+2P1(t)x9 + Q(t)x() 2P (t)xo +2P1(t)x1 + 6G(t)xo

Restricted to Ly, i.e. substituting x9 = 0, we compute the determinant to be

—6Q(1)%x3 + (72tPy(t) — 24bQ(t) — 24a*t°)x2x1

2 3 2 2.3 (3.12)
+(72tP1(t) — 24b° — 24at”Q(t))xox] — 6tQ(£)"x]

This equation defines three points on the line L = Pl(x9,x1). Since Ly is inflectious, these
must coincide exactly with the three points where the fibre given by Eq. (3.11) meets the
line Ly, i.e. the three points given by the equation

x5 +txd = 0. (3.13)

In particular, the Polynomials[(3.12) and [(3.13)| have to be equal up to a constant factor. We

obtain the two equations

72tPo(t) — 24bQ () — 2402t = 0
72tP1(8) — 24b% — 24at3Q(t) = 0
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Since these need to hold for every ¢ € k, we can substitute ¢ = 0 in the second equation to
conclude 2452 = 0, which implies that b = 0 since char k& # 2,3. Substituting b = 0 back into
both equations yields

1
Po(t) = §a2t4 (3.14)

Pi(t) = %atZQ(t). (3.15)

Analogously to how we showed b = 0, we can show that a = 0 by considering planes of the
form x9 = tx3, and from Egs. and it follows that Py(¢) = P1(¢) = 0. By definition,
this means that po(xg,tx2) = p1(xg9,txs) =0, and analogously po(tx3,x3) = p1(tx3,x3) =0 for
every value of ¢, so in particular the polynomials py and p; must be identically zero, which

concludes the proof. O

3.29 Remark. Note that a quartic surface S given by an equation like automatically
contains the inflectious line Lo = Z(x2,x3) and admits the elliptic fibration 7g: S — P!
corresponding to Lg. This morphism ¢ can, similarly to the proof of Proposition be
given on the open subset S . Lg of S by

(x0,%1,%2,%3) — (x2,%3).

Furthermore, the restriction molz,: Lo — P! ramifies exactly above the points (1 : 0)
and (0: 1) in P!, which correspond to the planes x2 = 0 and x5 = 0 in P3.

Also note that if S is a surface containing a line L with elliptic fibration 7 that satisfies
the assumptions of Lemma then under the projective equivalence, the line L and

morphism 7 correspond to Lo and 7o as given here.
We will adopt a notation from [20]], albeit slightly differently, by including the line L

and the elliptic fibration ¢ in the definition.

3.30 Definition. We define the family Z to consist of all triples of the form (S, Lg,mq)

where

* S is a smooth quartic surface in P? given by an equation like (3.8)
® L is the inflectious line Z(xg,x3) contained in S

* 79 is the elliptic fibration given as in Remark

For the rest of this section, we will always assume that (S,Lg, () is a member of the

family Z.
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We now show that unless S is equal to the Schur quartic from Example the line L
cannot be intersected by another inflectious line on S. Rams and Schiitt [20] prove a
slightly weaker version of this lemma which only states that unless S is the Schur quartic,
any inflectious line intersecting L can only intersect at most 16 lines on S. Of course this

immediately follows from the stronger version.

3.31 Proposition. Let (S,Lg, o) be in the family Z from Definition [3.30]
If a fibre of mg contains another inflectious line L1, then S is projectively equivalent to the
Schur quartic from Example

Proof. Because this proof is rather long, we will only provide a brief overview. The full
proof (including code for the computations for which computer assistance was used) can be
found in Appendix

The plane that contains L1 can be assumed without loss of generality to be given by an
equation of the form x3 = Ax2, where A is 0 or 1, with 1 = 0 representing the case where
the fibre is ramified, and A = 1 representing the unramified case.

Then the equation of the curve in the intersection of S with such a plane has equation
3 3 4 _
XX + Axgx] + cxox1x2 +dxg =0,

where ¢ and d are constants which can be derived from the coefficients of the polynomials g
and g from Polynomial depending on the value of 1.

We can then differentiate four subcases of each case, depending on whether ¢ or d vanish.
Both times, three of the four subcases can be ruled out immediately because the resulting
cubic residual to L is either irreducible or of a Kodaira type that is incompatible with the
ramification behaviour by Lemmas and

For the fourth subcase, we consider the cubic residual to the line L1, and by computing
the intersection points with L; and the Hessian of the residual cubic, we can derive
equations on the coeffients of ¢ and g which must hold in order for L to be inflectious.

In the unramified case, this leads to an equation 144 = 0, which cannot happen outside
characteristic 2 or 3, thus leading to a contradiction. In the ramified case, we find that ¢ =0

and g = 95‘21 + xg, which leads to the Schur quartic. O

In particular, since the Schur quartic contains exactly 64 lines, we immediately get the

following corollary.

3.32 Corollary. Ifthere is an inflectious line L1 in a fibre of mo, then S contains at most 64

lines.

69



3. QUARTIC SURFACES

3.33 Remark. This corollary also holds with the weaker version of Proposition without
much extra effort, see [20], p.691.

3.34 Remark. Note that regardless of the existence of such a line L, my always has a
fibre of type I3 or IV as seen in the proof Proposition If all lines intersecting Lg are
regular, then we can apply the same logic as in Theorem to obtain a maximum of

4+(20-3)+3(18-3)=66

lines on S.

For the rest of the section, we can thus assume that any two inflectious lines on S are
skew to each other. We can also assume that L intersects at least 19 lines. Indeed, as seen
in the proof of Proposition 7o has at least one fibre of type IV or I3. Since all lines in
any of these fibres are regular, they intersect at most 18 lines. If L also only intersects 18
lines, then with similar reasoning as in Theorem S will contain at most 4+4-15 =64
lines.

Under the assumption that L intersects 19 or 20 lines, we have seen in Remark [3.27]
that 7y has at least one fibre of type I3, consisting of a regular line L, and a conic @1,
which we will fix for the rest of this section. It should be noted that by Lemma|[3.17] the
fibre of type I3 has to be ramified, and in particular, without loss of generality we can
assume that it lies in the plane Z(x3). A first lemma is directed at the conic in this fibre. In
[20]] it is only mentioned that one can compute this directly, without providing any details,

which we shall do here.

3.35 Lemma. Let (S,L,mg) be in the family Z from Definition Assume that my has a
fibre of type 1o, containing a regular line L1 and a smooth conic Q1.

Then @1 is not a component of the flecnodal divisor Fg of S.

Proof. We will give a brief and informal overview here. The full proof, including code for
computer-aided computations can be found in Appendix

We can make use of the fact that a quartic surface in the family Z can explicitly be
given with an equation like (3.8), and the knowledge that the fibre of I3 must lie in the
plane xo =0 or x3 =0.

Up to a change a coordinates, one can then give concrete equations for the line L1 and
the conic 1. After parametrising the points on @1, one can compute an equation for the
tangent plane T to S at such a point P.

Intersecting T with S gives a quartic curve C, and any line intersecting S with mul-
tiplicity 4 at P must lie in the plane T and intersect the curve C with multiplicity 4
at P.
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It can then be shown that the curve C has a singularity at P, and one can compute
the tangent cone, which consists of two lines. Thus it suffices to compute the intersection
multiplicity of both of these lines with C at P.

One can then compute a polynomial in the homogeneous parameters s and ¢ for the
conic @1 whose coefficients are polynomials in the coefficients of the equation of S; and a
point on @1, given by parameters s and ¢ is flecnodal on S if and only if the polynomial
vanishes at these values of s and ¢.

If @1 were to be contained in the flecnodal divisor, then this equation would have to be
satisfied for all values of s and ¢, which implies that all coefficients must be zero. But as
the computations in Appendix will show, there is at least one coefficient that is always

non-zero, thereby making this impossible. O

We will now consider the elliptic fibration associated to L, and call it 7;. The proof
of Lemma showed that Ly meets one of the two intersection points of L1 and @1
tangentially to @;. In particular, 71 has a fibre Fy of type III, consisting of Ly and Q1.
Because L1 is a regular line, fibres of 71 can a priori be of any Kodaira type from Ex-
ample However, we will see that the reducible fibres other than F containing a

single line can only occur in triples, and as a consequence, we get the following lemma.

3.36 Lemma. Let (S,Lq,mg) be in the family Z, and let L1 be a regular line in a fibre of
type I of mg. Then the number of lines intersecting L1 is equal to 3N + 1 for some integer N.

Proof. By construction, L1 is intersected by the line Ly. We want to define an automorph-
ism o of S of order 3 and show that it fixes Ly and L1, but does not fix any other line that
intersects L1.

To define o, let { € k be a primitive cube root of unity and consider the automorphism of
order 3

o:P3 —>P3,(x0 1x1:x9:x3)— ((xg :(2x1 1X9 1 X3).

This map restricts to an automorphism of S, since for any (xg : x1 : x9 : x3) satisfying
Polynomial the image point ({xg : {%x1 : x9 : x3) also satisfies the equation, and the
inverse o also restricts to a map S — S.

Next note that the line Ly = Z(x9,x3) is fixed by o as a set, and so are all planes
through L, which are of the form axs + bxs = 0. In particular, o fixes fibres of 1y as sets,
although it does not necessarily fix each component of a reducible fibre. We conclude
that L1 is also fixed by o as a set, since it occurs in a fibre of 1 together with the conic @1.

What remains to be shown is that ¢ does not fix any other lines in the fibres of 71. Let O

be such a line, and assume for the sake of contradiction that ¢ fixes O as a set. Since
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we have already established that o fixes planes through L, it follows that for any such
plane H, the intersection O N H would also have to be fixed by . However, this intersection
consists of a single point, and thus we can conclude that the line O would have to be fixed
pointwise by o.

This is impossible. Indeed, we can directly compute the fixed points of o; they are given
by (1:0:0:0),(0:1:0:0), and every point on the line given by xo = x; = 0. This line cannot
be contained in S, because if it were, then in the notation of Polynomial that would
imply g =0, and then every partial derivative of the equation of S would vanish along that
line, contradicting the smoothness of S.

Therefore, the automorphism ¢ cannot fix any lines on S pointwise and in particular it
cannot fix the line O, resulting in the desired contradiction.

Since ¢ has order 3, it follows that lines intersecting L1 with the exception of Ly must

come in triples. O
3.37 Corollary. The line L1 from Lemma |3.36|meets at most 16 other lines on S.

Proof. Since L is a regular line, it cannot be intersected by more than 18 lines by Proposi-
tion [3.3] The result then follows from Lemma [3.36 O

On the other hand, note that every line on S intersects exactly one of L¢, L1 and @1,
because the union of these three curves is the intersection of S with some plane. Since @1 is
not a component of the flecnodal divisor by Lemma it can only meet at most 2-20 =40
lines on S, which includes Ly and L with multiplicity 2. With L intersecting at most 19
lines besides L1, and @1 intersecting at most 36 lines besides L, L1, the only way to reach
more than 64 lines on S is if L1 is intersected by at least 8 lines besides L. This means
that in the notation of Lemma we can restrict our attention to the cases N =3, N =4,
and N =5. In the latter two cases, it will now be fairly simple to prove the main theorem

with the help of the following lemma.

3.38 Lemma. Let (S,L(,mg) € Z. Let L1 be a regular line in a fibre of type I of my, and
let m1: S — P! be the associated elliptic fibration. If w1 has a fibre of type I3 or IV, then S

contains at most 64 lines.

Proof. Assume that such a fibre exists. Then there is a plane H c P3 such that the
intersection H NS consists of four lines, one of which being L. Each other line on S thus
intersects exactly one of these four. By Corollary [3.37, L is met by at most 16, and the
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other three lines by at most 20 lines on S. If at most one line in this fibre is inflectious,

then the number of lines on S is bounded by
4+(16-3)+2(18-3)+(20—3)=64.

If two or more lines in the fibre are inflectious, note that they intersect each other. By
Proposition [3.31] the surface S must then be projectively equivalent to the Schur quartic,

which only contains 64 lines. O

3.39 Corollary. If L is intersected by more than 10 lines, then S contains at most 64 lines.

Proof. Note that in this case, L1 would be intersected by at least 13 lines by Lemma [3.36)
Assume for the sake of contradiction that 71 has no fibres of type Is or IV. In particular, m;
has at least 13 fibres of type I or II1. In both cases, the Euler-Poincaré characteristic of
each such fibre is at least 2, and their sum exceeds e(S) = 24, which is impossible. So, 71

must have at least one I3 or IV fibre, and the result follows from Lemma (3.38 O

The only case that remains is the case that L is intersected by exactly ten other lines
on S. Here, the existence of a fibre of type Is or IV is not guaranteed. However, we can

still prove the main result in this case regardless.

3.40 Lemma. Let (S,Ly,n9) € Z and let L1 be a regular line in a fibre of g of type Io. If L1

is intersected by exactly 10 lines, then S contains at most 64 lines.

Proof. Let m1: S — P! be the elliptic fibration associated to L from Proposition If 71
has a fibre of type I3 or IV, the result follows from Lemma Assume that this is not
the case, i.e. all lines intersecting L1 occur in fibres of type I or II1. Every such fibre can
be written as

F,=L;+Q;,i=2,...,10

for a line L; and an irreducible conic @;. Note that if all nine conics @9,...,Q19 Were
contained in the flecnodal divisor, their added degree is 18, which would leave at most 80 —
18 = 62 lines on S. We can thus assume that @2 is not a component of Fg. Since the
automorphism o from the proof of Lemma [3.36| maps planes to planes and fixes L1, it maps
each fibre of 71 to another fibre of 71, and because we know it cannot fix lines in these

fibres, up to renumbering we have

F3=0'F2 F4=0'2F2
Fe¢=0F5 F7=0%F; (3.16)
FgZO'Fg F10=0'2F8.
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Since @3 is not contained in Fg, the same holds for @3 and Q4. Indeed, any automorph-
ism of S fixes Fg, because it is defined in terms of lines and intersection numbers, which
are preserved by o Since @2 meets Fg with multiplicity 2-20 = 40 and intersects both L1
and Lo with multiplicity 2 each, it can intersect at most 36 additional lines.

If Ly were a regular line, it would meet at most 18 lines by Proposition and since
every line on S must intersect exactly one of L1, Lo, @2, the total number of lines on S
would be bounded by

2+(10-1)+(18-1)+ 36 =64.

For the rest of this proof we will assume, for the sake of contradiction, that S contains
more than 64 lines. In particular, Ly is inflectious and the elliptic fibration corresponding
to Lo has a fibre containing the line L and the irreducible conic @2. By Lemmas|3.17
and this fibre must be ramified of type I3. Furthermore, as seen in the proof of
Lemma|[3.20] L2 must be tangent to @2, which implies that Fy is a fibre of type IIT of ;.
The same holds for Fi3 = 0F9 and Fy = 02F5.

While a priori the fibres F's,...,F19 could be either of type I9 or I1I, the latter is impossible.
Indeed, since 71 already has four fibres of type I1I, those being Fo, F3, F4 and the fibre
containing L, whose Euler-Poincaré characteristics add up to 12, the Euler-Poincaré
characteristics of the remaining fibres can add up to at most 12 as well. This can only
happen if they are all of type I5.

We conclude that the conics @s,...,Q 10 must be contained in Fg. If one of them were not
contained in Fg, its fibre F; would be of type III with the same logic that we applied to Fo
above, which is impossible.

We now claim that under the assumption that S contains more than 64 lines, there must
be exactly 45 lines skew to Lo. Recall Remark [3.34] and note that we can be at most one
line short of the maximum of 66. Similarly to the proof of Corollary [3.39] there must be at
least one fibre of type I3 or IV, which consists of three lines My, M1, and My. Because o
fixes fibres of 71, it must permute the three lines M;. Note that none of the lines M; can
be fixed by o since otherwise the point of intersection Ly N M; would also have to be fixed,
and as we have seen in the proof of Lemma [3.36| none of the points on L are fixed by o.

Now the four lines Lg, My, M1, and My together form the intersection of S with some
plane, and therefore every line on S that is skew to Ly must intersect precisely one line M;.
So let L € S be a line skew to Ly and assume it intersects the line M; for a fixed value of i.
Then the line oL intersects o M;, which is distinct from the line M;. Therefore, the line oL

must also be distinct from L.
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It follows that the number of lines on S skew to Ly must be divisible by 3, since no such
line is fixed by o and o has order 3.

We can now decompose the flecnodal divisor of S as
Fs=Qs+ -+Q10+L+R

where L is the divisor of degree 65 containing the lines L¢, L1, the 18 lines besides L1
in the fibres of 7y, and the 45 lines that are skew to L, each with mutiplicity 1. Recall
that the flecnodal divisor has degree 80 by Lemma We conclude that the degree of the
residual divisor R is 3. Note that a priori it is possible that R contains one or more of the
lines that are included in L.

Next we note that the sum of the conics @5 +---+ Q19 is o-invariant by Eq. (3.16), and
the divisor L is also o-invariant, since ¢ fixes Lo, L1 and fibres of 7y and maps sections
of 7 to sections of 7y. Because the flecnodal divisor Fg as a whole is also g-invariant, the
same must hold for k.

Consider the intersection L - Fs and note that Ly does not intersect any of the con-
ics @s5,...,Q10, because fibres of 711 are pairwise disjoint. Since L% = -2 and Ly meets

exactly 19 of the already counted lines, we find that
20=L0'.FS ZLO'(Q5+-"+Q10+£+R)= 19—2+L0-R

and it follows that Lo-R =3 =degR.

We now want to show that every component of R is contained in some fibre of .
Let R1,...,R} be the irreducible components of R. First observe that for any plane H
containing the line L, the intersection number R - H must be 3 by Theorem 7.7 in Chapter
I of [9]]. But since R - L =3, it follows that for any fibre F' of 7y, we have R-F =0.

Further note that for each individual component R; we have R;-Lo < R; - H for any
plane H containing Lg. Because R Lo ="R-H, it follows that for each value of i, we must
also have R; - Ly = R; - H. But then we also find R; - F = 0 for any fibre F' of 7y, and so R; is
either a component of a fibre or disjoint with all fibres of 7. But because the union of the
fibres of 7( is the entire surface S, the latter case is impossible. Thus R consists only of
components of fibres of 7¢, as claimed.

However, R cannot be a full fibre of 7. If that were the case, then L9 would intersect R

with multiplicity 1, since Lo is a section of mg. On the other hand, L9 is also skew to

75



3. QUARTIC SURFACES

the conics @s,...,Q10 because they occur in different fibres of 71. Since Lo intersects at

most 20 other lines on S, itself with multiplicity —2, and R with multiplicity 1, we find
20=L2'J_"S =L2(Q5+~~+Q10+[,+R)520—2+1= 19,

a contradiction. We conclude that R contains components of different singular fibres of 7.

Furthermore, we show that R cannot contain any irreducible conics. Indeed, the morph-
ism ¢ has no fibres of type III by Lemmas and[3.20] and the conic in a fibre of type I
is not contained in the flecnodal divisor by Lemma We can conclude that ‘R must
consist of three lines.

Now recall that R is o-invariant, as we noted earlier in this proof. Because o permutes
the components of fibres of 7o of types I3 and IV, this means that R cannot contain any
lines in such fibres, since otherwise it would have to contain the full fibre.

This only leaves L1 and possibly a line L] in a second fibre of type Is. However, L;
cannot be a component of R. To see this, note that L;-Fg =20, and L intersects the
six conics Qs,...,Q10 each with multiplicity 2, as well as 10 other lines on S, each with

multiplicity 1, and lastly itself with multiplicity —2. Thus we find
L1"R,=L1~fs—Ll'(Q5+~"+Q10+£)=20—(6'2+ 10-2)=0.

It follows immediately that R cannot be of the form3L 1, since otherwise L1 -R would be
equal to —6. So my must have a second fibre of type I containing a line L.

Now if we write R =alL1 + bL’1 for some a,b € Z satisfying a + b = 3, then it follows that
0=Li-(aL1+bL)=al?+bL,-L,=-2a+bL;-L.

Because L1 and L’1 lie in different fibres of 7¢, they must be disjoint, and hence L1 -L’1 =0.
It follows that —2a =0, and thus a =0, and so R is equal to 3L/.

We conclude that indeed 7o has a second fibre of type Iz containing a line L, and we
have R = 3L/. Corollary also applies to L), and so we can assume that L also

intersects at most 10 other lines on S. We compute
L) - Fs=L|-L+L|-@s5+--+Q10)+L,-(BL))<10+12-6 =16 < 20,

which is impossible. We conclude that the assumption that S contains more than 64 lines

was false, which completes the proof. O
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Taking all the results from this chapter together, we obtain the final theorem of this

thesis.

3.41 Theorem (Rams, Schiitt, 2015). Let S c P? be a smooth quartic surface over an
algebraically closed field k of characteristic not equal to 2 or 3.

Then S contains at most 64 lines.

Proof. Recall Definition of regular and inflectious lines. If all lines on S are regular,
then the result follows from Theorem [3.12

Note that this proof remains valid if we drop the assumption that all lines are regular
and replace the use of Proposition with the added assumption that all lines on S,
regular or not, intersect at most 18 other lines on S.

Thus it only remains to cover the case where S contains at least one line L( that is
inflectious and intersects at least 19 other lines on S. Let mp: S — P! be the elliptic
fibration corresponding to L as defined in Proposition

By Proposition the fact that L intersects at least 19 lines implies that the restric-
tion molz, : Lo — P! has two totally ramified points. By Lemma and Remark we
can assume that the triple (S,Lg, 7o) is a member of the family Z from Definition [3.30
Furthermore, as the proof of Proposition has shown, if L intersects more than 18
lines, the fibration 1 has at least one fibre of type I9, containing a line L1 and a conic Q1.

By Corollary we can assume that this line L is regular. Then Corollary
and Lemma prove the theorem in the cases where L intersects at least ten other
lines on S.

On the other hand, if L, intersects fewer than ten other lines on S, then note that by
Lemma this number can be at most 7. Further note that any line on S distinct
from Ly and L1 must intersect precisely one of L, L1, and the conic @1, as these three
curves together form the intersection of S with some plane.

By Proposition the line L intersects at most 19 lines besides L. By Remark 3.10]
the conic @ intersects the flecnodal divisor Fg from Definition with multiplicity 40.
Since Fg contains all lines of S as components, and the conic @1 intersects both Ly and L1
with multiplicity 2, as they are all coplanar, it follows that @1 can intersect at most 36
lines besides L and L. Lastly by assumption, the line L1 intersects at most 6 other lines
on S besides L.

In this case, the surface S contains at most
2+19+36+6=63

lines, which concludes the proof. O
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A.l COMPUTATIONS FOR SECTION (3.1

In this section, let % be an algebraically closed field and P! the projective line over k. For
ease of notation, we will write ¢ for the point (¢£:1) € P! and oo for the point (1:0). We want

to prove the following statement:

A.1 Proposition. Let k be an algebraically closed field and P1,P2,Ps3,P4 distinct points
on the projective line P1(k).

Then the number of automorphisms f of P! with the property that f permutes the points
P4,...,Pyis either 4, 8, or 12.

Proof. After a change in coordinates, we can assume that the four points are given by 0, 1,
0o, and A for some A € &~ {0,1}.

Note that an automorphism of the projective line is uniquely determined by the images
of three points. Thus for any of the 24 permutations of the four points, there can be at most
one automorphism of P! that respects the permutation.

Given a permutation o: {0,1,00,1} — {0,1,00, 1}, we can compute the unique automorph-
ism f of P! satisfying f(x) = o(x) for x = 0,1,00. We can then compute f(1) and determine
an equation that A must fulfil so that f(1) = a(1).

For example, let o be the permutation such that

0(0)=0

o(1)=o00
o(c0)=1

o(A)=A.

The corresponding automorphism f of P! that agrees with o on 0, 1, and co can be given

(uniquely up to scalar multiplication by a unit in £) as a matrix
a b
c d
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where f((r:s))=(ar+bs:cr+ds).
Now because f(0) =0, it follows that (b:d) =(0:1), i.e.

b=0.
Furthermore, since f(1) = co, we can conclude that (a +b:c+d)=(1:0), and thus
c+d=0.

Lastly, since f(co) =1, we must have (a:¢)=(1:1), i.e.

Taking all three equations together, we find that f is given by the matrix
1 0
1 -1)

fA)=A:1-1).

We can then compute

In order for f(A) to be equal to 1, we must have

A
— =
A-1

Since A cannot be equal to 1, this is equivalent to

A2-21=0.

We can conclude that for this particular permutation o an automorphism f respecting o
exists if and only if 12 —21=0,i.e. 1 =2.

This computation can be done for each of the 24 permutations of the four points. A
complete list of all automorphisms and the resulting equations can be found in Tables
and From these computations, we can conclude the following.

If A satisfies the equation A2—A1+1=0, i.e. is equal to —{ or —{2 for some fixed primitive
cubic root of unity in %, then there are exactly 12 automorphisms of the projective line
permuting the four points 0, 1, co, and A.

If 1 is equal to -1, %, or 2, then there are exactly 8 such automorphisms.

In all other cases, there are only 4. O
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Autormorphism f

Permutation in matrix form f) a(l) Equation
10
(0,1,00,1) (0 1) y) A _
(0,1,1,00) A0 (A2:21-1) 21-1=0
» /00 1 A-1 ' * -
1 0 2
(0,00,1,1) 1 1 A:1-1) A A2-21=0
(0,00,1,1) . 1 A2:1-1) 1 A2-1+1=0
(0,1,1,00) A0 A2:22-1+1) oo AZ—-A+1=0
b b b /’l 1_1 .
A0 2 2 —
(0,1,00,1) (0 1) y) 1 A2-1=0
-1 1
(1,0,00,1) 1-1 A 21-1=0
0 1
p—)
(1707/1700) 1 —A (e.e] o0 —
0 -1 )
(1,00,0,1) 11 (1:1-21) A A2-1+1=0
A -1 0 5
(1,00,1,0) . 1 A2-1:2-1) 0 22-1=0
0 A
(1,1,0,00) (1_/1 /1) (-1:1-2) fos) A-2=0
(1,1,00,0) (A_l 1) AZ-A+1 0 A2-21+1=0

Table A.1.: Computations for Proposition part 1. For a permutation
o of the four points 0, 1, co, A on the projective line, we list the images of
these four points in that order; the automorphism f of P! that coincides
with the given permutations on the points 0, 1, and oo; the image of A
under that automorphism; the desired value of f(1) (i.e. 6(1)); and lastly
the equation that A must satisfy in order for f (A1) to be equal to (g(Q)).
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Autormorphism f

Permutation in matrix form f) a(l) Equation
1 -1 9
(00,0,1,1) - (A=1:1) A A2-1+1=0
- )
(00,0,1,1) (1 0) A-1 1 A-2=0
(00,1,0,1) (0 1) 1:1) A A2-1=0
10
]__
(00,1,1,0) (i OA) A2=21+1:1) 0 A2-A+1=0
0 A
(00,1,0,1) (1 o) 1 1 -
(00,1,1,0) (i Agl) (2A-1:1) 0 21-1=0
(1,0,1,00) (:i i) (A2-1:A2-1) oo A2-1=0
(1,0,00,1) (_OA i) 22+ 1 A2-1+1=0
(1,1,0,00) 0 4 A:A2-1+1) A2-21+1=0
Pt 700 )l_l 1 . o9 -
]__
(A,1,00,0) ( OA i) (A2-21:-1) 0 A2-21=0
(A,00,0,1) (_01 i) A:1-21) 1 21-1=0
-1 2
(1,00,1,0) (_1 1) 0 0 -

Table A.2.: Computations for Proposition part 2. For a permutation
o of the four points 0, 1, co, A on the projective line, we list the images of
these four points in that order; the automorphism f of P! that coincides
with the given permutations on the points 0, 1, and oo; the image of 1
under that automorphism; the desired value of f(1) (i.e. 6(1)); and lastly
the equation that A must satisfy in order for f (A1) to be equal to (g(Q)).
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A.2 COMPUTATIONS FOR PROPOSITION (3.3

In the proof of Proposition we needed to compute the multiplicity of the root 0 of the
polynomial r; in the case where the fibre in the corresponding plane contains three lines.
In Listing[A.T] we provide the code for the case where at least one intersection of the lines
in the fibre is not on L. The output is provided in Listing[A.2] The second case of three
concurrent lines whose intersection lies on L is covered in Listings and[A.4]

// Setting up variables for the coefficients of the

polynomials
K<a010,a011,a012,a013,a020,a021,a022,a030,a031,a040,
al00,al101,a110,a111,a112,a120,al121,a130,
a200,a210,a211,a220,a310>

FunctionField (Rationals () ,23);
R<lambda>:=PolynomialRing (K) ;
S<x0,x1>=PolynomialRing(R,2) ;
T<x>=PolynomialRing (R) ;

// Defining the polynomials a_ij
a0l:=a010%x0"34+a011*x0"2*xx1+a012*x0%*x1"2+a013*x1 "~ 3;
a02:=a020*x0"2+a021*xx0*x1+a022*x1 ~2;
a03:=a030*x0+a031*x1;

a04:=a040;
al0:=x0*x1*(al00*x0+al0lx*xl);
all:=allO*x0"2+alll*x0*xx1+all2*x1"2;
al2:=al20*x0+al2lx*x1;

al3:=al30;

a20 a200*x0*x1 ;
a2l1:=a210*x0+a211*x1;

a22 a220;
a30:=0;
a31:=a310;
a40:=0;

// Defining the polynomial g_lambda and its second
derivatives
g:=alO+aOlx*lambda;
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g0:=Derivative(g,x0);
gl:=Derivative(g,x1);
g00:=Derivative (g0, x0) ;
g0l :=Derivative(g0,x1);
gll:=Derivative (gl,xl);

// Defining the remaining entries of the Hessian matrix
of C_lambda

F2:=a20+all*lambda+al02*lambda~2;

F3:=a30+a2l*lambdatal2*lambda~2+a03*lambda ~ 3;

// Defining the matrix and its determinant to get
h_lambda

M =Matrix ([

[g00,g01, Derivative (F2,x0)],

[g01,gll,Derivative(F2,x1)],

[Derivative (F2,x0) ,Derivative (F2,x1) ,2*xF3]

D

h:=Determinant (M) ;

// Determining the multiplicity of the root 0 of the
// resultant of g_lambda and h_lambda
res:=Resultant (Evaluate(g,[x,1]), Evaluate(h,[x,1]));

// Printing the degree and roots of r_lambda
Degree(res);

Roots(res) ;

Listing A.1: Magma code to compute the multiplicity of a root of the polynomial (A1) in the
proof of Proposition in the case that the fibre corresponding to this root contains two

lines intersecting in a point not lying on the line L
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18
[
<0, 3>

]

Listing A.2: Output of the code in Listing Line (1 shows that the degree of the
polynomial r} is indeed 18. Line shows that 0 is a root of multiplicity 3, as desired.

// Setting up variables for the coefficients of the
polynomials
K<b, c,
a010,a011,a012,a013,a020,a021,a022,a030,a031,a040,
all0,alll,all2,al20,al21,a130,a210,a211,a220,a310>
FunctionField (Rationals () ,23);
R<lambda>:=PolynomialRing (K) ;
S<x0,x1>=PolynomialRing(R,2) ;
T<x>:=PolynomialRing (R) ;

// Defining the polynomials a_ij
a01:=a010*x0"34+a011*x0"2*x1+a012*x0*x1"2+a013*x1 "3,
a02:=a020*x0"2+a021*x0*x1+a022*x1 ~2;
a03:=a030*xx0+a031x*x1;

a04:=a040;

al0:=b*c*xl "~ 3;
all:=all0*x0"2+alll*x0*x1+all2*xx1~2;
al2:=al20*xx0+al2lx*x1;

al3:=al30;

a20:=(btc) *x1~2;
a2l:=a210*x0+a211x*xx1;

a22:=a220;
a30:=x1;
a31:=a310;
a40 0;
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// Defining the polynomial g_lambda and its second
derivatives

g:=alO+a0Olx*lambda;

g0:=Derivative (g, x0) ;
gl:=Derivative(g,x1);
g00:=Derivative (g0,x0);
g0l:=Derivative (g0, x1);
gll:=Derivative(gl,x1);

// Defining the remaining entries of the Hessian matrix
of C_lambda

F2:=a20+all*lambdata02*lambda ~2;

F3:=a30+a2l*lambdatal2*lambda~2+a03*lambda "~ 3;

// Defining the matrix and its determinant to get
h_lambda

M =Matrix ([

[g00,g01,Derivative (F2,x0)],

[g01,gll,Derivative(F2,x1)],

[Derivative (F2,x0) ,Derivative (F2,x1) ,2*xF3]

D

h:=Determinant (M) ;

// Determining the multiplicity of the root 0 of the
// resultant of g_lambda and h_lambda
res:=Resultant (Evaluate(g,[x,1]), Evaluate(h,[x,1]));

// Printing the degree and roots of r_lambda
Degree(res) ;

Roots(res);

Listing A.3: Magma code to compute the multiplicity of a root of the polynomial (A1) in the
proof of Proposition [3.3|in the case that the fibre corresponding to this root contains three

lines which all intersect in a single point that lies on the line L
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18
[

<0, 5>

]

Listing A.4: Output of the code in Listing Line (1 shows that the degree of the
polynomial r} is indeed 18. Line shows that 0 is a root of multiplicity 5, as desired.

A.3 PROOF OF PROPOSITION |3.31

In this section we want to prove Proposition (3.31

3.31 Proposition. Let (S,L¢,7n) be in the family Z from Definition [3.30]
If a fibre of g contains another inflectious line L1, then S is projectively equivalent to the
Schur quartic from Example

We will fix a notation for the coefficients of the polynomials ¢ and g by defining

2 2
q(x2,%3) = qoxs + q1X3%2 + q2x;
4 3 2.2 3 4
g(x2,x3) = gox3 + g1X5%2 + 82X3X5 + £3X3X5 + 4%y
Now assume that there is an inflectious line L; in a fibre of my. There are two important
cases to consider. The fibre in which L1 lies is either ramified or unramified, in the sense

that the curve morphism molz,, : Lo — P! does or does not ramify at the point above which

the fibre lies. We will be looking at these two cases separately.

A.3.1 | UNRAMIFIED FIBRE
In this subsection, we will prove the following.

A.2 Lemma. The statement of Proposition holds under the assumption that the fibre

of o in which L1 lies is unramified.

Proof. In this case we can assume that the fibre lies in a plane of the form x3 = Axy for
some nonzero A € k. After a linear change in coordinates, we can assume A =1, i.e. the
plane has equation xg = x3.

The intersection of S with this plane is given by the equation

xzxg + xzx? + cxoxlxg + dx‘zL =0
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where

c=qotq1tq2

d=go+g81+82+83+84

and after dividing by the factor x2 we obtain the residual cubic

x(‘q} +x? + dxg +cxpx1x9 = 0.

We will now distinguish four subcases depending on whether ¢ or d are zero.

a)

b)

d =0 and ¢ #0. In this case the residual cubic is irreducible. Indeed, after rescaling

x2, we can assume ¢ = 1, and get a cubic curve with equation
3 3 —
xy +x7 +x0x1%2 = 0.

We can show that this curve only has one singular point by computing the partial

derivatives, which are

3x% +x1%9
3x% + x0%X9

X0X1

In order for x¢x; to vanish, one of x¢ or x; must vanish, but then by the first two
equations, so does the other. This leaves only the point (0:0: 1) as a possibility for a
singularity, and indeed it does lie on the curve. We conclude that the curve is either
irreducible or consists of three lines all meeting in one point. We can rule out the
latter case by considering the line xy = x1, which intersects the curve not only in the

singular point, but also in the point (1:1:-2).
d =0 and ¢ =0. In this case, the residual cubic has equation

3 3 _
xy+x7=0.

This clearly decomposes into the three lines xq + ¢ ix1=0for i=0,1,2, where { is a
primitive cube root of unity. Since all three of these lines meet in the point (0:0:1),

which does not lie on L, we get a fibre of type IV.
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If we consider the elliptic fibration 71 corresponding to the line L1, then 71 has a
ramified fibre of type I3 in this plane. But this is impossible by Lemma [3.20} since

we assume that L1 is inflectious.

d #0 and ¢ = 0. After scaling x9, we can assume d = 1, and the equation for the

residual cubic becomes
3,.3,.3_
xgt+x]+x5=0

which gives a smooth curve outside characteristic 3.

d #0 and ¢ #0. Then after scaling x2 we can assume d =1 and get a residual cubic

with equation
xg +x§ + xg + cxgx1x9 = 0.
We will examine singularities in this curve. Consider the three partial derivatives

0 2
— =3x +cx1xg

0xo

— =3x%+cxox
= 1 o2

0x1

— =3x2+ cxox
— 949 0X1

0x9

If xy = 0, then all three cannot simultaneously vanish, and so we can restrict our

attention to the affine patch xy = 1. We get the three equations

3+cx1x9=0
2 —
3x{+cxg =0

3x§ +cx1=0

The first equation implies that both x; and x9 are nonzero. From the second and

third equation respectively, we conclude that

3

Xg = —Ex% (A.1)
3

x1 = —Zx% (A.2)
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Substituting x9 into the second equation here, we get

3( 3 ,)\2
n--2(-2)
C C

so either x1 = 0, which we ruled out above, or 1 = —%—;,xl, i.e.

1 33 3’ 3

where ( is a primitive cube root of unity. On the one hand, we can substitute this
back into Equation to obtain

2 33 3 3

On the other hand, if we substitute any of the three points

c ¢
l1i——:——
( 3 3)
{e (%
1:——:——
( 3 3 )
e (e
li——:1——
( 3 3 )
into the equation of the cubic, we get
3 3 .3
@@ d
27 27 9
from which we can conclude
27

and thus the three points above lie on the cubic if and only if 3 =-27 1ie., ifc=-3,
-3¢, or —302.
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In all three cases, we get the same three singular points, and in all other cases the
cubic is smooth. Without loss of generality, we shall only consider the case ¢ = —-3.

The cubic now decomposes into the product of three lines
(x0 + %1 + x2)(xg + {1 + 2ac2) (g + {21 + {x2) = 0.

Without loss of generality we can also assume that the line L; is given by the

equation xg +x1 +x9 =0.
We claim that this case is actually impossible if L; is inflectious.

Consider the elliptic fibration 1 associated to L;. Almost all planes through L; have

the form
x9—x3=m(xg+x1+x2)=0

for some m € k. We compute the intersection of the plane with the surface S by

substituting x3 = x9 — m(xg + x1 + x2) in the equation of S, and get

0 =x2xg +(xg—m(xg+2x1+ xz))x“;'
2 2
+ xX0Xx1 [q()(xz —m(xg+x1+x9))" + q1x2(x2 —m(xg+x1+x9))+ QQx2]
4 3
+ g()(xz —m(xg+x1+x92)) +g1x2(x2 —m(xg+x1+x9))

2 2 3 4
+ g2x5(x2 — m(xg + x1 +x2))” + g3x5(x2 — m(xg + X1 + x2)) + 4%,

We expand the powers of (xg — m(xg + x1 + x2)) to obtain

0 :xgxg + xzx‘;’ —m(xg+x1+ xz)x‘;’

+qox0X1 [x% — maxa(xg +x1 +x2) + m2(xo + x1 + xz)z]
+q1x0%1 [x% — muxa(x +x1 +x2)]
+ Q2x0x1x§
+ g0 [xg - 4mx§(x0 +x1+x9)+ 6m2x§(x0 +x1+ acz)2
—4m3x2(xo +x1 +x2)3 + m4(xo +x1+ x2)4]
+g1 [xé1 - 3mx§(x0 +x1+x9)+ 3m2x§(x0 +x1 +x2)2 - m3x2(x0 +x1 +x2)3]
+ g9 [x‘z1 - 2mx§(x0 +x1+x9)+ mzx%(xo +x1 +x2)2]
+g3 [x‘z1 —xg(xo +x1 +2x9)]

4
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This equation must be divisible by (xg + x1 + x2), since that factor represents the
line L1, which is contained in the fibre. We will thus collect the terms that already

contain the factor, and the terms that don’t. The equation now takes the form

0 :xgxg +xzx§ +(qo+q1+ qz)xoxlxg +(go+g1+82+g83+ g4)x‘21

m(xo +x1 + x2) [—x?

—goxox1x2 +mqo(xo +x1 +x2)

- 4g0x3 + 6mgox§(x0 +x1 +x2) —4m2goxa(xg + 21 +x2)% + m3go(xg + x1 +x2)°

- 3g1x§ + 3mg1x§(x0 +x1 +x2) —m2g1x9(x0 +x1 +x2)°

- 2g2xg + mgzxg(xo +x1+%x9)

~gsx3).
Since we know that go+¢g1+qe=c=-3 and gog+g1+g2+g3+g4=d =1, the first
line of this equation takes the form

xg(xg + x“;’ + x% —3x0x1x2)

of which we already know the factorisation. The residual cubic is thus given by the

equation
0 = x9(xg + (1 + Px9)(x + a1 + (x9) + ml... ] (A.3)

To compute the intersection of this cubic with the line L1, we set xg+x1+x2=0,s0 a

lot of terms within the square brackets already disappear, and we are left with

0 =x9(x0 + {21 + (2xx0)(x0 + {221 + (x2)

+m [—xi’ —(q() + ql)xoxlxg —(4g0 +3g1 +2g2 +g3)xg]

and after substituting x¢o = —x1 — x9, the three points in the intersection are given by
the equation

0 =x2 (¢ = Dy + (€% = Davg) (€% = Dy + (= Dxz) + m(—2 — yxd)
where y =4g0+3g1+2g2+ g3. After expanding the parentheses, we can write this as

0= —max? +(m(go +q1) +3)(xfxg +x1x3) + (3 — my)xs. (A.4)
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Since L1 is assumed to be inflectious, all three of these points must be inflections of
the residual cubic. We thus compute the Hessian of Eq. (A.3).

This is rather tedious and so we will use a computer for this. Listing[A.5|provides
code that computes the Hessian, and then restricts it to the line L. The output can
be found in Listing[A.6]

Now in order for L to be inflectious, the points in the intersection of any fibre with L,
i.e., the points that satisfy Eq. (A.4), must also be inflections of their respective fibre,
i.e. also be roots of the Hessian from Listing[A.6]

In particular, the Hessian must be a multiple of Eq. (A.4). If we write this equation

as
0= Cox? + Clx%xz + szlxg + C3x§
and the Hessian as
0= H()xi +H1x§x2 +H2x1x% +H3xg

where the C; and H; are polynomials in the variables m, ¢;, and g;. then this implies

that for any i, € {0, 1,2, 3}, we must have
C,H;-C;H;=0.

With this in mind, we can define the polynomials
gij=CiH;-C;H;

in m, q;, and g;. These polynomials are computed in Listing [A.7] Because they
must vanish in every fibre, i.e., for every value of m, we can interpret them as
monovariate polynomials in m, and conclude that each coefficient must vanish. As
we can see in Listing[A.8] the polynomial po; has 144 as the coefficient of the linear
term. This means that because we are not in characteristic 2 or 3, it is impossible for

all coefficients to vanish.

We conclude that L cannot be inflectious, contradicting our assumption.

We have thus shown that an inflectious line cannot occur in an unramified fibre of 7,

given that L itself is inflectious. O
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K<s> CyclotomicField (3) ;
RO<m, q0,9l1,92,g0,gl,g2,g3,g4> PolynomialRing (K,9) ;
R<x0,x1,x2> PolynomialRing (RO, 3) ;

//Equation of the residual cubic

c x2*(x0 + s*xl1l + s72%x2)*(x0 + s~ 2xx1 + s*x2)

+ m*x(-x1"3 - qO0*x0*x1*x2 + m*xq0*(x0+x1+x2) - 4*xg0*x2"3
+ 6*m*g0*x2~2*%(x0+x1+x2) - 4*xm~2*%g0*x2*(x0+x1+x2) "2

+ m~3*g0*(x0+x1+x2)~3 - 3*xgl*xx2~3

DD DN NN DNDNDNIDN R B R oH o
0 =3 & Ot = W N H O O 00 3 Ot x W N - O

29
30
31

+ 3*m*gl*x2~2*(x0+x1+x2)

- m™2%gl*x2*%(x0+x1+x2) "2 - 2*%g2*x273
+ mxg2*x2 2% (x0+x1+x2) - g3*x273);

//First Derivatives

c0 Derivative (c,x0) ;
cl Derivative (c,x1);
c2 Derivative (c,x2);

//Second Derivatives

c00 Derivative (c0,x0);
c01 Derivative (c0,x1);
c02 Derivative (c0,x2);
cll Derivative (cl,x1);
cl2 Derivative(cl,bx2);
c22 Derivative (c2,x2);

//Determinant of the Hessian matrix
h c00*xcll*c22 + c01*cl2*c02 + c02*c01l*cl2

- ¢c0172*%c22 - cl2~2xc00;

//restrict h to the line L_1

Evaluate(h,[-x1-x2,x1,x2])

)

c02~2x*xcll

Listing A.5: Magma code for computing the Hessian of the residual cubic in case d), i.e.

under the assumption that the line L; is given by the equation x¢ + x1 + x2 = 0.
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(6*m~3*xq0~2 + 36*m~2*q0 + 54*m)*x1"3

+

24*m~b5*q0*xgl + 48*m~4*xq0*xg0 - 24*m~4*q0*gl - 24*xm~4xq0x*g

+

+

+ +

+ + +

+

+

+
+

(32*m~5*xq0~2%g0 + 8*m~5xq0~2*xgl + 96*m~5xq0*xg0 +

288*m~4*g0 + 72*m~4*gl + 2*m~3*xq0~3 - 144*m~3%g0
144+m~3*gl - 72*m~3*%g2 + 10*m~2*xq0~2 + 48*m~2%q0
6*m*xq0 + 144*m - 18)*x172*x2

(32*m~5*%xq0~2%g0 + 8*m~5xq0~2*gl - 288*m~5*xg0~2
288*m~b*xglOxgl - 288*m~b*xglO*xg2 - 288*m~5xgl*g3
72*m~b*gl*xg3 + 24*xm~5xg2~2 + 192*m~4*xq0*g0
48*m~4*xq0*gl + 864*m~4xg0 + 216*m~4*xgl + 2*m~3*xq0~3
576*m~3%g0 - 360*m~3*gl - 144*m~3*xg2 + 10*m~2%q0~2
288+*m~2%g0 + 216*m~2xgl + 144*m~2%xg2 + 72*m™2%g3
6*m*q0 - 18)*x1*x272

(32*m~5*xq0~2%g0 + 8*m~5*xq0~2*xgl + 96*m~5xq0*g0~2
96*m~5*q0*g0*xgl + 96*m~5xq0*g0*xg2 + 96*m~5xq0*xgl*g3
24*¥m~5*xq0*xgl*g3 - 8*xm~5xq0*g2~2 - 48*m~4*xq0~2*g0
24*m~4*q0~2xgl - 8*xm~4%xq0~2%g2 - 96*m~4xq0*g0
24*m~4*q0*xgl + 288*m~4*xg0~2 + 288*m~4*glx*gl
288*xm~4*g0*xg2 + 288*m~4*xg0*g3 + 72*m~4*xglxg3
24*m~4*g2~2 + 24*xm~3xq0~"2*xg0 + 18*m~3*xq0~2xgl
124m~3*xq0~2*xg2 + 6*m~3*xq0~2*xg3 - 576*xm~3*g0

144*m~3*gl - 2*m~2*%q0~2 + 48+*m~2%q0*xg0 + 36*m~2*xqO0*gl
24*m~2%q0*g2 + 12*xm~2*xq0*g3 + 432*m~2*g0 + 216*m~2xgl

72*¥m~2%g2 - 12*m*q0 - 72*mxg0 - b54*mxgl - 36*mxg2
18*m*xg3 - 18)*x273

Listing A.6: Output of Listing Linebreaks have been manually edited for readabiltiy

reasons.
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K<s> CyclotomicField (3);
S0<q0,q9l,92,g0,gl,g2,g3,g4> PolynomialRing (K, 8) ;
S<m>:= PolynomialRing(S0);

// Coefficients of the residual cubic restricted to L_1
(@0) -m;

C1 mx*(q0+ql) + 3;

C2 m*(q0+ql) + 3;

c3 3 - m*(4%g0 + 3*gl + 2*%g2 + g3);

// Coefficients of the Hessian restricted to L_1

HO 6*m~3*xq0~2 + 36*m~2%q0 + 54%*m;

H1 32*xm~5*%xq0~2*xg0 + 8*xm~5*xq0~2*xgl + 96*m~5*xq0*g0
+ 24xm~b5xqO0*xgl + 48*m~4*q0*g0 - 24*m~4xqO0x*xgl

- 24*xm~4%g0*g2 + 288*xm~4*g0 + 72*m~4*gl + 2*m~3%q0~3
- 144*m~3xg0 - 144*m~3*xgl - 72*m~3%g2 + 10*m~2%q0~2
+ 48+m~2%q0 + 6%m*q0 + 144*m - 18;

H2 32*m~5*xq0~2*%g0 + 8*m~5xq0~2*xgl - 288*m~5*xg0~2

- 288*m~b*xglO*xgl - 288*m~b5xg0xg2 - 288*xm~b*xgl*xg3

- 72*m~b*xgl*g3 + 24*m~5*xg2~2 + 192*m~4xq0*g0

+ 48*m~4xq0*xgl + 864*m~4xg0 + 216*m~4xgl + 2+m~3*%q0~3
- 576*m~3*xg0 - 360*m~3*xgl - 144*m~3%g2 + 10*m~2%xq0~2
+ 288*m~2*xg0 + 216*m~2*%xgl + 144*m~2*g2 + 72*m~2%g3

+ 6*m*q0 - 18;

H3 32*m~5*%xq0~2%g0 + 8*m~5xq0~2*xgl + 96*m~5*xq0*g0~2
+ 96*xm~b5*xq0*g0*xgl + 96*m~5xq0*g0*g2 + 96*m~5xq0*g0*xg3
+ 24*m~5xq0*gl*g3 - 8*m~5xq0*g2~2 - 48*m~4xq0~2%g0

- 24*m~4*xq0~2xgl - 8xm~4xq0~2xg2 - 96*m~4*q0*g0

- 24*m~4*q0xgl + 288*xm~4*xg0~2 + 288*m~4*glxgl

+ 288*m~4xg0*xg2 + 288*m~4*g0*xg3 + 72xm~4*xgl*xg3

- 24*m~4*%g2~2 + 24*xm~3%xq0~2*%xg0 + 18*m~3*q0~2xgl

+ 12+*m~3%q0~2*%g2 + 6*m~3*%q0~2*xg3 - 576*m~3*g0

- 144*m~3%gl - 2*m~2%g072 + 48*m~2*xq0*xg0 + 36*m~2*q0xgl
+ 24*m~2*xq0*g2 + 12*m~2%q0*g3 + 432*m~2*g0 + 216*m~2*gl
+ 72+¥m~2xg2 - 12*xm*xq0 - 72*xmxg0 - b54*xmxgl - 36*xmxg2
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18*m*g3 - 18;

//Only printing p_01 to save space
HO*xC1 - COxH1,;

//HO0*C2 - CO*H2;

//HO0*C3 - COx*HS3;

//H1*C2 - C1*H2;

//H1%C3 - C1%HS3;

//H2xC3 - C2xH3;

Listing A.7: Magma code to compute the polynomials p;; which must vanish in order for

the line L1 to be inflectious. Only pg; is printed because it is sufficient to complete the

argument.

(32%xq0~2%g0 + 8*xq0~2xgl + 96*%xq0*xg0 + 24*xqO0*gl)+*m~6

+
+
+
+

+

(48*q0*g0 - 24xqO0*gl - 24%xq0*g2 + 288*g0 + 72*xgl)*m~5
(8%q0~3 + 6%q0~2%ql - 144%g0 - 144xgl - T72xg2)*m~4
(64%xq0~2 4+ 36%q0*ql + 48*q0)*m~3

(168%q0 + 54%ql + 144)+*m~2

144 *m

Listing A.8: Output of Listing Linebreaks have been manually edited for readability

reasons
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A.3.2 RAMIFIED FIBRE

In this subsection we prove the second subcase of Proposition|3.31

A.3 Lemma. The statement of Proposition holds under the assumption that the fibre

of mo in which L1 lies is ramified.

Proof. Because (S,Lg,mg) is in the family Z, we know by Remark that the ramified

fibre in question must lie in the plane x9 = 0 or x3 = 0. Without loss of generality, we can

assume it to be x3 = 0. The intersection of S with this plane has equation

xgxg + cxoxlxg + alx‘z1 =0

where ¢ = g2 and d = g4. The residual cubic is given by

xg +cxox1x9 + dxg.

We will distinguish the same four subcases as in the unramified case.

a)

b)

c)

d =0 and ¢ = 0. This case is impossible, as it leads to the cubic equation xg =0, which

is not a reduced curve.

d =0 and ¢ # 0. In this case, the cubic equation becomes

xg + cxpx1x9.

Immediately this splits off a linear factor xy. The conic x% + cx1x9 is smooth, as the

partial derivatives 2xg, cxg and cx; cannot simultaneously vanish. Furthermore, the
line and the conic intersect in the two distinct points (0:0:1:0) and (0:1:0:0).
In particular, this gives a ramified fibre of type I2. The fibration corresponding to
the line L1 would then have a (ramified) fibre of type III in this plane, which is

impossible by Lemma [3.20|since L is inflectious.

d #0 and ¢ # 0. After scaling x2, we can assume that d = 1. The residual cubic is

now given by
xg + xg +cxgx1x9 = 0.

Up to renaming coordinates, this is identical to subcase a) in the case A # 0, where it

was shown that this is an irreducible cubic.
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d) d #0 and ¢ = 0. In this case, we can assume d =1 and get

3 3 _
xgt+x5=0

as an equation for the residual cubic. Similarly to subcase b) of the case A # 0, this
gives a fibre of type IV, with the difference being that in this case it is ramified (note
that the intersection point here is (0:1:0:0), which lies on Lg). We claim that this
implies that S is projectively equivalent to the Schur quartic from Section [3.1]in this

case.

We will employ a similar method as in case d) of the previous section. Without loss
of generality we shall assume that L1 is given by x¢ + x2 = 0 and x3 = 0. Almost all

planes through L are given by an equation
x3 = m(xo + x2)
for some m € k. The intersection of such a plane with S is given by

0 =x2xg +m(xg+ xg)x?
+2x0x1 [go(m(xo + x2))% + q1m(xo + xg)xg + q2x§]
+ go(m(xo +22))* + g1(m(xo + 221329 + galm(x + x2))*x

+g3(m(xo +x2))x5 + 845

Recall that go = ¢ = 0 and g4 = d = 1. After simplifying, this equation takes the form
0 :xzxg + mxoxi’ + mxzx? + xg
+m(xg +x9)[mqoxpx1(xg + x2) + g 1x0x1x2]
+m(xo +x2) [go(m(xo + x2))% + g1(m(xo + x2))%xo

+ga(m(xg +x2))x3 + g3x3
Note that the first line splits off a factor of (x¢ + x2) via

2 2 3,.3
(20 + x2)(xpx2 — x0X5 + Mx] +X5)
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and so the residual cubic is given by

0 :x§x2 - xoxg + mx? + xg (A.5)
+mlmqoxox1(xo +x2) + g1x0x1x2] (A.6)
+m[gom(xo +x2))® + g1(m(xo + x2))*x2 (A.7)
+ga(m(xg +x2))x3 + g3x3 (A.8)

We intersect this with the line L; by substituting xo = —x2 and get the equation
— 3 2 3
0=(3+mg3)xg—mqix1xy +mxj. (A9)

Furthermore, we compute the Hessian of Eq. (A.5). Once again, we will use a
computer. The code can be found in Listing[A.9|and the output is given in Listing[A.10]

Like we did in the previous section, we will use the notation

0= Coxf + Clx%xg + nglxg + C3x§

0= H()xi +H1x§x2 +H2x1x§ +H3xg

for the residual cubic restricted to L1 and the Hessian restricted to L1, respectively,
where the C; and the H; are polynomials in the variables m,q;,g;. Because these
two polynomials must be multiples of each other, and in this case C1 = 0, it follows
that H; must also be zero as a univariate polynomial in m. Notice that the coefficient
of m3 in the polynomial H; is 144q, and we conclude that go must be zero. Similarly,

the coefficient of m? is 48¢1, which must also vanish, and so g1 = 0.

After substituting these two values back into the polynomials H;, we get

Hy=0
Hi=0
Hjy=(72g183 - 24g2)m® +216g1m* + 144gom? + 12g3m?
Hs=0.

Considering like in the previous subsection the polynomial

8o2 =H2Co—H(Cos,
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which must be zero as a polynomial in m, note that this is equal to mHs. It follows

that all coefficients of H2 must vanish, and we conclude that g; = g2 =g3=0.
We are left with only g9 and g4 being possibly nonzero. The surface S thus has

equation

xzx(3) + xgx‘;’ + g0x§ + g4x;L =0,

and after a change in coordinates we may assume that gg = g4 = 1. Up to flipping
signs and renaming coordinates, this is exactly the equation of the Schur quartic as
it was defined in Section [3.1]

We conclude that if there is an inflectious line L in a ramified fibre of n(, then S must
be the Schur quartic. O
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K<s> CyclotomicField (3) ;
RO<m, q0,ql,g0,gl,g2,g3> PolynomialRing (K,7) ;
R<x0,x1,x2> PolynomialRing (RO, 3) ;

//Equation of the residual cubic

c x072%xx2 - x0%x272 4+ m*x1~3 + x2°3

+ m*(m*q0*x0*x1*(x0+x2) + ql*x0*x1*x2)

+ m*(g0*(m*(x0+x2))~3 + gl*(m*(x0+x2)) ~2*x2

© 00 3 & O b W N =
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29

+ g2*(m*(x0+x2))*x2"2 + g3*x2~3);

//First derivatives

c0 Derivative (c,x0) ;
cl Derivative(c,x1);
c2 Derivative (c,x2) ;

//Second derivatives

c00 Derivative (c0,x0) ;
c01 Derivative (c0,x1);
c02 Derivative (c0,x2);
cll Derivative(cl,hxl);
cl2 Derivative (cl,x2);
c22 Derivative (c2,x2);

//Compute the determinant
h c00*xcll*c22 + cOlx*xcl2
c02

of the Hessian matrix
*c02 4+ c02*%c01%*cl?2

- ¢c01*xc01%c22 - cl1l2*xcl2*c00;

//Restrict to the line L_1

Evaluate(h,[-x2,x1,x2]);

Listing A.9: Magma code for computing the Hessian of the residual cubic in the case that

L1 is given by the equation xg +x9 =0
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(-6*m~5%q0~2 - 12*m~4xq0*ql - 6*m~3*xql~2)*x1"3
+ (24*m~5%xq0*g2 - 24*m~5*xql*gl +
72*m~4*%xq0*g3 - 24*m~4*ql*xg2 + 144*m~3%*q0

+ 48*m~2%ql)*x1~2%x2 +

(-2*m~5*%q0~2%ql + 72*m~5*gl*xg3 - 24*m~5xg2~2
- 4*xm~4*q0%ql~2 + 216*m~4*xgl -

2*m~3%ql~3 + 144*m~3*g2 + 72*m~2%g3)*x1*xx272
+ (-6*m~5%q0~2*g3 +

8¥m~5%xq0*xql*g2 - 8*xm~b5*xql~2*xgl - 18*m~4*xq0~2
+ 12*¥m~4xq0*ql*g3 -

8xm~4*ql ~2%xg2 + 12*xm~3*%q0*ql - 6*m~3*xql~2%g3
- 2¥m~2%ql~2)*x2"3

Listing A.10: Output of Listing Linebreaks have been manually edited for readability

reasons.
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A4 COMPUTATIONS FOR LEMMA (3.35

In this section we want to prove Lemma (3.35

3.35 Lemma. Let (S,L,mg) be in the family Z from Definition Assume that my has a
fibre of type Is, containing a regular line L1 and a smooth conic Q1.

Then Q1 is not a component of the flecnodal divisor Fg of S.

From Lemmas [3.17]and [3.20| we know that the fibre of type I2 must be ramified, and as
we have seen in the proof of Lemma the ramified fibres of S lie in the planes xg =0
and x3 = 0. Without loss of generality we can assume the fibre of type I lies in the
plane x3 = 0.

Using the notation from Lemma [3.28] we write the polynomials ¢ and g as

2 2
q(x2,%3) = qox3 + q1X2x3 + q2x;5

4 3 2.2 3 4
g(x2,x3) = gox3 + g1%2X3 + 82X5X3 + £3X5X3 + S4X3.

As we have seen in Appendix[A.3.2] the fibration 7o has a fibre of type I3 in the plane x3 =
0 if and only if g4 = 0 and g2 # 0, corresponding to case b) in Appendix[A.3.2] Therefore,
we can assume that the conic is given by the equationsxs = 0 and xg +qox1x9 =0. We can
parametrise this curve; a point P on it has projective coordinates (gast : —gas? : ¢2: 0) for
some (s : ) e P,

Our goal is to show that it is impossible for all of these points to simultaneously be
flecnodal points of S.

Consider such a point P. In order for P to be a flecnode, there has to be a line L c P3
such that L intersects the surface S with multiplicity at least 4 at the point P. This line
must necessarily lie in the tangent plane 7' = T'p(S) of S at P. Within this plane, we can
consider the curve C =S N7T, and then P is a flecnode of S if and only if ip(C,L) = 4.

The tangent plane T is given by the polynomial in Listing We can solve that

equation for x¢ so that T is given by
xo = h(x1,x2,x3)

where A is a polynomial whose coefficients are rational functions in the coefficients of g
and q as well as the parameters s and ¢. This gives a canonical isomorphism 7' =
P2(x1,x9,x3).

After substituting A for xg in the equation for the surface S, we obtain an equa-

tion G(x1,%2,x3) = 0 for the resulting curve S N T in the plane T =P2(x1,x2, x3).
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We will now consider the affine patch xg = 1 in this plane and translate the coordinates
so that P is the origin of this affine plane, which corresponds to the point (0:0:1:0) in P3.
Then we can compute the translated affine equation H(x1,x3) = 0 for the curve C in this
new plane A%(x1,x3) with P as its origin.

The polynomial H is computed in Listing and as we can see in the output in
Listing[A.14] there are no linear coefficients, meaning P is a singular point of the curve C =
SNT. In order to study the local behaviour of C at P, we consider the quadratic part of H,

given in the form
Ax% +Bx1x3 + Cx%,

where A, B and C are rational functions in ¢;, g;, s and . We compute the discriminant D
of this quadratic polynomial. If u is a square root of D, then the tangents to the two

branches of C at P are given by the equations

-B+u
X1 = oA x3

-B-u
x1 = oA x3.

Substituting these two equations back into the equation H, we obtain two univariate
polynomial J(x3) and 7(x3), which as we can see in Listing are of the form

J = J1x5 + Joxs

7 = Tixd + T

where oJ; and oJ; are rational functions in s, ¢ and the coefficients of q and g, as well as u;
and where J; is the conjugate of J; with respect to u, i.e. the expression obtained by
replacing all instances of u in J; with —u.

Now in order for P to be a flecnode of the surface S, it must be a flecnode of the curve C,
and thus one of the two tangents must intersect C with multiplicity 4. This is equivalent to
either J; or J; vanishing. Because J;1 and Jp are each others conjugates, this is the case if
and only if the norm of JJ; with respect to u vanishes. We view the norm as a homogeneous
polynomial in s,¢ whose coefficients are polynomials in the coefficients of ¢ and g. If every
point on the conic @1 is to be a flecnode of S, then this norm must vanish for all values of s

and ¢, which means that all coefficients must vanish.
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In Listingwe can see that one of these coefficients is 7 68q58. Since g2 is non-zero,
this coefficient is also non-zero outside of characteristic 2 or 3. Therefore, the conic @1 is

not a component of the flecnodal divisor of S.
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// Define the polynomials q and g, the surface S

// and introduce parameters t and s for the conic

FF:-=RationalField () ;
K<q0,ql,92,g0,gl,g2,g3>=FunctionField (FF,7) ;
I<s,t>=FunctionField (K,2) ;
P3<x0,x1,x2,x3>=ProjectiveSpace(L,3) ;

g4:=0;

q2*x272+ql*x2*xx3+q0*x3 ~ 2;
g4xx2"4+g3*x2 " 3*xx3+g2*x2 " 2%x372+gl*x2*x373+g0*x3 " 4;
x2*xx073+x3*x1"3+x0*x1*qtg;

Scheme (P3,F) ;

»n T ;m Q0

// Define the point P on S, compute the tangent plane T

P_coords:=[qg2*s*t,-q2*s~2,t ~2,0];

P:=S!coords;

T:=TangentSpace(S,P);

DefiningEquation(T); // print the equation for T

Listing A.11: Magma code to compute the tangent plane T of the surface S at the point P

and an equation G =0 for the curve C in the intersection of T with S.

x0 + 1/2xt/s*xl - 1/2%xq2*s/t*x2
+ (-1/2%qg2*s~6 - 1/2xql*xs~3xt"3
+ 1/2%g3/q272%t~6)/(s~ 2%t ~4)*x3

Listing A.12: Output of Listing giving the polynomial that defines the tangent

plane T. Formatting manually edited.
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//

X0
G

//
//
//
//

H

Intersect T with S by substituting xO0

x0-DefiningEquation (T) ;
Evaluate(F,[X0,x1,x2,x3]);

Substitute translated variables into G to give an
affine equation H in the variables x1, x3
where now P is the origin (0,0)

Multiply G by 8%q2~6 to simplify denominators

Evaluate (8*q2~6%*G, [ x0+q2*s*t ,x1-q2*s~2,t~2,x3]) ;

Monomials (H) ;

Listing A.13: Magma code to compute the equation H = 0 for the tranlsation of the

curve T'NS in the affine plane A%(x1,x3) where P corresponds to the origin. Note that this

code does not compile on its own, but is specifically a continuation of the code given in

Listing

[

x1~3%x3,
x172%¥x3°2,
x1*x373,
x374,
x1~3,
x1~2%x3,
x1*x372,
x3~3,
x1~2,
x1*x3,
x372

]

Listing A.14: Output of Listing giving the monomials of the polynomial H which

defines the curve C in the translated affine plane. Notably the linear coefficients are

absent.
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MonomialCoefficient (H,x1"~2);
MonomialCoefficient (H,x1*x3) ;
MonomialCoefficient (H,x3"2);
B~ 2-4xAxC;

CQuwePr

// Substitute the two tangent equations back into H

preR<U> =PolynomialRing (L) ;

R<u> <preR |U~2-D>;
X<X0,X1,X2,X3>=ProjectiveSpace(R,3) ;
J:=Evaluate(H,[0,(-Btu) /(2%A) * X3,0,X3]);

Monomials(J) ;

Listing A.15: Magma code for computing the quadratic part of the polynomial H and the

discriminant D. Note that the code will not compile on its own, but is a continuation of the
code in Listings and

[

X374,

X33

]

Listing A.16: Output of Listing showing the monomials of the polynomial «/, which

represents the intersection of the curve C with one of the two tangent lines at the origin.

The formatting has been manually edited.

NormCoeffX3:=Norm( MonomialCoefficient (J,X3~3)) ;
Coefficients (Numerator (NormCoeffX3)) ;

Listing A.17: Magma code for computing the norm with respect to u of /1. This code will
not compile on its own, but is a continuation of Listings }A.11|, |A.13| and IA.15}

[
768+q2-~18
[...]

Listing A.18: Output of Listing|A.17] which has been manually truncated.
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