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Introduction

In his Arithmetica1, written in the third century AD, Diophantus of Alexandria tasked the reader with
the following exercise:

“To divide a given number into two numbers and make their product a cube except [its] side.”

(see book IVG, problem 24 in [CO23]). Calling the given number m, we are thus tasked with finding
numbers y and m− y summing to m, such that their product equals x3 − x for some x. Implicit in the
historical context of this exercise is that all of y,m− y and x must be strictly positive rational numbers.
In modern terms, this exercise thus is equivalent to finding a rational point, with positive coordinates,
on the curve given by the equation

Dm : y(m− y) = x3 − x. (1)

A modern reader will recognise eq. (1) as one defining an elliptic curve, a non-singular curve of genus 1 with
a rational point. In fact, the exercise that Diophantus provided us appears to be the first recorded mention
of an elliptic curve, although Diophantus certainly did not think of it in this manner. Nevertheless, his
solution to the case for m = 6 still very much fits in the modern viewpoint.2 Namely, his solution boils
down to the following: he starts with the “illegal” solution P = (x, y) = (−1, 0), takes the tangent line L
of D6 at P , and then he finds the other intersection point of L with D6. In modern terms, this comes
down to the calculation of

−2P = (26/27, 17/9),

which is non-trivial and satisfies the implicit constraints of the problem.

The Mordell–Weil theorem
The rational solutions to Diophantus’ equation, or the set of rational points on elliptic curves more
generally, is described by the Mordell–Weil theorem. By definition, elliptic curves lie between genus 0
curves on one hand and curves of genus at least 2 on the other hand3. Genus 0 curves that contain a
single rational point P contain infinitely many, as these points are parametrised by lines with rational
slopes through P . By Faltings’s theorem, any curve of genus g ≥ 2 has only a finite number of rational
points. For elliptic curves, the situation is more variable, and has long remained mysterious, summarised
best by Mordell in 1922 [Mor22].

“Mathematicians have been familiar with very few questions for so long a period with so little
accomplished in the way of general results, as that of finding the rational [points on elliptic
curves].”

It was in this same paper that Mordell in part proved the theorem, now known as the Mordell–Weil
theorem, which (at least partially) answered this question.

Theorem (Mordell–Weil). If K is a number field and E/K is an elliptic curve, then E(K) is a finitely
generated abelian group, i.e. there is an isomorphism

E(K) ∼= T × Zr,

1This is the same work that contained the exercise “To divide a proposed square (number) into two squares” (book II,
problem 8). It was in the margin next to this question where Pierre de Fermat wrote his famous Last Theorem, along with
the mention that he had a proof that unfortunately did not fit in the margin.

2For a translation of his work into modern notation, see chapter 6 in [Bas97].
3In this context, by curve we mean a smooth, projective, and geometrically irreducible curve.
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with T = E(K)tors a finite group and r ∈ N an integer called the (algebraic) rank of E(K).

Mordell proved the K = Q case in his 1922 paper [Mor22], and the full version for arbitrary number fields
was proved by Weil in 1929 [Wei29].4

The Mordell–Weil theorem allows us to decompose E(K) as the product of two subgroups, the finite
torsion subgroup and a (possibly infinite) free group. Much is known about the torsion part. Mazur’s
theorem (1976) tells us exactly which groups can occur as torsion groups for K = Q. A later result by
Merel in [Mer96] showed that for general number fields the torsion groups can be uniformly bounded in
size.

Theorem (Merel). Let d ∈ N. Then there exists a number B(d) ∈ N such that for every number field K
with [K : Q] = d and every elliptic curve E/K we have

|E(K)tors| ≤ B(d).

Later work by Parent in [Par99] gave an explicit value for B(d). Meanwhile, Mazur’s theorem has been
extended to number fields of higher degree, and it is now known which torsion groups can occur for
number fields of degree at most 4, see [Kam92] and [KM88] for quadratic fields, [DEvH+21] for cubic
fields, and [DN25] for the recent result on quartic fields. Moreover, there are effective algorithms to
actually calculate the torsion groups, for example, see [Cre92].

The minimalist conjecture
The free part of E(K) has remained much more mysterious. For example, it is currently not even known
whether the ranks of curves E/Q are bounded or not, and for a time they were generally believed to be
unbounded. A recent heuristic however seems to indicate the opposite, as it predicts that there are (up
to isomorphism) only a finite number of elliptic curves with rank higher than 21 [PPVW19].5 Intuitively,
this heuristic seems to tell us that generally, points on elliptic curves are rare, and there cannot be too
many. There are a series of similar results and conjectures, all pointing in a similar direction.

• There is a folklore minimalist conjecture. One of the consequences to the BSD-conjecture is the
parity conjecture, which states that6

(−1)rankE(K) = w(E/K),

where w(E/K) ∈ {±1} is the (global) root number of E over K. The root number is an invariant
of E which can be determined solely by looking at the reduction of E at its bad primes. The parity
conjecture thus allows one to find the parity of rankE(K) directly by determining the root number.
The minimalist conjecture then states that given this parity, the rank is expected to be minimal
[BMSW07].

• Since the parity of the rank of an elliptic curve is suspected to have a 50% probability to be either
odd or even, the minimalist conjecture implies that the average rank of all elliptic curves should
be 1/2. A recent result by Bhargava and Shankar in [BS15] shows that the average rank (when
considering all elliptic curves ordered by height) is at most 7/6.

• Let E : y2 = x3 + ax+ b be an elliptic curve. For any d ∈ Q we can define the quadratic twist Ed

of E by d as the curve Ed : dy2 = x3 + ax + b, which is isomorphic to E over Q(
√
d). Goldfeld’s

conjecture states that the average rank of such quadratic twists is 1
2 , or more precisely that

lim
D→∞

∑
|d|<D rankEd∑

|d|<D 1
=

1

2

4In fact, Weil proved a more general version than the one stated above, as he proved the theorem for arbitrary abelian
varieties, not just elliptic curves.

5Early researchers generally believed that they were bounded, but the consensus shifted in the 1960’s due to a variety of
reasons, one being the fact that it was shown that for functions fields Fp(T ) the ranks are unbounded [TS67]. See [PPVW19,
Section 3] for an overview.

6Although the full parity conjecture is currently not proven, there are several classes of curves for which the parity
conjecture is known to hold, among which all curves of rank 0 or 1, and those for which the 2- and 3-primary parts of the
Tate–Shafarevich group X(E/K(E[2])) are finite [DD11].
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when d is taken over all square-free d ∈ Z. In other words, Goldfeld’s conjecture states that the
minimalist conjecture holds when one restricts it to such a family of quadratic twists.7

High ranks in the family of Diophantus
This brings us back to the family of Diophantus, whose members (in contradiction with this principle)
seem to have many rational points. It can be quickly seen that each curve Dm : y(m − y) = x3 − x
contains the points

(0, 0), (1, 0), (−1, 0), (0,m), (1,m), (−1,m).

These points are not all independent (for example we have −(1, 0) = (1,m)), but they do (generically)
generate a rank 2 subgroup. In absence of other obvious rational points we thus might expect, according
the above minimalist conjecture, that most curves in the family have rank either 2 or 3. Interestingly,
when one calculates the ranks of the first thousand members of this family, one obtains the results given
in table 1.

Rank 1 2 3 4 5 6

Occurrences 2 231 453 258 52 4

Table 1: Frequency of ranks for the curves Dm with 1 ≤ m ≤ 1000.

Surprisingly, and contrary to the expectations stated above, there is a high number of rank 4 curves, even
outnumbering rank 2 curves in this range. This, of course, invites the question whether this behaviour is
simply a statistical anomaly or if it persists as one computes a larger dataset. As we will see, on average
the rank of Dm indeed seems to lower as m increases. In order to study this decay more closely, we will
compare the behaviour found with the heuristic mentioned above from [PPVW19]. The conjecture states
that an elliptic curve has probability

H(1−r)/24+o(1)

of having rank at least r, where H is the (naive) height of H measuring the size of its coefficients, and
o(1) is a function that goes to zero as H increases. Since a curve in Diophantus’ family generically has
rank at least 2, the conjecture as stated will definitely not hold for the family. Instead, it is natural
conjecture that instead a curve has probability

H(1−(r−2))/24+o(1)

of having rank at least r. The question at hand is now whether the family indeed follows these expecta-
tions, and if it does, what we can say about the yet mysterious o(1) term. We will explore this subject
in section 2.3.

The discussion so far focusses on the general behaviour of the family, which the majority of the members
follow. A different approach is to instead focus on the outliers with exceptionally high rank. In this
context, two main questions can be asked; which ranks occur in the family, and which ranks occur
infinitely often. Both questions are difficult to answer, and generally progress is made only by explicitly
finding curves of different ranks. For the first question, the best that we have managed is rank 8 (the
first such curve being D29689). In [BM02] a larger range is searched, where it was found that D1531234

has rank at least 10.

Progress towards the second question can be made by constructing subfamilies that have higher generic
rank r, meaning that all but finitely many members of this subfamily will have rank at least r. For the
family of Diophantus, this was first done in [BM02], where a subfamily of generic rank 3 was constructed.
To be precise, it was shown that for every t ∈ Q, the curve

D108t2−330t−180

7Smith has announced a proof of Goldfeld’s conjecture in [Smi17].
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has rank at least 3, and an explicit expression for the additional generator is also given. It hence follows
that the family of Diophantus contains an infinite number of curves of rank at least 3. This work was
generalized in [Eik04], where it was shown that these quadratic subfamilies are far from rare. Namely,
given any value m0 ∈ Q and any point R on Dm0 , there exists a quadratic polynomial m(t) such
m(0) = m0, and such that Dm(t) almost always has rank 3. By intersecting multiple of such quadratic
families one can now obtain subfamilies of generic rank up to 5. Eikenberg indeed found a subfamily of
generic rank 5, which was indexed by the points on the rank 2 elliptic curve

A : y2 = x3 − x2 − 103307652308x+ 12301315572924612.

By searching through a larger range of subfamilies we found that in fact a rank 2 indexing curve is far
from the best that can be done, and we will obtain the following result (which is proposition 2.4.3).

Proposition. There exists a (rational) map m : B(Q) → Q, where B is the rank 5 elliptic curve

B : y2 = x3 − 831594956135615443677x+ 4218733697317527733855209741004

such that for almost all T ∈ B(Q) the curve Dm(T ) has at least rank 5.

In summary, we will approach the subject in two distinct ways. On one hand, we consider the average
behaviour of the family, where we are mainly concerned with the relative frequency with which curves
of rank 4 and rank 5 occur compared to curves of lower rank. On the other hand, we will look into the
construction of higher rank subfamilies.

In order to study these aspects, we need to calculate the rank of more curves in the Diophantus family.
To understand how this can be done, we turn to the proof of the Mordell–Weil theorem. Namely, from
the proof of the Mordell–Weil theorem one can extract an algorithm that computes the rank.

Infinite descent
The proof of the Mordell–Weil theorem consists of two parts. First, one proves the weak Mordell–
Weil theorem, which states that E(K)/nE(K) is finite for some integer n ≥ 2 (which we will show in
theorem 1.2.8). This certainly must be the case if E(K) is indeed finitely generated, but it is not yet a
proof. For example, the group Zp satisfies Zp/pZp

∼= Fp, but it is not finitely generated (which follows
from its uncountable cardinality). To exclude such cases the second part of the proof is needed, which
roughly states that there are only finitely many “small” points (see section VIII.3 in [Sil09] for details).8
In practice, determining E(K)/nE(K) (a procedure known as an n-descent) is still the main tool used
to determine the rank of E(K). Given the decomposition E(K) ∼= T ×Zr provided by the Mordell–Weil
theorem, it follows that

E(K)/nE(K) ∼= (T/nT )× (Z/nZ)r.

Assuming that we are able to determine T , this allows us to find the rank r solely by considering the size
of E(K)/nE(K). It is unsurprising that the process of calculating E(K)/nE(K) depends on T , more
specifically on the n-torsion part E(K)[n] of T . It is known that over an algebraic closure K̄ of K (or
equivalently over C) we have

E(K̄)[n] ∼= (Z/nZ)× (Z/nZ),

and any subgroup of this may be K-rational. The traditional reference on the subject [Sil09] only
explicitly shows how E(K)/nE(K) can be found in the situation where E(K) contains a point of order
n. Unfortunately for us, this is not applicable for the family of Diophantus, as Dm(Q) is torsion-free for
almost all integers m, m = 0 being the sole exception.9 Therefore, it is necessary to expand this theory
and learn how to do a so called irrational n-descent. As often it is sufficient to only consider the n = 2
case, we will focus on this. We do this using a cohomological interpretation, avoiding ad hoc solutions as
much as possible.

8This part of the proof is very like the proof Fermat gave for the n = 4 case of his Last Theorem. Here, Fermat used the
technique of infinite descent. That is, he showed that given an integer solution (x, y, z) of the equation x4 + y4 = z4 there
must be a smaller solution. This results in an impossible infinitely descending chain of solutions, yielding a contradiction
and the name of the proof. Similarly, the proof of the Mordell–Weil theorem is also described as “doing a descent”.

9We will prove this fact in section 2.2.1.
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Overview of this thesis
In chapter 1 we develop the method of irrational 2-descent through cohomology. In section 1.1 we
consider the simpler case of fully rational n-torsion, as this simpler case allows us to demonstrate many
of the relevant ideas. Then, in section 1.2 we develop the full theory needed to deal with curves without
rational torsion. As a finishing touch we will apply this theory on Diophantus’s curve D6 and show how
one can find not only one, but (provably) all points on this curve. In chapter 2 we turn to the family of
Diophantus. In section 2.1 we discuss analytic ranks and their relevance in the computation of algebraic
ranks. In section 2.2 we then proceed with some general properties of the family; we prove the lack of
torsion and discuss the occurrences of higher ranks within the family. In section 2.3 we analyze the data
that we obtained and compare it to existing heuristics. Finally, in section 2.4 we discuss the results by
Eikenberg [Eik04] on subfamilies of higher generic rank.
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Notation

• For m ∈ Q, Dm denotes the elliptic curve given by

Dm : y(m− y) = x3 − x.

• We use K,L,M, ... to denote number fields, k, ℓ,m, ... for residue fields, and K,L,M, . . . for com-
plete fields.

• For a field K, we let GK := Gal(Ksep/K) denote the absolute Galois group of K, which if K is
perfect equals Gal(K̄/K).

• For K a field and M a GK-module, we write Hn(K,M) := Hn(GK ,M).

• For an abelian group A and an integer n ∈ Z≥2 we write A[n] for the n-torsion subgroup {a ∈ A :
n · a = 0}.
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Chapter 1

Cohomological 2-descent

The goal of this chapter is to discuss the method of 2-descent for elliptic curves over number fields that
do not possess a rational 2-isogeny. Though less classical than the case of elliptic curves with a rational
2-isogeny, the method for irrational 2-torsion is described for instance in [Sil09, Exercise 10.9] or [Cas91,
Chapter 15]. Our goal is to recast this method cohomologically, providing an alternative description
compared to the above sources. We start initially with an elliptic curve E defined over a number field
K, and study for any n ≥ 2 the injection

E(K)/nE(K) H1(K,E[n])

obtained by passing to the long exact sequence in Galois cohomology associated to the short exact
sequence of GK-modules defined by the multiplication by n map:

0 E[n] E E 0.n

In section 1.1 the case in which E has fully K-rational n-torsion is discussed. In spite of this case being
covered extensively in the literature, its inclusion in this thesis allows us to introduce some notation and
many relevant ideas needed for the irrational case. In section 1.2 we set n = 2 and discuss the case where
E[2] is irreducible. As an illustration, we discuss the rank computation for the Diophantus curve

D6 : y(6− y) = x3 − x

revisiting the example discussed in the introduction. In the next chapter, this method will be applied to
a large number of curves Dm in Diophantus’ family, using its implementation in Magma.

1.1 Rational 2-torsion
Even though this material is very well-known, we use it as an opportunity to introduce some key notions
that we will use later in the irreducible case. This part of the discussion is based on [Sil09, Chapter X].
We also determine the Mordell–Weil group of the simplest member of the Diophantus family, namely

D0 : −y2 = x3 − x.

Let E be an elliptic curve over a number field K, and let n ≥ 2. In this section we consider the case
where E[n] ⊆ E(K). We let µn ⊆ K̄ denote the group of n-th roots of unity. We will work under the
assumption that µn ⊆ K.1 From the short exact sequence

1 µn K̄∗ K̄∗ 1
(·)n

we then obtain the long exact sequence

1 µn K∗ K∗ H1(K,µn) H1(K, K̄∗) H1(K, K̄∗) . . . .
(·)n

1There is not much harm in making this assumption as we are mainly interested in n = 2 anyway, in which case every
number field satisfies the condition.
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By Hilbert’s Theorem 902 we have H1(K, K̄∗) = 0, and so we obtain the following lemma.

Lemma 1.1.1. If K is a field containing all n-th roots of unity, then

H1(K,µn) ∼= K∗/(K∗)n.

Now, from the assumption that E[n] ⊆ E(K), it follows that E[n] and µn × µn are isomorphic as
GK-modules, and as a direct consequence we obtain the isomorphisms

H1(K,E[n]) H1(K,µn × µn) H1(K,µn)×H1(K,µn) K∗/(K∗)n ×K∗/(K∗)n.∼ ∼ ∼

Together with the injection E(K)/nE(K) ↪−−→ H1(K,E[n]) (see appendix A.2) this gives an injection

ι : E(K)/nE(K) K∗/(K∗)n ×K∗/(K∗)n (1.1)

The ultimate goal is to find the image of ι. For this, we have two tasks. The first is to use local
conditions to find a finite subgroup of K∗/(K∗)n ×K∗/(K∗)n in which the image is contained, which we
do in section 1.1.1. Secondly, in section 1.1.2, we will find an explicit description of the morphism ι that
we can use to determine its image.

1.1.1 Local conditions
We will shortly prove theorem 1.1.4, which gives a finite subgroup of K∗/(K∗)n ×K∗/(K∗)n in which
the image of ι lies. To this end, we need two technical results. We follow Milne [Mil06, Chapter 4].

Proposition 1.1.2. Let E/K be an elliptic curve with discriminant ∆. Let γ ∈ H1(K,E[n]) such that
the image of γ in H1(Kv, E) is trivial for every place v of K3. Then, for every finite place v of K that
does not divide n∆ (i.e. v(n∆) = 0), there exists a finite unramified extension L of Kv such that γ maps
to 0 in H1(L, E[n]).

Proof. See proposition A.3.7 in appendix A.

Lemma 1.1.3. Let K be a number field, let v be a (normalised) finite place of K, and let L be an
unramified extension of Kv. If x ∈ K lies in (L∗)n for some n ≥ 2, then v(x) ≡ 0 mod n.

Proof. Since L is obtained from K by first taking a completion with respect to a non-archimedean
valuation and then an unramified extension, it has the same value group as K. The fact that x is in
(L∗)n then immediately implies that v(x) is the n-fold of an integer, or equivalently v(x) ≡ 0 mod n.

Theorem 1.1.4. Let n ∈ Z≥2, let K be a number field containing µn, let E/K be an elliptic curve with
rational n-torsion and let ∆ be the discriminant of E. Let T be the set of finite primes of K that do not
divide n∆. Then the images of ι1 and ι2 are contained in the finite subgroup of K∗/(K∗)n consisting of
elements that have trivial v-adic valuation for all v ∈ T .

Proof. We write
ι1, ι2 : E(K)/nE(K) K∗/(K∗)n

for the components of ι. Recall that these can be defined as composite maps

ι1, ι2 : E(K)/nE(K) H1(K,E[n]) H1(K,µn) K∗/(K∗)n,
i−1
K (1.2)

2See for example [Šaf63] for (a translation of) Hilbert’s original proof of the same theorem in a different form. For a
simple direct proof of the fact that H1(K, K̄∗) = 0, see theorem 6.2.1 in [NSW13].

3In other words, γ lies in Seln(E/K).
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where the second maps are postcomposition with one of the projection maps. Let P ∈ E(K)/nE(K),
and let γ be one of the images of P in H1(K,µn) under the above maps (that is γ = iK(ι1(P )) or
γ = iK(ι2(P ))). By commutativity and exactness of the following diagram

0 E(K)/nE(K) H1(K,E[n]) H1(K,E)[n] 0

0
∏

v E(Kv)/nE(Kv)
∏

vH
1(Kv, E[n])

∏
vH

1(Kv, E)[n] 0,

(1)

it follows that γ satisfies the conditions of proposition 1.1.2. Let v ∈ T . By proposition 1.1.2 we may
choose a finite unramified extension L of Kv such that γ maps to zero in H1(L, µn). Now note that we
have the commutative square

H1(K,µn) K∗/(K∗)n

H1(L, µn) L∗/(L∗)n

i−1
K

i−1
L

where the horizontal maps are the isomorphisms given in lemma 1.1.1. Since, by construction of L, we
have that γ maps to 0 under the left vertical map, it follows that i−1

K (γ) maps to zero under the right
vertical map. By lemma 1.1.3 we conclude that v(i−1

K (γ)) ≡ 0 mod n.

As a special case we have the following well known result.

Corollary 1.1.5. Let E/Q be an elliptic curve with E[2] ⊂ E(Q). Let S be the set of primes that dividing
2∆, and define the finite subgroup A = ⟨S,−1⟩ ⊆ Q∗/(Q∗)2. Then (1.1) induces an injection

ι : E(Q)/2E(Q) A×A.

1.1.2 Explicit description of the Weil pairing
Our goal of this section is to find an explicit description of ι, which can be used to determine its image.
In order to do this, we will define the Weil pairing.

Definition 1.1.6. The Weil pairing

⟨·, ·⟩ : E[n]× E[n] −−→ µn

is defined as follows: given a point P ∈ E[n], let f ∈ K̄(E) with div(f) = n(P )− n(O). Choose a point
Q with [n]Q = P , and g ∈ K̄(E) with

div(g) = [n]∗(P )− [n]∗(O) =
∑

R∈E[n]

(Q+R)− (R).

Since f ◦ [n] and gn have the same divisor, their quotient is a scalar, and so by redefining f we may
assume that f ◦ [n] = gn. For any point S ∈ E[n] we define

⟨S, P ⟩ := g(X + S)

g(X)
∈ µn,

where X is any point where this expression is defined.

To make sense of this last definition, note that(
g(X + S)

g(X)

)n

=
g(X + S)n

g(X)n
=

(f ◦ [n])(X + S)

(f ◦ [n])(X)
=
f([n]X +O)

f([n]X)
= 1,

hence indeed g(X+S)
g(X) ∈ µn. The Weil pairing is moreover independent of the choice of X (and hence

well-defined), nondegenerate, alternating and bilinear, see e.g. [Sil09, Prop III.8.1] for a proof.
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Recall that in order to construct the two maps

ι1, ι2 : E(K)/nE(K) K∗/(K∗)n.

we used an isomorphism ϕ : E[n]
∼−−−→ µn × µn. As we are free to choose this isomorphism, we define it

as follows. We pick two generators T1, T2 ∈ E[n], and set ζ := ⟨T1, T2⟩ ∈ µn. Define4

ϕ : aT1 + bT2 (ζa, ζb).

From here on we fix such T1, T2, ζ. Such a choice of a particular ζ also allows us to regard E[n] as a
µn-module; we define

ζc ∗ P := cP.5

Now, given a point P = ζa ∗ T1 + ζb ∗ T2 it follows that

⟨P, T2⟩ = ⟨ζaT1, T2⟩ = ⟨aT1, T2⟩ = ⟨T1, T2⟩a = ζa,

and consequently that

ϕ(P ) = (⟨P, T2⟩, ⟨P, T1⟩).

Consequently, given the decomposition of ι1, ι2 in eq. (1.2), it follows that we can decompose ι1 as

E(K)/nE(K) H1(K,E[n]) H1(K,µn) K∗/(K∗)n

P (σ 7→ σQ−Q) (σ 7→ ⟨σQ−Q,T2⟩) ι1(P )

and ι2 similarly. For n = 2 and E in Weierstrass form we can use this to find explicit formulas for ι1 and
ι2.6

Proposition 1.1.7. Let x1, x2, x3 ∈ K and consider the elliptic curve E : y2 = (x−x1)(x−x2)(x−x3).
For brevity we write

T1 = (x1, 0), T2 = (x2, 0), and T3 := T1 + T2 = (x3, 0).

Then the maps ι1 and ι2 are given by

ι1 : (x, y) 7→


1 if (x, y) = O,

(x1 − x2)(x3 − x2) if (x, y) = T2,

x− x2 else,
ι2 : (x, y) 7→


1 if (x, y) = O,

(x2 − x1)(x3 − x1) if (x, y) = T1,

x− x1 else.

Proof. Note that f = x− x2 has divisor exactly 2(T2)− 2(O). Moreover, with the function g ∈ K̄(E) as
in definition 1.1.6, for any affine point P = (x, y) ∈ E(K) with P ̸= T1, T2 we have

⟨σQ−Q,T2⟩ =
g(Q+ (σQ−Q))

g(Q)
=
g(σQ)

g(Q)
=
σg(Q)

g(Q)
=
σ
√
f([2]Q)√
f([2]Q)

=
σ
√
f(P )√
f(P )

=
σ
√
x− x2√
x− x2

. (1.3)

As the map σ 7→ σ
√
x−x2√
x−x2

is clearly equal to the image of x−x2 under the isomorphism iK from lemma 1.1.1
it follows that ι1(P ) must equal x− x2. Similarly ι2(P ) = x− x1. Since we know that both ι1 and ι2 are
group isomorphisms, the given formula follows.

We will now demonstrate how theorem 1.1.4 and proposition 1.1.7 together can be used to determine the
rank of an elliptic curve with rational torsion.

4Note that by non-degeneracy of the Weil pairing ζ is a primitive root of unity, and so this map is indeed an isomorphism.
6Using Miller’s algorithm one can do the same for general values of n. See [Sil09, Chapter XI.8] for details.
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1.1.3 Example: D0

We completely solve Diophantus’ exercise for m = 0, by finding all rational points on

D0 : −y2 = x3 − x

By the coordinate transformation (x, y) 7→ (−x, y) we see that this curve is isomorphic to E : y2 = x3−x,
which has the rational 2-torsion points (0, 0), (1, 0), (−1, 0) and discriminant ∆ = 64. It follows that
E(Q)/2E(Q) injects into {±1,±2}2. We take T1 = (0, 0) and T2 = (1, 0).

The image of the torsion points is as follows:

• The point O maps to (1, 1).
• The point T1 = (0, 0) maps to (−1,−1).
• The point T2 = (1, 0) maps to (1, 2)
• The point T3 = (−1, 0) maps to (−1,−2).

For each remaining pair (b1, b2) ∈ {±1,±2}2 we thus have to check whether it lies in the image of ι, or
equivalently whether there exist P = (x, y) ∈ E(Q) and z, w ∈ Q with b1z2 = x− x1 and b2w2 = x− x2
(where x1 = 0 and x2 = 1). The system we have to solve is thus

b1z
2 = x

b2w
2 = x− 1

y2 = x3 − x.

A trivial but useful observation is that if a pair (b1, b2) does lie in the image and a pair (c1, c2) does not,
then (b1c1, b2c2) also does not. This drastically reduced the required work as we will see shortly.

• For (b1, b2) = (2, 1) we get 
2z2 = x

w2 = x− 1

y2 = x3 − x.

Let v = ord2. Note that since x = 2z2, v(x) must be odd.

– If v(x) < 0, then

v(x− 1) ≥ min(v(x), v(−1)) = min(v(x), 0)) = v(x),

and since v(x) ̸= v(−1) = 0 the above inequality is in fact an equality, and we find that
v(x − 1) = v(x). However, from the first two equations we see that v(x) is odd and v(x − 1)
is even, which is a contradiction.

– If v(x) > 0, then similarly we get

v(x− 1) ≥ min(v(x), v(−1)) = min(v(x), 0)) = 0,

and by the same argument v(x+ 1) = 0. Hence

v(y2) = v(x3 − x) = v(x) + v(x− 1) + v(x+ 1) = v(x)

which shows that v(x) is even, which is again a contradiction.

We conclude there are no solutions and so (b1, b2) = (2, 1) does not lie in the image of ι. As a
consequence, (−2,−1), (2, 2) and (−2,−2) also do not lie in the image.

• For (b1, b2) = (−1, 1) we get 
−z2 = x

w2 = x− 1

y2 = x3 − x.

In particular, x is negative and x− 1 is positive, which is a contradiction. Hence (−1, 1) does not
lie in the image, and neither do (1,−1), (−1, 2) and (1,−2).
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• Note that the argument for (b1, b2) = (−1, 1) holds whenever b1 is negative and b2 is positive. In
particular we can also exclude (−2, 1), and consequently also (2,−1), (−2, 2) and (2,−2).

In conclusion, of the sixteen points in {±1,±2}2, four do lie in the image (namely the images of the
torsion points), and the remaining twelve do not. We conclude that

ι (E(Q)/2E(Q)) = {(1, 1), (−1,−1), (1, 2), (−1,−2)}.

Since this is already the image of the 2-torsion subgroup, it follows that E(Q) has rank 0, and that the
only rational points on E are

E(Q) = {O, (0, 0), (1, 0), (−1, 0)}

1.2 Irrational 2-torsion
For a generic member E of the Diophantus family, the Galois module E[2] is irreducible over K, and so
the methods of section 1.1 do not apply. In this section, we give a cohomological interpretation of the
method of 2-descent in the case where E[2] is irreducible. We construct a short exact sequence

0 E[2] V µ2 0

where V = IndKL (µ2) is induced from the trivial representation of the cubic field L obtained by adjoining
the coordinates of a 2-torsion point. Using Shapiro’s lemma, we extract an injection

E(K)/2E(K) Ker

(
L×/(L×)2

NL/K−→ K×/(K×)2
)
.

To describe this map explicitly, we investigate the isomorphism of Shapiro’s lemma in §1.2.1. The method
of 2-descent is described in §1.2.2 and illustrated on the Diophantus curve D6 in §1.2.3. In chapter 2, an
implementation of this method is used to obtain statistical rank data on the family Dm.

1.2.1 Shapiro’s lemma
In this section we let G be a group and H ⊆ G a subgroup of finite index. Shapiro’s lemma on induced
modules provides, for every H-module M , a canonical isomorphism

H1(G, IndGH(M))
∼−→ H1(H,M).

The main goal of this section is to explicitly describe the inverse of this isomorphism.

Let {gi}i∈I be a set of coset representatives of H, i.e. G =
∐

i∈I giH, where without loss of generality
we assume 1 ∈ I and g1 = 1. For σ ∈ G and i ∈ I we define σ(i) ∈ I and the map hi : G→ H by

σgi = gσ(i)hi(σ).

That is, σgi = gjh for some h ∈ H. We define σ(i) := j and hi(σ) := h.

Remark 1.2.1. Note that if σ ∈ H, then since σg1 = σ = g1σ it follows that

σ(1) = 1 and h1(σ) = σ.

Note that since the definition of hi depends on the choice of elements gi there is no reason for the hi to
be homomorphisms. This indeed is not always the case.7 We do however have the following property.

Lemma 1.2.2. For any σ, τ ∈ G, i ∈ I we have

σ(τ(i)) = (στ)(i) and hi(στ) = hτ(i)(σ)hi(τ).

7A rare case in which this happens is for example when G = H ×X and when one takes I = {1} ×X and gi = (1, i) for
all i ∈ X. In this case all the hi are equal to the projection map H ×X → H.
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Proof. This follows very quickly from the equalities

g(στ)(i)hi(στ) = (στ)gi

= σ(τgi)

= σ(gτ(i)hi(τ))

= (σgτ(i))hi(τ)

= gσ(τ(i))hτ(i)(σ)hi(τ).

Using the maps {hi}i we can now define our object of interest, namely induced modules.

Definition 1.2.3. Let M be a (left) H-module. The induced G-module of M is the abelian group

IndGH(M) :=
⊕
i∈I

[gi] ·M,

where the action of G is defined by linearly extending the rule

σ · [gi]m := [gσ(i)](hi(σ)m). (1.4)

The module IndGH can alternatively be defined as the tensor product ZG⊗ZHM with the natural G-action.
Note that eq. (1.4) indeed defines a group action, as for any σ, τ ∈ G and any gim we have

σ · (τ · [gi]m) = σ · [gτ(i)](hi(τ)m)

= [gσ(τ(i))]hτ(i)(σ)hi(τ)m

= [g(στ)(i)]hi(στ)m

= (στ) · [gi]m,

where we used both statements of lemma 1.2.2 in the third equality. We are now able to formulate the
main theorem of this section, which is Shapiro’s lemma. It concerns a certain restriction map

S : H1(G, IndGH(M)) → H1(H,M),

which is defined by taking a cocycle ϕ : G → IndGH(M) of a class [ϕ], projecting to its 1-component
ϕ1 : G→ [g1]M =M of ϕ, and restricting it to H to obtain a representative of S([ϕ]).

Theorem 1.2.4. With G,H and M as before, the restriction map

S : H1(G, IndGH(M)) H1(H,M)

is an isomorphism, and its inverse is given by the map

T : H1(H,M) H1(G, IndGH(M))

that sends a cohomology class [ψ] with representative ψ : H →M to the cohomology class of the map

G −−−−−→ IndGH(M)

σ 7−−−−−→
∑
i∈I

[gi]ψ(hσ−1(i)(σ))

We will give a direct proof in appendix B.
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1.2.2 Back to elliptic curves
The main goal of this section is to prove theorem 1.2.6 and theorem 1.2.7, which together give us the
tools necessary to perform the irrational 2-descent.

Let E be an elliptic curve that has no non-trivial K-rational 2-torsion points. Without loss of generality,
we write

E : y2 = f(x) = (x− α)(x− β)(x− γ),

where α, β, γ all generate a cubic extension of K (these extensions need not be the same however). Let
L := K(α), and denote

G := GK and H := GL ⊆ GK .

Note that as we have no reason to assume that L is Galois over K, H may not be normal in G. We now
view µ2 as a trivial H-module, and we define

W := IndGH(µ2).

Note that G/H has size 3, and the three classes correspond to the different possible images of α under
the automorphisms in GK . Hence, W has a µ2-basis given by ([α 7→ α], [α 7→ β], [α 7→ γ]), and the action
of G is given by

σ[α 7→ x] = [α 7→ σ(x)].

It follows that W as a G-module is thus isomorphic to

V :=
⊕

i=1,2,3

µ2Ti

equipped with the obvious action that extends the action on E[2]. It is this G-module that we will use
in the descent. Note that there is a short exact sequence8

0 E[2] V µ2 0,a b (1.5)

with maps a and b defined by

a(P ) =

3∑
i=1

⟨P, Ti⟩ ∗ Ti, and b

(
3∑

i=1

λiTi

)
=

3∏
i=1

λi.

As usual, we get a long exact sequence

0 H0(K,E[2]) H0(K,V ) H0(K,µ2)

H1(K,E[2]) H1(K,V ) H1(K,µ2) . . . .

Lemma 1.2.5. The map H1(K,E[2]) −−→ H1(K,V ) is injective.

Proof. Note that since E[2] is irreducible, we have H0(K,E[2]) = 0. Hence the map H0(K,V ) →
H0(K,µ2) is injective. Since both H0(K,V ) and H0(K,µ2) have size 2 (the former is given by {0, T1 +
T2 + T3}), it is thus also surjective. The map H0(K,µ2) → H1(K,E[2]) is hence 0, so since the kernel of
H1(K,E[2]) → H1(K,V ) is the image of H0(K,µ2) → H1(K,E[2]), the former is injective.

8The fact that this sequence is exact is a short (finite) computation, most of which can be directly deduced from the
fact that ⟨·, ·⟩ is non-degenerate.
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We hence obtain the following diagram.

E(K)/2E(K) H1(K,E[2]) H1(K,V ) H1(K,µ2)

H1(L, µ2)

L∗/(L∗)2 K∗/(K∗)2

ι

∼

∼

∼

(1.6)

The map H1(K,V ) −−→ H1(L, µ2) is the restriction map described in theorem 1.2.4, and the other two
vertical maps are the isomorphisms from lemma 1.1.1. As counterpart of the descriptions of ι1 and ι2
given in section 1.1.2 for the case of rational 2-torsion, for completely irrational 2-torsion we obtain the
following result.

Theorem 1.2.6. The diagonal map ι : E(K)/2E(K) −−→ L∗/(L∗)2 in the diagram above is given by

O 7−→ 1 and (x, y) 7−→ x− α.

Proof. Starting with a point P = (x, y) ∈ E(K)/2E(K), its image in H1(K,E[2]) is the class of the
cocycle σ 7→ (σQ−Q), where nQ = P . Its image in H1(K,V ) is given by

σ

3∑
i=1

⟨σQ−Q,Ti⟩ ∗ Ti

which, under the isomorphism provided by Shapiro’s lemma, gets mapped to

τ ⟨τQ−Q,T1⟩.

By the same reasoning as in section 1.1.2, this last term equals τ
√
x−α√
x−α

, which is also the image of the
class [x− α] under the isomorphism iK : L∗/(L∗)2 → H1(L, µ2) provided by Kummer theory.

The second result of this section considers the composite map L∗/(L∗)2 −−→ K∗/(K∗)2 shown in eq. (1.6).
When asking ourselves what this map is, an obvious candidate is the norm map NL/K , first and foremost
since it is hard to come up with a homomorphism L∗/(L∗)2 −−→ K∗/(K∗)2 in the first place. As a sanity
check, we can quickly check whether NL/K makes the above diagram commute when it is restricted to
the image of ι. Of course, by exactness of the top row in eq. (1.6), the image of any P ∈ E(K)/2E(K)
in K∗/(K∗)2 must be trivial. Moreover, it can be easily seen that any number ι(P ) ∈ L∗/(L∗)2 in the
image of ι has K-norm that is (up to a square) also trivial. Namely, as argued at the start of the section,
the cosets of G/H correspond to the different images of α, which may be α, β and γ. Hence, using the
Weierstrass equation E : y2 = (x− α)(x− β)(x− γ) we find that

NL/K(ι(P )) = NL/K(x− α) = (x− α)(x− β)(x− γ) = y2,

which indeed is trivial in K∗/(K∗)2. This reinforces the idea that the composite map indeed is NL/K ,
and indeed we are able to prove the following theorem.

Theorem 1.2.7. The composite map L∗/(L∗)2 −−→ K∗/(K∗)2 is the norm map NL/K .

Proof. Since the inverse of the Kummer maps

ιK : K∗/(K∗)2 H1(K,µ2) and ιL : L∗/(L∗)2 H1(L, µ2)
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is difficult to work with, the easiest way to prove the theorem is by showing that the following diagram
is commutative:

H1(K,V ) H1(K,µ2)

H1(L, µ2)

L∗/(L∗)2 K∗/(K∗)2

∼
∼

NL/K

∼

For i = 1, 2, 3 we let gi ∈ GK and hi : GK → GL as in section 1.2.1. Starting with an x ∈ L∗/(L∗)2 we
see that along the top path x gets mapped via

x
(
σ 7→ σ

√
x√
x

) (
σ 7→

∑3
i=1

(
hσ−1(i)(σ)

√
x

√
x

)
∗ Ti

) (
σ 7→

∏3
i=1

hi(σ)
√
x√

x

)

L∗/(L∗)2 H1(L, µ2) H1(K,V ) H1(K,µ2).

∈ ∈ ∈ ∈

Using that NL/K(x) = g1(x)g2(x)g3(x), it follows that along the bottom path x gets mapped via

x NL/K(x) =
∏3

i=1 gi(x)
(
σ 7→

∏3
i=1

σ
√
gix√
gix

)

L∗/(L∗)2 K∗/(K∗)2 H1(K,V ).

∈ ∈ ∈

It thus remains to show that for all σ ∈ GK we have

3∏
i=1

hi(σ)
√
x√

x

?
=

3∏
i=1

σ
√
gix√
gix

. (1.7)

Note that since hi(σ) fixes L, we have that(
hi(σ)

√
x√

x

)2

=
hi(σ)x

x
= 1,

and so hi(σ)
√
x√

x
= ±1. This in turn implies that any element of GK acts trivially on this fraction, which

allows us to rewrite the left hand side of eq. (1.7) as

3∏
i=1

hi(σ)
√
x√

x
=

3∏
i=1

gσ(i)
hi(σ)

√
x√

x
=

3∏
i=1

gσ(i)hi(σ)
√
x

gσ(i)
√
x

=

3∏
i=1

σgi
√
x

gσ(i)
√
x
,

where we used that by definition hi(σ) = g−1
σ(i)σgi (see the start of section 1.2.1). Using this, we find that

eq. (1.7) is equivalent with

3∏
i=1

σgi
√
x

gσ(i)
√
x

?
=

3∏
i=1

σ
√
gix√
gix

which by simply rearranging we see is equivalent to

3∏
i=1

σgi
√
x

σ
√
gix

?
=

3∏
i=1

gσ(i)
√
x

√
gix

. (1.8)

Now since each fraction gi
√
x√

gix
squares to 1, σ acts trivially and so the left hand side equals

∏3
i=1

gi
√
x√

gix
.

Moreover, since σ only permutes the indices 1, 2 and 3, the right hand side of eq. (1.8) also equals∏3
i=1

gi
√
x√

gix
. This proves that eq. (1.7) holds, and hence we are done.
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The final result of this section concerns the following analogue of theorem 1.1.4.

Theorem 1.2.8. Let E/K be an elliptic curve with K-irrational n-torsion, define L as before and let ∆
be the discriminant of E. Let T be the set of finite primes of L that do not divide n∆. Then the image
of ι : E(K)/nE(K) −−→ L∗/(L∗)n is contained in the finite subgroup of L∗/(L∗)n consisting of elements
that have trivial v-adic valuation mod n for all v ∈ T .

Proof. Let P ∈ E(K)/nE(K), let γ be the image of P in H1(K,E[2]), and let v ∈ T . Our goal is to
show that v(ι(P )) ≡ 0 mod n. By proposition A.3.7 we may choose a finite unramified extension M of
Lv such that γ maps to zero in H1(M, E[n]). Now note that we have the commutative diagram

H1(K,E[n]), H1(L, µn) L∗/(L∗)n

H1(M, E[n]) H1(M, µn) M∗/(M∗)n.

i−1
L

i−1
M

Here the horizontal arrows on the left both send a cocycle σ to the composition pr1 ◦ σ of σ with the
projection on the first coordinate. Since γ maps to zero in H1(M, E[n]), it maps to zero in M∗/(M∗)n,
and so by commutativity ι(P ) does as well. By lemma 1.1.3 this gives us the required result.

In the following section we will show how theorem 1.2.6, theorem 1.2.7, and theorem 1.2.8 together can
be used to perform a descent on the Diophantus curve D6.

1.2.3 Example: Diophantus’ exercise D6

Recall that D6/Q is the elliptic curve given by the Weierstrass equation

D6 : y(6− y) = x3 − x.

By a simple coordinate transformation it follows that D6 is isomorphic to

E : y2 = x3 − 16x+ 16 · 36,

and it is the rank of this curve that we will calculate. Recall that we already know a rank 2 subgroup
generated by (4, 4 · 6) and (−4, 4 · 6). Since a brute-force search does not yield any other points, it is
reasonable to suspect that the rank is indeed 2, and so we will try to prove this. We will use Sage to do
the routine calculations that are necessary. Let α be a zero of x3 − 16x+ 16 · 36. We have the following
data.

• The conductor of E equals 22 · 37 · 59.
• The unit group of OL is isomorphic to Z× Z/2Z, generated by u = (α/4)2 − 5 and −1.
• The class group of L has order 2 and is generated by the fractional ideal c3 = (3, α/4 + 1).
• The ideal (2) is inert in OL, and (37) and (59) factor as

(37) = (37, α/4 + 5)2 · (37, α/4− 10) = p237q37,

(59) = (59, α/4 + 16)2 · (59, α/4 + 27) = p259q59.

It turns out all of these ideals are actually principal, as we have

p37 = (α2/16− α/2 + 2) = (g37), q37 = (α2/16− 3α/4 + 4) = (h37),

p57 = (α2/16 + α/4− 4) = (g59), p57 = (α2/16 + 3α/4 + 1) = (h59).

From now on, we call the primes 2, p37, q37, p59, q59, c3 the bad primes, and we call the others good.

Let x ∈ L∗ be a lift of a point ι(P ) ∈ L∗/(L∗)2 in the image of ι. We will now change x by squares to
make it as simple as possible.

Let q be a prime ideal that is not c3 for which vq is non-zero. If q is principal (say equal to (z)), we can
multiply x by an appropriate even power of z to make vq(x) equal to 0 or 1, without changing any other
valuation. If q is not principal, then qc−1

3 is principle (say (z)), so we can again change x by an even
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power of z to make vq(x) equal to 0 or 1, while only changing the valuation of c3. After performing this
procedure for every prime for which x had a non-zero valuation, the valuation at every good prime that
is not c3 is identically zero, since those started out as even. We can thus assume that x is an element
of L∗ which has valuation 0 or 1 at all the bad primes, 0 at all good primes, and which moreover has
squared norm. We calculate that

c23 = (α/4 + 1) =: (c3).

Taking all this toghether, it follows that x must lie in the subgroup of L∗/(L∗)2 generated by

−1, u, 2, g37h37, g59h59, and c3.

Starting with the points α+ 4 and α− 4 that are trivially in the image (as we know the points (4, 4 · 6)
and (−4, 4 · 6)). We calculate the valuations of these numbers at all relevant primes. Our findings are
that both 4+α and 4−α have valuation 2 at the prime (2), and valuation 0 at all of p37, q37, p59, q59, c3.
Using this and some bruteforce computations, we find the factorisations

α− 4 = 1/u · (−α/4− 2)2 · 22 and α+ 4 = c3 · 22.

In particular, u and c3 (and uc3) are in the image. It thus remains to find out whether any of the
remaining 15 values given by

−1, 2, g37h37, and g59h59

and their (non-empty) products are in the image. Let γ be such a product. This means that we want
to find out whether there is a point P = (x, y) on E such that x − α can be written as γ · w2 for some
w ∈ L. Writing w = f + gα+ hα2, this means that we need to solve a system of equations of the form

y2 = x3 − 16x+ 16 · 36
x = homogeneous degree 2 polynomial in f, g, h,
−1 = homogeneous degree 2 polynomial in f, g, h,
0 = homogeneous degree 2 polynomial in f, g, h.

It should be noted that this is the hard part; there exists no known algorithm which decides whether a
given variety over Q has a rational point.9 As an example, we show how to proceed for γ = g37h37. In
this case, the last equation is given by

(13/16)f2 − 14fg + 66g2 + 132fh− 1160gh+ 5088h2 = 0, (1.9)

which defines a (projective) conic. This conic is isomorphic to the conic given by

(13/16)a2 + (74/13)b2 − 296c2 = 0. (1.10)

We will show that eq. (1.10) has no solutions. Given such a solution, by clearing denominators we may
assume that a, b, and c are coprime integers. Since 74 and 296 are divisible by 37, it follows that a must
be divisible by 37 as well. In particular, we can divide by 37 and reduce modulo 37 to obtain

(2/13)b2 − 8c2 ≡ 0 mod 37. (1.11)

Since 8/(2/13) ≡ 15 mod 37 is not a square modulo 37, it follows that both b and c must be divisible by
37, which contradicts the coprimality of a, b and c. Hence eq. (1.11) has no solutions, and so neither has
eq. (1.9). Hence γ = g37h37 indeed does not lie in the image of ι.

In a similar manner, it is possible to exclude all remaining values. This allows us to conclude that the
rank of E (and hence also of D6) is indeed equal to 2.

To finalize, it should be noted that we have not yet proven that D6(Q) is indeed generated by the
two points (4, 24), (−4, 24), just that these points generate a subgroup of finite index in D6(Q). Since
only multiples of integer points can be integer points (assuming an integer model), the search for actual
generators of D6(Q) is in this case a finite computation, which indeed shows that D6(Q) is generated by
(4, 24) and (−4, 24).

9The corresponding problem of for Z is known as Hilbert’s tenth problem, and by the MRDP theorem is known to be
undecidable [MPD93].
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Chapter 2

The family of Diophantus

In this chapter, we return to Diophantus’s family of elliptic curves given by the equations

Dm : y(m− y) = x3 − x,

where m ∈ N is an integer. As mentioned in the introduction, it is notable that (at least for low values
of m) many curves in this family have high rank, and we see more curves of rank 4 than curves of rank
2. One of the main goals of this chapter is to investigate these ranks further? This family was studied
by Brown–Ezra [BM02], where it was proven that there are infinitely many values m for which Dm has
rank at least 3. Later investigations in [Eik04] generalised this approach and showed the same for curves
of rank at least 5.

We start in section 2.1 with a discussion on analytic ranks, and their relevance in the computation of
algebraic ranks. In section 2.2 we discuss torsion and the generic rank of the family. In section 2.3 we
investigate our data to see how it compares with expected heuristics. Lastly, in section 2.4, we briefly
discuss the result of Eikenberg considering infinite subfamilies of high generic rank.

2.1 Notes on computation
In chapter 1 we discussed how one can use the method of 2-descent to calculate the rank of an elliptic
curve. Since mathematicians rarely have the time to perform these descents by hand, computers are used
in practice. We will briefly discuss some of the available implementations. First, however, we highlight a
different method of calculating ranks, based on the BSD-conjecture.

2.1.1 The Birch–Swinnerton-Dyer conjecture
The Birch and Swinnerton-Dyer conjecture, or BSD for short, concerns the L-function of an elliptic
curve1. Let E/Q be an elliptic curve, and assume we have some minimal integral Weierstrass model for
E. For every prime p we can look at the reduction Ẽ of E modulo p and count the number of points Np

in Ẽ(Fp) and set ap = p+ 1−Np. 2 The local L-function Lp(E, s) at a prime p in the complex variable
s is then defined as 3

Lp(E, s) :=


1− app

−s + p1−2s if E has good reduction at p,
1− p−s if E has split multiplicative reduction at p,
1 + p−s if E has nonsplit multiplicative reduction at p,
1 if E has additive reduction at p,

1The conjecture can be stated over any number field, but we will restrict to Q.
2Hasse’s theorem (see [Sil09, Theorem V.1.1]) tells us that |Np − (p + 1)| ≤ 2

√
p. The value ap hence measures the

deviation from the expected value p + 1. In practice, the values ap are computable in time a time that is polynomial in
log(p), see [Coh93, 7.4.12] and the references therein.

3The expressions for these factors look fairly mysterious, and can be thought of as a result instead of as a definition.
Namely, the L-function can also be defined in terms of the more primitive zeta function ζ(E, s), from which the given
expressions can be derived. We refer to [Mil06, Chapter IV.10] for details.
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and the L-function L(E, s) of E is defined by

L(E, s) :=
∏
p

Lp(E, s)
−1.

As a consequence of Hasse’s theorem this function converges on the half plane {s ∈ C : Re s > 3/2} and
is analytic on this domain. Moreover, it can be shown that L(E, s) has an analytic continuation to the
entirety of C, and that it satisfies a functional equation. To be precise, we let NE be the conductor of E,
we let Γ(s) =

∫∞
0
ts−1e−t dt denote the gamma function, and we define

Λ(E, s) = N
s/2
E (2π)−sΓ(s)L(E,S). (2.1)

With the help of the modularity theorem, one can prove the following result.

Theorem 2.1.1. Λ(E, s) has an analytic continuation to all of C, and for all s ∈ C satisfies

Λ(E, s) = w(E/Q)Λ(E, 2− s), (2.2)

where w(E/Q) ∈ {±1} denotes the root number of E.

The generalisation of this theorem to abelian varieties over arbitrary number fields is known as the
Hasse–Weil conjecture, and is as of yet unproven.

Theorem 2.1.1 tells us moreover that L(E, s) can similarly be extended to an entire function, and the
BSD-conjecture is concerned with its behaviour around s = 1.

Definition 2.1.2. The analytic rank rankan(E/Q) of E is the order of vanishing of L(E, s) in s = 1.

Conjecture 2.1.3 (Birch and Swinnerton-Dyer). For every elliptic curve E/Q we have4

rankan(E/Q) = rank(E/Q).

A more refined version of the conjecture also specifies the leading coefficient of the Laurent series around
1 in terms of invariants of the curve, such as the order of the torsion subgroup and the size of the
Tate–Shafarevich group X(E/Q).

Although few seem to doubt the validity of conjecture 2.1.3, a proof to date has remained elusive. There
are, however, several partial results, from among which we highlight the following, which is due to the
combined work of Kolyvagin [Kol89], and Gross and Zagier [GZ85].5

Theorem 2.1.4. Conjecture 2.1.3 holds for all elliptic curves of analytic rank 0 or 1.

In principle, the BSD-conjecture gives us a new way to calculate the rank of an elliptic curve, sidestepping
the problem (which we illustrated in section 1.2.3) of having to decide whether certain varieties contain
rational points or not. Indeed, if we return to the curve D0 that we discussed in section 1.1.3, Sage can
calculate for us that

L(D0, 1) ≈ 0.65551,

and so by theorem 2.1.4 it follows that D0 has rank 0 (and consequently only a finite number of rational
points). Although this is a nice application, we will now discuss why analytical rank calculations are
often not preferable to regular (honest) 2-descents.

(i) As of the current state of the art, analytical rank methods can not prove that a certain elliptic
curve has a given rank, unless that rank is either 0 or 1. Recall that this thesis concerns the family
of Diophantus, none of whose members (with a finite number of exceptions) actually satisfy this
requirement. This drawback of obtaining only conjectural results is however not one we are too
concerned with; many of the 2-descents that we performed were under the assumption that the
generalised Riemann hypothesis holds, which also gives only conjectural results.

4Outside of academic circles conjecture 2.1.3 is mostly known because of its status as one of the seven Millennium
Problems, a set of open conjectures upon which the Clay Mathematics Institute put a bounty of 1 million US dollars in
2000. Unfortunately, these bounties do not seem to increase with inflation, so those whishing to claim one should do so
sooner than later.

5The results of Kolyvagin, Gross and Zagier only concerned modular curves, which by the modularity theorem (proven
in [BCDT01]) we now know all elliptic curves over Q are.
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(ii) In order to prove that the analytical rank of an elliptic curve E equals a number r, one needs to
show that L(E, 1), L′(E, 1), . . . , L(r−1)(E, 1) are zero, and that L(r)(E, 1) is non-zero. This last
part is doable, there are explicit bounds on the tail-end of the L-series, such as those in [GJP+09,
Section 2.2], which can be used to provably determine that L(r)(E, 1) is indeed non-zero. The first
task is unfortunately not so simple, as computers sadly lack the capability to perform an infinite
number of operations in a finite amount of time. Pari/GP solves this issue by working under the
assumption that any value found less than some parameter ϵ is probably zero, and then returns a
number that is probably the analytic rank (c.f. the ellanalyticrank function in [gro25]). It is not
surprising such solutions are necessary, since, according to the Sage source code,

It is an open problem to prove that any particular elliptic curve has analytic rank ≥ 4.

A useful result in this direction is the Gross-–Zagier theorem [GZ85, Theorem 7.3], which links the
value of L′(E, 1) to the height of a certain Heegner point.6 This allows one to use a calculation
which shows that up to a certain finite precision L′(E, 1) ≈ 0 to conclude that in fact L′(E, 1) = 0.
Similarly, using the Manin–Drinfeld theorem [Dri73] the value of L(E, 1) can be bounded (c.f.
[RS17, Proposition 17.2.10]), which similarly allows finite precision calculations to yield a proof of
whether L(E, 1) is 0. Lastly, recall that the root number w(E/Q) ∈ {±1} (seen in eq. (2.2)) can
be effectively calculated, and if it equals −1, then this directly implies that L(E, 1) = 0. Notably,
none of the three results mentioned allow one to prove that a particular elliptic curve has a specific
analytic rank higher than 3.

(iii) It turns out that calculating analytic ranks is in fact very slow, at least compared to calculations
of the algebraic rank by 2-descent, and this difference increases for curves of larger conductor. In
table 2.1 we show for a select number of values of m the time it takes Sage to calculate both of
the two ranks. While for small values of m the analytic rank can be found faster than the real
rank, as m increases this ceases to be the case, and for value of m above 1000 the descents tend to
outperform analytic rank computations by about a factor 1000.

m 1 10 100 1000
tan 1.5 · 10−3 1.2 · 10−2 1.8 · 100 2.2 · 102
talg 1.4 · 10−2 7.0 · 10−2 7.4 · 10−2 2.2 · 10−1

tan/talg 1.0 · 10−1 1.7 · 10−1 2.5 · 101 1.0 · 103

Table 2.1: Computation times in seconds for selected values of m for the curves Dm of both the analytic
rank and the real rank, using Sage. This was a small test with small sample sizes, so the displayed
numbers should be taken with a grain of salt, but the pattern should be clear. While for small values of
m the analytic rank can be found faster than the algebraic rank, as m increases this pattern inverts, and
algebraic ranks becomes significantly easier to compute.

To finish this section, we will make the following loosely related remark. Intuitively one would expect that
the computation of the analytic rank becomes more difficult as the analytic rank gets higher. Interestingly,
the implementation in Pari/GP does not reflect this. In fig. 2.1 we show the time it takesPari/GP (when
called by Sage) to calculate the analytic rank of Dm for 1 ≤ m ≤ 400. We will not go into a thorough
statistical analysis, but at least visually there seems to be no correlation between the analytic rank and
the computation time. Instead, the only relevant contributing factor seems to be the conductor.

2.1.2 Our calculations
For our research, we attempted to calculate the rank of the curves Dm for m = 1, . . . , 468183. For this
task, we considered using the software packages Magma [BCP97] and Sage [The20]. Limited testing showed
that Magma performed the calculations ever so slightly faster, although due to the closed source nature of
Magma it is to us unclear why. Nevertheless, we decided to stick with Magma. Within Magma we used the
recommended SetClassGroupBounds("GRH") command to make it so that all class group computations
assume the generalised Riemann hypothesis (GRH). Ordinarily, in order to determine the class group

6This Heegner point is a constructible point on E(Q) which has infinite order exactly when rankan(E,Q) = 1. It is
thanks to Heegner points that we know theorem 2.1.4 holds, and the theory of Heegner points currently is our only source
of constructable points. Since the Heegner point is a torsion point in all curves with analytic rank higher than 1, it
unfortunately seems to be no help in proving the full BSD-conjecture.
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Figure 2.1: For the values m ∈ {1, 400} we determined how long it took Pari to calculate the analytic
rank of Dm. While our initial expectation was that it would probably be faster to calculate the rank of
curves with lower (analytic) rank, the experiment does not confirm that, and the time spent in fact seems
independent of the rank. Notable are the three bands of data points; these correspond to the residues
of m mod 4. For most curves, the conductor Nm of Dm satisfies Nm = ∆m/2

k, where k = 0, 1, 2 if m
mod 4 is odd, 0 and 2 respectively. As a consequence, for e.g. odd values of m the conductor is relatively
large and so a larger computation time is needed.

of a field K (which we saw was needed to perform a 2-descent), one needs to consider all prime ideals
with norm below the Minkowski bound. It has been shown in [Bac90] that, assuming GRH, Minkowski’s
bound (which is O(

√
∆K) for a fixed degree of K) can be replaced by a much stronger bound that is

O(log2(∆K)), and so assuming GRH greatly speeds up these calculations. Within Magma we used the
MordellWeilShaInformation command, which uses all available Magma machinery (such as 4-descents).
For these calculations it is recommended to use the RankOnly option as this halts the function as soon
as the rank has been determined. As a result of our computations, we obtained for each curve Dm in the
domain a lower and upper bound for the rank. In a small number of cases (< 500) these bounds did not
agree, and for simplicity, we decided to assume the lower one.

2.2 Provable results
In this section we briefly consider two results about the Diophantus family, namely the lack of torsion
for integral values of m and the generic rank of the family, which was proven in [Eik04] to be equal to 2.

2.2.1 Torsion
Since our calculations show that (except for m = 0) none of the curves Dm have non-trivial torsion, it
is natural to conjecture that indeed holds for all m > 0. Indeed, this follows from the following two well
known results, which are corollary VIII.7.2 and proposition VII.3.1 in [Sil09] respectively.

Theorem 2.2.1 (Lutz-Nagell). Let E/Q be an elliptic curve with Weierstrass model E : y2 = x3+Ax+B,
with A,B ∈ Z. Let P = (x, y) ∈ E(Q) be a torsion point. Then
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(i) x, y ∈ Z, and
(ii) 2P = O, or y2 divides 4A3 + 27B2.

Proposition 2.2.2. Let K be a number field, p a finite prime of K, Kp the completion of K at p, k the
residue field of Kp, E/K an elliptic curve with some fixed minimal integral model, and m ≥ 1 an integer
coprime to char(k). Let Ẽ/k be the reduction of E to k. If Ẽ is nonsingular, then the natural reduction
map E(K)[m] → Ẽ(k) is injective.

Using these results we are able to prove the following proposition.

Proposition 2.2.3. For all m ∈ Z≥1, Dm as trivial torsion.

Proof. To apply theorem 2.2.1 we instead look at the curve

D′
m : y2 = x3 − 16x+ 16m2,

which through a simple coordinate transformation

Dm −−−−−→ D′
m

(x, y) 7−−−−−→ (−4x, 8y + 4m)

can be seen to be isomorphic to Dm. Because of part (ii) of theorem 2.2.1, our proof naturally splits into
two parts.

(i) We first show that no D′
m has a nontrivial 2-torsion point. Such torsion points must have y = 0

and hence correspond to rational solutions of the equation x3−16x+16m2 = 0. This last equation
defines an elliptic curve, and Sage tells us that it has rank 0 and that the rational torsion points
are exactly the 2-torsion points given by m = 0 and x = 0, 4,−4. Therefore, unless m = 0, D′

m

(and hence Dm) has no rational 2-torsion points.
(ii) Now assume that (x, y) is a torsion point on D′

m whose order is more than 2. We calculate the
discriminant of D′

m to be

∆m = 4 · (−16)3 + 27 · 162 · d4 = −214 + 33 · 28 ·m4.

Since ∆m ≡ 2 mod 3 for all m, D′
m has good reduction mod 3. Reducing D′

m modulo 3 then yields
the two possible curves

y2 = x3 − x if m ≡ 0 mod 3 and y2 = x3 − x+ 1 if m ≡ 1, 2 mod 3.

which have torsion subgroups Z/2Z×Z/2Z and Z/7Z. By proposition 2.2.2 it follows that D′
m can

only have 2-, 3- or 7-torsion. Similarly, since we have

∆m ≡ −(−1)7 + 27(−1)4 · 1 ≡ 28 ̸≡ 0 mod 5,

we have good reduction modulo 5. Reducing mod 5 gives the torsion subgroups Z/4Z×Z/2Z, Z/8Z
and Z/8Z, which shows that there are no torsion points of order 3 or 7, which together with the
previous part proves that D′

m (and hence Dm) has no non-trivial torsion.

Instead of solely looking at integral m, it is natural to also consider rational m. The above proof showing
that for integral m there is no rational 2-torsion also directly shows the same for all rational m. The
second part of the proof, which shows that there are no higher order torsion points, does not work for
all rational m, and also does not easily generalize. Instead, we can try the same approach as we used to
find 2-torsion points to find p-torsion points for p = 3, 5, 7. 7 That is, we write an equation in x and m
whose solutions correspond to p-torsion points on D′

m with first coordinate equal to x, and try to find
all rational solutions to these equations. The resulting equations (which are in fact all polynomial) are
known as division polynomials, and we refer to [Was08, Section 3.2] for more information. In our case,
the resulting polynomials are

3x4 − 96x2 + 192m2x− 256,

for 3-torsion points,
7Recall that by Mazur’s theorem any curve that has non-trivial torsion has a torsion point of order 2,3,5 or 7.
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5x12 − 992x10 + 6080m2x9 − 26880x8 − 61440m2x7 +
(
−61440m4 + 1228800

)
x6 − 2850816m2x5 +(

7864320m4 − 8192000
)
x4 +

(
−6553600m6 + 5242880m2

)
x3 +

(
−15728640m4 + 52428800

)
x2 +(

41943040m6 − 104857600m2
)
x− 16777216m8 + 33554432m4 + 16777216

for 5-torsion points, and

7x24 − 4928x22 + 63104m2x21 − 756224x20 + 28672m2x19 +
(
−10981376m4 + 81313792

)
x18 −

379158528m2x17 +
(
2342387712m4 − 2308898816

)
x16 +

(
−3398434816m6 + 2084569088m2

)
x15 +(

−40328232960m4 + 86260056064
)
x14 +

(
139754209280m6 − 169701539840m2

)
x13 +(

−60834185216m8 + 311921999872m4 − 1877638905856
)
x12 +(

−2730257022976m6 + 10203231682560m2
)
x11 +(

3453690576896m8 − 20011863244800m4 + 11319386308608
)
x10 +(

−1631013830656m10 + 62534723829760m6 − 114276194844672m2
)
x9 +(

−118605521879040m8 + 223321119522816m4 + 67315022430208
)
x8 +(

119571889520640m10 − 352874513039360m6 + 231172319739904m2
)
x7 +(

−47141561040896m12 + 615726511554560m8 − 817761773158400m4 − 1014024598716416
)
x6 +(

−992858999881728m10 + 723478651076608m6 + 3936801383251968m2
)
x5 +(

815837627809792m12 + 1693247906775040m8 − 9235897673318400m4 + 1431564139364352
)
x4 +(

−215504279044096m14 − 3571213767016448m10 + 10467350696427520m6 − 1847179534663680m2
)
x3+(

2339760743907328m12 − 6649846324789248m8 + 4063794976260096m4 − 3448068464705536
)
x2 +(

−985162418487296m14 + 4433230883192832m10 − 7881299347898368m6 + 6896136929411072m2
)
x+

281474976710656m16 − 1688849860263936m12 + 3659174697238528m8 − 2814749767106560m4 −
281474976710656

for 7-torsion points. All three equations define (the affine part of) irreducible curves. It should be clear
that determining whether these curve have rational points is no easy task, and so we will not try to
perform it here. In principle, if one can show that the above curves are smooth and have high genus,
Falting’s theorem implies that there are at most a finite number of solutions, although this would be
non-constructive and does not immediately give a bound on the number of such points.

2.2.2 Generic points
It is clear that every curve Dm contains the six points

(1, 0), (0, 0), (−1, 0), (1,m), (0,m), and (−1,m). (2.3)

A natural point of view to study a family of elliptic curves as the one at hand is one where we view the
family as a single curve

D : y(t− y) = x3 − x

over the function field Q(t). For any value m ∈ Q of t we obtain the so-called specialisation maps

σm : D(Q(t)) −−−−−→ Dm(Q)

by substituting m for t. These maps are homomorphisms whenever Dm is non-singular. We now have
the following result by Silverman (c.f. in [Sil13, theorem III.11.4]).

Proposition 2.2.4. σm is injective for all but finitely many m.

As a direct consequence we have that for all but finitely many m, Dm(Q) contains a subgroup isomorphic
to D(Q(t)). This is a good reason to study D more closely.

The six points in eq. (2.3) also define six points on D(Q(t)) (when m is replaced by t). By considering
the intersection of D with the lines x = 1, x = 0, x = −1, and y = 0, and using that for each such line
the points in the intersection (counted with multiplicity) sum to zero, we find the relations

(1, 0) + (1, t) = O, (0, 0) + (0, t) = O, (−1, 0) + (−1, t) = O, (1, 0) + (0, 0) + (−1, 0) = O

As there are no obvious relations between the points (0, 0) and (1, 0), it is reasonable to expect them to
be independent. Since any relation between the points of D holds at every specialisation, it is sufficient

26



to show this suspected independence for any value of t. As we’ve already seen the independence holds in
D6, it directly follows that they are independent in D as well.

As the above argument shows that the generic rank must be at least 2, a now compelling question is
whether it is possible to give an upper bound on this generic rank. This is indeed possible, as was proven
in [Eik04].

Theorem 2.2.5. D/Q(t) has rank 2.

Proof. The full proof of this is beyond the scope of this thesis. We instead give a brief overview of its
structure.

The proof is based on the concept of an elliptic surface S, which (omitting some details) is a surface S
together with a projective curve C and a morphism S → C (all defined over some number field k), such
that almost all fibers are elliptic curves. In our example, the surface consists of the points (x, y,m) that
satisfy y(m− y) = x3 − x, and the map sends such a point to its value of m.

For an elliptic surface S the Néron-Severi group NS(S) is defined as the quotient Pic(S)/Pic0(S) of
the Picard group Pic(S) by the connected component of the identity Pic0(S). The latter consists of
those divisors that are algebraically equivalent to the identity. Importantly, NS(S) is a finitely generated
abelian group equipped with a bilinear form. Moreover, within NS(S) it is possible to define a sublattice
T such that there is a (natural) isomorphism

D(k(C))
∼−−−−−→ NS(S)/T.

Importantly, the rank of T can be extracted from knowledge about the singular (reducible) fibers. To
be precise, each fiber decomposes as a union of a finite number of curves. The possible configurations
of these curves (i.e. their number together with the types of singularities and multiplicities occurring)
have been independently classified by both Kodaira [Kod63] and Néron [N6́4]. In [OS91], for each of
the possible configurations the corresponding contribution to T has been calculated. Moreover, it can
be shown (see e.g. [SS19, Chapter 6]) that for families E/Q(m) indexed by P1 (such as the family of
Diophantus), the generic rank is at most 8, and the reducible fibers may reduce this further down. In
the case of D, there are four trivial contributions corresponding to the four Q-roots of the discriminant
26 − 33 ·m4, and a contribution of rank 6 corresponding to m = ∞. Consequently, the rank is indeed
brought down from 8 to 2.

2.3 Analysing the dataset
As part of our research, we have calculated the rank of the curves Dm for m = 1, . . . , 4112804. In this
section we consider two expectations.

• First, we expect the parity of the ranks to behave randomly, with odd and even ranks occurring
with a probability of 50%.

• Secondly, given the parity of the rank, we generally expect the rank to be the minimal value allowed
by the parity and the generic rank, i.e. rank 2 if even and rank 3 if odd.

The first point will be swiftly dealt with in section 2.3.1. The second point will take more work, since (as
noted in the introduction), the ranks do need not seem to be minimal, with curves of rank 4 being more
prevalent than those of rank 2 for small m. We will study this behaviour as m increases, and compare it
to quantitative expectations derived from more general existing heuristics.

We introduce the notations

P (ϕ(m) | m ≤M) :=
#{m : 0 < m ≤M and ϕ(m)}

M

and

P (ϕ(m) | m =M) :=
#{m :M −B < m ≤M and ϕ(m)}

B
,
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where ϕ is some boolean statement (usually concerning rankDm), and B is some appropriate bound,
often 1000 or 10 000 depending on the expected variance.

2.3.1 Rank parity
While the rank of an elliptic curve has remained mysterious, the parity of the rank seems much more
well behaved. That is, in general, the parity is expected to be “random”, with odd and even ranks
occurring with 50% probability. It is natural to conjecture that this behaviour also holds in the family
of Diophantus. We will not perform a rigorous statistical analysis to test this hypothesis, and instead we
will simply show three figures that hopefully make it at least seem plausible to the reader.

In fig. 2.2 we show how P (rankDm is even | m ≤ M) (as a function of M) changes within our sub-
set. As expected, it quickly tends to 1

2 . In fig. 2.3 we show the local equivalent of fig. 2.2 and graph
P (rankDm is even | m = M). A priori, there is no particular reason why this graph would show some-
thing interesting, and luckily for us, it indeed does not. A perhaps more enlightening representation of
the same data is shown in fig. 2.4. Here, we divided our dataset into buckets of 100 consecutive data
points, and within each bucket we calculated the number of even ranks, fig. 2.4 shows the distribution
of the numbers found. We expect these numbers to follow a binomial distribution with an average of 50
and a variance of 100 · 1

2 · (1−
1
2 ) = 25. The figure indeed shows that our found data closely matches the

appropriate approximating Gaussian. Quantitively, our data has an average of 49.96 and a variance of
24.50, which are both very close to the expected values.
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Figure 2.2: This figures shows the graphs for P (Dm is odd/even | m ≤ M) within our dataset. As
expected, both graphs (which by definition sum to 1) seem to tend to 1

2 .

2.3.2 Rank occurrences and the PPVW conjecture
Recall from section 2.2.2 the fact that the family of Diophantus has two independent generic points,
and that by proposition 2.2.4 this means that all but finitely many curves in the family will have rank
at least 2. Recall that the informal minimalist conjecture states that elliptic curves generally have the
minimal rank allowed by the parity of their rank. A natural application of the conjecture to the family
of Diophantus would be the following.
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Conjecture 2.3.1. In the family of Diophantus, 50% of curves have rank 2, and 50% have rank 3.

These percentages should be understood as referring to the asymptotic density with respect to some
natural orderings on the curves.

In fig. 2.5 we show the frequency with which the different ranks occur in our dataset. Two observations
can immediately be made. Most notably, the curves with rank 4 outnumber the curves with rank 2, and
a significant portion of curves have rank higher than 4. Secondly, the frequencies with which curves of
high rank occur decreases as N increases. This decrease is more clearly visible in fig. 2.6. Nevertheless,
given our data it seems unlikely that we will be able to give a meaningful answer to the question of
whether conjecture 2.3.1 holds. This is of course not unexpected as conjecture 2.3.1 lacks a quantitative
statement which we can directly test. Instead, we turn to the recent paper [PPVW19], which does give
an exact quantitive expectation for the distribution of the ranks of elliptic curves. To state it, we first
introduce the (naive) height of an elliptic curve.

Definition 2.3.2. For a short Weierstrass model E : y2 = x3 + Ax + B of an elliptic curve, we define
its height as

htE = max{4|A|3, 27B2}.

Every elliptic curve has an integral short Weierstrass model. We let E denote a set containing one minimal
short Weierstrass model for every isomorphism class, and we let E≤H denote the subset of those models
with height at most H. In particular one can show that8

T (H) := #E≤H = (κ+ o(1))H5/6,

where κ = 24/33−3/2ζ(10)−1 and where o(1) is a function that goes to zero when H goes to infinity.

We now arrive at the conjecture stated in [PPVW19], to which we will refer as the PPVW conjecture.
8See for example lemma 4.3 in [Bru92].
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Figure 2.4: The parity of the rank an elliptic curve is expected to be odd and even with equal probability.
To test this, we divided our dataset in buckets of size 100, and within each bucket we counted the number
of even ranks. In blue we show the distribution of the found values. In orange we show the expected
values when modelled as a binomial distribution, which for clarity we approximated by the Gaussian
shown.

Conjecture 2.3.3 ([PPVW19]). For 1 ≤ r ≤ 20 we have

Nr(H) := #{E ∈ E≤H : rankE ≥ r} = H(21−r)/24+o(1).

In particular, a positive proportion of curves have rank 1. Similarly, there is only a finite number of
elliptic curves with rank ≥ 21.

In particular, a curve of height H has probability

P≥r(H) =
N ′

r(H)

T ′(H)
=

((21− r)/24 + o(1)) ·H(−3−r)/24+o(1)

(κ+ o(1)) · 5/6 ·H−1/6
∝ H(1−r)/24+o(1).

of having rank at least r.

It should be noted that conjecture 2.3.3 is about the family of all elliptic curves, which has generic rank
0. Clearly, our family will not follow this heuristic due to the fact that the generic rank is 2, and, for
example, there is only a finite number of curves with rank 0 or 1. Instead, it seems natural to conjecture
the following.

Conjecture 2.3.4. For 3 ≤ r ≤ 22 the probability P≥r(H) that a curve Dm of height H from the family
of Diophantus has rank at least r is

P≥r(H) ∝ H(1−(r−2))/24+o(1) = H(3−r)/24+o(1).

In particular, the probability that Dm has rank at least r is proportional to

m(3−r)/6.
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Figure 2.5: While we expect to see mostly curves of rank 2 and 3, we instead see a large number of rank
4 curves.
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Figure 2.6: This figure shows the change in frequency with which different ranks occur compared to
m = 100 000. As expected, the low ranks 2 and 3 increase, and the high ranks 4 and 5 decrease. Ranks
higher than 5 also see a small increase, which can probably be explained by a small sample size.
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It should be noted that heights behave differently for odd and even m, since we assume minimal integral
models. This means that for m even or odd we have to use the models

y2 = x3 − x+
(m
2

)2
and y2 = x3 − 16x+ 16m2 (2.4)

for m even and odd respectively, which (approximate) corresponding heights

27 ·
(m
2

)4
and 27 · 162 ·m4. (2.5)

In particular, we would expect Dm to have a slightly larger chance to have large rank if m is even than
if it were odd. Indeed, this is what we see; see fig. 2.7.
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Figure 2.7: This figure shows the frequency with which different ranks occur, where we make a distinction
between odd (dashed lines) and even (filled lines) values of m. The figure shows that for odd m the low
ranks 2 and 3 occur more often than for even m, which is line with eq. (2.4).

2.3.3 Verifying the conjecture
In order to test conjecture 2.3.4, will now assume that it holds, and that the o(1) term is constant in our
domain. To make this more precise, we will write

P≥r
± (H)

for the probability that a curve Dm of height H, such that the sign of m matches the subscript, has rank
at least r. We now suppose that there are correlations of the form

P≥r
± (H) = c≥r

± Hd
≥r
± . (2.6)

The best fitting values for r = 4, 5, 6 within our dataset are found in table 2.2. These values were found
by performing a linear regression on log(P≥r

± (H)) and log(H). The corresponding correlation coefficients
can be found in table 2.3. We make the following observations.

32



• For r = 4 and r = 5, the values found are similar between the odd and even values of m, which is
a good consistency check. Conjecture 2.3.4 only depends on the height of a curve, so it should not
matter whether we consider odd or even values of m.

• For r = 6, we find a positive exponent for odd m, which makes very little sense. This is probably
best explained by a low sample size.

• For r = 4, the correlation coefficients that we obtained are very large, and fig. 2.8 indeed shows a
convincing linear behaviour.

• None of the exponents found are even remotely close to the expected value (3−r)/24. To show this
even better, in fig. 2.9 we show the same data as in fig. 2.8, but with the inclusion of a line that
shows how the probability should decay were it to follow conjecture 2.3.4 without the o(1) term.

As a simple way to test the formulas we obtained, we calculated the ranks of an additional set of curves
further in the family; the results are shown in table 2.4. In table 2.5 we show how the corresponding
values of P≥r

± , and in addition the values predicted by eq. (2.6) (using the values in table 2.2). The
conclusion we can draw from this data is probably at best a weak one. Most of the values (bar a few
outliers) are reasonably close to the number we expect, and so our way of modelling the ranks seems to
hold up. However, a thorough verification likely requires much more data including higher values of m.

In conclusion, by assuming conjecture 2.3.4 holds with a (locally) constant o(1) term, we obtain relations
of the form eq. (2.6). The data that we generated indeed seems to fit these relations, and we obtain
a decently performing predictive model of the ranks. Now, a tempting next question is whether the
relations that we found hold up as m increases further. Recall that we actually do not expect this to be
the case, as the o(1) term should go to 0. Attempts at verifying the decay of the o(1) term using just the
data that we collected yielded no convincing results. In order to verify whether this is indeed the case,
more data is thus needed, preferably over multiple orders of magnitude.

One way to interpret the seemingly too small exponents is that there are more higher ranked than we
should ordinarily expect. In the next section, we will argue that this is at least partially true. Namely,
it turns out that it is fairly easy to manually construct curves of rank 4 or 5.

r = 4 r = 5 r = 6

d≥r
+ -0.0084 -0.014 -0.014

d≥r
− -0.0081 -0.011 +0.0055

(3− r)/24 -0.042 -0.083 -0.125

c≥r
+ 0.54 0.20 0.033

c≥r
− 0.53 0.16 0.0091

Table 2.2: Experimentally found values for the constants d≥r
± and c≥r

± .

r = 4 r = 5 r = 6

m even -0.85 -0.72 -0.34

m odd -0.83 -0.52 +0.16

Table 2.3: Correlation coefficients of the calculations of d≥r
± and c≥r

± .

2.4 Subfamilies of high generic rank
It is still an open question whether the rank of a rational elliptic curve is bounded or not. The two ways
one can go about improving the situation are either finding a theoretical bound from above, or finding
elliptic curves with high rank to push the bound from below. Throughout the 20th century various
mathematicians have worked on this second option by searching for elliptic curves with ranks higher than
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r = 2 r = 3 r = 4 r = 5 r ≥ 6

m ∈ {700 000, . . . , 701 000} 267 415 224 81 13

m ∈ {800 000, . . . , 801 000} 245 416 256 67 16

m ∈ {900 000, . . . , 901 000} 246 425 258 60 11

Table 2.4: Distribution of ranks for high values of m.

r ≥ 4 r ≥ 5

Predicted Actual Predicted Actual

m even

m ≈ 7 · 106 0.342 0.300 0.092 0.078

m ≈ 8 · 106 0.341 0.336 0.092 0.094

m ≈ 9 · 106 0.339 0.322 0.091 0.070

m odd

m ≈ 7 · 106 0.326 0.336 0.084 0.110

m ≈ 8 · 106 0.324 0.342 0.084 0.072

m ≈ 9 · 106 0.323 0.336 0.083 0.072

Table 2.5: Expected and actual probabilities of high ranks for high values of m.

r ≥ 4 r ≥ 5

m even

m ≈ 7 · 106 0.025 0.16

m ≈ 8 · 106 0.43 0.37

m ≈ 9 · 106 0.22 0.059

m odd

m ≈ 7 · 106 0.29 0.017

m ≈ 8 · 106 0.19 0.20

m ≈ 9 · 106 0.26 0.20

Table 2.6: The one-sided p-values observed data shown in table 2.5.
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Figure 2.8: The probability that a curve has rank at least 4 seems to neatly exponential decay.
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Figure 2.9: Here we show the same data as in fig. 2.8, but in addition we show the decay predicted by
conjecture 2.3.4 if we exclude the o(1) term.
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those known before. This so-called rank record has been pushed to rank 29 by Elkies and Klagsbrun in
2024 [EK24] with the elliptic curve

y2 + xy = x3 − 27 006 183 241 630 922 218 434 652 145 297 453 784 768 054 621 836 357 954 737 385x

+ 55 258 058 551 342 376 475 736 699 591 118 191 821 521 067 032 . . .

. . . 535 079 608 372 404 779 149 413 277 716 173 425 636 721 497

which provably has rank at least 29.9 In [Duj24] one can find an overview of the history of this record,
along with equations of the once leading curves and their sets of generators. Various records in between
(e.g. [Nag92] and [Nag93]) have used a similar strategy: start with a family of elliptic curves with high
generic rank, and cleverly choose specifications with high rank. With these efforts as inspiration in the
back of our minds, we will use this last section to highlight (and slightly expand) earlier work by Eikenberg
in [Eik04] regarding subfamilies of the Diophantus family of higher generic rank.

In line with [Eik04] we work with the family of elliptic curves given by

Em : y2 = x3 − x+m2,

and we note that we have an isomorphism

Dm −−−−−→ Em/2

(x, y) 7−−−−−→ (−x, y −m/2).

Eikenberg then proves the following result, which is in [Eik04, Theorem 3.4.1].

Proposition 2.4.1. Let m0 ∈ Q be nonzero, and let R ∈ Em0
(Q) with y(R) ̸= m0 and x(R) ̸= 0. Then

there exist M,X, Y ∈ Q[t] such that

• M,X, Y are quadratic, linear and quadratic respectively,

• M(0) = m0 and (X(0), Y (0)) = R, and

• for each t ∈ Q we have (X(t), Y (t)) ∈ EM(t)(Q).

Moreover, there are exactly six choices for (M,X, Y ).

Eikenberg moreover provides explicit formulae for (all six choices of) M,X and Y .

This proposition allows us to lift a given point R ∈ Em(Q) to all the curves in the subfamily {EM(t) :
t ∈ Q}. Generically, this point will then be independent of the generic points (i.e. those generated by
(0,m) and (1,m)), and so {EM(t) : t ∈ Q} hence has a generic rank of 3. A natural question is then
whether it is possible to lift several points simultaneously. To do this, one would fix a value of m0, take
several points R1, . . . , Rn on Em0 , and choose for each i ∈ {1, . . . , n} a lift (Mi, Xi, Yi) of the point Ri.
The question then is whether the intersection of the images of all Mi is nonempty. For n = 2 the answer
is simple; the intersection can be found by equating two quadratic polynomials, which defines a conic.
Since both quadratics satisfy Mi(0) = m0, we have a rational point on this conic, and so by a standard
result we have infinitely many rational points which are indexed by P1(Q). Consequently, we obtain an
infinite family of curves with generic rank 4.

For n = 3, the situation becomes more difficult but is still manageable. We now have three quadratic
polynomials M1,M2,M3, and the intersection of their images can be thought of as the intersection of
the two quadratic surfaces M1(t1) = M2(t2) and M1(t1) = M3(t3) in Q3 (with coordinates t1, t2, t3).
Generally such an intersection is an elliptic curve, which we will call A. In section 2.4.1 we show how
one can obtain an explicit (quartic) model for A. If A(Q) has positive rank, then this yields an infinite
subfamily of curves within the family of Diophantus consisting of curves that generally have rank 5. In
[Eik04], indeed the following result is achieved.

Proposition 2.4.2. There exists a (rational) map mA : A(Q) → Q, where A is the elliptic curve given
by

A : y2 = x3 − x2 − 103307652308x+ 12301315572924612,

9In yet unpublished work it is (allegedly) shown that the rank is exactly 29, conditionally on GRH.
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such that for almost all T ∈ A(Q) the curve DmA(T ) has at least rank 5.10

This curve was found by starting out with the rank 5 curve E113 and lifting the three independent
points (−23,−25), (−19,−77), and (−11, 107). As it turns out, finding such a subfamily of generic rank
5 indexed by a rank 2 elliptic curve is not particularly hard.11 By a brute force search we were even able
to find such a subfamily indexed by an elliptic curve of rank 5.

Proposition 2.4.3. There exists a (rational) map m : B(Q) → Q, where B is the rank 5 elliptic curve
given by

B : y2 = x3 − 831594956135615443677x+ 4218733697317527733855209741004

with conductor

25 · 32 · 5 · 7 · 11 · 13 · 31 · 41 · 53 · 2292 · 1297 · 1559

such that for almost all T ∈ B(Q) the curve Dm(T ) has at least rank 5.

However, it turns out (perhaps unsurprisingly) that the Diophantus curves corresponding to the points
on B(Q) have extremely large coefficients and are therefore difficult to handle. For example, the smallest
value of m corresponding to one of the points on B is m = 31850580760/1260037009, with the additional
independent points

(−306884/35497, 1504509862/1260037009),

(1414529/141988, 405439253819/10080296072),

(−241572/35497, 22909564130/1260037009).

The conductor of this curve factors as

25 · 72 · 112 · 193 · 4612 · 4049425972295243 · 8888372861595065560274461.

It is easy to confirm that this curve indeed has rank at least 5, simply by calculating the determinant
of the height matrix of the points that the algorithm gives us. However, actually determining the exact
rank proves very difficult because of the large constants involved, and, for example Sage gives up rather
quickly. Unfortunately, this is a theme among the curves we construct this way, and we were unable to
determine the rank of any curve constructed by the above algorithm.

2.4.1 An equation for the indexing curve
In [Eik04, Section 3.5] it is shown how a quartic equation for the elliptic curve in proposition 2.4.2 is
derived. In this section, we show that this approach works in general, and we provide the resulting
equation for the general case (c.f. eq. (2.10)).

Let m0 ∈ Q, and let

R1 = (x1, y1), R2 = (x2, y2), R3 = (x3, y3),

be points on Em0
: y2 = x3 − x + m2

0. Let M1(t1),M2(t2),M3(t3) be the quadratic polynomials from
proposition 2.4.1 corresponding to R1, R2 and R3 respectively, and write

Mi = ait
2
i + biti +m0.

Recall that M1(0) = M2(0) = M3(0) = m0. The intersection M1(t1) = M2(t2) defines a conic that has
the point (0, 0), so we can parametrize all its rational points by considering lines through (0, 0). We set
t2 = wt1 and obtain

a1t
2
1 + b1t1 = a2w

2t21 + b2wt1,

10It should be noted that this “almost all” in practice can be thought of as an “always”; examples where it fails are
extremely hard to find, if they exist at all.

11It should be noted that Sage is not always able to actually compute the rank of these indexing curves. Curiously, in
our tests Sage could only determine these ranks if they were nonzero. Suposedly, this is because the presence of a rational
point reduces the ammount of work that needs to be done to complete the 2-descent.
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which has the non-trivial solution

t1(w) =
b2w − b1
a1 − a2w2

and t2(w) =
b2w − b1
a1 − a2w2

· w. (2.7)

The intersection thus consists of the points in the image of

M1,2(w) =M1(t1(w)) =M2(t2(w)) = a1

(
b2w − b1
a1 − a2w2

)2

+ b1 ·
b2w − b1
a1 − a2w2

+m0

=
m0a

2
2w

4 − b1a2b2w
3 + (a1a

2
2 − 2a1a2m0 + b21a2)w

2 + (a1b1b2 − 2a1b1a2)w + a21m0

(a1 − a2w2)2
.

(2.8)

We now want to solve M1,2(w) =M3(t3). To clear the denominator in eq. (2.8) we set

t3 =
v

(a1 − a2w2)
− λ (2.9)

for a currently unknown λ, and we first calculate

M3(t3) · (a1 − a2w
2)2 =

(
a3

(
v

a1 − a2w2
− λ

)2

+ b3(
v

a1 − a2w2
− λ) +m0

)
· (a1 − a2w

2)2

= a3v
2 +

(
−2a3(a1 − a2w

2)λ+ b3(a1 − a2w
2)
)
v + a3λ

2(a1 − a2w
2)2

− b3λ(a1 − a2w
2)2 +m0(a1 − a2w

2)2.

Taking

λ =
b3(a1 − a2w

2)

2a3(a1 − a2w2)
=

b3
2a3

kills the v-term, and M1,2(w) =M3(t3) then gives us

A : a3v
2 = m0a

2
2w

4 − b1a2b2w
3 + (a1a

2
2 − 2a1a2m0 + b21a2)w

2 + (a1b1b2 − 2a1b1a2)w + a21m0

−
(
b23
4a3

(a1 − a2w
2)2 − b23

2a3
(a1 − a2w

2)2 +m0(a1 − a2w
2)2
)

(2.10)

This (generally) defines a genus 1 curve [Cas91, Chapter 8]. From the point t1 = t2 = t3 = 0 we obtain
a point on A turning it into an elliptic curve, and this point can then (if one wishes) further be used to
find a Weierstrass model of the curve. Finally, using eq. (2.7) and eq. (2.9) a point (v, w) on A can be
turned into a value of m such that Dm (at least generically) has rank 5.
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Appendix A

Galois cohomology and Selmer groups

In this thesis we study the theory of descent through (Galois) cohomology. In (co)homology a series of
algebraic objects is in a functorial way assigned to an object of interest. This concept is for example
used frequently in algebraic topology to study topological spaces. In this thesis we will only consider
Galois-cohomology, that is, the cohomology theory of GK-modules. We will moreover only define the
zeroth and first cohomology groups, as those are sufficient for our goals. A full overview can be found in
[Ser79] or [Sil09].

A.1 Galois cohomology
In what follows we will use the following notation. Let K be a field, we let GK := Gal(Ksep/K) denote
the absolute Galois group of K, which if K is perfect equals Gal(K̄/K). We will always assume that we
have chosen some fixed algebraic closure K̄. In the following we will deal with GK-modules, which in line
with [Mil06] we will always write as a left action. In order to define Galois cohomology we need some
elementary definitions.

Definition A.1.1. Let K be a perfect field. The Krull topology on GK is the the topology with basis
around 1 given by {N ⊆ GK : N normal and finite index}. By Galois theory such N equal the set of
automorphisms that leave some finite field extension L/K fixed.

Definition A.1.2. A (discrete) GK-module is an abelian group M with a group action of GK which is
continuous with respect to the topology on GK and the discrete topology on M . Equivalently, for m ∈M ,
Stab(m) will be of finite index.

Definition A.1.3. Let M be a GK-module. The 0-th cohomology group of M is

H0(K,M) = {m ∈M : σm = m for all σ ∈ GK}.

We moreover define (assuming M has the discrete topology)

C1(K,M) = {Continuous maps GK →M},

the group of continuous 1-cocycles from GK to M as

Z1(K,M) := {ζ ∈ C1(K,M) : (∀σ, τ ∈ GK)(ζ(στ) = ζ(σ) + σζ(τ))},

the group of 1-coboundaries from GK to M as

B1(K,M) := {ζ ∈ C1(K,M) : (∃m ∈M)(∀σ ∈ GK)(ζ(σ) = σm−m)},

and finally the 1-st cohomology group of M as

H1(K,M) :=
Z1(K,M)

B1(K,M)
.
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Of course there does exist a more elegant definition of these cohomology groups, in which these groups
(along with the higher cohomology groups) arise naturally as the cohomology groups of certain chain
complexes. For this thesis however the explicit definitions above are sufficient. In any case, we have the
following results.

Remark A.1.4. If M has the trivial GK action, then

H0(K,M) =M and H1(K,M) = {continuous homomorphisms GK →M}.

Theorem A.1.5. Let
0 L M N 0

f g

be a short exact sequence of GK-modules. Then there is an induced long exact sequence of cohomology
groups

0 H0(K,L) H0(K,M) H0(K,N)

H1(K,L) H1(K,M) H1(K,N)

. . .

δ

The horizontal maps are simply those induced by f and g. The map δ is defined as follows: Given an
n ∈ H0(K,N), δ(n) is the function that on input σ ∈ GK takes an inverse m ∈ M of n under the
surjection g, notes that σ(m)−m is in the kernel of g and thus in the image of the injection f , and then
outputs f−1(σ(m)−m).

This theorem is a special instance of theorem 1.3.1 in [Wei94].

A.2 The Selmer group
Let K be a number field, E/K an elliptic curve and O ∈ E(K) its neutral element. In this section we
will define the Selmer group Seln(E/K) and the Tate–Shafarevich group X(E/K).

From the short exact sequence

0 E[n] E E 0n

we use theorem A.1.5 to obtain the long exact cohomology sequence

0 −−→ E(K)[n] −−→ E(K)
n−−→ E(K) −−→ H1(K,E[n]) −−→ H1(K,E)

n−−→ H1(K,E) −−→ . . . ,

from which we can extract the short exact sequence

0 E(K)/nE(K) H1(K,E[n]) H1(K,E)[n] 0.

Repeating the same process for every place v of K, we get a commutative diagram

0 E(K)/nE(K) H1(K,E[n]) H1(K,E)[n] 0

0
∏

v E(Kv)/nE(Kv)
∏

vH
1(Kv, E[n])

∏
vH

1(Kv, E)[n] 0,

(1)

Here in line with theorem A.1.5 the map (1) is explicitly given by P 7→ (σ 7→ σQ−Q), where Q ∈ E(K̄)
is chosen such that [n]Q = P . With this diagram in mind we are ready to define the Selmer group.

Definition A.2.1. With K,E and n as above, we define the Selmer group Seln(E/K) as the kernel of
the natural map

H1(K,E[n])
∏

vH
1(Kv, E)[n].

We similarly define the Tate–Shafarevich group X(E/K) as the kernel of the map

H1(K,E)
∏

vH
1(Kv, E).
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Note that by exactness of the top row the image of E(K)/nE(K) lies within the kernel of the map
H1(K,E[n]) → H1(K,E), and hence also in the Selmer group. It follows that we can extend our
diagram to:

Seln(E/K) X(E/K)[n]

0 E(K)/nE(K) H1(K,E[n]) H1(K,E)[n] 0

0
∏

v E(Kv)/nE(Kv)
∏

vH
1(Kv, E[n])

∏
vH

1(Kv, E)[n] 0,

(1)

where both rows, the diagonal and the right column are exact.

Remark A.2.2. From the above diagram we can obtain a short exact sequence

0 E(K)/nE(K) Seln(E/K) X(E/K)[n] 0.

This shows that in some ways X(E/K)[n] measures how much E(K)/nE(K) (the group we are ultimately
interested in) differs from Seln(E/K) (the group we are more easily able to compute).

A.3 Local field theory
The main goal of this section is to prove proposition A.3.7, which is used to provide local conditions on
elements of the Selmer group for both rational and irrational torsion. We start with some classical results
on local field theory. The following two lemmas are theorems II.(4.6) and II.(4.8) in [NS13] respectively.

Lemma A.3.1 (Hensel). Let K be a complete field with respect to a non-archimedean valuation, and let
A the valuation ring of K with maximal ideal m. If f ∈ A[X] factors as f̄ = ḡh̄ over k = A/m, then
there are g, h ∈ A[x] with reductions ḡ, h̄ modulo m such that f = gh, deg g = deg ḡ and deg h = deg h̄.

Lemma A.3.2. Let K be a complete non-archimedean field with valuation v, and let L/K be a finite
extensions. Then there exists exactly one extension of v to a valuation on L.

Definition A.3.3. Let K be a complete non-archimedean field with valuation v, let L/K be a finite
extension and let vL be the unique extension of v to L. We say that the extension K ⊆ L is unramified
if the image of vL equals the image of v.

Definition A.3.4. Let K be a complete non-archimedean field with separable closure Ksep. The maximal
unramified extension Kunr of K within Ksep is defined as the union of all finite unramified subextensions
K ⊆ L ⊆ Ksep.

It should be noted that this definition makes sense as the composite of unramified field extensions is again
unramified, see corollary II.(7.3) in [NS13].

We now have the following lemma. Here, for a field extension K ⊆ L we write TL/K for the category
whose objects are subextensions K ⊆ K ′ ⊆ L and the morphisms are inclusions.

Lemma A.3.5. Let K be a complete non-archimedean field and let Ksep be a separable closure of K. Let
k be the residue field of K and let kalg be an algebraic completion of k. Then there is an equivalence of
categories

TKunr/K
∼−→ Tksep/k,

L 7→ ℓ,

which sends a field L to (a field isomorphic to) its residue field.

Proof. See [Ste21, Theorem 4.2].

With this background in mind, we are now able to prove the following results on elliptic curves. These
can also be found in section 4.3 in [Mil06].
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Lemma A.3.6. Let K be a finite extension of Qp, let E be an elliptic curve over K with good reduction,
and let n ∈ Z not divisible by p. Then for every P ∈ E(K) there exists a finite unramified extension L of
K such that P ∈ nE(L).

Proof. Let k be the residue field of K. Find an extension ℓ of k such that P̄ ∈ Ē(k) is in nĒ(ℓ). The
L ⊇ K corresponding to ℓ under the equivalence of categories given in lemma A.3.5 does the job: the
equation Q = nP (here n and P are fixed) can be solved over the residue field ℓ, and so by Hensel’s
lemma (lemma A.3.1) it can also be solved over L itself.

Having done all the preliminaries, we are now able to prove the following proposition.

Proposition A.3.7. Let E/K be an elliptic curve with discriminant ∆. For every γ ∈ Seln(E/K)
and every finite place v of K that does not divide n∆ (i.e. v(n∆) = 0) there exists a finite unramified
extension L of Kv such that γ maps to 0 in H1(L, E[n]).

Proof. Let γv denote the image of γ in H1(Kv, E[n]). Recall that we have a short exact sequence

0 E(Kv)/nE(Kv) H1(Kv, E[n]) H1(Kv, E)[n] 0.

Since γ lies in Seln(E/K), by definition it follows that γv maps to 0 under the map H1(Kv, E[n]) →
H1(Kv, E)[n]. By exactness, γv is thus the image of some P̄ ∈ E(Kv)/nE(Kv) with lift P ∈ E(Kv).
Now by lemma A.3.6 there is an unramified extension L ⊇ Kv such that P is in nE(L). Then by
commutativity of the diagram

P̄ ∈ E(Kv)/nE(Kv) H1(Kv, E[n]) ∋ γv

0 ∈ E(L)/nE(L) H1(L, E[n]) ∋ 0

it follows that γv maps to 0 in H1(L, E[n]), and so γ does as well.

42



Appendix B

Shapiro’s lemma

The purpose of this appendix is to discuss Shapiro’s lemma, and to make the isomorphism that it provides
explicit in both directions, on degree one cohomology. Let G be a group, and M a left module of a finite-
index subgroup H of G. Shapiro’s lemma states that, for any n ≥ 1, the restriction-projection map
(discussed below)

res : Hn(G, IndGH(M)) −→ Hn(H,M),

is an isomorphism. The main purpose of this appendix is to make the inverse isomorphism explicit for
the case n = 1, which we need for the cohomological treatment of irreducible 2-descent in section 1.2.2.

Let {gi}i∈I be a full set of coset representatives of H, i.e. |I| = [G : H] and G =
∑

i∈I giH, where without
loss of generality we assume that 1 ∈ I and g1 = 1. Consider a cohomology class [ϕ] ∈ H1(G, IndGH(M)),
represented by a cocycle

ϕ : G −→ IndGH(M) =
⊕
i∈I

[gi] ·M

Composition of the cocycle ϕ with the natural projection map to the first factor i = 1 gives us a map
from G to M whose restriction to H is denoted by ϕH : H → M . It may be verified directly that ϕH
is a 1-cocycle, and that ϕH is a coboundary if ϕ is a coboundary. Passing to the associated cohomology
classes, the association [ϕ] 7→ [ϕH ] defines the restriction map res mentioned above.

To explicate the inverse isomorphism provided by Shapiro’s lemma, we need some more notation. For
σ ∈ G and an index i ∈ I we define the index σ(i) ∈ I and the map hi : G→ H by

σgi = gσ(i)hi(σ).

That is, σgi lies in some coset gjH and is thus of the form gjh for some h ∈ H. We define σ(i) = j and
hi(σ) = h. We then have the following explicit version of Shapiro’s lemma in degree one cohomology:

Theorem B.0.1. With G,H and M as before, the restriction map

res : H1(G, IndGH(M)) −→ H1(H,M)

is an isomorphism, and its inverse is given by the map T that sends a cohomology class [ψ] with repre-
sentative ψ : H →M to the cohomology class of the map

σ 7−−−−−→
∑
i∈I

[gi] · ψ(hσ−1(i)(σ)) =
∑
i∈I

[gσ(i)] · ψ(hi(σ)).

Proof. There are a few things to check. First of all, we of course need to show that res and T are well
defined, in the sense that they are independent of the chosen representatives. Secondly, we need to show
that they both indeed map into Z1(H,M) and Z1(G, IndGH(M)) respectively, such that their images
indeed define cohomology classes. Lastly, we of course need to show that they are inverse to each other.
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• First note that when we restrict a map ϕ : G→ IndGH(M) of the form

σ 7→ σ

(∑
i∈I

[gi]mi

)
−
∑
i∈I

[gi]mi

to H, then by remark 1.2.1 the 1-component of this restriction is simply

σ 7→ (h1(σ)m1 −m1) = σm1 −m1,

which is indeed a 1-coboundary. res is thus representative independent. Moreover, given a map
ψ : H →M of the form σ 7→ σm−m, we find that∑

i∈I

[gi]ψ(hσ−1(i)(σ)) =
∑
i∈I

[gi](hσ−1(i)(σ) ·m−m) =
∑
i∈I

[gσ(i)](hi(σ) ·m−m)

= σ ·

(∑
i∈I

[gi]m

)
−
∑
i∈I

[gi]m.

As this is indeed a 1-coboundary, we conclude that T is also representative independent.

• Let ϕ : G → IndGH(M) be a 1-cocycle. Then restricted to H, the cocycle condition ϕ(στ) =
ϕ(σ) + σϕ(τ)) tells us that for any σ, τ ∈ H we have

ϕ(στ) =
∑
i∈I

[gi]ϕi(σ) + σ
∑
i∈I

[gi]ϕi(τ)

=
∑
i∈I

[gi]ϕi(σ) +
∑
i∈I

[gσ(i)]hi(σ)ϕi(τ)

=
∑
i∈I

[gi]ϕi(σ) +
∑
i∈I

[gi]hσ−1(i)(σ)ϕσ−1(i)(τ),

and so the 1-component of this restriction is as expected equal to

ϕ1(σ) + hσ−1(1)(σ)ϕσ−1(1)(τ) = ϕ1(σ) + σϕ1(τ),

where we again used remark 1.2.1. In other words, if we restrict the G action on IndGH(M) to H,
then it does not mix the different components/acts diagonally, and so the cocycle condition of ϕ
directly implies the restriction of the 1-component has the same property. 1 Thus res indeed sends
cocycles to cocycles. Moreover, given a cocycle ψ : H →M and elements σ, τ ∈ G, we find that

T (ψ)(στ) =
∑
i∈I

[gi]ψ(h(στ)−1(i)(στ))

=
∑
i∈I

[gi]ψ(hτ((στ)−1(i)(σ)h(στ)−1(i)(τ))

=
∑
i∈I

[gi]ψ(hσ−1(i))(σ)h(στ)−1(i)(τ))

=
∑
i∈I

[gi]ψ(hσ−1(i))(σ)) + hσ−1(i)(σ)ψ(h(στ)−1(i)(τ))

=
∑
i∈I

[gi]ψ(hσ−1(i))(σ)) +
∑
i∈I

[gσ(i)]hi(σ)ψ(hτ−1(i)(τ))

= T (ψ)(σ) + σT (ψ)(τ)

which gives the required result for T as well.

• To complete the proof, we must show that T is indeed the inverse of res. Since res is an isomorphism,
it is sufficient to show a single direction. If ψ : G→ IndGH(M)) is a 1-cocycle, then we have

(res ◦T )(ψ) = (σ 7→ T (ψ)1(σ))|H =
(
σ 7→ ψ(hσ−1(1)(σ))

)∣∣
H

= ψ,

which completes the proof.

1Note that restriction to H here is necessary, the components of cocycles need not be cocycles.
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