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1 Introduction

Quaternions were originally described by Hamilton in 1843. We briefly discuss how this description
came about, with reference to Section 1.1 of Voight [Voi21]. Hamilton knew that the complex
numbers C could be interpreted as points on a plane such that addition and multiplication correspond
to translations, scaling and rotations. Hamilton was looking for a number system that could model
three-dimensional space in a similar way. He was looking for numbers that are similar to complex
numbers, but with a “two-dimensional” imaginary part. He did not succeed in finding such numbers.
Instead, he had to add a fourth dimension, and came up with the ring we now denote with H: the
Hamilton quaternions. It is given as H = R + Ri + Rj + Rk, induced by the multiplication rules

i* =5 =k =ijk=—1.

The group H! := {t + xi +yj + 2k € H : t? + 22 + y? + 22 = 1} acts by rotation on Ri + Rj + Rk
via conjugation [Voi2l, Proposition 2.4.18]. This result shows that the quaternions in H do indeed
“model” three-dimensional space in some way.

The notion of a quaternion algebra can be generalized far beyond just the Hamilton quaternions (see
Definition 2.1). Abstracting from the geometric interpretation, quaternion algebras have applications
in other branches of mathematics as well. For instance, every quaternion algebra has a multiplicative
norm defined on it, which can be expressed as a quadratic form (Lemma 2.1.4). This can be used
to prove number theoretic results such as Lagrange’s four-square theorem [Voi21, Theorem 11.4.3].

In recent years, another application of quaternion algebras has arisen. There is a remarkable con-
nection between elliptic curves and quaternion algebras. Some elliptic curves E over Fj> have an
endomorphism ring that is actually a quaternion algebra over Q [Voi2l, Theorem 42.1.9]. This
connection is exploited in cryptography. In Section 5, we will look at SQIsign2D-East [Cas+24],
[Nak+24]. This is a contender for a post-quantum signature scheme, meaning that it is believed
to be secure against attacks by quantum computers [GL24, p. 2]. In SQIsign2D-East, the goal is
to establish a method that provides the sender of a message with an unforgeable signature. When
such a signature is sent along with a message, the receiver of the message knows for sure that the
message originated from the right person.

The main idea behind the procedure of signature creation is as follows. Given is a hard problem in
terms of elliptic curves that is almost impossible to solve without further information. No one has
any further information, except for the sender of the message. The sender has additional private
information that can be used to convert the hard problem of elliptic curves into a (much easier)
problem in terms of quaternion algebras. Once the quaternion problem is solved, a corresponding
signature is created and the receiver of the message can then verify that the signature was indeed a
solution to the problem.

In [Cas+24, Section 2|, it is found that repeatedly generating signatures leaks information that
can be used to determine private information of the sender. A fix that avoids this leakage is then
proposed [Cas+24, Section 3]. In the fix, elements in integral ideals (Definition 2.2.10) are sampled
repeatedly at random. In order for the fix to work, an element that satisfies a specific congruence
relations on its norm must be found. So the efficacy of the fix relies on the probabilities that a
randomly sampled element satisfies a certain congruence relation on its norm.

Inspired by the question of what these probabilities are, we try to answer the question as general
as possible (Problem 2.3.1). In this thesis, we go through the properties of quaternion algebras,
lattices, orders and their completions in Sections 2 and 3. Then we will find the desired probabilities
in Section 4. The main results of this thesis are the formulas for the probabilities that the norm of
a sampled element in a certain integral ideal satisfies any congruence relation. These formulas are
given in Theorem 4.5.1 and apply to every locally principal integral ideal of any Eichler order in
any quaternion algebra that is ramified at co. Finally, we apply the found results in the context of
SQIsign2D-East in Section 5.



2 Quaternion algebras

We begin by building up the required theoretical framework around quaternion algebras. Throughout
this section, we use Voight as our main reference [Voi21]. In this section, let F' be a field with
char(F) # 2.

Definition 2.1. Let B be a ring equipped with a homomorphism F' — B such that the image of F'
lies in the center Z(B) of B. The ring B is a quaternion algebra over F' if there exist i,j € B such
that 1,4, 7,4j is an F-basis for B and

for some a,b € F*.

The multiplication rules in B are entirely determined by the values of a and b. So, for a,b € F*,

we define (‘}b) as the quaternion algebra over F' with basis 1,4, 7,47 such that i2 = a, 52 = b and

ij = —ji. For the purpose of formatting, we also write (a,b | F).

Remark 2.2. Note that a homomorphism F' — B is necessarily injective. Therefore, we may think
of B as containing a copy of F', such that every element in F' commutes with every element in B.

Remark 2.3. In a quaternion algebra B over F' with basis 1,1, j, ij, we can scale i by x € F* and

j by y € F* to obtain a new basis 1, zi, yj, xyij with

(zi)? = 2%a, (yj)* = y°b.

a,b\ o (az? by’
F ) F ’

So, the elements a and b induce the same quaternion algebra when they are scaled by squares in
F*. In particular, if F' = Q, then any quaternion algebra is isomorphic to some quaternion algebra
(a,b | Q) for some a,b € Z\ {0}.

It follows that

Remark 2.4. There is a more general characterization of quaternion algebras that also includes
quaternion algebras over fields of characteristic 2 [Voi21, Chapter 6]. However, for our purpose it
suffices to only consider quaternion algebras over fields of char(F') # 2.

There also exist quaternion algebras where it is more convenient to have a basis independent de-
scription. Consider the following example.

Example 2.5. For a field F', the ring M>(F') of 2 x 2 matrices with entries in F' is a quaternion
algebra. We have a homomorphism F' — My (F')

HmO
T 0 2/

It can be checked that (1,1 | F') & My(F') via

(L0 (01
7o o —1) 770 o)

2.1 Standard involutions

In this subsection, let B denote the quaternion algebra (a,b | F). We have the explicit basis 1,1, j, ij
for B. With respect to this basis, we can define some useful maps on B.

Definition 2.1.1. An involution B — B is an F-linear map denoted by a — @, such that for all
a, B € B, it satisfies



(i) I=1;
(i) @ = o
(iii) aB = B a.
If a@ € F for all @ € B, the involution is called standard.

With respect to the basis 1,14, j,7j, we can define the map B — B

t+at+yj+zig—=t+ai+yj+ 2t =1t —xi—yj — 2] (2.1.2)
And it can be verified that this map is a standard involution on B.

Definition 2.1.3. Let the map B — B with a +— @ be a standard involution. We define the trace
on B as a map B — F given as

a—tr(a) =a+a.
We also define the norm on B as a map B — F given as

a+— N(a) = aa.

Note that the trace is well defined as a map B — F, since we have that
(a+1)(a+1l)=aa+a+a+1eF.

We know that 1 and o are in F', so a4+ @ is in F' as well.

Lemma 2.1.4. Let N: B — F be the norm map induced by a standard involution on B. The norm
is multiplicative, that is, N(af) = N(a)N(B) for all a, 8 € B.

Proof. We use that F' is in the center of B and the third property of Definition 2.1.1. We compute
N(aB) = afaB = afiBa = aN(8)a = aaN(8) = N(a)N(B).
O

With respect to the basis 1,14, 7,45 and the standard involution from 2.1.2, we can write the trace
and norm of elements in B as

tr(t + wi + yj + zij) = 2t; (2.1.5)
N(t + xi +yj + zij) = t* — 2%a — y*b + 22ab. (2.1.6)

We also find that
o = (a+a)a —aa. (2.1.7)

And note that aa — @ € F with trace 0. By 2.1.5, we find that an element « € F has trace zero if
and only if @ = 0. As a result, a@@ = @a, so the polynomial 22 — tr(a)x + N(a) € F[z] annihilates
«. It follows that every element in B is contained in a quadratic extension of F'.

Lemma 2.1.8. A quaternion algebra B over F has a unique standard involution.

Proof. Let v € B such that F(y) # F. The extension F(y) is quadratic with basis 1,7. We
define a standard involution on F(y) as a map that satisfies all properties of Definition 2.1.1 for all
a, B € F(v). The standard involution then induces a trace and norm on F () analogous to the trace
and norm on B.



Equality v? = ¢y — n must hold for uniquely determined ¢,n € F. But we know that t = v + 7 and
n = ¥ hold as well. We find that the standard involution is uniquely determined as v +— t —y. We
also know there exists a standard involution on B such that 7 =t — ~.

Any standard involution on B restricts to a standard involution on F(v), and by the unicity of
standard involutions on F'(7), this uniquely determines the standard involution on B for all elements
~v € B such that F(y) # F. On elements in F', the standard involution is determined by the linearity
and the condition 1 = 1. We find that a standard involution on B is unique. O

When we consider matrix rings, it can be more convenient to consider the properties of their standard
involution without reference to a basis.

Example 2.1.9. Let B = Ms(F'). The assignment B — B with

(e o) (5 D)

is the unique standard involution. So in My (F), the trace and norm correspond, respectively, to the

maps
a b . a+d 0 . a b . ad — bc 0
c d 0 a+d)’ c d 0 ad —bc) "

Note that the trace corresponds to the usual trace of a matrix, while the norm corresponds to the
determinant.

2.2 Lattices
In this subsection, let R be a principal ideal domain and F its field of fractions, still with char(F’) # 2.

Definition 2.2.1. Let V be a finite-dimensional F-vector space. A finitely generated R-submodule
I C V is called an R-lattice if IF = V.

An equivalent condition to IF =V is that I contains an F-basis for V. If R = Z, we may omit the
ring and just refer to a lattice.

Note that every quaternion algebra B over F' is in particular a 4-dimensional vector space over F,
so it makes sense to talk about lattices inside B.

First we give some convenient properties of modules and lattices.

Lemma 2.2.2 (Structure theorem). Let R be a principal ideal domain and let M be a nonzero
finitely generated R-module. Then there exist cyclic R-modules Rxq, ..., Rr, such that M is the
direct sum M = Rx; @ --- @ Rz, and such that the annihilators Ann(z;) satisfy

R D Ann(x1) D -+ D Ann(x,,).
Proof. This is a well known result. See [Jac12, Theorem 3.8] for instance. O

By grouping together all terms with trivial and nontrivial annihilators, we may write the module M
as M = R" @ Ty for some r € Z>(, where T} is the torsion module of M.

Lemma 2.2.3. Let V be a finite-dimensional F-vector space, let I C V be an R-lattice and let
J C V be a finitely generated R-module. Then there exists a monzero element r € R such that
rJ C 1.



Proof. Let {x1,...,2,} be a generating set for J. We know that I contains an F-basis y1,...,Ym
for V', so every x; can be written as an F-linear combination of the y;. We find that there exist
fij € F such that any element in J is of the form

>y fiivss

n
i=1 j=1

7

where r; € R. Since F is the field of fractions of R, there exists an r € R such that rf;;y; € R for
every fi;y;. We find rJ C I. O

Lemma 2.2.4. Let I be an R-lattice in an F-vector space V with dimV = n. Then, I is free of
rank n as an R-module.

Proof. Note that I can be embedded into a vector space over F. Since R C F holds, we find that I
is torsion free. Then [ is free by the structure theorem of finitely generated modules over a principal
ideal domain (2.2.2).

Suppose I has rank m and has a submodule J. We have that J C V, so J is torsion free. Every
element in J is a unique R-linear combination of an R-basis zi,...,2,, for I. We find that J
is finitely generated, hence free of rank [ < m. Otherwise, there would necessarily be R-linear
dependence within a basis of J.

Let y1,...,yn € I be an F-basis for V, and let N = @, Ry; = R". We have N C I, so we find
n < m. Now, by Lemma 2.2.3, we find that there is some nonzero r € R such that rI C N, so we
conclude that n = m. O

Any quaternion algebra B over F' is a 4-dimensional vector space over F, so every lattice in B is
free over R of rank 4. In particular, if an R-lattice I has R-basis x1, 2,23, T4, then this basis is
automatically an F-basis for V.

Some lattices that are particularly in our interest, are the ones that also have a ring structure.

Definition 2.2.5. An R-lattice O C B is an order if it is a subring of B. If O is not properly
contained in another order, O is called mazximal.

The following orders are a specific type of orders that will appear throughout this thesis.

Definition 2.2.6. Let O, 0’ C B be two (not necessarily distinct) maximal orders. The intersection
O N O is called an FEichler order.

Remark 2.2.7. Note that the intersection of two rings is again a ring. The intersection O N O’ is
also a R-module that is free and finitely generated. By Lemma 2.2.3, there exists a nonzero r € R,
such that rO’ C O. We find rO’ € ONO’, so we find that O N O’ spans B. So indeed, as the name
suggests, an Eichler order is an order.

For every R-lattice I, we can define its respective left and right order in the following way:
Or(I)={a€eB:alCcl}, Or(I)={a€B:IacCI}.

We will now show that these are indeed orders.

Lemma 2.2.8. Let I be an R-lattice in B. Then, Or(I) and Or(I) are orders in B.

Proof. By Lemma 2.2.3, there is a nonzero r € R such that 7 € I. Then we find that I? is a lattice
as well, since it is finitely generated by the products of generators of I and rI C I2. Again, by
Lemma 2.2.3, there is a nonzero s € R such that sI? C I. We find (sI)I C I, so sI C Op(I). It
follows that Op(I) spans B.



By Lemma 2.2.3, there is a nonzero ¢t € R such that tOp(I) C I, hence Op(I) C t7*1. Or(I) is
contained in a finitely generated free R-module, so Oy (I) is torsion free, hence free. In the proof of
Lemma 2.2.4, we have seen that this implies that O, (I) is finitely generated.

Now it is left to check that Op () is a ring. It contains 0 and 1, and for «, 8 € O (1), we have
(a+B)ICal+pBICcI+1=1I,
(af)I C a(BI) Cad CI.

The other requirements are easy to check, so we conclude that Op(I) is an order in B.

The proof for Or(I) is analogous. O

One important property of orders is that they are integral structures within quaternion algebras.

Proposition 2.2.9. Any element in an order O C B is integral. That is, every element in O is the
root of some monic polynomial in R[x].

Proof. Let aw € O. We have R[a] C O. The R-module R[a] can be embedded in B, so it is torsion
free. In the proof of Lemma 2.2.4, we saw that the rank of a torsion free submodule I C J is
bounded above by the rank of J if J is free as well. So R[] is finitely generated, and free by the
Structure theorem 2.2.2. Then, there exists a smallest m € Z such that every element in R[a] is a

polynomial in « of degree less than m. We find that 1,c,...,a™ ! is an R-basis for R[a]. Then,
a™ =SV gal for some choice of x; € R. Tt follows that « is integral. O

Every element in B satisfies a monic quadratic polynomial in F'[z], where the coefficients are the
trace and norm. If the trace and norm of some o € B are not both in R, then « is not the root
of any monic polynomial in R[xz]. We observe that elements o« € B are integral if and only if
N(a),tr(a) € R.

Definition 2.2.10. Let I be an R-lattice in B. Then I is called integral if I? C I.

On first sight, the definition of an integral lattice has nothing to do with the integrality of its
elements. There is, however, a connection between the two.

Lemma 2.2.11. Let I be an R-lattice in B. The following are equivalent:

(i) I is integral;

(ii) I is closed under multiplication;

(iii) I is a left ideal of Op(I);

(iv) I is a right ideal of Or(I);

(v) I COL(I)NOg(I).
Proof. (i) < (ii) is clear. If I is integral, then clearly I C Or(I), and Or(I)I = I. If I is a left
ideal of Oy, (I), it is clearly closed under multiplication. This gives (i) < (iii) and a similar argument
for Og(I) gives (i) < (iv). Then, (i) = (v) is immediate from combining (iii) and (iv). If I is

contained in both O (I) and Og(I), it follows that Or(I)I = I, so I is a left ideal of O (I). The
last implication (v) = (i) follows. O

We see that every integral lattice I is an ideal of its left and right order. So by 2.2.9, every element
in an integral lattice is integral. Because every integral lattice is an ideal of some order, we will also
refer to integral lattices as integral ideals. Note that not every ideal of an order is an integral ideal
(the zero ideal for instance), despite its elements being integral.

For integral ideals, the following definition makes sense because all its elements are integral.

Definition 2.2.12. The norm N(I) of an integral R-lattice I is defined as ged({N(«) : v € I}).



An order O is an integral lattice, and its norm is 1. For an R-basis £;, i = 1,2, 3,4 of O, note that
the traces of the products tr(j3;3;) are integers, since 3;5; € O.

Definition 2.2.13. Let O be an order in B with R-basis 31, 82, 83, 84. The discriminant of O with
respect to the basis 51, B2, 83, 84 is the ideal

diSC(O) = (det(tr(ﬁzﬂj))i7j:172,374) C R.

Remark 2.2.14. The definition for the discriminant we gave does not depend on the choice for a
basis of O [Voi21, Corollary 15.2.7], so we may as well omit “with respect to a basis” and refer to
the discriminant of O instead.

We will use discriminants of orders to study how orders sit inside one another. To formalize this,
we first introduce the R-index.

Definition 2.2.15. Let I,J be two R-lattices of rank n in an n-dimensional vector space V over
F. The R-index [J : I]g is the ideal in R generated by {det f : f € Endr(V), f(J) C I}.

Lemma 2.2.16. Let I C J be two R-lattices of rank n in an n-dimensional vector space V over F'.

Then [J : Ilgr = R if and only if J = 1.

Proof. It J = I, then we have det(id) = 1 € [J : I]g. Now suppose [J : I|g = R. Then there is
an f:V — V that restricts to f|; : J — J € Endg(J), such that det f € R*. But then f is also
invertible in Endg(J). In particular f is surjective, so from the inclusions f(J) C I C J, we find
that I = J. O

We can use R-indices to show that every order is contained in a maximal order. This is a consequence
of the following lemma.

Lemma 2.2.17. Let O C O’ C B be two orders in a quaternion algebra B over F. Then disc(O) =
[0 : O)%4disc(O"). Moreover, O = O’ if and only if disc(O) = disc(O’).

Proof. Let M a basis transformation matrix from an R-basis of O to an R-basis of O'. By
[Voi2l, Lemma 9.6.4], det(M) generates [0’ : O]g. And by [Voi2l, Lemma 15.2.5], Disc(O) =
det(M)?disc(O’). We find that Disc(O) = [O" : O]?Disc(0’). By Lemma 2.2.16, we have that
Disc(O) = Disc(0') if and only if O = O’. O

Corollary 2.2.18. Every order O is contained in a mazimal order.

Proof. Suppose we have a chain of orders
0C01C0,¢C....
Then by 2.2.17, we have a chain
disc(0) € disc(O;) € disc(O2) ...

And since R is a principal ideal domain, it is in particular noetherian, so this chain must terminate.
As a consequence, the chain of orders must also terminate, hence O is contained in a maximal
order. 0

2.3 Statement of the problem

Now that the basic definitions and properties of quaternion algebras and lattices have been estab-
lished, we are ready to state the central problem of this paper.



Problem 2.3.1. Let B = (a,b | Q) be a quaternion algebra for some a,b € Z.g, let J be an integral
lattice in B and let r € Z, n € Z~1.

What is

lim #{a e J:N(a) < X,N(a) =7 (mod n)}
X 00 #{a e J:N(a) < X}

? (2.3.2)

This problem is inspired by Castryck [Cas+24, Conjecture 6], and has applications in cryptography
(see section 5).

Remark 2.3.3. The following diagram commutes.

jg— N

|

J/nJ —— Z/nZ (2.3.4)
The vertical maps are reduction maps and the lower horizontal map is & (mod nJ) — N(a) (mod n).
We show this map is well defined. Note that with respect to some Z-basis 5;, i = 1,2, 3,4 for J, the
norm N(z181 + 2282 + @383 + x484) is a homogeneous quadratic polynomial in x1, 2z, x3,x4. The
coefficient of z;z; is given as 3;8; + B;8: = N(B; + B;) — N(Bi) — N(B;) if i # j and the coefficient
of 2 is N(f;). All coefficients are integers, so the quadratic form associated to N with respect to

the basis 3; reduces to a well defined map modulo n. We will also refer to the map norm map
J/nJ — Z/nZ as N.

Lemma 2.3.5. Limit 2.5.2 exists and is equal to #{a € J/nJ : N(a)) = r (mod n)}/#(J/nJ).

Proof. Let M(X) = {aa € J: /N(o) < X}, Sy = { € J/nJ : N(a) = r (mod n)} and let
A p(X)={a€ J:/N(a) < X,N(a) = r (mod n)}.

We first show that M (X) is finite for every X. We have chosen a,b € Z.(, and the norm of elements
in B is given as

N(t + zi + yj + zij) = t* — az® — by® + abz>.

It follows that every element has nonnegative norm. This actually induces a metric on B if we define
the distance between o and 3 as \/N(a — 3). We embed B into R* via t +xi+yj +zij — (t,2,y, 2),
and the metric on B extends to a metric on R* via (t,z,y,2) — /t2 —ax? — by? + abz2. This
metric on R* induces the Euclidean topology on R*, but note that the metric is not the standard
metric. It is obtained by scaling coordinates by a nonzero factor. The reason we embed B into R*
is so we can talk about volumes.

Let 8;, ¢ = 1,2,3,4 be a Z-basis for J. This basis spans a parallelepiped P with side lengths
N(B;) and finite volume V. We can translate P along the basis vectors to identify each point

T = Z?Zl x;f; € J with the parallelepiped P, obtained from P + P + x. Then all these P, cover
R?* in such a way that P, U {z} = {z} and Vol(P, N P,) = 0 whenever z # y. So the points in J
can be identified with parallelepipeds P;.

Let D,.(a) C R* be the closed ball of radius r around .. The set M(X) is contained in D,.(0) for
some 1 > 0. Therefore, M(X) is contained in a set with finite volume. But then it follows that
M(X) can only contain finitely many parallelepipeds P,, hence M (X) is finite.

Now let Q(X) = ¢ m(x) Pz- Then there is a fixed constant d such that for every sufficiently large
X, we have Dx_4(0) C Q(X) C Dx14(0). We have Vol(Q(X)) = #M(X)V, and since the volume
D,.(0) is proportional to 74, there is a constant ¢ > 0 such that

Vol(Dx _4(0)) = ¢(X —d)* < #M(X)V < ¢(X +d)* = Vol(Dx,4(0)).



Now let

R, = U Px+x161+x2[3+x3ﬁ3+x464~

z1,22,23,24€{0,...,n—1}

Then |, ; Rne covers R* in such a way that Vol(R,, N Ryy) = 0 whenever x # y, and for every
a € J/nJ, there is a 3 € R, that reduces to a. And since Vol(R,,) = n?V = #(J/nJ)V, we may
even identify R, with a set of unique representatives for each class in J/nJ. From Remark 2.3.3,
we find that for sufficiently large X, we have #(A, ,,(X) N Ryz) = #S;.,. Using a similar argument
for imposing bounds, we find that there is a fixed e such that for sufficiently large X, we have

4

n
#5rn

Vol(Dx_c(0)) = c¢(X —e)* < #A, ,(X)V < (X 4 e)* < Vol(Dx_(0)).

We can combine the two bounds into

(X —e)* #S,.n - #A,,(X)V - (X +e)t #S,n
(X +d)* nt — #FMX)W ~ (X —-d)* nt

As we let X — oo, we find by the squeeze theorem that the limit of 2.3.2 exists and is equal to

#Sy 0 /nt = #S, 0 /#(J/nJ). n

So not only did we find that the limit 2.3.2 exists, but we can determine the limit 2.3.2 from studying
the norm map J/nJ — Z/nZ between finite sets.

We may think of the limit in 2.3.2 as the probability that a randomly sampled element in an integral
ideal J has a norm congruent to r (mod n). For that reason, we will refer to the value of this limit
as P, ,,. Note that the choice of J is not clear from the notation P, ,, so we have to keep in mind
that we first have to choose an integral ideal before we can talk about probabilities ;. ,.

Lemma 2.3.6. Let p and q be coprime integers and let n = pq. The probabilities satisfy P, Py, =
P, for allr € Z.

Proof. By the Chinese remainder theorem and Remark 2.3.3, we have

P — #{a € J/nJ :N(a) =7 (mod n)}
o #(J/nJ) 7
_ #{(a, ') € (J/pJ) ® (J/qJ) : N(a) = r (mod p),N(a’) =7 (mod q)}
#((J/pJ) @ (J/q])) ’
_ #{a € J/pJ :N(a) =7 (mod p)} - #{a € J/qJ : N(a) = r (mod q)}
#(J/pJ) - #(J/qJ]) ’

P, P

= Lrplrg-

O

It follows from the prime factorization that problem 2.3.2 can easily be solved once the probabilities

P, .~ are known for primes p and positive integers k. Our main focus will therefore be to solve

problem 2.3.2 whenever n is a prime power.
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3 Completions

In this section, we look at completions of Q. We use Voight as our main reference [Voi21].

3.1 Construction
Completions can be constructed with respect to an absolute value.
Definition 3.1.1. Let F be a field. An absolute value is a map | | : FF — R>¢ such that
(i) |z| =0 if and only if x = 0;
(ii) |zy| = |z||y| for all z,y € F;
(iii) |z +y| < |z|+ |y for all z,y € F.

For F' = QQ, we have the well known absolute value that multiplies each element by its sign. We will
denote this absolute value as | |». Apart from this absolute value, there exist other absolute values

on Q.

Note that every x € Q* can be uniquely written as x = pk% where p is a prime and k, a,b € Z such
that @ and b are coprime with each other and with p.

Definition 3.1.2. Let p be a prime number. The p-adic valution on Q is the map v, : Q — ZU{oo}
defined as

where a and b are coprime with each other and with p.

We can now define the p-adic absolute value | |, : Q — Rsq as |z|, = p~?»(®), with the convention
p~> =0, such that |0, = 0.

Lemma 3.1.3. The p-adic absolute value is an absolute value.

Proof. We check the conditions of 3.1.2. For any z € Q%, p~?»(*) > 0 and |0, = 0 by definition, so
(i) holds.

Let = = pk%,y = plg € Q* be the unique representations of z and y. We have that |zy|, =
pFttac) " — p=k=l — |z||y|, and condition (ii) clearly holds if x or y is zero.

bd 1P Y y Y
Let k > | without loss of generality. Then |2z +y|, = [p*(% + p'~*$)|, < p~" = |z|,. It follows that
|z + ylp < sup{|z|p, |ylp}, so in particular, |z + y|, < |z|p + |ylp- O

An absolute value that satisfies the stronger inequality |x + y|, < sup{|z|p, |yl,} is called nonar-
chimedean. So for every prime p, the absolute value | |, is nonarchimedean, while | | is archimedean
(that is, not nonarchimedean).

The sets Q, and Z,, are the respective completions of Q and Z with respect to | |,. That is, Q, (Z,
respectively) is the smallest set such that every Cauchy sequence of elements in Q (Z respectively)
converges in Q, (Z, respectively). The completions of Q and Z with respect to | | are R and Z,
respectively.

We list a few properties of Q, and Z, that are proven in [Neul3, Chapter II]. Elements in Q, can
be uniquely represented as Laurent series in p with coefficients in {0,...,p — 1}, so we have

Q=14 ap' :k€Za e{0,1,...,p—1}
i>k

11



The usual addition and multiplication rules of Laurent series make Q, into a field of characteristic
0. The valuation v, extends to Q, as follows:

Up Z a,ipi = mm{z S sz Ta; 7& O}
i>k

With this new valuation, | |, extends to an absolute value on Q,. The completion of Z is then a ring

Zp={z € Qp:vp(z) >0} = Zaipi:aie{(),l,...,pfl}
>0

Furthermore, Q, is the field of fractions of Z,. From these properties, we will show that Z, is a local
ring, meaning that it has a unique maximal ideal.

Lemma 3.1.4. The ring Z, has a unique mazimal ideal (p), and every ideal is either 0 or of the
form (p*) for some k € Z>o.

Proof. Note that an element in Z, is invertible if and only if its p-adic absolute value is equal to
1 by the multiplicativity of | |,. Every nonzero a € Z, can then be written as a = p¥a/ for some
o € ZX and some k € Zxq. It follows that (a) = p*d/Z, = {& € Zy : |z|, < |af,} = (»*). In
particular, (p) = Z, \ Z,, so that is the unique maximal ideal of Z,,.

Note that if I C Z, is a nonzero ideal with m = min{v,(a) : a € I}, we find the expression
I={x€Z,:|x|, <p ™} = (p™), which proves the statement. O

In particular, we find that Z, is a principal ideal domain.

Note that the quotients Z,/ kap are isomorphic to Z/p*Z. This is clear from the representation of
Z,, as series in p. This observation allows us to talk about reduction maps in another way. Instead
of directly reducing integers modulo p*, we can first embed them into Z,, and then reduce modulo
p¥. This turns out to be a useful observation in the context of integral structures in quaternion

algebras.
Another useful property of the p-adic integers becomes clear when we consider the following Lemma.

Lemma 3.1.5 (Hensel). Let f € Z,[x] be a polynomial and let a € Z,, be a p-adic integer such that
f(a) =0 (mod p) and f'(a) #Z 0 (mod p). Then there exists a unique o € Zj, such that « = a (mod p)
and f(a) =0.

Proof. Let a,b € Z, such that f(a) = 0 (mod p*), f'(a) # 0 (mod p) and @ = b (mod p*). The
Taylor expansion of f around a is f(z) = f(a) + (z — a)f'(a) + (x — a)?g(x), for some g € Z,[z].
We have f(b) = tp* +t'p* f'(a) +t"p** (mod p**+1) for some integers t,¢',¢". Note that ¢ is fixed by
a up to multiple of p*, while ¢’ is determined by b. We find that f(b) = 0 (mod p¥*1) if and only if
t+t'f'(a) = 0 (mod p). There is a unique solution for ' modulo p, namely t' = —t- f’(a)~* (mod p).
We find that there exist elements b € Z, such that f(b) = 0 (mod p**1), f/(b) # 0 (mod p) and
b= a (mod p*), such that every b with these properties reduces to the same element modulo p***.

We have somehow “lifted” a solution @ in Z/p*Z to a unique solution b in Z/p*t'Z. We can
inductively repeat this “lifting” argument to find that there exists a unique root a € Z, of f, such
that @ = a (mod p). O

The p-adic integers contain the integers Z, so we can apply Hensel’s Lemma for polynomials in

Z|z] as well. This gives us a tool to find whether polynomials with integer coefficients have p-adic
solutions.
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3.2 Local quaternion algebras
In this subsection, we explore properties of quaternion algebras over fields Q,.

We will call quaternion algebras B over @, and the lattices and orders inside B local. The lattices
and orders in quaternion algebras over QQ global.

Lemma 3.2.1. Let B = (“@b) be a quaternion algebra with a,b € Q*. Then, B, := B®g Q) is a

quaternion algebra over Q, and B := B ®g R is a quaternion algebra over R.

Proof. The elements 1 ®1,i® 1, j ® 1, ij ® 1 form a basis for B, as a Q,-vector space, and B,
contains a copy of Q,, via the embedding x — 1 ® x. With multiplication (¢ ® b)(c ® d) = ac ® bd,
B, becomes a ring. We have

(i®1)?=a®1, ()=l (1)(jel)=ijel=—Fizl=—-(21)(Ex1),

so B, is a quaternion algebra. The proof for B, is analogous. O

The norm on B, is induced by a ® m +— N(a)m?, where N is the norm on B.

It turns out that quaternion algebras can be classified into two kinds. A quaternion is either a
matrix ring or a division algebra.

Proposition 3.2.2. Let B = (a,b | F) be a quaternion algebra with char(F) # 2. The following
are equivalent:

(i) B = My(F);

(i) B is not a division ring;
(i1i) There is a nonzero o € B such that N(a) = 0;
(iv) There exist v,y € F such that 1 = ax? + by>.

Proof. The proof uses properties of quadratic forms. For the full proof, see Voight [Voi21, Main
Theorem 5.4.4]. O

When B satisfies one of the equivalent criteria of Proposition 3.2.2, we call B split. It becomes
immediately clear that the quaternion algebras B = (a,b | Q) with a,b € Z.¢ and the corresponding
B, are division algebras, since az? 4+ by? = 1 has no solutions over Q or R.

Definition 3.2.3. Let B be a quaternion algebra over Q. We call B ramified at p if B, is a division
algebra.

By Proposition 3.2.2, a quaternion algebra B, is either split or ramified.

Lemma 3.2.4. Let B = (a,b | Q) be a quaternion algebra. There are only finitely many primes p
where B is ramified.

Proof. Consider the equation az? 4+ by? = 1. We will show that this equation has solutions over Q,
for all but finitely many primes p. Let p { 2ab. Then a,b are units in F,,. The equation reduces to
az? =1 —by? (mod p). As we let 2 and y run over all elements in F,, az? takes on (p+ 1)/2 values
and so does 1 — by?. If both sides of the equation would not agree on at least one value, there would
have to be at least p + 1 elements in F,; a contradiction. We conclude that az? + by? = 1 (mod p)
has solutions when p { 2ab.

Note that any solution (z,y) € ]FIQ, is not (0,0). It follows that at least one of 2ax,2by is a unit
in F,. Let (2/,y') be a solution. We can apply Hensel’s Lemma to either f(z) = az? + by — 1
evaluated at 2’ or to g(y) = ax’® +by? — 1 evaluated at 3. We find that there exists a p-adic solution
to az? + by? = 1. Since the constraint p { 2ab only excludes finitely many primes p, the result
follows. [
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As a result of this Lemma, the following definition is well defined.

Definition 3.2.5. Let B be a quaternion algebra over Q, and let ram(B) be the set of primes where
B ramifies. The discriminant of B is

disc(B) = H .

pEram(B)

Remark 3.2.6. The set ram(B) is never empty if B, is a division algebra. This is a consequence of
Hilbert reciprocity [Voi21, Proposition 14.2.1]. For the quaternion algebras we consider for Problem
2.3.2, we have disc(B) > 1.

When B, is split, we have an explicit isomorphism B, = M5(Q)). The norm map on M>(Q,) is the
determinant map by Example 2.1.9. We would like another explicit isomorphism for B, when B is
ramified at p.

Definition 3.2.7. Let o be a root of a monic irreducible polynomial in Z,[x]. We call the extension
Qp(a) D Qp unramified if pZ,[c] is the unique maximal ideal in Z,[c].

Voight gives a more general definition of unramified extensions [Voi21, 13.2.3], but the definition
above is sufficient for our purpose. We only need to find an explicit separable quadratic unramified
extension of Q.

If L O K is a Galois extension, we define the field norm as

NL/K(Oé) = H O'(Oé).

o€Gal(L/K)

Lemma 3.2.8. For p odd, let w € Z,, such that w € F,, is a (nonzero) quadratic nonresidue. Then
Qp(/u) is a separable unramified extension. Furthermore, if o is a root of x* + x + 1 € Zs[z], then
Q2(«) is a separable unramified extension.

Proof. Let p # 2 and u as described. Since the equation 2% — u has no solutions in F,, it has no

solutions in ), either. The extension is clearly separable and normal, hence Galois, so every element
a + by/u € Qp(y/u) has field norm

No, (vay/e, (@ +bVu) = a* —ub?,
and field norms are multiplicative. If we have a,b € Z,, then
|NQ,,(\/E)/Q,, (a+ b\/a)|p < maX{|a2|p, |b2|p} <L

By the multiplicativity of | |, and the field norm, for units in Z[/u], we must have equalities in the
equations above. On the other hand, if |a® — ub?|, = 1, the element a + by/u has inverse

(a+byvu)™! = (a —byvu) - (a® — ub®) 1.
We find
ZplVu]* ={a+bVu € Zp[Vu] : Ng,(m)/0,(a+bVu)|p = 1}.

Every element a + by/u € Z,[/u] with |a® — ub?|, < 1 satisfies a® = ub® (mod p). Since u is a
quadratic nonresidue, equality only holds if a = b = 0 (mod p), and then a + by/u is a multiple of p.
We find Z,[v/u] \ Z,[/u]* = (p), so (p) is the unique maximal ideal.

For Qz(a), note that x2 + x + 1 has no solutions over Fy, and therefore no solutions in Qs either.
Note that if « is a root, then so is —(a+1). The extension is thus separable and normal, so we have
field norm

Ny ()0, (@ + ba) = a* 4+ abla — (e + 1)) — b*afa + 1) = a® — ab + b°.
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The rest of the proof is analogous to the case of Q,(/u), only with inverse
(a+ba)™' = (a—ba —b)-(a® —ab+b*)" .

Direct verification yields that a? — ab + b? = 0 (mod 2) if and only if @ and b are both multiples of
2. The result follows. O

An important result is the following.

Theorem 3.2.9. Let B be a quaternion algebra over Q that is ramified at p. There is a unique
quadratic unramified separable extension of Q, up to isomorphism, which we will denote as Q.

Furthermore, we have that
B o (Qq,p) 7
Qp

is a division algebra. The notation (Qq,p | Qp) refers to a quaternion algebra that contains Q4 and
has an element j such that j2 = p.

Proof. For the proof, we refer to Voight. The proof uses a classification of division algebras via
extensions of valuations [Voi21, Theorem 13.3.11(a)]. O

We can find explicit quaternion algebras over Q, that contain Q. For p = 2, let o be a root of
22+ 1x+1 € Zs[z], and for p odd, let a be a root of 22 —u € Z,[x] for a quadratic nonresidue u € F,.
Let @ = —a for p odd and @ = —a — 1 for p = 2. Then, it can be checked that

[t ") cabedeq, | € M) (3.2.10)

is a quaternion algebra over QQ, that satisfies the criteria. The traces and norms of elements in this
quaternion algebra correspond to the traces and determinants of the matrices.

As a consequence, we now have an explicit way of computing norms in division algebras (Q,, p| Q).
We have

a+ba plc+da)
N ((C + da a+ b& = NQQ\QP(G’ —+ ba) — pNQq‘Qp (C+ da) (3211)

3.3 Local orders

Now that we have a basic understanding of the quaternion algebras B, we can look at lattices inside
B,,. First, we consider the case where B, is split.

Proposition 3.3.1. Let B, = M>(Q,). Every mazimal order O C B, is conjugate to Ma(Z,). In
particular, O =2 My(Zy) as Zp-modules.

Proof. Let A;; denote the matrix in My(Z,) with a 1 on the entry in row ¢ and column j, with
zeroes everywhere else. The ring Ms(Z,) is clearly an order, since it is generated as a Z,-module by
the matrices A;;, and B, is generated by A;; as a vector space over Qp.

We will now show that Ms(Z,) is a maximal order. Suppose that Mz(Z,) is contained in another
order O'. Orders can only contain integral elements by Lemma 2.2.9. Let A be a matrix with entries
a,b,c,d € Qp, then the traces of the matrices A;;A € O’ are precisely a,b,c,d, so we find that
a,b,c,d € Z,. We conclude My(Z,) = O, so Ms(Z,) is maximal.

Let N be a lattice in Q2 and let O be a maximal order in M5(Q,). Then the set M = {n € N :
On C N} is a finitely generated Z,-submodule of N. By Lemma 2.2.3, there is a nonzero r € Z,
such that rON C N, since ON is finitely generated. We find that TON C M, so rN C M holds as
well. We find that M is a lattice in Q3.
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Let L C Q2 be the lattice with basis (1,0), (0,1). Note that M5(Z,) = Endz, (L). Then Endyz, (M) =
gM3(Zy)g™", for some g € My(Q,)*, as we can obtain Endg (M) from Endg, (L) = M(Z,) via
a basis transformation of QIQJ. We find that Endz, (M) is an order that contains O. And by the
maximality of O, we have an equality. Now, we find that O = Endg, (M) = gMy(Z,)g~". A change
of basis does not change the Z,-module structure, so O = My(Z,). O

The fact that every maximal order in M»(Q),) is conjugate to Ma(Z,) also enables us to find explicit
isomorphisms for intersections of maximal orders.

Proposition 3.3.2. Every Fichler order O C M2(Q,) is conjugate to

a b
E,, = {(cpm d) .a,b,c,dGZp},

for some m € Z>q. In particular, O = Ey, as Zy,-modules.

Proof. Let O = ANB, for A, B maximal orders. And since conjugation of M3(Z,) only corresponds to
a change of basis, we may assume without loss of generality that A = M>(Z,) and B = gMs(Z,)g~"
for some invertible g € M5(Q,). We know that g = p*a for some o € Ms(Z,) \ pM2(Z,,) and some
k € Z. We find B = ap*My(Z,)p~"a~' = aMy(Z,)a~!. There exist 3,y € Ma(Z,)* such that

pt 0
5047 = < 0 anrm) 5

for some n,m € Zxo. This follows from the fact that « is invertible in M>(Q,), along with the
existence of the Smith normal form [Jac12, Theorem 3.8]. Now we have

BOB™ = BM(Z,) 37" N BaMa(Zy)a™ 71 = Ma(Zy) N fa(yMa(Zp)y™Ha™ 1B

And
-1 —15-1 _ pn 0 Zp Zp pin O .
ﬁa(fYMQ(ZP)’Y )OZ ﬂ - (0 pn+m> (Zp Zp 0 p—n—m )
P Ly Ly

We find OB~! = E,,, so O and E,, are conjugated. And since a change of basis does not change
the Zy,-module structure, we find that they are isomorphic as Z,-modules. O

Let A;; denote the matrices with a 1 on row ¢, column j and zeroes everywhere. Then A;1, A12,p" Aa1, Aso
forms a Z,-basis for E,,. An explicit computation gives disc(E,,) = (p°™). Let O = gE,,g~ ', then

by the identity tr(AB) = tr(BA) for traces of matrices A, B, we find that disc(O) = disc(E,,). So

if O = gF,,g7' = hE,h~ !, then m = n. An Eichler order can thus be associated with a unique
standard Eichler order E,,.

The integer p™ that shows up in the bottom left entry in F,, is called the level of an Eichler order
in M(Qp). An order O C M>(Q,) is then maximal if and only if the level of O is 1, since O is
conjugate to Mz(Z,) = Ey.

Now, let B,, be a quaternion division algebra over Q,. By Theorem 3.2.9, B, = (Qq,p | Qp). Again,
we will classify all Eichler orders in By,.

Proposition 3.3.3. Let B, be a division quaternion algebra over Q,. The set of all integral elements
in By, is an order.

Proof. Let o € Qg and a,b,c,d € @y as in 3.2.10 and 3.2.11. Let A be the matrix of the form in
3.2.10 induced by a, b, ¢, d. If we choose a,b,c,d € Z,, then we find N(A) € Z,, and tr(A) € Z,,.
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Let a,b € Q) with v,(a) = m, vy(b) = n and assume without loss of generality that m > n. We find
Ng, /g, (@ +ba) = p*"Ng, /g, (p~"a+ p~"ba). If m > n holds, then v,(p~"a) > 0, v,(p~"b) = 0, so
we find v,(Ng, /g, (a + ba)) = 2n. If equality m = n holds, we have v,(p~"a) = v,(p~"b) = 0, so
p~"a,p~"b € Z, . Aswe have seen in the proof of Lemma 3.2.8, the field norm on a+ba with a,b € Z,
is a multiple of p if and only if a and b are. We find v,(Nq, /g, (a + ba)) = 2min{v,(a), v, (D)}

Now, let N(A),tr(A) € Z,. Then, N(4) = Ng, /g, (a + ba) — pNg, /@, (¢ + da) € Z,. Suppose one
of a,b,c,d is in Q \ Z,. Then min{v,(Ng, /g, (a + ba)),v,(pNg, 0, (c + da))} < 0. Also note that
vp(Ng, /g, (a + ba)) # v,(pNg, /0, (¢ + da)), since one is always odd, the other even. It follows that
vp(N(A)) < 0, so we conclude that an element A € B, is integral if and only if its corresponding
a,b,c,d are in Z,.

The set of integral elements is then clearly a ring. It also clearly spans B, and is finitely generated,
so it follows that the set of integral elements in B, is an order. O

This Proposition has a consequence that simplifies the classification of Eichler orders significantly.

Corollary 3.3.4. Let B, be a division quaternion algebra over Q,. The set of all integral elements
O C B, is the unique mazimal order in By. Furthermore, if O' C B, is an Eichler order, then
0o=0".

Proof. From Proposition 3.3.3, we know that O is an order. By Proposition 2.2.9, an order can only
contain integral elements, so O cannot be contained properly in another order. We find that O is
maximal, and since every order is contained in a maximal order REF, O is the unique maximal
order. If O’ C B, is an Eichler order, it is an intersection of maximal orders. The only intersection
of maximal orders is ON O = O, so we find O = O'. O

3.4 Local-global connection

Up to this point, our main focus has been to describe the structures of quaternion algebras over Q,
and orders in those quaternion algebras. Now we will focus on the connection between these local
results and the global structures. In the light of solving problem 2.3.2, we want to know what the
properties of lattices and orders in B, tell us about the properties of lattices and orders in B.

Let Ziy = {3 € Q:a,b € Z,p{b} C Q for a prime p. We call this the localization of Z at p. For a
more detailed introduction of localizations, see [Voi21, Section 9.4]. We will list some properties of
Lp):

(i) Zy) is alocal ring, and every ideal is of the form (p*) for some k € Zx;
(ii) Z(p) = @ n Zp;
(111) mp prime Z(P) =17

In particular, Z,) is a principal ideal, so it makes sense to talk about Z,)-lattice inside vector spaces
over its field of fractions Q.

Lemma 3.4.1. Let I C B be a lattice in a quaternion algebra B over Q. Then we have that
I, == 1®zZy is a Ly-lattice in By, and Iy = [Z,) is a Zy-lattice in B. If I is an order, then I,
and I,y are orders as well.

Proof. Any lattice I is free as a Z-module and thus has a basis 81, 82, 3, f4. The elements 8;®1 € B,
with ¢ = 1,2,3,4 generate I, as a Z,-module and they generate B, as a QQ,-vector space. The
elements 3; € B also generate I(, as a Z,)-module and B as Q-vector space. It follows that I, and
I,y are lattices. If I is an order, it is clear that I,y C B inherits a ring structure. The Z,-module
I, becomes a ring via the multiplication (o ® n)(8 ® m) = af ® nm. O

The reason why we bring up localizations is because of the following connection.
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Lemma 3.4.2 (Local-global dictionary for lattices). Let Z a finite-dimensional Q-vector space and
let M,N C 'V be lattices. The map N + (N(p))p prime with inverse (Nep))p = (1, Ny = N is a
bijection from lattices N C 'V to collections (N(,)), of localizations indexed by primes p for which
M) = Ny for all but finitely many primes. Furthermore, the map N,y — Np = N,y ®z,, Ly is
a bijection from Z,)-lattices in 'V to Zy-lattices in V @q Qp with inverse My, — M, N'V.

Proof. We refer to Voight [Voi21, Theorem 9.4.9, Lemma 9.5.3]. O

We will now use the results of the Local-global dictionary to explore the connections between global
lattices, their localizations and their completions.

Lemma 3.4.3. Let O C B be an order in a quaternion algebra B over Q. Mazimality and being
Fichler are local properties, that is, O is mazimal (Eichler respectively) if and only if O, is mazimal
(Eichler respectively) for all primes p.

Proof. 1If O is not maximal, then suppose O C O'. Tt follows that O(,) C OEp) for at least one prime
p by the Local-global dictionary. And for such a prime p, we have O(,) ®z,, Z) C OZp) ®z,, Lp as
well. We find that O, is not maximal for at least one prime p.

If Oy is not maximal, let O, C Oy,. Then O,y = BNO, € BNO,, = O(,,). Then every global lattice
O with localization O, is not maximal.

Now, let O, 0" be maximal global orders and let O = O" N O"”. We have just shown that O,
and O, are maximal for all primes p. Then Ozp) and O&D) are also maximal. We then find that

O(p) =(0'N O'/)Z(p) = O/Z(p) N O//Z(p). It follows that
Op = ( ZP) ®Z(P) Zp) N ( E/P) ®Z(p) Zp) = O;? N Og’
which proves the statement. O

We similarly find that discriminants are local properties of orders. If O has basis §; for i = 1,2, 3, 4,
then we have an explicit basis for O(,) and O, as well. A direct verification yields

disc(0) = m disc(O(p)) = ( ﬂ disc(Op)> NZ (3.4.4)

p prime p prime

We will now find some properties that are determined by discriminants.

Lemma 3.4.5. Let O C B, be an order in a split quaternion algebra B, = M2(Q,). Then, O is
mazimal if and only if disc(O) = Z,.

Proof. If O is maximal, then by Proposition 3.3.2 we have O = M5(Z,). Since O is conjugated
to Ma(Zyp) in M3(Qp), we find that O = End(N) for some lattice N C Q2. With respect to the
standard basis of IV, let A;; be the matrix with a 1 on row ¢ and column j and zeroes everywhere
else. With respect to the Z,-basis A;; of O, an explicit computation gives disc(O) = Z,. For the
other direction, if O is an order that contains O, it follows from Lemma 2.2.17 that [0 : Olz, = Z,,
so O = O by 2.2.16. O

Lemma 3.4.6. Let O C B, be an order in a division quaternion algebra By, over Q,. Then, O is
mazimal if and only if disc(O) = p*Z,.

Proof. If O is maximal, then by Corollary 3.3.4, O is the ring of all integral elements in B,,. The ring
with integral elements consists of the elements in of the form as in 3.2.10. The matrices are induced
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by a,b,c,d. Let A, be the matrix induced by a = 1,b = ¢ = d = 0, and similarly for Ay, A., Aqg.
Then, A,, Ay, A., Az form a basis for O. We find

2 a+a 0 0
a+a o?+a? 0 0 o 4
det 0 0 2p pa+pa| = P (a—a)
0 0 pa+pa  2poc
We find disc(O) = p?Z,,. The other direction follows from Lemmas 2.2.16 and 2.2.17. O

Theorem 3.4.7. Let O C B be an order in a quaternion algebra B over Q. Then, O is maximal,
if and only if disc(O) = (disc(B)?).

Proof. Let ram(B) be the set of primes where B is ramified. The order O is maximal if and only
if O, is maximal for every prime p by Lemma 3.4.3. If we combine Lemmas 3.4.5, 3.4.6 and the
expression for the discriminant in 3.4.4, O is maximal if and only if

disc(0)=Zn [\ p°Zy, = (disc(B)?).
pERam(B)

This proves the statement. O

Corollary 3.4.8. Let O be an order in a quaternion algebra B over Q. Then O, is mazimal for all
but finitely many primes p.

Proof. This is a consequence of Theorem 3.4.7, together with Lemma 2.2.17. O

We end this section by exploring the connection between the global norm map O — Z and the norm
maps of reductions O/p*O — Z/p*7Z. If we know what O, looks like, we can deduce the structure
of O/p*FO. If J is a Z-lattice, we have the following isomorphisms:

J @z Z/p*L 2 J ®4 L, @7, Z/p*L =2 J, ®7, L, /"L, =2 J,[p" T,

So we find O/p*O = O, /p*O,,.

Suppose that O, is isomorphic to an order A with known norm map A — Z,. Then for each k € Z+
we have the following diagram:

O, A Ly,

ko~ kg k
O/p"0 A/ptA Z/p"Z (3.4.9)

The vertical maps are the natural embeddings and reductions. The horizontal maps that are not
isomorphisms are the norm maps.

Lemma 3.4.10. Let #5, ,» = #{a € O/p*O : N(a) = r (mod p*)}. Then, using the notation of
diagram 3.4.9, equality #S, » = #{a € A/pFA: N(a) =r (mod p*)} holds.
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Proof. Let ¢ : O, — A denote the isomorphism in Diagram 3.4.9. If we define a mapping A — A as

p(a) = (@), then this defines a standard involution on A. By the unicity of standard involutions
(Lemma 2.1.8), this is also the only standard involution on A. We find

N(p(a)) = p(a)p(a) = p(a)p(@) = p(a@) = p(N(a)) = N(a).

Using a similar argument as in Remark 2.3.4, the bottom right square in Diagram 3.4.9 is commu-
tative. But since norms are preserved under ¢, we also find that

N(a (mod p*0)) = N(p(a) (mod p* 4).
We find that #5, » = #{a € A/p*A: N(a) =r (mod p*)}. O

It can also be checked that Diagram 3.4.9 is commutative as a whole.

If B is ramified at p and if O, is an Eichler order in B, then O, is the unique maximal order in B,,.
With the notation of 3.2.10, we have

+b +d
0,/p"0, = {<Z+ d; p(ac+ bo‘j‘)> ca,be,d e Z/ka} .

And if C is the matrix induced by a, b, ¢, d, we have norm map

N(C) = Ng, /g, (a + ba) — pNg, /g, (¢ + da) (mod pr). (3.4.11)

Now, let p be a prime such that B is not ramified at p, and let O be an order such that O, is Eichler
order of level p™ for some m € Z>g. Then O, = E,,, so we have

Koy — a by, K
O,/p Op_{(cpmd ).a,b,c,dEZ/p Z}.
And if C is the matrix induced by a, b, ¢, d, we have norm map

N(C) = ad — p™be (mod p*). (3.4.12)
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4 Results

In this section, let B be a quaternion algebra over Q such that B, is a division algebra, let O C B be
an order and let J C O be an integral lattice in O. We let S’;{pk ={a € J/pFJ : N(a) = r (mod p*)},
and recall that for an integral ideal J, its associated probabilities are P, ,» = #S;{ o /p**. If the
lattice J is clear from the context, we omit the J and refer instead to S, ,». We denote J,,, O, and
B, as the respective completions of J, O and B at the prime p. Our aim in this chapter is to solve
Problem 2.3.1 for locally principal ideals J in Eichler orders O C B. We call an integral ideal J C O
a locally principal ideal if J, is a principal ideal of O, for every prime p.

4.1 Counting solutions
We will first solve problem 2.3.1 for orders O. So whenever we refer to S, ,x, we mean STO_pk.

Lemma 4.1.1. Let p be a prime number and r and s be two integers such that r,s Z 0 (mod p).
Then, equality #Sy p = #Ssp holds whenever S, , and S, are nonempty. In particular, if we have
#S1,, =0, then #5S,, =0 for every r # 0 (mod p).

Proof. Suppose that S, , and S, are not empty. For any a € S,.,,, we have an inverse element
ot =a - N(a)' € S.-1,. Here, N(a)~! denotes the inverse of N(a) in F,,. Note that @ € O,
since o +@ € Z C O. We find that S, is nonempty, since aa”l € S1,p- By the multiplicativity of
the norm, we find that Uf;ll S; p is a group under multiplication.

The norm map is a multiplicative group homomorphism Uf;ll Sip — F, with kernel S, so in
particular, S; , is a normal subgroup. Then S, , and S, , are cosets aS;, and 357, respectively,
for a € S;., and B € S, ,. We find #8S, , = #5S5s - O

In particular, this Lemma shows that if N : J/pJ — Z/pZ is surjective, then #5S,., = #5, , # 0 for
every r,s # 0 (mod p).
Another tool we will use for finding the values #5,. ,x is an application of Hensel’s Lemma. For the

rest of this section, whenever we use “Hensel’s lifting”, we will be referring to the following result.

Lemma 4.1.2 (Hensel’s lifting). Let f(t,z,y,2) € Zy[t,z,y, 2] be a polynomial in four variables.
If (a,b,c,d) € Zz is a root of f (mod p) such that the partial derivatives of f do not all vanish at

(a,b,c,d) modulo p, then there are p>*=1) roots of f (mod p*) that reduce to (a,b,c,d) € IF;*,.

Proof. Since the partial derivatives of f(t,x,y, 2) are not all multiples of p, we may assume without
loss of generality that %(a7 b,c,d) # 0 (mod p). Let gy my,ms () = f(t,b+map, c+mip,d+mip).
Note that g;,, 1, m,(t) Z 0 (mod p).

When applying Hensel’s Lemma to gy, m,.ms, we find a unique root @’ € Z/p*Z of gy, my.ms (mod p*)

such that a’ = a (mod p). For each choice of (my,ma, m3) with m; € 0,...,p""! — 1, we get a dif-
ferent root in Z/p*Z, but they all reduce to (a,b,c,d) € IF%. We find that there are p3*~1 roots of
f (mod p*) that reduce to (a,b,c,d) € Fj. O

In order to find the values #5,. ,» for arbitrary k, we have to deal with cases where we cannot directly
apply Hensel’s lifting, because all partial derivatives vanish. The following observation, which we
will refer to as the “division trick”, can help with that.

Lemma 4.1.3 (division trick). Let f(z1,z2,x3,24) € Zp[z1,x2,x3,24] be a polynomial in four
variables and let v € pZ/p*Z. For i = 1,2,3,4, let d; be either 1 or p, and suppose that the
polynomial f(dyz1,doxs, dsxs, dyxs) is a multiple of p. Let I C {1,2,3,4} denote the set of indices i
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such that d; = p. Let S be the set of solutions (x1, 72,3, 24) € (Z/p*Z)* such that f(x1, 29, 13, 74) =
r (mod p*) and z; = 0 (mod p). Then #S is equal to

1
p4_#1 - {(3?1,.’1?2,3?3,5(}4) € (Z/pk_IZ)4 : 5f(d1$1,d2.’172,d3$37d4$4) = (mod pk_1>} .

r
p
Proof. In the equation f(dyx1,dows, d3zs,dszs) = r (mod p*), both sides are multiples of p. We
may then divide everything by p to get the equation

1
Ef(d1$17d2$27d33337d4$4) = % (mod p*~1).

If d; is p, then a solution in z; (mod p¥~1) corresponds to a uniquely determined solution in
x; (mod p¥). However, if d; is 1, then a solution in z; (mod p*~!) corresponds to p different
solutions in x; (mod p*), since there are p different elements in Z/p*7Z that reduce to the same ele-
ment in Z/p*~1Z. We observe that for each solution of the equation modulo p*~!, there are p?~#!

solutions modulo p*. O

4.2 Unramified case

Let p be a prime such that B is unramified at p. In this subsection, we will find the values of #5S,.
for orders O such that O, C B, = M5(Q,) is Eichler.

Let O, be an Eichler order of level p™. In this subsection, we let #S, ,» ,, be the value of #5,.
associated to the order O,. If O, is Eichler of level 1 (that is, O, is maximal), we omit m = 0, so

#5100 = #S,
By 3.4.12, the value #.S, ,» ,,, is the number of solutions (a,b,c,d) € (Z/p*Z)* to the equation

ad — p™be = r (mod p*). (4.2.1)
Note that this equation has solutions for each 7, so by Lemma 4.1.1, #51 ,m = #Srp.m holds
whenever r # 0 (mod p).

Our approach to counting these solutions in the most general case is to solve for k£ = 1 first, then
use Hensel’s lifting and the division trick to find the other values #S, ,x ,,. The division trick is,
in the general case, only useful when p™, p* and r have sufficiently large p-adic valuation. Keeping
that in mind, we first solve for some base cases, and then we use an inductive argument to find the
general result.

First we find the values #.5S,. ;.
Lemma 4.2.2. Let O, be an Eichler order of level 1 in B = M>(Qp). We have

45, = P> +p* —p, Ifr=0(mod p);
e p> —p, Ifr#0 (mod p).

Proof. Equation 4.2.1 is in this case just the determinant equation for matrices in M3 (F,). A matrix
has a nonzero determinant if and only if its rows are linearly independent. We can choose any nonzero
vector for the first row. For the second row, we can choose any vector that is not a scalar multiple
of the first row. We find #5Sp, = p* — (p> —1)(p* —p) = p* +p? —p. If r 0 (mod p), Lemma 4.1.1
vields #8,, = (p* = 1)(»* —p)/(p — 1) = p* — p. O
Now, we find the values #5S;. , ,», with m > 0.
Lemma 4.2.3. Let O, be an Eichler order of level p™ in B = M3(Q,). Let m > 0. We have

203 —p?, Ifr=0 (mod p);

o= { P =p* Ifr#0(modp).
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Proof. Equation 4.2.1 reduces to ad = r (mod p). This is nonzero if and only if a and d are
nonzero. We find that #5So ,,, = p* — p*(p — 1)? = 2p3 — p®. And, by Lemma 4.1.1, #S, , , =
p*(p—1)%/(p—1) =p* —p* if r £ 0 (mod p). O

Note that the function f(a,b,c,d) = ad — p™bc — r € Z,a, b, c,d] can have partial derivatives that
vanish modulo p. If m = 0, this happens if and only if (a,b,¢,d) = (0,0,0,0) € IF;‘,. If m > 0, this
happens if and only if (a,d) = (0,0) € IFZQ,. Note that in both cases, the criteria are met for applying
the division trick. This is a nice result. We can either use Hensel’s lifting directly, or we can use the
division trick.

In the m = 0 case, we introduce new variables a1, b1, c1,d; after applying the division trick and in
the m > 0 case, we introduce a1, d; as new variables. These are linked to the original variables via
pa; = a (mod p*) and similarly for by,c;,d;. Then, for each solution modulo p*~! in a variable
with index 1, there is a unique solution modulo p¥. And for each solution modulo p*~! in a variable
without index 1, there are p different solutions modulo p*. These indices help us to keep track of
how many solutions we have to count.

We now solve for the general case m = 0.

Lemma 4.2.4. Let O, be an Eichler order of level 1 in B = M2(Q,). We have

p3k: _’_pSkfl_kafl’ IfTEO(modpk),

#S, 5 = { B )
p p3k _|_p3k 1 _(p+1)p3k vp (1) 2’ Ifr;é()(modpk).

Proof. We count solutions to Equation 4.2.1 with induction on k. We set #S51,; = 1, so that the
result holds for k = 0. For k = 1, these results coincide with Lemma 4.2.2. Solet k > 1. If v,(r) =0,
by Hensel’s lifting we have #.S, » = p3(k_1)#51,p = pik — p3k—2,

If v,(r) > 0, we cannot apply Hensel’s lifting when a, b, ¢, d are all multiples of 0. In that case, we
use the division trick and count the solutions to
plardy — bycr) = r/p (mod p*~1).

If v,(r) = 1, there are no solutions. We get
#S, . = p3(k71)(#507p C 1) = pBk g PRl R paked,
Let vp(r) > 1. If we apply the division trick again, we get the equation
ardy — byey = r/p? (mod pF=2).
We use the induction hypothesis and Hensel’s lifting to find

#Soypk = pg(kil)(#s(),p - 1) +p4#50,pk72.

— 3k PRl _ p3h=2 _ 3k-3 +p4(p3k—6 4T _p2k—5);

T

If r # 0 (mod p*), we find

#Sr,p’“ = ps(kil)(#so,p —1) +P4#Sr/p27p’“*2§
— p3k +p3k71 _ p3k72 _ p3k73 +p4(p3k76 +p3k77 _ (p + 1)p3k*(vp(r)72)78);
_ p3k +p3k—1 —(p+ 1)p3k—’up('r)—2.

Now we solve for m = 1.
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Lemma 4.2.5. Let O, be an Eichler order of level p in B = M>(Qyp). We have

2p%F — p?* If r =0 (mod p*);

#57 Ky =
ML 2pF = (p e+ 1)pP L If e 20 (mod pF).

Proof. We count solutions to Equation 4.2.1 by induction to k. If k = 0, 1, the results coincide with
Lemma 4.2.3 if we let #S1,1,,m = 1. So let k > 1. If v,(r) = 0, we use Hensel’s lifting and we find

#Sr,p’“J = pg(k_l)#sl,p,l - pSk - p3k—1.

If vp(r) > 0, we cannot use Hensel’s lifting whenever both ¢ and d are multiples of p. With the
division trick, we get the equation

paid; —be = r/p (mod pF~1).

We combine the induction hypothesis with Hensel’s lifting to find that

#Soph1 = pS(k_l)(#SO,p,l -p?) + Pz#so,pkfl,u
— 2p3]€ _ 2p3k—1 + 2p3k—1 _ ka;

— 9pF — 2k,

And if r # 0 (mod p):
#S’r,pk,l = pg(kil)(#so,p,l - p2) + pQ#ST/p,pk—171;
= 2p3k _ 2p3k—1 + 2p3k—1 —(p+ 1)p3k—(vp(7")—1)—2;
= 2p3k — (p + ]_)p?’kfvp(r)*l.

The cases m = 0,1 enable us to compute the general case for m > 1.

Theorem 4.2.6. Let O, be an Eichler order of level p™ in B = M>(Q,). We have

(k4 1D)pF — kp3*=1 If p*|r and m > k;
(m+1)p*F — (m — D)p3F=t — p? =1 If pFlr and m < k;
(vp(r) + 1)(p3k - p3k71)’ prk frand m > v,(r);
(m+ 1)p** — (m = 1)p** " — (p+ Dp* T2 g pF t e and m < wy(r).

HSrph.m =

Proof. We count solutions to Equation 4.2.1 by induction to k. The formulas coincide with Lemmas

4.2.4 and 4.2.5 Let k,m > 1. If v,(r) = 0, we use Hensel’s lifting to find #5S, x ,,, = p>*F"V#S; , 0 =
3k 3k—1
por—ptT

If v,(r) > 0, we cannot use Hensel’s lifting when both a and d are multiples of p. The division trick
gives equation

p(ardy — p™?bc) = r/p (mod p*~1)

)

which has no solutions if v, (r) = 1. In that case, we find

B8, o = pS(k_l)(#SO,p,m — p?) = 2p3k — gp3k-1,
Now, let v,(r) > 1. We can use the division trick again, to get the equation

ardy — p™ e = 7“/p2 (mod pk_Q).
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We can combine Hensel’s lifting with the induction hypothesis to find

#Sr,pk,m = p3(k_1) (#SO,p,m - p2) + p6#Sr/p2,pk*2,m—2;
= 2(p3k - ka—l) +p6#Sr/p2,pk*2,m72'
Note that the four formulas in the statement of this theorem have some common aspects. Each
formula has two terms of the form x1p3* — zop3*~!, where 21 and x5 are either k,m or v,(r) added

with —1,0 or 1. Then there are two coefficients x3, 24 € {0,1} of p***™~1 and (p+1)p*k—vr(r)+m=2,
All different formulas can then be written as

l'1p3k _ $2p3k71 _ x3p2k+m71 _ x4(p + 1)p3kfvp(r)+mf2.

And if we have a combination of x1,x2,73,24 in the expression for #5, ,» ,,, then we have the
combination x1 — 2,22 — 2,73, 74 in the expression for #S, /2 x—2 . Indeed, note that if m,r
and k are chosen such that they satisfy one of the four conditions in the statement of this theorem,
then m — 2,7/p? and k — 2 satisfy the same condition. We find

#S, ok = D5 ((x1 — 2)p*F 70 — (w0 — 2)p>F T — agp® Ty (p 4 1)pPTUe (M8
+2(p%* — p**1;

_ xlp?;k _ $2p3k_1 _ x3p2k+m—1 _ $4(p + 1)p3k—vp('r')+m—2'

This proves the theorem. O

4.3 Ramified case

Let p be a prime such that B is ramified at p. In this subsection, we will find the values of #5, ,»
for orders O such that O, is Eichler in the division algebra B,.

By 3.3.4, there is only one maximal order in B, so every intersection of two maximal orders is the
maximal order itself. We find that there is only one maximal order in B,; the unique maximal order.

By 3.4.11, the value #15,. ,» is the number of solutions (a,b,c,d) € (Z/p*Z)* to the equation

Ng, /0, (a + ba) — pNg, /g, (¢ + da) = r (mod Pb). (4.3.1)

Note that this equation has solutions for every r (mod p). The field norm is either of the form
a? — ub® or a®> — ab + b?. In the first case, a® — ub?> = r (mod p) has solutions for every r, as
we have seen in the proof of Lemma 3.2.4. For p = 2, the result is immediate. By Lemma 4.1.1,
#51 p = #S;p holds whenever r # 0 (mod p).

In the proof of Lemma 3.2.8, we have seen that Ng, /g, (a + ba) = 0 (mod p) if and only if a,b =
0 (mod p).

Our approach to counting the solutions is similar to the approach in subsection 4.2. We use Hensel’s
lifting and the division trick to find the values #5, ,x using an inductive argument. It turns out
that in the ramified case, there are far fewer base cases to consider, so we compute the general result
directly.

Theorem 4.3.2. Let O, be an Fichler order in the division algebra B,. We have
2k — k
, Ifr =0 (mod p®);
45, , - k p 1 i ( pk)
(p+1)p** == I r 20 (mod p*).

Proof. We count solutions to Equation 4.3.1 with induction to k. For k = 1,r = 0, there is a solution
if and only if a and b are 0 modulo p. We find #S,, = p? and by Lemma 4.1.1, the other values are

#S,p =" —p*)/(p—1) =p* 4+ p* if r £ 0 (mod p).
Let k > 1. If v,(r) = 0, we use Hensel's lifting to find that #5, x = p3F~V4S; , = p3* 4 pSk—1,
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If v,(r) > 1, we can use Hensel’s lifting whenever a and b are not both multiples of p. If they are,
we use the division trick to get the equation

Ng, /0, (¢ +da) — pNg, /g, (a1 + bia) = —r1 (mod pkil).

Since —1 is a unit in F,, we have v,(—r1) = v,(r1) = vp(r) — 1. A combination of Hensel’s lifting
and the induction hypothesis yields

#So,pk _ p3(k—1)(#507p _pz) +p2(#50’pk71) _ pzk_
And if 7 # 0 (mod p*):
#ST’Pk = p3(k—1) (#SO,P - p2) +p2(#sr/p,pk*1);
— p2<p + 1)p3k—(vp(r)—1)—4;
_ (p+ 1)p3k7vp(r)71.

This proves the theorem. O

4.4 Ideals

In this subsection, let J denote an ideal of an order O in a quaternion algebra B over Q. We will
find the values of #Sﬂ o for integral ideals J such that J, is a principal integral ideal of O, in terms

of the values #Sspk.

Theorem 4.4.1. Let J C O be an integral ideal such that J, is a principal integral ideal of O, and
let n = v,(N(J)) We have:

p**, Ifr =0 (mod p*) and n > k;

#S;],p’“ = 0, Ifr#0 (modp®) and n > vp(r);
P #SY Otherwise.

r/p™,pk=mo

Proof. We will prove the statement for left integral ideals J C O, but the proof for right integral
ideals is analogous. Let J, = O,a be an integral ideal of O, for some o € O,,. Then z — zo is a
Z-module isomorphism O, — J,,. Note that the following diagram commutes by the multiplicativity

of the norm:
Ly
‘ ‘N(«)
Ly

Reduction maps commute with -a and -N(«a), and by Diagram 3.4.9, reduction maps also commute
with taking norms. The following diagram is then commutative as well.

0, —X
g, —
O/p" 0 —— Z/p'Z

o ‘N(«)

J/ka L) Z/ka
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And in particular, since J/p*J 2 J,/p*J,, we find that for every = € J/p*J, there exists a y € O
such that z = ya (mod p*J). We find that x € J/p*J has norm N(x) = r (mod p*) if and only if
N(y)N(a) = r (mod p*).

Note that v,(N(J)) = v,(N(e)). This follows from the fact that N(J) is the smallest integer such
that every element’s norm is a multiple of N(J). On the other hand, the norm map on J modulo
p¥ is obtained from the norm map on O modulo p* via multiplication by N(a), so the connection
between the two follows.

All three formulas then follow directly. O

4.5 Overview

We give a summary of the results in this chapter and we specify to what extent we have solved
Problem 2.3.1. Let J be an integral lattice inside an order O C B, where B is a quaternion algebra
over Q that is ramified at oo and finitely many primes. Let P, ,» be the limit 2.3.2 with respect to
J. Recall that P, = #5, , /p**.

We introduce new notation in order to formulate the results in a more compact way. For an integral
lattice J, let n = vp(N(J)) and let | . :=Pppn petn.

Furthermore, let O be a global Eichler order. We define the level of O as the product of the levels
of Op, where p runs over all primes. Note that this is well defined by Corollary 3.4.8.

Theorem 4.5.1. Let D := disc(B), let O be a global Eichler order of level M such that v,(M) = m,
and let J C O be an integral ideal that is locally principal. Then

p~2, If p*|r and p|D;
ﬂﬁ%(rl)ﬂ’ If p* tr and p|D:;
(k—;;)ﬁ_k, If p*|r, m >k and pt D;
P:",;Dk = (m + 1)pkm;;k_$fl Dpt ™™ — 1, prk|r, m <k and p1 D;
i ;?fp “U 5t m> () and pt Dy
(m + 1)pvp(r)_m+2p;+(v’r:ir)—szp(r)_Ml—i_l —(p+ 1)7 IFp*tr, m<uy(r) and pt D.

Proof. 1If v,(N(J)) = 0, we have P, i = Prpr. The results follows directly from the combination of
Theorems 4.2.6 and 4.3.2.

If n = v,(N(J)) > 0, every x € J/p**"™J can be written as z = ya for some y € O/pFtm0O
and an element a with v,(N(a)) = n. Then by the division trick, the number of solutions to
N(z) = rp™ (mod p*™™) is equal to the number of solutions to N(y) = r (mod p*), multiplied by
p*". We find that P o is equal to the probability P, ,» corresponding to the order O O J. O

If n = v,(N(J)) > 0, we can recover the original probabilities from IP’;_pk using Theorem 4.4.1. Then,

for an arbitrary integer with prime factorization pj* ---- - p;', we can use Lemma 2.3.6 to compute
the probabilities
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By Corollary 3.4.8, every global order O has maximal completions O, for all but finitely many primes
p. And since the results of Theorem 4.5.1 were derived locally, the probabilities P, ,» associated to
O still correspond to the values in Theorem 4.5.1 for all but finitely many primes p.

In the derivation of the results in 4.5.1, we did use the condition that an integral ideal J C O is
locally principal. So a natural question that arises is: when are integral ideals locally principal?
Principal ideals are in particular locally principal, so every order O has at least some integral ideals
J that are locally principal. But we can say something stronger.

Lemma 4.5.2. Let O be a global order. Every integral ideal (both left and right) of O is locally
principal if and only if O is an Eichler order of level M, with M squarefree. That is, for every prime
p we have p* { M.

Proof. We combine [Voi21, Main theorem 16.1.3, Main theorem 20.3.9, Corollary 21.1.5] to find that
a local order has the property that every integral ideal is principal if and only if it is an Eichler
order of level 1 or p. For global orders O we find that all its integral ideals J are locally principal
if and only if disc(O) is cubefree. For the standard Eichler order E,, of level m, its discriminant is
(p*™), so the result follows. O

The property that all integral ideals of a global order are locally principal, is again a local property.
So even if O not an Eichler order of squarefree level, its completion O, still is for all but finitely
many primes. So for all but finitely many primes p is it the case that every integral ideal of O, is
principal.

We end this section by turning our attention to Conjecture 6 in [Cas+24]. First of all, note that their
conjecture is stated in terms of P}, . We see that the values for the probabilities ., correspond to
the formulas in 4.5.1 if we take m = 0 and look at the unramified case. For m = 0, we also do not
have to worry about possible integral ideals that are not locally principal, so Conjecture 6 is true
for maximal orders. However, for m > 0 the values no longer correspond to the conjectured ones.
So if there exists a global Eichler order of level M > 1, we have shown that Conjecture 6 is not true
in general. And since being Eichler is a local property, by the Local-global dictionary, there exist
global Eichler orders of level M > 1.

So Conjecture 6 is not true in general, but with the extra condition that we only consider integral
ideals J in maximal orders O, the results are true. However, as we will find out in Section 5, the
results of Conjecture 6 are only applied to integral ideals of maximal orders. So for their specific
application, the results of Conjecture 6 may be used.
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5 Applications

In this chapter, we explore the connection between Problem 2.3.2 and its applications in cryptog-
raphy. Specifically, we look at the connection with SQIsign2D-East as discussed in [Nak+24] and
[Cas+24]. Our goal is mainly to illustrate the connection, so we will not go into details of proofs.

5.1 Isogenies

The scheme SQIsign2D-East is isogeny-based, so before we can explore its content, we need some
definitions.

Definition 5.1.1. An elliptic curve E over a field F' is a smooth projective curve of genus 1,
equipped with a point Og, called the origin, or the point at infinity.

Every elliptic curve FE is isomorphic over F' to some projective curve associated to the affine equation
f(@,y) =y + arwy + asy — 2° — axa® — asx — ag =0,

with all a; € F.

For a field extension K O F, we denote E(K) = {(z,y) € K? : f(z,y) = 0} U{0g} as the set of
K-rational points of E. For any such field extension, E(K) has an abelian group structure [Hus87,
Chapter 3, Theorem 1.2], and can therefore be regarded as a Z-module.

For each elliptic curve E, let F(E) denote the field of fractions of F[z,y]|/(f).

Definition 5.1.2. Let F and E’ be two elliptic curves over F. An isogeny ¢ : E — E’ is a
nonconstant regular rational function such that ¢(0g) = Op.

For the definition of a regular rational function, we refer to Silverman [Sil09, 1.3].

An isogeny is automatically surjective by [Har13, I1.6.8], and a group homomorphism [Sil09, Theorem
II1.4.8]. An isogeny ¢ : E — E’ also induces an embedding ¢* : F(E') — F(F), and we define the
degree deg ¢ = [F(E) : ¢*F(E")]. Every isogeny also has a dual ¢¥ : £/ — FE such that ¢ o ¢
and ¢ o ¢V are the multiplication maps by deg¢ = deg¢" [Voi2l, 42.1.3]. Let Hom(E, E’) be the
collection of isogenies F — E’ and End(E) := Hom(E, E).

Definition 5.1.3. Let E be an elliptic curve over F' and let E7 be the elliptic curve that is associated
to the same equation as E, only as an equation over an algebraic closure F'. The curve E is called
supersingular if End(Fx)q := End(Ex) ®z Q is a quaternion algebra over Q.

Lemma 5.1.4. Let E be a supersingular elliptic curve over F. Then the following hold:
(i) F is a field with char(F) =p > 0;

(ii) If E is an elliptic curve over F, then B = End(E)q is a quaternion algebra over Q that is
ramified at p and co;

(iii) If E is an elliptic curve over F, then End(E) is a maximal order in B.

Proof. See [Voi2l, Proposition 42.1.7, 42.1.9]. O
Note that by [Voi21, 42.1.8], statements (ii) and (iii) still hold for supersingular elliptic curves over
Fe.

By [Voi2l, Lemma 42.1.11], if E and E’ are two supersingular elliptic curves over the same field,
then there exists an isogeny E — E’. The converse also holds, so if there exists an isogeny F — E’
with E a supersingular elliptic curve, then E’ is a supersingular elliptic curve as well.

By [GL24, Definition 3.1, 3.2.6], there exist connected supersingular isogeny graphs G(p,1) for every
[ # p prime. We will not go into details of what these graphs are, but the important thing is that
paths in supersingular isogeny graphs correspond to compositions of isogenies, and the degree of a
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composition is the product of the degrees. This gives us a way of constructing isogenies of certain
degree. More precisely, let E be a supersingular elliptic curve, then for every D € Z~q such that
p 1 D, there exists a curve E’ and an isogeny F — E’ of degree D.

We let Ey denote a supersingular elliptic curve. We let Og := End(Fjy) be the corresponding maximal
order in the quaternion algebra By := O ®q Q.

Theorem 5.1.5 (Deuring correspondence). The association E — Hom(E, Ey) is functorial and
defines an equivalence of categories of

supersingular elliptic curves over F', under isogenies
and
invertible left Og-modules, under nonzero left Og-module homomorphisms.

Moreover, The mapping E +— [I]| from isomorphism classes of supersingular elliptic curves to Og-
isomorphism classes of invertible left Og-ideals I C Oy is a bijection. We also have End(E) = Or(I)
and Aut(E) = Og(I)*.

Proof. See Voight [Voi2l, Theorem 42.3.2, Corollary 42.3.7]. O

Up to Og-isomorphism, every invertible left Op-module I is contained in Og. This means that I is a
lattice in Og, hence it is an integral lattice. We may therefore regard the invertible left Op-modules
as integral left ideals of Oy.

By [Voi21, Remark 42.3.3], the functor Hom(—, Ep) is contravariant. However, there is a similar
categorical equivalence if instead of left Og-modules, we take right invertible Op-modules and the
covariant functor Hom(Ey, —).

The Deuring correspondence allows us to describe problems regarding isogenies of supersingular
elliptic curves in terms of ideals in orders of quaternion algebras. In the next subsection we explore
how this connection finds its applications in cryptography.

5.2 SQIsign2D-East

We use [GL24, 4.3], [Cas+24] and [Nak+24] as our main references. SQIsign2D-East is a crypto-
graphic protocol. Its name is an abbreviation of “short quaternion and isogeny signature”, the “2D”
stands for 2-dimensional. The “East” part is to distinct the protocol from SQIsign2D-West, which
is another protocol. We describe the main idea behind SQIsign2D-East in this subsection.

SQlsign2D-East is a digital signature scheme. Consider three persons: the sender, the receiver and
the forger. The sender wants to send a message to the receiver, while the forger wants to send
a message to the receiver that seems to originate from the sender. The goal of a digital signature
scheme is to give the sender a signature along with his message that the forger could never reproduce.
If there is a reliable way to make such signatures, the receiver can know for sure that the message
he receives actually originates from the sender, rather than the forger.

The general idea for such a signature is as follows. Let M be a message that the sender wants to
send to the receiver. There is some publicly available method that converts a message M into a
challenge C'(M) and there is a publicly available method V (z) for verifying whether a given input
x is a solution to C(M). The sender then publishes C'(M) based on his message. The sender is
the only one with the private information necessary to solve C'(M), so the sender solves C(M) and
publishes some information X, his signature, that can be used as input for the verification process.
The receiver uses X as input for the verification process and computes V' (X). When it is confirmed
that X was indeed a solution to C'(M), the receiver knows that the message M originated from the
sender.

In SQIsign2D-East, the setup is as follows.
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(i) pis a very large prime of the form p = 290 f — 1 with a ~ b and p ~ 29?;
(ii) Ey is the supersingular elliptic curve defined by y* = 2% + z over F;
(iii) Op is the maximal order with Z-basis 1,1, %, HT” in the quaternion algebra End(Ey)q over
Q that is ramified at p and oo.

The information (p,a,b, Ey, Op) is then published. Note that [Cas+24] also publishes two points
Py, Qo. These points are necessary for the functioning of certain algorithms that are being used in
SQIsign2D-East, but we will not go into the role of these points. So for the sake of simplicity, we
will ignore these points.

First, the sender generates an isogeny 7 : Ey — E4 of prime degree N; < p. The curve Ey is
published and 7 is kept private. The sender then computes an isogeny v : Ey — E; of odd degree
Ny < 20+t and again publishes E;, while keeping 1/ secret. The sender then uses some publicly
available method to convert his message into an isogeny ¢ : E; — FEy of degree N, = 2°. The
challenge, then, is for the sender to find isogenies 0 : E4 — FE5 and w : E4 — E3 with very specific
properties. For the exact properties, see [Cas+24, 1.2] Using the private information 7, the sender
privately computes such o,w and publishes them. The receiver can then verify that these isogenies
indeed satisfy the specific criteria. This can be visualized in the following diagram:

EOL’El
T ¢
EALEQ

w

Es

Everything in this diagram is public, except for 7 and .

The security of SQIsign2D-East relies on the assumption that the challenge to find w, o with the
right properties is very hard without knowledge of 7. If someone like the forger wants to impersonate
the sender and does not know 7, the forger is stuck in the hard formulation of the problem in terms
of isogenies. However, the curve Ey and its endomorphism ring End(Fy) = Og are known, so with a
known isogeny 7 : Eg — E4, the sender can use the Deuring correspondence to rephrase the problem
in terms of ideals of orders in quaternion algebras.

This is also why v is kept secret. If it would be public, then after publishing o, the forger could
compute o o ¢ o 1, which is an isogeny Ey — E4. The Deuring correspondence can then be used
as well to state the problem in terms of ideals. This can be used to generate new ¢’,w’ that also
pass the verification without being rejected. But then the signature is forged!

5.3 Sampling ideals

In this subsection, we zoom in on how isogenies correspond to ideals in SQIsign2D-East. We use
[Cas+24, 4.2] as our main reference.

For an isogeny s, let I be its corresponding ideal under the Deuring correspondence. In SQIsign2D-
East, the sender finds an isogeny o by computing its corresponding ideal I,. First, the isogeny
poporY : By — Eo is computed. Its corresponding ideal is J := TTI¢I¢. The assignment I — T is
the standard involution. Then an element a € J is sampled in order to find an ideal I, = J Nf#lﬂb
The sampled o must, however, have some properties.

Definition 5.3.1. Let ¢ be a positive integer, let N, prime and let M (q) := ¢(2%—¢q)(2°T?—q(2* —q).
Then, ¢ is (2%,2°, N, )-nice if ¢ satisfies:
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The symbols (—) denote Legendre symbols.

The element o must be generated such that the resulting ideal I, has norm N(I,,) that is (22,2°, N, )-
nice. As shown in [Cas+24, 2], when N, & 2¢ holds, then after approximately e signatures, the value
of N, can be uniquely determined by the forger due to a leakage of Legendre symbols. To avoid
this, the (22,2, N, )-niceness requirement is replaced by another requirement.

Definition 5.3.2. Let ¢ be a positive integer. Then, ¢ is (22,2, f)3-nice if ¢’ := q/gcd(q, f) satisfies:
() ¢'(2* = ¢) (2" —q(2* — q)) = 0 (mod 3);
(ii) ¢’ =1 (mod 2);
(i) ¢’ < 2%
(iv) ¢'(2* —¢) < 27",
In the proposed fix for SQIsign2D-East in [Cas+24, 3|, an element « is sampled with the property
that N(a) < f29N(J) and such that ¢ := N(a)/N(J) is (2%,2° N,)s-nice. We can then take

Iy :Jﬁ.

The approach for generating such elements € J is by sampling them at random 1000 times,
and then hopefully a suitable « is found. Since we take 2¢ ~ ,/p, it is not guaranteed that we
actually find a suitable «, as there are way more than 1000 elements in J that do not satisfy the
(2%,2°, f)s-niceness criteria. So in order for the fix to be feasible, we must know something about
the probabilities that a sampled « has an associated ¢ = N(a)/N(J) that is (2%,2°, f)s-nice.

By conditions (iii) and (iv) of Definition 5.3.2, there are only finitely many elements « to consider
sampling, since these criteria impose bounds on the norm of «. By conditions (i) and (ii), we need
to know what the odds are that specific congruence relations are satisfied on the norm of «.

We let P, ,, denote the value of the limit of Problem 2.3.2, associated to the ideal J. The probability
that ¢ (associated to a sampled «) is (22,2, f)3-nice can be approximated as

& ged(r, f)?
P(q is nice) ~ Z CT’QCT’3PTN(J)76fN(J)f727. (5.3.3)
r=0

Here ¢ 9¢r3 € {0,1} with ¢, = 1 if and only if r/ged(r, f) is odd, and ¢, 3 = 1 if and only if
a =b (mod 2) or r/ged(r, f) # 1 (mod 3).

The values of P(q is nice) can be found using Theorem 4.5.1, once we have verified that J is a lattice
that satisfies the necessary criteria. The ideal J is a left ideal of the order Og; the order that is
obtained from End(FEy) via the Deuring correspondence. This order Oy is maximal in a quaternion
algebra B that is ramified at p and oo, and isomorphic to End(Ey). By Lemma 4.5.2, we see that J
satisfies the criteria, so we can apply the results. Furthermore, note that 6f is way less than p, so
we are never dealing with the probabilities in the ramified case.

The results in [Cas+24] that are deduced from approaches using P(q is nice) rely on the truth of
Conjecture 6 in [Cas+24]. As we have seen in Subsection 4.5, Conjecture 6 is not true in its greatest
generality. However, for the purpose of sampling ideals I, with the right properties, the probabilities
P, ,, do correspond to the conjectured values. In particular, the derived results that were reliant on
Conjecture 6 do hold.
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6 Future work

The central problem in this thesis has been to find the limits 2.3.2. We did manage to solve Problem
2.3.1 for all Eichler orders and all their locally principal lattices, but that is far from solving Problem
2.3.1 in its greatest generality. So it would be interesting to further study the probabilities P, ,, for
arbitrary orders O and for integral lattices that are not locally principal.

We can generalize the problem even further by considering ideals I with integral elements, but where
I? C I does not hold. An example is the lattice I with Z-basis 1,1, 7, 2ij inside (—1,—1 | Q). All its
elements are integral, so the limit 2.3.2 does make sense for I, but ij ¢ I, so we find I? ¢ I.

We can also notice that the local approach we used for solving Problem 2.3.1 still works if the
corresponding global quaternion algebra is split. So is there any way to make sense of the probabilities
P, ,, for integral lattices in M>(Q)?

Finally, we can regard Problem 2.3.1 as a problem stated in terms of a quaternary quadratic form.
Every norm map of a quaternion algebra is a quadratic form after all. We can extend the problem
to include arbitrary quadratic forms instead of just norm forms. We heavily made use of the
multiplicative property of the norm, so It would be interesting to investigate the effect of this
multiplicativity on the outcome of the probabilities.
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