
Modular Arithmetic of Quaternion Norms
Rietveld, Robbe

Citation
Rietveld, R. (2025). Modular Arithmetic of Quaternion Norms.
 
Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master Thesis,
2023

Downloaded from: https://hdl.handle.net/1887/4262328
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/4262328


Modular Arithmetic of Quaternion Norms

Robbe Rietveld

r.a.rietveld@umail.leidenuniv.nl

Bachelor’s Thesis

Date: June 30, 2025

Thesis supervisor: dr. Jonathan Love

Leiden University
Mathematical Institute



Contents

1 Introduction 2

2 Quaternion algebras 3
2.1 Standard involutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Completions 11
3.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Local quaternion algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Local orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Local-global connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Results 21
4.1 Counting solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Unramified case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Ramified case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Applications 29
5.1 Isogenies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 SQIsign2D-East . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Sampling ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Future work 33

1



1 Introduction

Quaternions were originally described by Hamilton in 1843. We briefly discuss how this description
came about, with reference to Section 1.1 of Voight [Voi21]. Hamilton knew that the complex
numbers C could be interpreted as points on a plane such that addition and multiplication correspond
to translations, scaling and rotations. Hamilton was looking for a number system that could model
three-dimensional space in a similar way. He was looking for numbers that are similar to complex
numbers, but with a “two-dimensional” imaginary part. He did not succeed in finding such numbers.
Instead, he had to add a fourth dimension, and came up with the ring we now denote with H: the
Hamilton quaternions. It is given as H = R+ Ri+ Rj + Rk, induced by the multiplication rules

i2 = j2 = k2 = ijk = −1.

The group H1 := {t + xi + yj + zk ∈ H : t2 + x2 + y2 + z2 = 1} acts by rotation on Ri + Rj + Rk
via conjugation [Voi21, Proposition 2.4.18]. This result shows that the quaternions in H do indeed
“model” three-dimensional space in some way.

The notion of a quaternion algebra can be generalized far beyond just the Hamilton quaternions (see
Definition 2.1). Abstracting from the geometric interpretation, quaternion algebras have applications
in other branches of mathematics as well. For instance, every quaternion algebra has a multiplicative
norm defined on it, which can be expressed as a quadratic form (Lemma 2.1.4). This can be used
to prove number theoretic results such as Lagrange’s four-square theorem [Voi21, Theorem 11.4.3].

In recent years, another application of quaternion algebras has arisen. There is a remarkable con-
nection between elliptic curves and quaternion algebras. Some elliptic curves E over Fp2 have an
endomorphism ring that is actually a quaternion algebra over Q [Voi21, Theorem 42.1.9]. This
connection is exploited in cryptography. In Section 5, we will look at SQIsign2D-East [Cas+24],
[Nak+24]. This is a contender for a post-quantum signature scheme, meaning that it is believed
to be secure against attacks by quantum computers [GL24, p. 2]. In SQIsign2D-East, the goal is
to establish a method that provides the sender of a message with an unforgeable signature. When
such a signature is sent along with a message, the receiver of the message knows for sure that the
message originated from the right person.

The main idea behind the procedure of signature creation is as follows. Given is a hard problem in
terms of elliptic curves that is almost impossible to solve without further information. No one has
any further information, except for the sender of the message. The sender has additional private
information that can be used to convert the hard problem of elliptic curves into a (much easier)
problem in terms of quaternion algebras. Once the quaternion problem is solved, a corresponding
signature is created and the receiver of the message can then verify that the signature was indeed a
solution to the problem.

In [Cas+24, Section 2], it is found that repeatedly generating signatures leaks information that
can be used to determine private information of the sender. A fix that avoids this leakage is then
proposed [Cas+24, Section 3]. In the fix, elements in integral ideals (Definition 2.2.10) are sampled
repeatedly at random. In order for the fix to work, an element that satisfies a specific congruence
relations on its norm must be found. So the efficacy of the fix relies on the probabilities that a
randomly sampled element satisfies a certain congruence relation on its norm.

Inspired by the question of what these probabilities are, we try to answer the question as general
as possible (Problem 2.3.1). In this thesis, we go through the properties of quaternion algebras,
lattices, orders and their completions in Sections 2 and 3. Then we will find the desired probabilities
in Section 4. The main results of this thesis are the formulas for the probabilities that the norm of
a sampled element in a certain integral ideal satisfies any congruence relation. These formulas are
given in Theorem 4.5.1 and apply to every locally principal integral ideal of any Eichler order in
any quaternion algebra that is ramified at ∞. Finally, we apply the found results in the context of
SQIsign2D-East in Section 5.
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2 Quaternion algebras

We begin by building up the required theoretical framework around quaternion algebras. Throughout
this section, we use Voight as our main reference [Voi21]. In this section, let F be a field with
char(F ) ̸= 2.

Definition 2.1. Let B be a ring equipped with a homomorphism F → B such that the image of F
lies in the center Z(B) of B. The ring B is a quaternion algebra over F if there exist i, j ∈ B such
that 1, i, j, ij is an F -basis for B and

i2 = a, j2 = b, ij = −ji,

for some a, b ∈ F×.

The multiplication rules in B are entirely determined by the values of a and b. So, for a, b ∈ F×,

we define
(
a,b
F

)
as the quaternion algebra over F with basis 1, i, j, ij such that i2 = a, j2 = b and

ij = −ji. For the purpose of formatting, we also write (a, b | F ).

Remark 2.2. Note that a homomorphism F → B is necessarily injective. Therefore, we may think
of B as containing a copy of F , such that every element in F commutes with every element in B.

Remark 2.3. In a quaternion algebra B over F with basis 1, i, j, ij, we can scale i by x ∈ F× and
j by y ∈ F× to obtain a new basis 1, xi, yj, xyij with

(xi)2 = x2a, (yj)2 = y2b.

It follows that (
a, b

F

)
∼=

(
ax2, by2

F

)
.

So, the elements a and b induce the same quaternion algebra when they are scaled by squares in
F×. In particular, if F = Q, then any quaternion algebra is isomorphic to some quaternion algebra
(a, b | Q) for some a, b ∈ Z \ {0}.

Remark 2.4. There is a more general characterization of quaternion algebras that also includes
quaternion algebras over fields of characteristic 2 [Voi21, Chapter 6]. However, for our purpose it
suffices to only consider quaternion algebras over fields of char(F ) ̸= 2.

There also exist quaternion algebras where it is more convenient to have a basis independent de-
scription. Consider the following example.

Example 2.5. For a field F , the ring M2(F ) of 2 × 2 matrices with entries in F is a quaternion
algebra. We have a homomorphism F →M2(F )

x 7→
(
x 0
0 x

)
.

It can be checked that (1, 1 | F ) ∼=M2(F ) via

i 7→
(
1 0
0 −1

)
, j 7→

(
0 1
1 0

)
.

2.1 Standard involutions

In this subsection, let B denote the quaternion algebra (a, b | F ). We have the explicit basis 1, i, j, ij
for B. With respect to this basis, we can define some useful maps on B.

Definition 2.1.1. An involution B → B is an F -linear map denoted by α 7→ α, such that for all
α, β ∈ B, it satisfies
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(i) 1 = 1;

(ii) α = α;

(iii) αβ = β α.

If αα ∈ F for all α ∈ B, the involution is called standard.

With respect to the basis 1, i, j, ij, we can define the map B → B

t+ xi+ yj + zij 7→ t+ xi+ yj + zij = t− xi− yj − zij. (2.1.2)

And it can be verified that this map is a standard involution on B.

Definition 2.1.3. Let the map B → B with α 7→ α be a standard involution. We define the trace
on B as a map B → F given as

α 7→ tr(α) = α+ α.

We also define the norm on B as a map B → F given as

α 7→ N(α) = αα.

Note that the trace is well defined as a map B → F , since we have that

(α+ 1)(α+ 1) = αα+ α+ α+ 1 ∈ F.

We know that 1 and αα are in F , so α+ α is in F as well.

Lemma 2.1.4. Let N : B → F be the norm map induced by a standard involution on B. The norm
is multiplicative, that is, N(αβ) = N(α)N(β) for all α, β ∈ B.

Proof. We use that F is in the center of B and the third property of Definition 2.1.1. We compute

N(αβ) = αβαβ = αββα = αN(β)α = ααN(β) = N(α)N(β).

With respect to the basis 1, i, j, ij and the standard involution from 2.1.2, we can write the trace
and norm of elements in B as

tr(t+ xi+ yj + zij) = 2t; (2.1.5)

N(t+ xi+ yj + zij) = t2 − x2a− y2b+ z2ab. (2.1.6)

We also find that

α2 = (α+ α)α− αα. (2.1.7)

And note that αα− αα ∈ F with trace 0. By 2.1.5, we find that an element α ∈ F has trace zero if
and only if α = 0. As a result, αα = αα, so the polynomial x2 − tr(α)x + N(α) ∈ F [x] annihilates
α. It follows that every element in B is contained in a quadratic extension of F .

Lemma 2.1.8. A quaternion algebra B over F has a unique standard involution.

Proof. Let γ ∈ B such that F (γ) ̸= F . The extension F (γ) is quadratic with basis 1, γ. We
define a standard involution on F (γ) as a map that satisfies all properties of Definition 2.1.1 for all
α, β ∈ F (γ). The standard involution then induces a trace and norm on F (γ) analogous to the trace
and norm on B.
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Equality γ2 = tγ − n must hold for uniquely determined t, n ∈ F . But we know that t = γ + γ and
n = γγ hold as well. We find that the standard involution is uniquely determined as γ 7→ t− γ. We
also know there exists a standard involution on B such that γ = t− γ.

Any standard involution on B restricts to a standard involution on F (γ), and by the unicity of
standard involutions on F (γ), this uniquely determines the standard involution on B for all elements
γ ∈ B such that F (γ) ̸= F . On elements in F , the standard involution is determined by the linearity
and the condition 1 = 1. We find that a standard involution on B is unique.

When we consider matrix rings, it can be more convenient to consider the properties of their standard
involution without reference to a basis.

Example 2.1.9. Let B =M2(F ). The assignment B → B with(
a b
c d

)
7→

(
d −b
−c a

)
is the unique standard involution. So in M2(F ), the trace and norm correspond, respectively, to the
maps (

a b
c d

)
7→

(
a+ d 0
0 a+ d

)
;

(
a b
c d

)
7→

(
ad− bc 0

0 ad− bc

)
.

Note that the trace corresponds to the usual trace of a matrix, while the norm corresponds to the
determinant.

2.2 Lattices

In this subsection, let R be a principal ideal domain and F its field of fractions, still with char(F ) ̸= 2.

Definition 2.2.1. Let V be a finite-dimensional F -vector space. A finitely generated R-submodule
I ⊂ V is called an R-lattice if IF = V .

An equivalent condition to IF = V is that I contains an F -basis for V . If R = Z, we may omit the
ring and just refer to a lattice.

Note that every quaternion algebra B over F is in particular a 4-dimensional vector space over F ,
so it makes sense to talk about lattices inside B.

First we give some convenient properties of modules and lattices.

Lemma 2.2.2 (Structure theorem). Let R be a principal ideal domain and let M be a nonzero
finitely generated R-module. Then there exist cyclic R-modules Rx1, . . . , Rxn such that M is the
direct sum M ∼= Rx1 ⊕ · · · ⊕Rxn, and such that the annihilators Ann(xi) satisfy

R ⊋ Ann(x1) ⊃ · · · ⊃ Ann(xn).

Proof. This is a well known result. See [Jac12, Theorem 3.8] for instance.

By grouping together all terms with trivial and nontrivial annihilators, we may write the module M
as M ∼= Rr ⊕ TM for some r ∈ Z≥0, where TM is the torsion module of M .

Lemma 2.2.3. Let V be a finite-dimensional F -vector space, let I ⊂ V be an R-lattice and let
J ⊂ V be a finitely generated R-module. Then there exists a nonzero element r ∈ R such that
rJ ⊂ I.
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Proof. Let {x1, . . . , xn} be a generating set for J . We know that I contains an F -basis y1, . . . , ym
for V , so every xi can be written as an F -linear combination of the yi. We find that there exist
fij ∈ F such that any element in J is of the form

n∑
i=1

ri

m∑
j=1

fijyj ,

where ri ∈ R. Since F is the field of fractions of R, there exists an r ∈ R such that rfijyj ∈ R for
every fijyj . We find rJ ⊂ I.

Lemma 2.2.4. Let I be an R-lattice in an F -vector space V with dimV = n. Then, I is free of
rank n as an R-module.

Proof. Note that I can be embedded into a vector space over F . Since R ⊂ F holds, we find that I
is torsion free. Then I is free by the structure theorem of finitely generated modules over a principal
ideal domain (2.2.2).

Suppose I has rank m and has a submodule J . We have that J ⊂ V , so J is torsion free. Every
element in J is a unique R-linear combination of an R-basis x1, . . . , xm for I. We find that J
is finitely generated, hence free of rank l ≤ m. Otherwise, there would necessarily be R-linear
dependence within a basis of J .

Let y1, . . . , yn ∈ I be an F -basis for V , and let N =
⊕n

i=1Ryi
∼= Rn. We have N ⊂ I, so we find

n ≤ m. Now, by Lemma 2.2.3, we find that there is some nonzero r ∈ R such that rI ⊂ N , so we
conclude that n = m.

Any quaternion algebra B over F is a 4-dimensional vector space over F , so every lattice in B is
free over R of rank 4. In particular, if an R-lattice I has R-basis x1, x2, x3, x4, then this basis is
automatically an F -basis for V .

Some lattices that are particularly in our interest, are the ones that also have a ring structure.

Definition 2.2.5. An R-lattice O ⊂ B is an order if it is a subring of B. If O is not properly
contained in another order, O is called maximal.

The following orders are a specific type of orders that will appear throughout this thesis.

Definition 2.2.6. Let O,O′ ⊂ B be two (not necessarily distinct) maximal orders. The intersection
O ∩O′ is called an Eichler order.

Remark 2.2.7. Note that the intersection of two rings is again a ring. The intersection O ∩ O′ is
also a R-module that is free and finitely generated. By Lemma 2.2.3, there exists a nonzero r ∈ R,
such that rO′ ⊂ O. We find rO′ ⊂ O ∩O′, so we find that O ∩O′ spans B. So indeed, as the name
suggests, an Eichler order is an order.

For every R-lattice I, we can define its respective left and right order in the following way:

OL(I) = {α ∈ B : αI ⊂ I}, OR(I) = {α ∈ B : Iα ⊂ I}.

We will now show that these are indeed orders.

Lemma 2.2.8. Let I be an R-lattice in B. Then, OL(I) and OR(I) are orders in B.

Proof. By Lemma 2.2.3, there is a nonzero r ∈ R such that r ∈ I. Then we find that I2 is a lattice
as well, since it is finitely generated by the products of generators of I and rI ⊂ I2. Again, by
Lemma 2.2.3, there is a nonzero s ∈ R such that sI2 ⊂ I. We find (sI)I ⊂ I, so sI ⊂ OL(I). It
follows that OL(I) spans B.
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By Lemma 2.2.3, there is a nonzero t ∈ R such that tOL(I) ⊂ I, hence OL(I) ⊂ t−1I. OL(I) is
contained in a finitely generated free R-module, so OL(I) is torsion free, hence free. In the proof of
Lemma 2.2.4, we have seen that this implies that OL(I) is finitely generated.

Now it is left to check that OL(I) is a ring. It contains 0 and 1, and for α, β ∈ OL(I), we have

(α+ β)I ⊂ αI + βI ⊂ I + I = I;

(αβ)I ⊂ α(βI) ⊂ αI ⊂ I.

The other requirements are easy to check, so we conclude that OL(I) is an order in B.

The proof for OR(I) is analogous.

One important property of orders is that they are integral structures within quaternion algebras.

Proposition 2.2.9. Any element in an order O ⊂ B is integral. That is, every element in O is the
root of some monic polynomial in R[x].

Proof. Let α ∈ O. We have R[α] ⊂ O. The R-module R[α] can be embedded in B, so it is torsion
free. In the proof of Lemma 2.2.4, we saw that the rank of a torsion free submodule I ⊂ J is
bounded above by the rank of J if J is free as well. So R[α] is finitely generated, and free by the
Structure theorem 2.2.2. Then, there exists a smallest m ∈ Z such that every element in R[α] is a
polynomial in α of degree less than m. We find that 1, α, . . . , αm−1 is an R-basis for R[α]. Then,

αm =
∑m−1
i=0 xiα

i for some choice of xi ∈ R. It follows that α is integral.

Every element in B satisfies a monic quadratic polynomial in F [x], where the coefficients are the
trace and norm. If the trace and norm of some α ∈ B are not both in R, then α is not the root
of any monic polynomial in R[x]. We observe that elements α ∈ B are integral if and only if
N(α), tr(α) ∈ R.

Definition 2.2.10. Let I be an R-lattice in B. Then I is called integral if I2 ⊂ I.

On first sight, the definition of an integral lattice has nothing to do with the integrality of its
elements. There is, however, a connection between the two.

Lemma 2.2.11. Let I be an R-lattice in B. The following are equivalent:

(i) I is integral;

(ii) I is closed under multiplication;

(iii) I is a left ideal of OL(I);

(iv) I is a right ideal of OR(I);

(v) I ⊂ OL(I) ∩OR(I).

Proof. (i) ⇔ (ii) is clear. If I is integral, then clearly I ⊂ OL(I), and OL(I)I = I. If I is a left
ideal of OL(I), it is clearly closed under multiplication. This gives (i) ⇔ (iii) and a similar argument
for OR(I) gives (i) ⇔ (iv). Then, (i) ⇒ (v) is immediate from combining (iii) and (iv). If I is
contained in both OL(I) and OR(I), it follows that OL(I)I = I, so I is a left ideal of OL(I). The
last implication (v) ⇒ (i) follows.

We see that every integral lattice I is an ideal of its left and right order. So by 2.2.9, every element
in an integral lattice is integral. Because every integral lattice is an ideal of some order, we will also
refer to integral lattices as integral ideals. Note that not every ideal of an order is an integral ideal
(the zero ideal for instance), despite its elements being integral.

For integral ideals, the following definition makes sense because all its elements are integral.

Definition 2.2.12. The norm N(I) of an integral R-lattice I is defined as gcd({N(α) : α ∈ I}).
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An order O is an integral lattice, and its norm is 1. For an R-basis βi, i = 1, 2, 3, 4 of O, note that
the traces of the products tr(βiβj) are integers, since βiβj ∈ O.

Definition 2.2.13. Let O be an order in B with R-basis β1, β2, β3, β4. The discriminant of O with
respect to the basis β1, β2, β3, β4 is the ideal

disc(O) = (det(tr(βiβj))i,j=1,2,3,4) ⊂ R.

Remark 2.2.14. The definition for the discriminant we gave does not depend on the choice for a
basis of O [Voi21, Corollary 15.2.7], so we may as well omit “with respect to a basis” and refer to
the discriminant of O instead.

We will use discriminants of orders to study how orders sit inside one another. To formalize this,
we first introduce the R-index.

Definition 2.2.15. Let I, J be two R-lattices of rank n in an n-dimensional vector space V over
F . The R-index [J : I]R is the ideal in R generated by {det f : f ∈ EndF (V ), f(J) ⊂ I}.

Lemma 2.2.16. Let I ⊂ J be two R-lattices of rank n in an n-dimensional vector space V over F .
Then [J : I]R = R if and only if J = I.

Proof. If J = I, then we have det(id) = 1 ∈ [J : I]R. Now suppose [J : I]R = R. Then there is
an f : V → V that restricts to f |J : J → J ∈ EndR(J), such that det f ∈ R×. But then f is also
invertible in EndR(J). In particular f is surjective, so from the inclusions f(J) ⊂ I ⊂ J , we find
that I = J .

We can use R-indices to show that every order is contained in a maximal order. This is a consequence
of the following lemma.

Lemma 2.2.17. Let O ⊂ O′ ⊂ B be two orders in a quaternion algebra B over F . Then disc(O) =
[O′ : O]2Rdisc(O

′). Moreover, O = O′ if and only if disc(O) = disc(O′).

Proof. Let M a basis transformation matrix from an R-basis of O to an R-basis of O′. By
[Voi21, Lemma 9.6.4], det(M) generates [O′ : O]R. And by [Voi21, Lemma 15.2.5], Disc(O) =
det(M)2disc(O′). We find that Disc(O) = [O′ : O]2Disc(O′). By Lemma 2.2.16, we have that
Disc(O) = Disc(O′) if and only if O = O′.

Corollary 2.2.18. Every order O is contained in a maximal order.

Proof. Suppose we have a chain of orders

O ⊊ O1 ⊊ O2 ⊊ . . . .

Then by 2.2.17, we have a chain

disc(O) ⊊ disc(O1) ⊊ disc(O2) ⊊ . . . .

And since R is a principal ideal domain, it is in particular noetherian, so this chain must terminate.
As a consequence, the chain of orders must also terminate, hence O is contained in a maximal
order.

2.3 Statement of the problem

Now that the basic definitions and properties of quaternion algebras and lattices have been estab-
lished, we are ready to state the central problem of this paper.
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Problem 2.3.1. Let B = (a, b | Q) be a quaternion algebra for some a, b ∈ Z<0, let J be an integral
lattice in B and let r ∈ Z, n ∈ Z>1.

What is

lim
X→∞

#{α ∈ J : N(α) ≤ X,N(α) ≡ r (mod n)}
#{α ∈ J : N(α) ≤ X}

? (2.3.2)

This problem is inspired by Castryck [Cas+24, Conjecture 6], and has applications in cryptography
(see section 5).

Remark 2.3.3. The following diagram commutes.

J Z

Z/nZJ/nJ

N

(2.3.4)

The vertical maps are reduction maps and the lower horizontal map is α (mod nJ) 7→ N(α) (mod n).
We show this map is well defined. Note that with respect to some Z-basis βi, i = 1, 2, 3, 4 for J , the
norm N(x1β1 + x2β2 + x3β3 + x4β4) is a homogeneous quadratic polynomial in x1, x2, x3, x4. The
coefficient of xixj is given as βiβj + βjβi = N(βi + βj) − N(βi) − N(βj) if i ̸= j and the coefficient
of x2i is N(βi). All coefficients are integers, so the quadratic form associated to N with respect to
the basis βi reduces to a well defined map modulo n. We will also refer to the map norm map
J/nJ → Z/nZ as N.

Lemma 2.3.5. Limit 2.3.2 exists and is equal to #{α ∈ J/nJ : N(α) ≡ r (mod n)}/#(J/nJ).

Proof. Let M(X) = {α ∈ J :
√
N(α) ≤ X}, Sr,n = {α ∈ J/nJ : N(α) ≡ r (mod n)} and let

Ar,n(X) = {α ∈ J :
√
N(α) ≤ X,N(α) ≡ r (mod n)}.

We first show thatM(X) is finite for every X. We have chosen a, b ∈ Z<0, and the norm of elements
in B is given as

N(t+ xi+ yj + zij) = t2 − ax2 − by2 + abz2.

It follows that every element has nonnegative norm. This actually induces a metric on B if we define
the distance between α and β as

√
N(α− β). We embed B into R4 via t+xi+yj+zij 7→ (t, x, y, z),

and the metric on B extends to a metric on R4 via (t, x, y, z) 7→
√
t2 − ax2 − by2 + abz2. This

metric on R4 induces the Euclidean topology on R4, but note that the metric is not the standard
metric. It is obtained by scaling coordinates by a nonzero factor. The reason we embed B into R4

is so we can talk about volumes.

Let βi, i = 1, 2, 3, 4 be a Z-basis for J . This basis spans a parallelepiped P with side lengths√
N(βi) and finite volume V . We can translate P along the basis vectors to identify each point

x =
∑4
i=1 xiβi ∈ J with the parallelepiped Px obtained from P 7→ P + x. Then all these Px cover

R4 in such a way that Px ∪ {x} = {x} and Vol(Px ∩ Py) = 0 whenever x ̸= y. So the points in J
can be identified with parallelepipeds Px.

Let Dr(α) ⊂ R4 be the closed ball of radius r around α. The set M(X) is contained in Dr(0) for
some r > 0. Therefore, M(X) is contained in a set with finite volume. But then it follows that
M(X) can only contain finitely many parallelepipeds Px, hence M(X) is finite.

Now let Q(X) =
⋃
x∈M(X) Px. Then there is a fixed constant d such that for every sufficiently large

X, we have DX−d(0) ⊂ Q(X) ⊂ DX+d(0). We have Vol(Q(X)) = #M(X)V , and since the volume
Dr(0) is proportional to r

4, there is a constant c > 0 such that

Vol(DX−d(0)) = c(X − d)4 ≤ #M(X)V ≤ c(X + d)4 = Vol(DX+d(0)).
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Now let

Rx =
⋃

x1,x2,x3,x4∈{0,...,n−1}

Px+x1β1+x2β+x3β3+x4β4 .

Then
⋃
x∈J Rnx covers R4 in such a way that Vol(Rnx ∩ Rny) = 0 whenever x ̸= y, and for every

α ∈ J/nJ , there is a β ∈ Rnx that reduces to α. And since Vol(Rnx) = n4V = #(J/nJ)V , we may
even identify Rnx with a set of unique representatives for each class in J/nJ . From Remark 2.3.3,
we find that for sufficiently large X, we have #(Ar,n(X)∩Rnx) = #Sr,n. Using a similar argument
for imposing bounds, we find that there is a fixed e such that for sufficiently large X, we have

Vol(DX−e(0)) = c(X − e)4 ≤ #Ar,n(X)V
n4

#Sr,n
≤ c(X + e)4 ≤ Vol(DX−e(0)).

We can combine the two bounds into

c(X − e)4

c(X + d)4
#Sr,n
n4

≤ #Ar,n(X)V

#M(X)V
≤ c(X + e)4

c(X − d)4
#Sr,n
n4

As we let X → ∞, we find by the squeeze theorem that the limit of 2.3.2 exists and is equal to
#Sr,n/n

4 = #Sr,n/#(J/nJ).

So not only did we find that the limit 2.3.2 exists, but we can determine the limit 2.3.2 from studying
the norm map J/nJ → Z/nZ between finite sets.

We may think of the limit in 2.3.2 as the probability that a randomly sampled element in an integral
ideal J has a norm congruent to r (mod n). For that reason, we will refer to the value of this limit
as Pr,n. Note that the choice of J is not clear from the notation Pr,n, so we have to keep in mind
that we first have to choose an integral ideal before we can talk about probabilities Pr,n.

Lemma 2.3.6. Let p and q be coprime integers and let n = pq. The probabilities satisfy Pr,pPr,q =
Pr,n for all r ∈ Z.

Proof. By the Chinese remainder theorem and Remark 2.3.3, we have

Pr,n =
#{α ∈ J/nJ : N(α) ≡ r (mod n)}

#(J/nJ)
;

=
#{(α, α′) ∈ (J/pJ)⊕ (J/qJ) : N(α) ≡ r (mod p),N(α′) ≡ r (mod q)}

#((J/pJ)⊕ (J/qJ))
;

=
#{α ∈ J/pJ : N(α) ≡ r (mod p)} ·#{α ∈ J/qJ : N(α) ≡ r (mod q)}

#(J/pJ) ·#(J/qJ)
;

= Pr,pPr,q.

It follows from the prime factorization that problem 2.3.2 can easily be solved once the probabilities
Pr,pk are known for primes p and positive integers k. Our main focus will therefore be to solve
problem 2.3.2 whenever n is a prime power.
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3 Completions

In this section, we look at completions of Q. We use Voight as our main reference [Voi21].

3.1 Construction

Completions can be constructed with respect to an absolute value.

Definition 3.1.1. Let F be a field. An absolute value is a map | | : F → R≥0 such that

(i) |x| = 0 if and only if x = 0;

(ii) |xy| = |x||y| for all x, y ∈ F ;

(iii) |x+ y| ≤ |x|+ |y| for all x, y ∈ F .

For F = Q, we have the well known absolute value that multiplies each element by its sign. We will
denote this absolute value as | |∞. Apart from this absolute value, there exist other absolute values
on Q.

Note that every x ∈ Q× can be uniquely written as x = pk ab , where p is a prime and k, a, b ∈ Z such
that a and b are coprime with each other and with p.

Definition 3.1.2. Let p be a prime number. The p-adic valution on Q is the map vp : Q → Z∪{∞}
defined as

pk
a

b
7→ k; 0 7→ ∞

where a and b are coprime with each other and with p.

We can now define the p-adic absolute value | |p : Q → R≥0 as |x|p = p−vp(x), with the convention
p−∞ = 0, such that |0|p = 0.

Lemma 3.1.3. The p-adic absolute value is an absolute value.

Proof. We check the conditions of 3.1.2. For any x ∈ Q×, p−vp(x) > 0 and |0|p = 0 by definition, so
(i) holds.

Let x = pk ab , y = pl cd ∈ Q× be the unique representations of x and y. We have that |xy|p =
|pk+l acbd |p = p−k−l = |x||y|, and condition (ii) clearly holds if x or y is zero.

Let k ≥ l without loss of generality. Then |x+ y|p = |pk(ab + pl−k cd )|p ≤ p−k = |x|p. It follows that
|x+ y|p ≤ sup{|x|p, |y|p}, so in particular, |x+ y|p ≤ |x|p + |y|p.

An absolute value that satisfies the stronger inequality |x + y|p ≤ sup{|x|p, |y|p} is called nonar-
chimedean. So for every prime p, the absolute value | |p is nonarchimedean, while | |∞ is archimedean
(that is, not nonarchimedean).

The sets Qp and Zp are the respective completions of Q and Z with respect to | |p. That is, Qp (Zp
respectively) is the smallest set such that every Cauchy sequence of elements in Q (Z respectively)
converges in Qp (Zp respectively). The completions of Q and Z with respect to | |∞ are R and Z,
respectively.

We list a few properties of Qp and Zp that are proven in [Neu13, Chapter II]. Elements in Qp can
be uniquely represented as Laurent series in p with coefficients in {0, . . . , p− 1}, so we have

Qp =

∑
i≥k

aip
i : k ∈ Z, ai ∈ {0, 1, . . . , p− 1}

 .
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The usual addition and multiplication rules of Laurent series make Qp into a field of characteristic
0. The valuation vp extends to Qp as follows:

vp

∑
i≥k

aip
i

 = min{i ∈ Z≥k : ai ̸= 0}.

With this new valuation, | |p extends to an absolute value on Qp. The completion of Z is then a ring

Zp = {x ∈ Qp : vp(x) ≥ 0} =

∑
i≥0

aip
i : ai ∈ {0, 1, . . . , p− 1}

 .

Furthermore, Qp is the field of fractions of Zp. From these properties, we will show that Zp is a local
ring, meaning that it has a unique maximal ideal.

Lemma 3.1.4. The ring Zp has a unique maximal ideal (p), and every ideal is either 0 or of the
form (pk) for some k ∈ Z≥0.

Proof. Note that an element in Zp is invertible if and only if its p-adic absolute value is equal to
1 by the multiplicativity of | |p. Every nonzero α ∈ Zp can then be written as α = pkα′ for some
α′ ∈ Z×

p and some k ∈ Z≥0. It follows that (α) = pkα′Zp = {x ∈ Zp : |x|p ≤ |α|p} = (pk). In
particular, (p) = Zp \ Z×

p , so that is the unique maximal ideal of Zp.

Note that if I ⊂ Zp is a nonzero ideal with m = min{vp(α) : α ∈ I}, we find the expression
I = {x ∈ Zp : |x|p ≤ p−m} = (pm), which proves the statement.

In particular, we find that Zp is a principal ideal domain.

Note that the quotients Zp/pkZp are isomorphic to Z/pkZ. This is clear from the representation of
Zp as series in p. This observation allows us to talk about reduction maps in another way. Instead
of directly reducing integers modulo pk, we can first embed them into Zp and then reduce modulo
pk. This turns out to be a useful observation in the context of integral structures in quaternion
algebras.

Another useful property of the p-adic integers becomes clear when we consider the following Lemma.

Lemma 3.1.5 (Hensel). Let f ∈ Zp[x] be a polynomial and let a ∈ Zp be a p-adic integer such that
f(a) ≡ 0 (mod p) and f ′(a) ̸≡ 0 (mod p). Then there exists a unique α ∈ Zp such that α ≡ a (mod p)
and f(α) = 0.

Proof. Let a, b ∈ Zp such that f(a) ≡ 0 (mod pk), f ′(a) ̸≡ 0 (mod p) and a ≡ b (mod pk). The
Taylor expansion of f around a is f(x) = f(a) + (x − a)f ′(a) + (x − a)2g(x), for some g ∈ Zp[x].
We have f(b) ≡ tpk + t′pkf ′(a) + t′′p2k (mod pk+1) for some integers t, t′, t′′. Note that t is fixed by
a up to multiple of pk, while t′ is determined by b. We find that f(b) ≡ 0 (mod pk+1) if and only if
t+ t′f ′(a) ≡ 0 (mod p). There is a unique solution for t′ modulo p, namely t′ ≡ −t ·f ′(a)−1 (mod p).
We find that there exist elements b ∈ Zp such that f(b) ≡ 0 (mod pk+1), f ′(b) ̸≡ 0 (mod p) and
b ≡ a (mod pk), such that every b with these properties reduces to the same element modulo pk+1.

We have somehow “lifted” a solution a in Z/pkZ to a unique solution b in Z/pk+1Z. We can
inductively repeat this “lifting” argument to find that there exists a unique root α ∈ Zp of f , such
that α ≡ a (mod p).

The p-adic integers contain the integers Z, so we can apply Hensel’s Lemma for polynomials in
Z[x] as well. This gives us a tool to find whether polynomials with integer coefficients have p-adic
solutions.
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3.2 Local quaternion algebras

In this subsection, we explore properties of quaternion algebras over fields Qp.

We will call quaternion algebras B over Qp and the lattices and orders inside B local. The lattices
and orders in quaternion algebras over Q global.

Lemma 3.2.1. Let B =
(
a,b
Q

)
be a quaternion algebra with a, b ∈ Q×. Then, Bp := B ⊗Q Qp is a

quaternion algebra over Qp and B∞ := B ⊗Q R is a quaternion algebra over R.

Proof. The elements 1 ⊗ 1, i ⊗ 1, j ⊗ 1, ij ⊗ 1 form a basis for Bp as a Qp-vector space, and Bp
contains a copy of Qp via the embedding x 7→ 1⊗ x. With multiplication (a⊗ b)(c⊗ d) = ac⊗ bd,
Bp becomes a ring. We have

(i⊗ 1)2 = a⊗ 1, (j ⊗ 1)2 = b⊗ 1, (i⊗ 1)(j ⊗ 1) = ij ⊗ 1 = −ji⊗ 1 = −(j ⊗ 1)(i⊗ 1),

so Bp is a quaternion algebra. The proof for B∞ is analogous.

The norm on Bp is induced by α⊗m 7→ N(α)m2, where N is the norm on B.

It turns out that quaternion algebras can be classified into two kinds. A quaternion is either a
matrix ring or a division algebra.

Proposition 3.2.2. Let B = (a, b | F ) be a quaternion algebra with char(F ) ̸= 2. The following
are equivalent:

(i) B ∼=M2(F );

(ii) B is not a division ring;

(iii) There is a nonzero α ∈ B such that N(α) = 0;

(iv) There exist x, y ∈ F such that 1 = ax2 + by2.

Proof. The proof uses properties of quadratic forms. For the full proof, see Voight [Voi21, Main
Theorem 5.4.4].

When B satisfies one of the equivalent criteria of Proposition 3.2.2, we call B split. It becomes
immediately clear that the quaternion algebras B = (a, b | Q) with a, b ∈ Z<0 and the corresponding
B∞ are division algebras, since ax2 + by2 = 1 has no solutions over Q or R.

Definition 3.2.3. Let B be a quaternion algebra over Q. We call B ramified at p if Bp is a division
algebra.

By Proposition 3.2.2, a quaternion algebra Bp is either split or ramified.

Lemma 3.2.4. Let B = (a, b | Q) be a quaternion algebra. There are only finitely many primes p
where B is ramified.

Proof. Consider the equation ax2 + by2 = 1. We will show that this equation has solutions over Qp
for all but finitely many primes p. Let p ∤ 2ab. Then a, b are units in Fp. The equation reduces to
ax2 ≡ 1− by2 (mod p). As we let x and y run over all elements in Fp, ax2 takes on (p+1)/2 values
and so does 1− by2. If both sides of the equation would not agree on at least one value, there would
have to be at least p+ 1 elements in Fp; a contradiction. We conclude that ax2 + by2 ≡ 1 (mod p)
has solutions when p ∤ 2ab.

Note that any solution (x, y) ∈ F2
p is not (0, 0). It follows that at least one of 2ax, 2by is a unit

in Fp. Let (x′, y′) be a solution. We can apply Hensel’s Lemma to either f(x) = ax2 + by′2 − 1
evaluated at x′ or to g(y) = ax′2+by2−1 evaluated at y′. We find that there exists a p-adic solution
to ax2 + by2 = 1. Since the constraint p ∤ 2ab only excludes finitely many primes p, the result
follows.
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As a result of this Lemma, the following definition is well defined.

Definition 3.2.5. Let B be a quaternion algebra over Q, and let ram(B) be the set of primes where
B ramifies. The discriminant of B is

disc(B) =
∏

p∈ram(B)

p.

Remark 3.2.6. The set ram(B) is never empty if B∞ is a division algebra. This is a consequence of
Hilbert reciprocity [Voi21, Proposition 14.2.1]. For the quaternion algebras we consider for Problem
2.3.2, we have disc(B) > 1.

When Bp is split, we have an explicit isomorphism Bp ∼=M2(Qp). The norm map on M2(Qp) is the
determinant map by Example 2.1.9. We would like another explicit isomorphism for Bp when B is
ramified at p.

Definition 3.2.7. Let α be a root of a monic irreducible polynomial in Zp[x]. We call the extension
Qp(α) ⊃ Qp unramified if pZp[α] is the unique maximal ideal in Zp[α].

Voight gives a more general definition of unramified extensions [Voi21, 13.2.3], but the definition
above is sufficient for our purpose. We only need to find an explicit separable quadratic unramified
extension of Qp.

If L ⊃ K is a Galois extension, we define the field norm as

NL/K(α) :=
∏

σ∈Gal(L/K)

σ(α).

Lemma 3.2.8. For p odd, let u ∈ Zp such that u ∈ Fp is a (nonzero) quadratic nonresidue. Then
Qp(

√
u) is a separable unramified extension. Furthermore, if α is a root of x2 + x+ 1 ∈ Z2[x], then

Q2(α) is a separable unramified extension.

Proof. Let p ̸= 2 and u as described. Since the equation x2 − u has no solutions in Fp, it has no
solutions in Qp either. The extension is clearly separable and normal, hence Galois, so every element
a+ b

√
u ∈ Qp(

√
u) has field norm

NQp(
√
u)/Qp(a+ b

√
u) = a2 − ub2,

and field norms are multiplicative. If we have a, b ∈ Zp, then

|NQp(
√
u)/Qp(a+ b

√
u)|p ≤ max{|a2|p, |b2|p} ≤ 1.

By the multiplicativity of | |p and the field norm, for units in Z[
√
u], we must have equalities in the

equations above. On the other hand, if |a2 − ub2|p = 1, the element a+ b
√
u has inverse

(a+ b
√
u)−1 = (a− b

√
u) · (a2 − ub2)−1.

We find

Zp[
√
u]× = {a+ b

√
u ∈ Zp[

√
u] : |NQp(

√
u)/Qp(a+ b

√
u)|p = 1}.

Every element a + b
√
u ∈ Zp[

√
u] with |a2 − ub2|p < 1 satisfies a2 ≡ ub2 (mod p). Since u is a

quadratic nonresidue, equality only holds if a ≡ b ≡ 0 (mod p), and then a+ b
√
u is a multiple of p.

We find Zp[
√
u] \ Zp[

√
u]× = (p), so (p) is the unique maximal ideal.

For Q2(α), note that x2 + x + 1 has no solutions over F2, and therefore no solutions in Q2 either.
Note that if α is a root, then so is −(α+1). The extension is thus separable and normal, so we have
field norm

NQ2(α)/Q2
(a+ bα) = a2 + ab(α− (α+ 1))− b2α(α+ 1) = a2 − ab+ b2.
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The rest of the proof is analogous to the case of Qp(
√
u), only with inverse

(a+ bα)−1 = (a− bα− b) · (a2 − ab+ b2)−1.

Direct verification yields that a2 − ab+ b2 ≡ 0 (mod 2) if and only if a and b are both multiples of
2. The result follows.

An important result is the following.

Theorem 3.2.9. Let B be a quaternion algebra over Q that is ramified at p. There is a unique
quadratic unramified separable extension of Qp up to isomorphism, which we will denote as Qq.
Furthermore, we have that

Bp ∼=
(
Qq, p
Qp

)
,

is a division algebra. The notation (Qq, p | Qp) refers to a quaternion algebra that contains Qq and
has an element j such that j2 = p.

Proof. For the proof, we refer to Voight. The proof uses a classification of division algebras via
extensions of valuations [Voi21, Theorem 13.3.11(a)].

We can find explicit quaternion algebras over Qp that contain Qq. For p = 2, let α be a root of
x2+x+1 ∈ Z2[x], and for p odd, let α be a root of x2−u ∈ Zp[x] for a quadratic nonresidue u ∈ Fp.
Let α = −α for p odd and α = −α− 1 for p = 2. Then, it can be checked that{(

a+ bα p(c+ dα)
c+ dα a+ bα

)
: a, b, c, d ∈ Qp

}
⊂M2(Q2(α)) (3.2.10)

is a quaternion algebra over Qp that satisfies the criteria. The traces and norms of elements in this
quaternion algebra correspond to the traces and determinants of the matrices.

As a consequence, we now have an explicit way of computing norms in division algebras (Qq, p | Qp).
We have

N

((
a+ bα p(c+ dα)
c+ dα a+ bα

))
= NQq|Qp(a+ bα)− pNQq|Qp(c+ dα). (3.2.11)

3.3 Local orders

Now that we have a basic understanding of the quaternion algebras Bp, we can look at lattices inside
Bp. First, we consider the case where Bp is split.

Proposition 3.3.1. Let Bp ∼= M2(Qp). Every maximal order O ⊂ Bp is conjugate to M2(Zp). In
particular, O ∼=M2(Zp) as Zp-modules.

Proof. Let Aij denote the matrix in M2(Zp) with a 1 on the entry in row i and column j, with
zeroes everywhere else. The ring M2(Zp) is clearly an order, since it is generated as a Zp-module by
the matrices Aij , and Bp is generated by Aij as a vector space over Qp.

We will now show that M2(Zp) is a maximal order. Suppose that M2(Zp) is contained in another
order O′. Orders can only contain integral elements by Lemma 2.2.9. Let A be a matrix with entries
a, b, c, d ∈ Qp, then the traces of the matrices AijA ∈ O′ are precisely a, b, c, d, so we find that
a, b, c, d ∈ Zp. We conclude M2(Zp) = O′, so M2(Zp) is maximal.

Let N be a lattice in Q2
p and let O be a maximal order in M2(Qp). Then the set M = {n ∈ N :

On ⊂ N} is a finitely generated Zp-submodule of N . By Lemma 2.2.3, there is a nonzero r ∈ Zp
such that rON ⊂ N , since ON is finitely generated. We find that rON ⊂M , so rN ⊂M holds as
well. We find that M is a lattice in Q2

p.
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Let L ⊂ Q2
p be the lattice with basis (1, 0), (0, 1). Note thatM2(Zp) = EndZp(L). Then EndZp(M) =

gM2(Zp)g−1, for some g ∈ M2(Qp)×, as we can obtain EndZp(M) from EndZp(L) = M2(Zp) via
a basis transformation of Q2

p. We find that EndZp(M) is an order that contains O. And by the
maximality of O, we have an equality. Now, we find that O = EndZp(M) = gM2(Zp)g−1. A change
of basis does not change the Zp-module structure, so O ∼=M2(Zp).

The fact that every maximal order in M2(Qp) is conjugate to M2(Zp) also enables us to find explicit
isomorphisms for intersections of maximal orders.

Proposition 3.3.2. Every Eichler order O ⊂M2(Qp) is conjugate to

Em :=

{(
a b
cpm d

)
: a, b, c, d ∈ Zp

}
,

for some m ∈ Z≥0. In particular, O ∼= Em as Zp-modules.

Proof. LetO = A∩B, forA,B maximal orders. And since conjugation ofM2(Zp) only corresponds to
a change of basis, we may assume without loss of generality that A =M2(Zp) and B = gM2(Zp)g−1

for some invertible g ∈ M2(Qp). We know that g = pkα for some α ∈ M2(Zp) \ pM2(Zp) and some
k ∈ Z. We find B = αpkM2(Zp)p−kα−1 = αM2(Zp)α−1. There exist β, γ ∈M2(Zp)× such that

βαγ =

(
pn 0
0 pn+m

)
,

for some n,m ∈ Z≥0. This follows from the fact that α is invertible in M2(Qp), along with the
existence of the Smith normal form [Jac12, Theorem 3.8]. Now we have

βOβ−1 = βM2(Zp)β−1 ∩ βαM2(Zp)α−1β−1 =M2(Zp) ∩ βα(γM2(Zp)γ−1)α−1β−1.

And

βα(γM2(Zp)γ−1)α−1β−1 =

(
pn 0
0 pn+m

)(
Zp Zp
Zp Zp

)(
p−n 0
0 p−n−m

)
;

=

(
Zp p−mZp
pmZp Zp

)
.

We find βOβ−1 = Em, so O and Em are conjugated. And since a change of basis does not change
the Zp-module structure, we find that they are isomorphic as Zp-modules.

LetAij denote the matrices with a 1 on row i, column j and zeroes everywhere. ThenA11, A12, p
mA21, A22

forms a Zp-basis for Em. An explicit computation gives disc(Em) = (p2m). Let O = gEmg
−1, then

by the identity tr(AB) = tr(BA) for traces of matrices A,B, we find that disc(O) = disc(Em). So
if O = gEmg

−1 = hEnh
−1, then m = n. An Eichler order can thus be associated with a unique

standard Eichler order Em.

The integer pm that shows up in the bottom left entry in Em is called the level of an Eichler order
in M2(Qp). An order O ⊂ M2(Qp) is then maximal if and only if the level of O is 1, since O is
conjugate to M2(Zp) = E0.

Now, let Bp be a quaternion division algebra over Qp. By Theorem 3.2.9, Bp ∼= (Qq, p | Qp). Again,
we will classify all Eichler orders in Bp.

Proposition 3.3.3. Let Bp be a division quaternion algebra over Qp. The set of all integral elements
in Bp is an order.

Proof. Let α ∈ Qq and a, b, c, d ∈ Qp as in 3.2.10 and 3.2.11. Let A be the matrix of the form in

3.2.10 induced by a, b, c, d. Ìf we choose a, b, c, d ∈ Zp, then we find N(A) ∈ Zp and tr(A) ∈ Zp.
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Let a, b ∈ Q×
p with vp(a) = m, vp(b) = n and assume without loss of generality that m ≥ n. We find

NQq/Qp(a+ bα) = p2nNQp/Qp(p
−na+ p−nbα). If m > n holds, then vp(p

−na) > 0, vp(p
−nb) = 0, so

we find vp(NQq/Qp(a + bα)) = 2n. If equality m = n holds, we have vp(p
−na) = vp(p

−nb) = 0, so
p−na, p−nb ∈ Z×

p . As we have seen in the proof of Lemma 3.2.8, the field norm on a+bα with a, b ∈ Zp
is a multiple of p if and only if a and b are. We find vp(NQq/Qp(a+ bα)) = 2min{vp(a), vp(b)}.

Now, let N(A), tr(A) ∈ Zp. Then, N(A) = NQq/Qp(a + bα) − pNQq/Qp(c + dα) ∈ Zp. Suppose one
of a, b, c, d is in Qp \ Zp. Then min{vp(NQq/Qp(a + bα)), vp(pNQq/Qp(c + dα))} < 0. Also note that
vp(NQq/Qp(a+ bα)) ̸= vp(pNQq/Qp(c+ dα)), since one is always odd, the other even. It follows that
vp(N(A)) < 0, so we conclude that an element A ∈ Bp is integral if and only if its corresponding
a, b, c, d are in Zp.

The set of integral elements is then clearly a ring. It also clearly spans Bp and is finitely generated,
so it follows that the set of integral elements in Bp is an order.

This Proposition has a consequence that simplifies the classification of Eichler orders significantly.

Corollary 3.3.4. Let Bp be a division quaternion algebra over Qp. The set of all integral elements
O ⊂ Bp is the unique maximal order in Bp. Furthermore, if O′ ⊂ Bp is an Eichler order, then
O = O′.

Proof. From Proposition 3.3.3, we know that O is an order. By Proposition 2.2.9, an order can only
contain integral elements, so O cannot be contained properly in another order. We find that O is
maximal, and since every order is contained in a maximal order REF, O is the unique maximal
order. If O′ ⊂ Bp is an Eichler order, it is an intersection of maximal orders. The only intersection
of maximal orders is O ∩O = O, so we find O = O′.

3.4 Local-global connection

Up to this point, our main focus has been to describe the structures of quaternion algebras over Qp
and orders in those quaternion algebras. Now we will focus on the connection between these local
results and the global structures. In the light of solving problem 2.3.2, we want to know what the
properties of lattices and orders in Bp tell us about the properties of lattices and orders in B.

Let Z(p) = {ab ∈ Q : a, b ∈ Z, p ∤ b} ⊂ Q for a prime p. We call this the localization of Z at p. For a
more detailed introduction of localizations, see [Voi21, Section 9.4]. We will list some properties of
Z(p):

(i) Z(p) is a local ring, and every ideal is of the form (pk) for some k ∈ Z≥0;

(ii) Z(p) = Q ∩ Zp;

(iii)
⋂
p prime Z(p) = Z.

In particular, Z(p) is a principal ideal, so it makes sense to talk about Z(p)-lattice inside vector spaces
over its field of fractions Q.

Lemma 3.4.1. Let I ⊂ B be a lattice in a quaternion algebra B over Q. Then we have that
Ip := I ⊗Z Zp is a Zp-lattice in Bp, and I(p) := IZ(p) is a Z(p)-lattice in B. If I is an order, then Ip
and I(p) are orders as well.

Proof. Any lattice I is free as a Z-module and thus has a basis β1, β2, β3, β4. The elements βi⊗1 ∈ Bp
with i = 1, 2, 3, 4 generate Ip as a Zp-module and they generate Bp as a Qp-vector space. The
elements βi ∈ B also generate I(p) as a Z(p)-module and B as Q-vector space. It follows that Ip and
I(p) are lattices. If I is an order, it is clear that I(p) ⊂ B inherits a ring structure. The Zp-module
Ip becomes a ring via the multiplication (α⊗ n)(β ⊗m) = αβ ⊗ nm.

The reason why we bring up localizations is because of the following connection.
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Lemma 3.4.2 (Local-global dictionary for lattices). Let Z a finite-dimensional Q-vector space and
let M,N ⊂ V be lattices. The map N 7→ (N(p))p prime with inverse (N(p))p 7→

⋂
pN(p) = N is a

bijection from lattices N ⊂ V to collections (N(p))p of localizations indexed by primes p for which
M(p) = N(p) for all but finitely many primes. Furthermore, the map N(p) 7→ Np = N(p) ⊗Z(p)

Zp is
a bijection from Z(p)-lattices in V to Zp-lattices in V ⊗Q Qp with inverse Mp 7→Mp ∩ V .

Proof. We refer to Voight [Voi21, Theorem 9.4.9, Lemma 9.5.3].

We will now use the results of the Local-global dictionary to explore the connections between global
lattices, their localizations and their completions.

Lemma 3.4.3. Let O ⊂ B be an order in a quaternion algebra B over Q. Maximality and being
Eichler are local properties, that is, O is maximal (Eichler respectively) if and only if Op is maximal
(Eichler respectively) for all primes p.

Proof. If O is not maximal, then suppose O ⊊ O′. It follows that O(p) ⊊ O′
(p) for at least one prime

p by the Local-global dictionary. And for such a prime p, we have O(p) ⊗Z(p)
Zp ⊊ O′

(p) ⊗Z(p)
Zp as

well. We find that Op is not maximal for at least one prime p.

If Op is not maximal, let Op ⊊ O′
p. Then O(p) = B ∩Op ⊊ B ∩O′

p = O′
(p). Then every global lattice

O with localization O(p) is not maximal.

Now, let O′, O′′ be maximal global orders and let O = O′ ∩ O′′. We have just shown that O′
p

and O′′
p are maximal for all primes p. Then O′

(p) and O′′
(p) are also maximal. We then find that

O(p) = (O′ ∩O′′)Z(p) = O′Z(p) ∩O′′Z(p). It follows that

Op = (O′
(p) ⊗Z(p)

Zp) ∩ (O′′
(p) ⊗Z(p)

Zp) = O′
p ∩O′′

p ,

which proves the statement.

We similarly find that discriminants are local properties of orders. If O has basis βi for i = 1, 2, 3, 4,
then we have an explicit basis for O(p) and Op as well. A direct verification yields

disc(O) =
⋂

p prime

disc(O(p)) =
( ⋂
p prime

disc(Op)
)
∩ Z (3.4.4)

We will now find some properties that are determined by discriminants.

Lemma 3.4.5. Let O ⊂ Bp be an order in a split quaternion algebra Bp ∼= M2(Qp). Then, O is
maximal if and only if disc(O) = Zp.

Proof. If O is maximal, then by Proposition 3.3.2 we have O ∼= M2(Zp). Since O is conjugated
to M2(Zp) in M2(Qp), we find that O = End(N) for some lattice N ⊂ Q2

p. With respect to the
standard basis of N , let Aij be the matrix with a 1 on row i and column j and zeroes everywhere
else. With respect to the Zp-basis Aij of O, an explicit computation gives disc(O) = Zp. For the
other direction, if O′ is an order that contains O, it follows from Lemma 2.2.17 that [O′ : O]Zp = Zp,
so O = O′ by 2.2.16.

Lemma 3.4.6. Let O ⊂ Bp be an order in a division quaternion algebra Bp over Qp. Then, O is
maximal if and only if disc(O) = p2Zp.

Proof. If O is maximal, then by Corollary 3.3.4, O is the ring of all integral elements in Bp. The ring
with integral elements consists of the elements in of the form as in 3.2.10. The matrices are induced
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by a, b, c, d. Let Aa be the matrix induced by a = 1, b = c = d = 0, and similarly for Ab, Ac, Ad.
Then, Aa, Ab, Ac, Ad form a basis for O. We find

det


2 α+ α 0 0

α+ α α2 + α2 0 0
0 0 2p pα+ pα
0 0 pα+ pα 2pαα

 = −p2(α− α)4

We find disc(O) = p2Zp. The other direction follows from Lemmas 2.2.16 and 2.2.17.

Theorem 3.4.7. Let O ⊂ B be an order in a quaternion algebra B over Q. Then, O is maximal,
if and only if disc(O) = (disc(B)2).

Proof. Let ram(B) be the set of primes where B is ramified. The order O is maximal if and only
if Op is maximal for every prime p by Lemma 3.4.3. If we combine Lemmas 3.4.5, 3.4.6 and the
expression for the discriminant in 3.4.4, O is maximal if and only if

disc(O) = Z ∩
⋂

p∈Ram(B)

p2Zp = (disc(B)2).

This proves the statement.

Corollary 3.4.8. Let O be an order in a quaternion algebra B over Q. Then Op is maximal for all
but finitely many primes p.

Proof. This is a consequence of Theorem 3.4.7, together with Lemma 2.2.17.

We end this section by exploring the connection between the global norm map O → Z and the norm
maps of reductions O/pkO → Z/pkZ. If we know what Op looks like, we can deduce the structure
of O/pkO. If J is a Z-lattice, we have the following isomorphisms:

J ⊗Z Z/pkZ ∼= J ⊗Z Zp ⊗Zp Z/pkZ ∼= Jp ⊗Zp Zp/pkZp ∼= Jp/p
kJp.

So we find O/pkO ∼= Op/p
kOp.

Suppose that Op is isomorphic to an order A with known norm map A→ Zp. Then for each k ∈ Z>0

we have the following diagram:

O Z

Op A

A/pkA

Zp

Z/pkZO/pkO

∼

∼
(3.4.9)

The vertical maps are the natural embeddings and reductions. The horizontal maps that are not
isomorphisms are the norm maps.

Lemma 3.4.10. Let #Sr,pk = #{α ∈ O/pkO : N(α) ≡ r (mod pk)}. Then, using the notation of
diagram 3.4.9, equality #Sr,pk = #{α ∈ A/pkA : N(α) ≡ r (mod pk)} holds.
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Proof. Let φ : Op → A denote the isomorphism in Diagram 3.4.9. If we define a mapping A→ A as

φ(α) = φ(α), then this defines a standard involution on A. By the unicity of standard involutions
(Lemma 2.1.8), this is also the only standard involution on A. We find

N(φ(α)) = φ(α)φ(α) = φ(α)φ(α) = φ(αα) = φ(N(α)) = N(α).

Using a similar argument as in Remark 2.3.4, the bottom right square in Diagram 3.4.9 is commu-
tative. But since norms are preserved under φ, we also find that

N(α (mod pkO)) = N(φ(α) (mod pkA)).

We find that #Sr,pk = #{α ∈ A/pkA : N(α) ≡ r (mod pk)}.

It can also be checked that Diagram 3.4.9 is commutative as a whole.

If B is ramified at p and if Op is an Eichler order in Bp, then Op is the unique maximal order in Bp.
With the notation of 3.2.10, we have

Op/p
kOp =

{(
a+ bα p(c+ dα)
c+ dα a+ bα

)
: a, b, c, d ∈ Z/pkZ

}
.

And if C is the matrix induced by a, b, c, d, we have norm map

N(C) ≡ NQq/Qp(a+ bα)− pNQq/Qp(c+ dα) (mod pk). (3.4.11)

Now, let p be a prime such that B is not ramified at p, and let O be an order such that Op is Eichler
order of level pm for some m ∈ Z≥0. Then Op ∼= Em, so we have

Op/p
kOp =

{(
a b

cpmd

)
: a, b, c, d ∈ Z/pkZ

}
.

And if C is the matrix induced by a, b, c, d, we have norm map

N(C) ≡ ad− pmbc (mod pk). (3.4.12)

20



4 Results

In this section, let B be a quaternion algebra over Q such that B∞ is a division algebra, let O ⊂ B be
an order and let J ⊂ O be an integral lattice in O. We let SJr,pk = {α ∈ J/pkJ : N(α) ≡ r (mod pk)},
and recall that for an integral ideal J , its associated probabilities are Pr,pk = #SJr,pk/p

4k. If the
lattice J is clear from the context, we omit the J and refer instead to Sr,pk . We denote Jp, Op and
Bp as the respective completions of J , O and B at the prime p. Our aim in this chapter is to solve
Problem 2.3.1 for locally principal ideals J in Eichler orders O ⊂ B. We call an integral ideal J ⊂ O
a locally principal ideal if Jp is a principal ideal of Op for every prime p.

4.1 Counting solutions

We will first solve problem 2.3.1 for orders O. So whenever we refer to Sr,pk , we mean SOr,pk .

Lemma 4.1.1. Let p be a prime number and r and s be two integers such that r, s ̸≡ 0 (mod p).
Then, equality #Sr,p = #Ss,p holds whenever Sr,p and Ss,p are nonempty. In particular, if we have
#S1,p = 0, then #Sr,p = 0 for every r ̸≡ 0 (mod p).

Proof. Suppose that Sr,p and Ss,p are not empty. For any α ∈ Sr,p, we have an inverse element
α−1 = α · N(α)−1 ∈ Sr−1,p. Here, N(α)−1 denotes the inverse of N(α) in Fp. Note that α ∈ O,
since α+ α ∈ Z ⊂ O. We find that S1,p is nonempty, since αα−1 ∈ S1,p. By the multiplicativity of

the norm, we find that
⋃p−1
i=1 Si,p is a group under multiplication.

The norm map is a multiplicative group homomorphism
⋃p−1
i=1 Si,p → F×

p with kernel S1,p, so in
particular, S1,p is a normal subgroup. Then Sr,p and Ss,p are cosets αS1,p and βS1,p respectively,
for α ∈ Sr,p and β ∈ Ss,p. We find #Sr,p = #Ss,p.

In particular, this Lemma shows that if N : J/pJ → Z/pZ is surjective, then #Sr,p = #Ss,p ̸= 0 for
every r, s ̸≡ 0 (mod p).

Another tool we will use for finding the values #Sr,pk is an application of Hensel’s Lemma. For the
rest of this section, whenever we use “Hensel’s lifting”, we will be referring to the following result.

Lemma 4.1.2 (Hensel’s lifting). Let f(t, x, y, z) ∈ Zp[t, x, y, z] be a polynomial in four variables.
If (a, b, c, d) ∈ Z4

p is a root of f (mod p) such that the partial derivatives of f do not all vanish at

(a, b, c, d) modulo p, then there are p3(k−1) roots of f (mod pk) that reduce to (a, b, c, d) ∈ F4
p.

Proof. Since the partial derivatives of f(t, x, y, z) are not all multiples of p, we may assume without
loss of generality that ∂f

∂t (a, b, c, d) ̸≡ 0 (mod p). Let gm1,m2,m3(t) = f(t, b+m1p, c+m1p, d+m1p).
Note that g′m1,m2,m3

(t) ̸≡ 0 (mod p).

When applying Hensel’s Lemma to gm1,m2,m3
, we find a unique root a′ ∈ Z/pkZ of gm1,m2,m3

(mod pk)
such that a′ ≡ a (mod p). For each choice of (m1,m2,m3) with mi ∈ 0, . . . , pk−1 − 1, we get a dif-
ferent root in Z/pkZ, but they all reduce to (a, b, c, d) ∈ F4

p. We find that there are p3(k−1) roots of

f (mod pk) that reduce to (a, b, c, d) ∈ F4
p.

In order to find the values #Sr,pk for arbitrary k, we have to deal with cases where we cannot directly
apply Hensel’s lifting, because all partial derivatives vanish. The following observation, which we
will refer to as the “division trick”, can help with that.

Lemma 4.1.3 (division trick). Let f(x1, x2, x3, x4) ∈ Zp[x1, x2, x3, x4] be a polynomial in four
variables and let r ∈ pZ/pkZ. For i = 1, 2, 3, 4, let di be either 1 or p, and suppose that the
polynomial f(d1x1, d2x2, d3x3, d4x4) is a multiple of p. Let I ⊂ {1, 2, 3, 4} denote the set of indices i
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such that di = p. Let S be the set of solutions (x1, x2, x3, x4) ∈ (Z/pkZ)4 such that f(x1, x2, x3, x4) ≡
r (mod pk) and xi ≡ 0 (mod p). Then #S is equal to

p4−#I ·#
{
(x1, x2, x3, x4) ∈ (Z/pk−1Z)4 :

1

p
f(d1x1, d2x2, d3x3, d4x4) ≡

r

p
(mod pk−1)

}
.

Proof. In the equation f(d1x1, d2x2, d3x3, d4x4) ≡ r (mod pk), both sides are multiples of p. We
may then divide everything by p to get the equation

1

p
f(d1x1, d2x2, d3x3, d4x4) ≡

r

p
(mod pk−1).

If di is p, then a solution in xi (mod pk−1) corresponds to a uniquely determined solution in
xi (mod pk). However, if di is 1, then a solution in xi (mod pk−1) corresponds to p different
solutions in xi (mod pk), since there are p different elements in Z/pkZ that reduce to the same ele-
ment in Z/pk−1Z. We observe that for each solution of the equation modulo pk−1, there are p4−#I

solutions modulo pk.

4.2 Unramified case

Let p be a prime such that B is unramified at p. In this subsection, we will find the values of #Sr,pk
for orders O such that Op ⊂ Bp ∼=M2(Qp) is Eichler.

Let Op be an Eichler order of level pm. In this subsection, we let #Sr,pk,m be the value of #Sr,pk
associated to the order Op. If Op is Eichler of level 1 (that is, Op is maximal), we omit m = 0, so
#Sr,pk,0 = #Sr,pk

By 3.4.12, the value #Sr,pk,m is the number of solutions (a, b, c, d) ∈ (Z/pkZ)4 to the equation

ad− pmbc ≡ r (mod pk). (4.2.1)

Note that this equation has solutions for each r, so by Lemma 4.1.1, #S1,p,m = #Sr,p,m holds
whenever r ̸≡ 0 (mod p).

Our approach to counting these solutions in the most general case is to solve for k = 1 first, then
use Hensel’s lifting and the division trick to find the other values #Sr,pk,m. The division trick is,
in the general case, only useful when pm, pk and r have sufficiently large p-adic valuation. Keeping
that in mind, we first solve for some base cases, and then we use an inductive argument to find the
general result.

First we find the values #Sr,p.

Lemma 4.2.2. Let Op be an Eichler order of level 1 in B ∼=M2(Qp). We have

#Sr,p =

{
p3 + p2 − p, If r ≡ 0 (mod p);

p3 − p, If r ̸≡ 0 (mod p).

Proof. Equation 4.2.1 is in this case just the determinant equation for matrices inM2(Fp). A matrix
has a nonzero determinant if and only if its rows are linearly independent. We can choose any nonzero
vector for the first row. For the second row, we can choose any vector that is not a scalar multiple
of the first row. We find #S0,p = p4 − (p2 − 1)(p2 − p) = p3 + p2 − p. If r ̸≡ 0 (mod p), Lemma 4.1.1
yields #Sr,p = (p2 − 1)(p2 − p)/(p− 1) = p3 − p.

Now, we find the values #Sr,p,m with m > 0.

Lemma 4.2.3. Let Op be an Eichler order of level pm in B ∼=M2(Qp). Let m > 0. We have

#Sr,p,m =

{
2p3 − p2, If r ≡ 0 (mod p);

p3 − p2, If r ̸≡ 0 (mod p).
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Proof. Equation 4.2.1 reduces to ad ≡ r (mod p). This is nonzero if and only if a and d are
nonzero. We find that #S0,p,m = p4 − p2(p − 1)2 = 2p3 − p2. And, by Lemma 4.1.1, #Sr,p,m =
p2(p− 1)2/(p− 1) = p3 − p2 if r ̸≡ 0 (mod p).

Note that the function f(a, b, c, d) = ad − pmbc − r ∈ Zp[a, b, c, d] can have partial derivatives that
vanish modulo p. If m = 0, this happens if and only if (a, b, c, d) = (0, 0, 0, 0) ∈ F4

p. If m > 0, this
happens if and only if (a, d) = (0, 0) ∈ F2

p. Note that in both cases, the criteria are met for applying
the division trick. This is a nice result. We can either use Hensel’s lifting directly, or we can use the
division trick.

In the m = 0 case, we introduce new variables a1, b1, c1, d1 after applying the division trick and in
the m > 0 case, we introduce a1, d1 as new variables. These are linked to the original variables via
pa1 ≡ a (mod pk) and similarly for b1, c1, d1. Then, for each solution modulo pk−1 in a variable
with index 1, there is a unique solution modulo pk. And for each solution modulo pk−1 in a variable
without index 1, there are p different solutions modulo pk. These indices help us to keep track of
how many solutions we have to count.

We now solve for the general case m = 0.

Lemma 4.2.4. Let Op be an Eichler order of level 1 in B ∼=M2(Qp). We have

#Sr,pk =

{
p3k + p3k−1 − p2k−1, If r ≡ 0 (mod pk);

p3k + p3k−1 − (p+ 1)p3k−vp(r)−2, If r ̸≡ 0 (mod pk).

Proof. We count solutions to Equation 4.2.1 with induction on k. We set #S1,1 = 1, so that the
result holds for k = 0. For k = 1, these results coincide with Lemma 4.2.2. So let k > 1. If vp(r) = 0,
by Hensel’s lifting we have #Sr,pk = p3(k−1)#S1,p = p3k − p3k−2.

If vp(r) > 0, we cannot apply Hensel’s lifting when a, b, c, d are all multiples of 0. In that case, we
use the division trick and count the solutions to

p(a1d1 − b1c1) ≡ r/p (mod pk−1).

If vp(r) = 1, there are no solutions. We get

#Sr,pk = p3(k−1)(#S0,p − 1) = p3k + p3k−1 − p3k−2 − p3k−3.

Let vp(r) > 1. If we apply the division trick again, we get the equation

a1d1 − b1c1 ≡ r/p2 (mod pk−2).

We use the induction hypothesis and Hensel’s lifting to find

#S0,pk = p3(k−1)(#S0,p − 1) + p4#S0,pk−2 .

= p3k + p3k−1 − p3k−2 − p3k−3 + p4(p3k−6 + p3k−7 − p2k−5);

= p3k + p3k−1 − p2k−1.

If r ̸≡ 0 (mod pk), we find

#Sr,pk = p3(k−1)(#S0,p − 1) + p4#Sr/p2,pk−2 ;

= p3k + p3k−1 − p3k−2 − p3k−3 + p4(p3k−6 + p3k−7 − (p+ 1)p3k−(vp(r)−2)−8);

= p3k + p3k−1 − (p+ 1)p3k−vp(r)−2.

Now we solve for m = 1.
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Lemma 4.2.5. Let Op be an Eichler order of level p in B ∼=M2(Qp). We have

#Sr,pk,1 =

{
2p3k − p2k, If r ≡ 0 (mod pk);

2p3k − (p+ 1)p3k−vp(r)−1, If r ̸≡ 0 (mod pk).

Proof. We count solutions to Equation 4.2.1 by induction to k. If k = 0, 1, the results coincide with
Lemma 4.2.3 if we let #S1,1,m = 1. So let k > 1. If vp(r) = 0, we use Hensel’s lifting and we find
#Sr,pk,1 = p3(k−1)#S1,p,1 = p3k − p3k−1.

If vp(r) > 0, we cannot use Hensel’s lifting whenever both a and d are multiples of p. With the
division trick, we get the equation

pa1d1 − bc ≡ r/p (mod pk−1).

We combine the induction hypothesis with Hensel’s lifting to find that

#S0,pk,1 = p3(k−1)(#S0,p,1 − p2) + p2#S0,pk−1,1;

= 2p3k − 2p3k−1 + 2p3k−1 − p2k;

= 2p3k − p2k.

And if r ̸≡ 0 (mod p):

#Sr,pk,1 = p3(k−1)(#S0,p,1 − p2) + p2#Sr/p,pk−1,1;

= 2p3k − 2p3k−1 + 2p3k−1 − (p+ 1)p3k−(vp(r)−1)−2;

= 2p3k − (p+ 1)p3k−vp(r)−1.

The cases m = 0, 1 enable us to compute the general case for m > 1.

Theorem 4.2.6. Let Op be an Eichler order of level pm in B ∼=M2(Qp). We have

#Sr,pk,m =


(k + 1)p3k − kp3k−1, If pk|r and m ≥ k;

(m+ 1)p3k − (m− 1)p3k−1 − p2k+m−1, If pk|r and m < k;

(vp(r) + 1)(p3k − p3k−1), If pk ∤ r and m > vp(r);

(m+ 1)p3k − (m− 1)p3k−1 − (p+ 1)p3k−vp(r)+m−2, If pk ∤ r and m ≤ vp(r).

Proof. We count solutions to Equation 4.2.1 by induction to k. The formulas coincide with Lemmas
4.2.4 and 4.2.5 Let k,m > 1. If vp(r) = 0, we use Hensel’s lifting to find #Sr,pk,m = p3(k−1)#S1,p,m =
p3k − p3k−1.

If vp(r) > 0, we cannot use Hensel’s lifting when both a and d are multiples of p. The division trick
gives equation

p(a1d1 − pm−2bc) ≡ r/p (mod pk−1),

which has no solutions if vp(r) = 1. In that case, we find

#Sr,pk,m = p3(k−1)(#S0,p,m − p2) = 2p3k − 2p3k−1.

Now, let vp(r) > 1. We can use the division trick again, to get the equation

a1d1 − pm−2bc ≡ r/p2 (mod pk−2).
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We can combine Hensel’s lifting with the induction hypothesis to find

#Sr,pk,m = p3(k−1)(#S0,p,m − p2) + p6#Sr/p2,pk−2,m−2;

= 2(p3k − p3k−1) + p6#Sr/p2,pk−2,m−2.

Note that the four formulas in the statement of this theorem have some common aspects. Each
formula has two terms of the form x1p

3k − x2p
3k−1, where x1 and x2 are either k,m or vp(r) added

with −1, 0 or 1. Then there are two coefficients x3, x4 ∈ {0, 1} of p2k+m−1 and (p+1)p3k−vp(r)+m−2.
All different formulas can then be written as

x1p
3k − x2p

3k−1 − x3p
2k+m−1 − x4(p+ 1)p3k−vp(r)+m−2.

And if we have a combination of x1, x2, x3, x4 in the expression for #Sr,pk,m, then we have the
combination x1 − 2, x2 − 2, x3, x4 in the expression for #Sr/p2,pk−2,m−2. Indeed, note that if m, r
and k are chosen such that they satisfy one of the four conditions in the statement of this theorem,
then m− 2, r/p2 and k − 2 satisfy the same condition. We find

#Sr,pk,m = p6((x1 − 2)p3k−6 − (x2 − 2)p3k−7 − x3p
2k+m−7 − x4(p+ 1)p3k−vp(r)+m−8)

+ 2(p3k − p3k−1);

= x1p
3k − x2p

3k−1 − x3p
2k+m−1 − x4(p+ 1)p3k−vp(r)+m−2.

This proves the theorem.

4.3 Ramified case

Let p be a prime such that B is ramified at p. In this subsection, we will find the values of #Sr,pk
for orders O such that Op is Eichler in the division algebra Bp.

By 3.3.4, there is only one maximal order in Bp, so every intersection of two maximal orders is the
maximal order itself. We find that there is only one maximal order in Bp; the unique maximal order.

By 3.4.11, the value #Sr,pk is the number of solutions (a, b, c, d) ∈ (Z/pkZ)4 to the equation

NQq/Qp(a+ bα)− pNQq/Qp(c+ dα) ≡ r (mod pk). (4.3.1)

Note that this equation has solutions for every r (mod p). The field norm is either of the form
a2 − ub2 or a2 − ab + b2. In the first case, a2 − ub2 ≡ r (mod p) has solutions for every r, as
we have seen in the proof of Lemma 3.2.4. For p = 2, the result is immediate. By Lemma 4.1.1,
#S1,p = #Sr,p holds whenever r ̸≡ 0 (mod p).

In the proof of Lemma 3.2.8, we have seen that NQq/Qp(a + bα) ≡ 0 (mod p) if and only if a, b ≡
0 (mod p).

Our approach to counting the solutions is similar to the approach in subsection 4.2. We use Hensel’s
lifting and the division trick to find the values #Sr,pk using an inductive argument. It turns out
that in the ramified case, there are far fewer base cases to consider, so we compute the general result
directly.

Theorem 4.3.2. Let Op be an Eichler order in the division algebra Bp. We have

#Sr,pk =

{
p2k, If r ≡ 0 (mod pk);

(p+ 1)p3k−vp(r)−1, If r ̸≡ 0 (mod pk).

Proof. We count solutions to Equation 4.3.1 with induction to k. For k = 1, r = 0, there is a solution
if and only if a and b are 0 modulo p. We find #S0,p = p2 and by Lemma 4.1.1, the other values are
#Sr,p = (p4 − p2)/(p− 1) = p3 + p2 if r ̸≡ 0 (mod p).

Let k > 1. If vp(r) = 0, we use Hensel’s lifting to find that #Sr,pk = p3(k−1)#S1,p = p3k + p3k−1.
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If vp(r) > 1, we can use Hensel’s lifting whenever a and b are not both multiples of p. If they are,
we use the division trick to get the equation

NQq/Qp(c+ dα)− pNQq/Qp(a1 + b1α) ≡ −r1 (mod pk−1).

Since −1 is a unit in Fp, we have vp(−r1) = vp(r1) = vp(r) − 1. A combination of Hensel’s lifting
and the induction hypothesis yields

#S0,pk = p3(k−1)(#S0,p − p2) + p2(#S0,pk−1) = p2k.

And if r ̸≡ 0 (mod pk):

#Sr,pk = p3(k−1)(#S0,p − p2) + p2(#Sr/p,pk−1);

= p2(p+ 1)p3k−(vp(r)−1)−4;

= (p+ 1)p3k−vp(r)−1.

This proves the theorem.

4.4 Ideals

In this subsection, let J denote an ideal of an order O in a quaternion algebra B over Q. We will
find the values of #SJr,pk for integral ideals J such that Jp is a principal integral ideal of Op, in terms

of the values #SOr,pk .

Theorem 4.4.1. Let J ⊂ O be an integral ideal such that Jp is a principal integral ideal of Op and
let n = vp(N(J)) We have:

#SJr,pk =


p4k, If r ≡ 0 (mod pk) and n ≥ k;

0, If r ̸≡ 0 (mod pk) and n > vp(r);

p4n#SOr/pn,pk−n , Otherwise.

Proof. We will prove the statement for left integral ideals J ⊂ O, but the proof for right integral
ideals is analogous. Let Jp = Opα be an integral ideal of Op for some α ∈ Op. Then x 7→ xα is a
Z-module isomorphism Op → Jp. Note that the following diagram commutes by the multiplicativity
of the norm:

Op Zp

Jp Zp

N

·N(α)·α

N

Reduction maps commute with ·α and ·N(α), and by Diagram 3.4.9, reduction maps also commute
with taking norms. The following diagram is then commutative as well.

O/pkO Z/pkZ

J/pkJ Z/pkZ

N

·N(α)·α

N
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And in particular, since J/pkJ ∼= Jp/p
kJp, we find that for every x ∈ J/pkJ , there exists a y ∈ O

such that x ≡ yα (mod pkJ). We find that x ∈ J/pkJ has norm N(x) ≡ r (mod pk) if and only if
N(y)N(α) ≡ r (mod pk).

Note that vp(N(J)) = vp(N(α)). This follows from the fact that N(J) is the smallest integer such
that every element’s norm is a multiple of N(J). On the other hand, the norm map on J modulo
pk is obtained from the norm map on O modulo pk via multiplication by N(α), so the connection
between the two follows.

All three formulas then follow directly.

4.5 Overview

We give a summary of the results in this chapter and we specify to what extent we have solved
Problem 2.3.1. Let J be an integral lattice inside an order O ⊂ B, where B is a quaternion algebra
over Q that is ramified at ∞ and finitely many primes. Let Pr,pk be the limit 2.3.2 with respect to
J . Recall that Pr,pk = #Sr,pk/p

4k.

We introduce new notation in order to formulate the results in a more compact way. For an integral
lattice J , let n = vp(N(J)) and let P′

r,pk := Prpn,pk+n .

Furthermore, let O be a global Eichler order. We define the level of O as the product of the levels
of Op, where p runs over all primes. Note that this is well defined by Corollary 3.4.8.

Theorem 4.5.1. Let D := disc(B), let O be a global Eichler order of level M such that vp(M) = m,
and let J ⊂ O be an integral ideal that is locally principal. Then

P′
r,pk =



p−2k, If pk|r and p|D;

p+ 1

pk+vp(r)+1
, If pk ∤ r and p|D;

(k + 1)p− k

pk+1
, If pk|r, m ≥ k and p ∤ D;

(m+ 1)pk−m+1 − (m− 1)pk−m − 1

p2k−m+1
, If pk|r, m < k and p ∤ D;

(vp(r) + 1)(p− 1)

pk+1
, If pk ∤ r, m > vp(r) and p ∤ D;

(m+ 1)pvp(r)−m+2 − (m− 1)pvp(r)−m+1 − (p+ 1)

pk+vp(r)−m+2
, If pk ∤ r, m ≤ vp(r) and p ∤ D.

Proof. If vp(N(J)) = 0, we have P′
r,pk = Pr,pk . The results follows directly from the combination of

Theorems 4.2.6 and 4.3.2.

If n = vp(N(J)) > 0, every x ∈ J/pk+nJ can be written as x = yα for some y ∈ O/pk+nO
and an element α with vp(N(α)) = n. Then by the division trick, the number of solutions to
N(x) ≡ rpn (mod pk+n) is equal to the number of solutions to N(y) ≡ r (mod pk), multiplied by
p4n. We find that P′

r,pk is equal to the probability Pr,pk corresponding to the order O ⊃ J .

If n = vp(N(J)) > 0, we can recover the original probabilities from P′
r,pk using Theorem 4.4.1. Then,

for an arbitrary integer with prime factorization pe11 · · · · · pell , we can use Lemma 2.3.6 to compute
the probabilities

Pr,pe11 ·····pell
=

l∏
i=1

Pr,peii .
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By Corollary 3.4.8, every global order O has maximal completions Op for all but finitely many primes
p. And since the results of Theorem 4.5.1 were derived locally, the probabilities Pr,pk associated to
O still correspond to the values in Theorem 4.5.1 for all but finitely many primes p.

In the derivation of the results in 4.5.1, we did use the condition that an integral ideal J ⊂ O is
locally principal. So a natural question that arises is: when are integral ideals locally principal?
Principal ideals are in particular locally principal, so every order O has at least some integral ideals
J that are locally principal. But we can say something stronger.

Lemma 4.5.2. Let O be a global order. Every integral ideal (both left and right) of O is locally
principal if and only if O is an Eichler order of level M , with M squarefree. That is, for every prime
p we have p2 ∤M .

Proof. We combine [Voi21, Main theorem 16.1.3, Main theorem 20.3.9, Corollary 21.1.5] to find that
a local order has the property that every integral ideal is principal if and only if it is an Eichler
order of level 1 or p. For global orders O we find that all its integral ideals J are locally principal
if and only if disc(O) is cubefree. For the standard Eichler order Em of level m, its discriminant is
(p2m), so the result follows.

The property that all integral ideals of a global order are locally principal, is again a local property.
So even if O not an Eichler order of squarefree level, its completion Op still is for all but finitely
many primes. So for all but finitely many primes p is it the case that every integral ideal of Op is
principal.

We end this section by turning our attention to Conjecture 6 in [Cas+24]. First of all, note that their
conjecture is stated in terms of P′

r,n. We see that the values for the probabilities P′
r,n correspond to

the formulas in 4.5.1 if we take m = 0 and look at the unramified case. For m = 0, we also do not
have to worry about possible integral ideals that are not locally principal, so Conjecture 6 is true
for maximal orders. However, for m > 0 the values no longer correspond to the conjectured ones.
So if there exists a global Eichler order of level M > 1, we have shown that Conjecture 6 is not true
in general. And since being Eichler is a local property, by the Local-global dictionary, there exist
global Eichler orders of level M > 1.

So Conjecture 6 is not true in general, but with the extra condition that we only consider integral
ideals J in maximal orders O, the results are true. However, as we will find out in Section 5, the
results of Conjecture 6 are only applied to integral ideals of maximal orders. So for their specific
application, the results of Conjecture 6 may be used.
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5 Applications

In this chapter, we explore the connection between Problem 2.3.2 and its applications in cryptog-
raphy. Specifically, we look at the connection with SQIsign2D-East as discussed in [Nak+24] and
[Cas+24]. Our goal is mainly to illustrate the connection, so we will not go into details of proofs.

5.1 Isogenies

The scheme SQIsign2D-East is isogeny-based, so before we can explore its content, we need some
definitions.

Definition 5.1.1. An elliptic curve E over a field F is a smooth projective curve of genus 1,
equipped with a point 0E , called the origin, or the point at infinity.

Every elliptic curve E is isomorphic over F to some projective curve associated to the affine equation

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0,

with all ai ∈ F .

For a field extension K ⊃ F , we denote E(K) = {(x, y) ∈ K2 : f(x, y) = 0} ∪ {0E} as the set of
K-rational points of E. For any such field extension, E(K) has an abelian group structure [Hus87,
Chapter 3, Theorem 1.2], and can therefore be regarded as a Z-module.

For each elliptic curve E, let F (E) denote the field of fractions of F [x, y]/(f).

Definition 5.1.2. Let E and E′ be two elliptic curves over F . An isogeny ϕ : E → E′ is a
nonconstant regular rational function such that ϕ(0E) = 0E′ .

For the definition of a regular rational function, we refer to Silverman [Sil09, I.3].

An isogeny is automatically surjective by [Har13, II.6.8], and a group homomorphism [Sil09, Theorem
III.4.8]. An isogeny ϕ : E → E′ also induces an embedding ϕ∗ : F (E′) → F (E), and we define the
degree deg ϕ := [F (E) : ϕ∗F (E′)]. Every isogeny also has a dual ϕ∨ : E′ → E such that ϕ∨ ◦ ϕ
and ϕ ◦ ϕ∨ are the multiplication maps by deg ϕ = deg ϕ∨ [Voi21, 42.1.3]. Let Hom(E,E′) be the
collection of isogenies E → E′ and End(E) := Hom(E,E).

Definition 5.1.3. Let E be an elliptic curve over F and let EF be the elliptic curve that is associated
to the same equation as E, only as an equation over an algebraic closure F . The curve E is called
supersingular if End(EF )Q := End(EF )⊗Z Q is a quaternion algebra over Q.

Lemma 5.1.4. Let E be a supersingular elliptic curve over F . Then the following hold:

(i) F is a field with char(F ) = p > 0;

(ii) If E is an elliptic curve over F , then B = End(E)Q is a quaternion algebra over Q that is
ramified at p and ∞;

(iii) If E is an elliptic curve over F , then End(E) is a maximal order in B.

Proof. See [Voi21, Proposition 42.1.7, 42.1.9].

Note that by [Voi21, 42.1.8], statements (ii) and (iii) still hold for supersingular elliptic curves over
Fp2 .

By [Voi21, Lemma 42.1.11], if E and E′ are two supersingular elliptic curves over the same field,
then there exists an isogeny E → E′. The converse also holds, so if there exists an isogeny E → E′

with E a supersingular elliptic curve, then E′ is a supersingular elliptic curve as well.

By [GL24, Definition 3.1, 3.2.6], there exist connected supersingular isogeny graphs G(p, l) for every
l ̸= p prime. We will not go into details of what these graphs are, but the important thing is that
paths in supersingular isogeny graphs correspond to compositions of isogenies, and the degree of a
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composition is the product of the degrees. This gives us a way of constructing isogenies of certain
degree. More precisely, let E be a supersingular elliptic curve, then for every D ∈ Z>0 such that
p ∤ D, there exists a curve E′ and an isogeny E → E′ of degree D.

We let E0 denote a supersingular elliptic curve. We let O0 := End(E0) be the corresponding maximal
order in the quaternion algebra B0 := O0 ⊗Q Q.

Theorem 5.1.5 (Deuring correspondence). The association E 7→ Hom(E,E0) is functorial and
defines an equivalence of categories of

supersingular elliptic curves over F , under isogenies

and

invertible left O0-modules, under nonzero left O0-module homomorphisms.

Moreover, The mapping E 7→ [I] from isomorphism classes of supersingular elliptic curves to O0-
isomorphism classes of invertible left O0-ideals I ⊂ O0 is a bijection. We also have End(E) ∼= OR(I)
and Aut(E) ∼= OR(I)

×.

Proof. See Voight [Voi21, Theorem 42.3.2, Corollary 42.3.7].

Up to O0-isomorphism, every invertible left O0-module I is contained in O0. This means that I is a
lattice in O0, hence it is an integral lattice. We may therefore regard the invertible left O0-modules
as integral left ideals of O0.

By [Voi21, Remark 42.3.3], the functor Hom(−, E0) is contravariant. However, there is a similar
categorical equivalence if instead of left O0-modules, we take right invertible O0-modules and the
covariant functor Hom(E0,−).

The Deuring correspondence allows us to describe problems regarding isogenies of supersingular
elliptic curves in terms of ideals in orders of quaternion algebras. In the next subsection we explore
how this connection finds its applications in cryptography.

5.2 SQIsign2D-East

We use [GL24, 4.3], [Cas+24] and [Nak+24] as our main references. SQIsign2D-East is a crypto-
graphic protocol. Its name is an abbreviation of “short quaternion and isogeny signature”, the “2D”
stands for 2-dimensional. The “East” part is to distinct the protocol from SQIsign2D-West, which
is another protocol. We describe the main idea behind SQIsign2D-East in this subsection.

SQIsign2D-East is a digital signature scheme. Consider three persons: the sender, the receiver and
the forger. The sender wants to send a message to the receiver, while the forger wants to send
a message to the receiver that seems to originate from the sender. The goal of a digital signature
scheme is to give the sender a signature along with his message that the forger could never reproduce.
If there is a reliable way to make such signatures, the receiver can know for sure that the message
he receives actually originates from the sender, rather than the forger.

The general idea for such a signature is as follows. Let M be a message that the sender wants to
send to the receiver. There is some publicly available method that converts a message M into a
challenge C(M) and there is a publicly available method V (x) for verifying whether a given input
x is a solution to C(M). The sender then publishes C(M) based on his message. The sender is
the only one with the private information necessary to solve C(M), so the sender solves C(M) and
publishes some information X, his signature, that can be used as input for the verification process.
The receiver uses X as input for the verification process and computes V (X). When it is confirmed
that X was indeed a solution to C(M), the receiver knows that the message M originated from the
sender.

In SQIsign2D-East, the setup is as follows.

30



(i) p is a very large prime of the form p = 2a+bf − 1 with a ≈ b and p ≈ 2a+b;

(ii) E0 is the supersingular elliptic curve defined by y2 = x3 + x over Fp2 ;

(iii) O0 is the maximal order with Z-basis 1, i, i+j2 , 1+ij2 in the quaternion algebra End(E0)Q over
Q that is ramified at p and ∞.

The information (p, a, b, E0, O0) is then published. Note that [Cas+24] also publishes two points
P0, Q0. These points are necessary for the functioning of certain algorithms that are being used in
SQIsign2D-East, but we will not go into the role of these points. So for the sake of simplicity, we
will ignore these points.

First, the sender generates an isogeny τ : E0 → EA of prime degree Nτ < 4
√
p. The curve EA is

published and τ is kept private. The sender then computes an isogeny ψ : E0 → E1 of odd degree
Nψ < 2a+b and again publishes E1, while keeping ψ secret. The sender then uses some publicly
available method to convert his message into an isogeny ϕ : E1 → E2 of degree Nϕ = 2b. The
challenge, then, is for the sender to find isogenies σ : EA → E2 and ω : EA → E3 with very specific
properties. For the exact properties, see [Cas+24, 1.2] Using the private information τ , the sender
privately computes such σ, ω and publishes them. The receiver can then verify that these isogenies
indeed satisfy the specific criteria. This can be visualized in the following diagram:

E0 E1

EA E2

E3

ψ

ϕτ

σ

ω

Everything in this diagram is public, except for τ and ψ.

The security of SQIsign2D-East relies on the assumption that the challenge to find ω, σ with the
right properties is very hard without knowledge of τ . If someone like the forger wants to impersonate
the sender and does not know τ , the forger is stuck in the hard formulation of the problem in terms
of isogenies. However, the curve E0 and its endomorphism ring End(E0) = O0 are known, so with a
known isogeny τ : E0 → EA, the sender can use the Deuring correspondence to rephrase the problem
in terms of ideals of orders in quaternion algebras.

This is also why ψ is kept secret. If it would be public, then after publishing σ, the forger could
compute σ∨ ◦ ϕ ◦ ψ, which is an isogeny E0 → EA. The Deuring correspondence can then be used
as well to state the problem in terms of ideals. This can be used to generate new σ′, ω′ that also
pass the verification without being rejected. But then the signature is forged!

5.3 Sampling ideals

In this subsection, we zoom in on how isogenies correspond to ideals in SQIsign2D-East. We use
[Cas+24, 4.2] as our main reference.

For an isogeny s, let Is be its corresponding ideal under the Deuring correspondence. In SQIsign2D-
East, the sender finds an isogeny σ by computing its corresponding ideal Iσ. First, the isogeny
ϕ ◦ψ ◦ τ∨ : EA → E2 is computed. Its corresponding ideal is J := IτIψIϕ. The assignment I 7→ I is
the standard involution. Then an element α ∈ J is sampled in order to find an ideal Iσ = J α

NτNψ2b
.

The sampled α must, however, have some properties.

Definition 5.3.1. Let q be a positive integer, let Nτ prime and letM(q) := q(2a−q)(2a+b−q(2a−q).
Then, q is (2a, 2b, Nτ )-nice if q satisfies:
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(i) q ≡ 1 (mod 2);

(ii) q < 2a;

(iii) q(2a − q) < 2a+b;

(iv)
(
M(q)
Nτ

)
=

(
−1
Nτ

)
.

The symbols
( ·
·
)
denote Legendre symbols.

The element α must be generated such that the resulting ideal Iσ has norm N(Iσ) that is (2
a, 2b, Nτ )-

nice. As shown in [Cas+24, 2], when Nτ ≈ 2e holds, then after approximately e signatures, the value
of Nτ can be uniquely determined by the forger due to a leakage of Legendre symbols. To avoid
this, the (2a, 2b, Nτ )-niceness requirement is replaced by another requirement.

Definition 5.3.2. Let q be a positive integer. Then, q is (2a, 2b, f)3-nice if q′ := q/gcd(q, f) satisfies:

(i) q′(2a − q′)(2a+b − q(2a − q)) ≡ 0 (mod 3);

(ii) q′ ≡ 1 (mod 2);

(iii) q′ < 2a;

(iv) q′(2a − q′) < 2a+b.

In the proposed fix for SQIsign2D-East in [Cas+24, 3], an element α is sampled with the property
that N(α) < f2aN(J) and such that q := N(α)/N(J) is (2a, 2b, Nτ )3-nice. We can then take
Iσ = J α

N(J) .

The approach for generating such elements α ∈ J is by sampling them at random 1000 times,
and then hopefully a suitable α is found. Since we take 2a ≈ √

p, it is not guaranteed that we
actually find a suitable α, as there are way more than 1000 elements in J that do not satisfy the
(2a, 2b, f)3-niceness criteria. So in order for the fix to be feasible, we must know something about
the probabilities that a sampled α has an associated q = N(α)/N(J) that is (2a, 2b, f)3-nice.

By conditions (iii) and (iv) of Definition 5.3.2, there are only finitely many elements α to consider
sampling, since these criteria impose bounds on the norm of α. By conditions (i) and (ii), we need
to know what the odds are that specific congruence relations are satisfied on the norm of α.

We let Pr,n denote the value of the limit of Problem 2.3.2, associated to the ideal J . The probability
that q (associated to a sampled α) is (2a, 2b, f)3-nice can be approximated as

P(q is nice) ≈
6f−1∑
r=0

cr,2cr,3PrN(J),6fN(J)
gcd(r, f)2

f2
. (5.3.3)

Here cr,2cr,3 ∈ {0, 1} with cr,2 = 1 if and only if r/gcd(r, f) is odd, and cr,3 = 1 if and only if
a ≡ b (mod 2) or r/gcd(r, f) ̸= 1 (mod 3).

The values of P(q is nice) can be found using Theorem 4.5.1, once we have verified that J is a lattice
that satisfies the necessary criteria. The ideal J is a left ideal of the order O0; the order that is
obtained from End(E0) via the Deuring correspondence. This order O0 is maximal in a quaternion
algebra B that is ramified at p and ∞, and isomorphic to End(E0). By Lemma 4.5.2, we see that J
satisfies the criteria, so we can apply the results. Furthermore, note that 6f is way less than p, so
we are never dealing with the probabilities in the ramified case.

The results in [Cas+24] that are deduced from approaches using P(q is nice) rely on the truth of
Conjecture 6 in [Cas+24]. As we have seen in Subsection 4.5, Conjecture 6 is not true in its greatest
generality. However, for the purpose of sampling ideals Iσ with the right properties, the probabilities
Pr,n do correspond to the conjectured values. In particular, the derived results that were reliant on
Conjecture 6 do hold.
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6 Future work

The central problem in this thesis has been to find the limits 2.3.2. We did manage to solve Problem
2.3.1 for all Eichler orders and all their locally principal lattices, but that is far from solving Problem
2.3.1 in its greatest generality. So it would be interesting to further study the probabilities Pr,n for
arbitrary orders O and for integral lattices that are not locally principal.

We can generalize the problem even further by considering ideals I with integral elements, but where
I2 ⊂ I does not hold. An example is the lattice I with Z-basis 1, i, j, 2ij inside (−1,−1 | Q). All its
elements are integral, so the limit 2.3.2 does make sense for I, but ij ̸∈ I, so we find I2 ̸⊂ I.

We can also notice that the local approach we used for solving Problem 2.3.1 still works if the
corresponding global quaternion algebra is split. So is there any way to make sense of the probabilities
Pr,n for integral lattices in M2(Q)?

Finally, we can regard Problem 2.3.1 as a problem stated in terms of a quaternary quadratic form.
Every norm map of a quaternion algebra is a quadratic form after all. We can extend the problem
to include arbitrary quadratic forms instead of just norm forms. We heavily made use of the
multiplicative property of the norm, so It would be interesting to investigate the effect of this
multiplicativity on the outcome of the probabilities.
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