
Constructing a forward-looking adaptation of retrograde analysis
through the lens of Onitama
Elderbroek, Liam

Citation
Elderbroek, L. (2025). Constructing a forward-looking adaptation of retrograde analysis
through the lens of Onitama.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master Thesis,
2023

Downloaded from: https://hdl.handle.net/1887/4262354

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/4262354

Liam Elderbroek

Constructing a forward-looking adaptation of

retrograde analysis through the lens of Onitama

Bachelor thesis

20th August 2025

Thesis supervisors: prof.dr. F.M. Spieksma (MI)
dr. R. van Vliet (LIACS)

Leiden University
Mathematical Institute

LIACS

Contents

1 Introduction 2

1.1 Rules . 3
1.2 De�nitions . 3

2 Retrograde analysis 5

2.1 Positional strategies . 6
2.2 Retrograde analysis . 7
2.3 Optimal strategies . 8
2.4 Runtime . 10

3 The complexity of Onitama 11

3.1 Upper bound for the number of board con�gurations 11
3.2 Lower bound for the number of board con�gurations 12
3.3 Card con�gurations . 19
3.4 The actual number of reachable game states . 19
3.5 The complexity of retrograde analysis . 20

4 Forward-looking retrograde analysis 20

4.1 Forward-looking retrograde analysis . 21
4.2 Complexity . 28
4.3 Results . 28

5 State symmetries 29

5.1 Player-swapping . 30
5.2 Results . 32

6 Conclusion and further research 33

6.1 Conclusion . 33
6.2 Further research . 34

References 36

Glossary 37

Appendix 39

Data collection and source code . 39

1

Abstract

In this thesis we study the board game Onitama[Sat], focusing on methods of determining this
game's optimal strategies in order to �nd strong and weak solutions for this game and generalisations
thereof. We apply a general-purpose algorithm for strongly solving similar chess-like games called
retrograde analysis[And+10], and prove its infeasibility to strongly solve Onitama by providing
upper and lower bounds for the number of distinct game states it has to analyse. We introduce
a new algorithm based on retrograde analysis that we formally prove is capable of weakly solving
the game for all non-losing players instead, called forward-looking retrograde analysis. We also
provide a useful symmetry that can be applied to the state space of this game to cut its size in
half, signi�cantly reducing retrograde analysis' runtime.

This analysis is done on a generalisation of the game with respect to the dimensions of the
game board. The largest board size retrograde analysis is able to solve in under two hours is 3× 4,
with forward-looking retrograde analysis being able to increase this to 4 × 3. While making use
of symmetries, forward-looking retrograde analysis is also able to solve the 3 × 4 board roughly
98.30% faster than retrograde analysis.

1 Introduction

Deterministic sequential games that have perfect information lend themselves well to strategy analysis.
Due to all information being known to all players, and all subsequent game states being based solely
on the decisions the players make, the outcome of the game is entirely dependent on the strategies the
players employ. These strategies can be analysed and compared with each other, forming a notion of
optimal strategies, i.e., ones that guarantee the best possible outcome for the current player, regardless
of what their opponents do.

Such optimal strategies have already been researched for a variety of games, such as chess[Ewe02],
checkers[Sch+07], shogi[ISR02] and Go[Wer04]. These games have accordingly been divided into classes
based on how di�cult such strategies are to compute. In particular, there are separate de�nitions for
games being weakly solved and strongly solved. A game is considered weakly solved, if for both players
an optimal strategy can be found from the initial state covering all of their opponent's potential moves
with reasonable computational resources. A game is considered strongly solved if an optimal strategy
can be found covering all valid game states with reasonable computational resources. Checkers, for
example, has been weakly solved[Sch+07] in 2007, while not yet having been strongly solved. Chess,
however, remains unsolved�even weakly�to this day.

In this thesis, we research the solvability of the board game Onitama[Sat]. Onitama is a deterministic,
sequential, two-player, perfect information strategy game, thus lending itself neatly to this kind of
analysis. Methods such as Monte Carlo tree search[Arn21] and theory of mind [Boe24] have already
been studied in relation to this game, in an attempt to �nd well-performing moves to play in real time.
In this thesis, we instead analyse the game statically, and try to �nd optimal strategies that weakly
and strongly solve generalisations of this game with respect to the size of the game board.

We analyse such strategies by means of state graphs: directed graphs where the nodes represent the
di�erent game states, and the edges represent the moves the current player in each of these source
game states can perform to end up in the target state.

First, in Section 1, we explain the rules of the game, and de�ne the relevant terminology for this thesis.

In Section 2 we discuss retrograde analysis [And+10], an existing algorithm that makes use of these
state graphs, that is �t for strongly solving chess-like games. Using combinatorics and computational
complexity theory, in Section 3 we then argue that the number of game states in Onitama's state graph
grows so rapidly with the size of the board, that strongly solving this game becomes an increasingly
less feasible task.

In Section 4, we then introduce a new algorithm developed for this thesis, based on retrograde analysis,
�t for weakly solving chess-like games for all players that cannot lose under optimal play. These two
algorithms are compared in runtime, as well as in how much of the state space they analyse.

2

Finally, in Section 5, we introduce a useful symmetry that can be applied on the game states that cuts
the size of the state space in half when looking for optimal strategies.

1.1 Rules

1 2 3 4 5

1 6šYP6YP1•TK6YP6šYP
2 zzZzzZz
3 zZzzZzzZ
4 zzZzzZz
5 6šYp6Yp1•Tk6Yp6šYp

Figure 1: The initial state of
the 5× 5 board.

We start by brie�y explaining the rules of Onitama.

Onitama[Sat] is played with two players on a 5 × 5 board, with the
players taking on teams red and blue. Each player has �ve pawns in
their own team's colour: four students and one master. The players
take on opposite ends of the board, with the starting positions of the
pawns being in the row in front of the associated player, with the
master taking the centre, as is depicted in Figure 1. In this, and all
subsequent �gures, the chess pawns represent students and the chess
kings represent masters.

Five move cards are drawn randomly from the deck under a uniform
distribution. In standard play this deck consists of sixteen unique move
cards. Two of these drawn cards are placed in front of each player, and
one is set aside�all face-up. These cards depict tiles relative to an
origin. This origin can be associated with the current position of any
of the current player's pawns. The o�sets from the origin of a card to a tile on the same card describe
how a player is allowed to move one of their pawns across the board. Each card also has an associated
colour. The colour of the card that is set aside, dictates which player starts.

A player's turn ordinarily consists of moving one of their pawns in accordance with an o�set on one of
the cards they hold, after which the player has to exchange the used card for the one that is set aside.
The turn is then passed on to the opponent.

A move is only allowed if the moved pawn's destination is still on the board, and is not on a tile already
occupied by a pawn of the same colour. If a pawn is moved to a tile occupied by a pawn of opposing
colour, the opposing-coloured pawn is captured and taken out of play.

Figure 2 shows an example of how a move can alter the game state. In this figure the two cards on
each side depict the hands of each respective player, with the card next to the board being the set
aside card.

If no valid move is possible, the player only has to exchange one of their cards with the one set aside,
after which the player's turn ends�without having moved a pawn.

The game ends when a player captures the opponent's master, or when a player's master reaches the
centre tile on the opposite end of the board. In both cases, the player who performed the �nal move
is considered the winner.

In this game there is the potential for ending up in a state that has been visited before within the
same game, meaning there is the potential for in�nite play. For the sake of analysis we consider an
in�nite game as `ending' in a draw. This happens if neither player ever makes a move to a state that
would end the game.

1.2 De�nitions

We start by giving more rigorous de�nitions of the concepts of this game through mathematical con-
structs, which we continue to use through the rest of this thesis to aid in theorems and proofs.

There are two players in the game, corresponding to the colours red and blue. For any colour c, let c
denote its converse (red ↔ blue). Both of these players take control of a number of pawns.

De�nition 1 (player). A player π is either red (r) or blue (b). π denotes π's opponent.

3

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

1 2 3 4 5

1 zZ6YPzZzzZ
2 zzZz1•TK6YP
3 zZ6YpzZzzZ
4 6YpzZzzZz
5 1•TkzzZ6YpzZ

■
Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

1 2 3 4 5

1 zZzzZzzZ
2 zzZz1•TK6YP
3 zZ6YPzZzzZ
4 6YpzZzzZz
5 1•TkzzZ6YpzZ ■

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Figure 2: Example of a move. It is Red's turn, and they decide to move their pawn on tile (2, 1) to tile
(2, 3) using their �rst card, capturing a blue student. Note how in the next state the current player
is switched, with the used card and the set aside card being swapped accordingly. The used card is
rotated halfway because in the next turn the other player will have to take this card into their hand,
oriented for them.

De�nition 2 (pawn). A pawn p is either a master or a student, pertaining to a particular player π.
p ∈ P := {mr,mb, sr, sb}. p denotes the same pawn type (master or student) of the other player (red

↔ blue).

The game board consists of a grid of tiles, each potentially holding a single pawn.

De�nition 3 (tile). A tile t is either empty (∅) or holds a pawn; t ∈ T := P ∪ {∅}.

De�nition 4 (board). A board B is an n×m grid of tiles: B ∈ Tn×m, with n ≥ 1, m ≥ 2. n and m
denote the width and height of the board respectively. For any board B, Bxy denotes the tile in the x-th
column from the left and the y-th row from the top, where the red player is always seated at the top.

Note that a pawn is solely de�ned by its type and its colour�its position on the board is irrelevant.
Two boards are deemed equal if all their associated tiles are equal, meaning that boards are invariant
over transposition of identically coloured students.

There are two special tiles on a board: the temple arches.

De�nition 5 (temple arch). tr := (⌊n+1
2 ⌋, 1) and tb := (⌈n+1

2 ⌉,m) are the temple arches of respectively
the red and blue players. These are the starting positions of the masters. If a master reaches the temple

arch of opposing colour, the game ends.

Pawns are moved around the board according to move cards held by each player.

De�nition 6 (card). A card C depicts a set of o�sets from the origin. A card permits the player

to move any of their pawns in accordance with any of these o�sets. C ⊂ [−2..2]2. Each card is also

associated with a colour: χ : P([−2..2]2) → {r, b}. The colour of the set-aside card in the initial state

dictates which player's turn it is �rst.

All these game elements combine to form a single game state: a single point in time during a play of
the game.

De�nition 7 (game state). A game state S = (π,B,Cs, CR, CB) is a 5-tuple consisting of the current

4

player π (either red or blue), a board B ∈ Tn×m and �ve cards (⊂ [−2..2]2), in the order of the set-aside

card Cs, the multiset of the two cards CR := {Cr1, Cr2} belonging to the red player, and the multiset

of the two cards CB := {Cb1, Cb2} belonging to the blue player. X denotes the set of all game states

reachable from the initial state.

Much like the positions of identically coloured students, the order of the two cards held by each player
does not matter for game state equality.

For the initial state SI = (π,B,Cs, CR, CB) we have the following:

� �ve move cards are randomly drawn: Cr1, Cr2, Cb1, Cb2, Cs ∈ P([−2..2]2), with the two players'
hands CR = {Cr1, Cr2} and CB = {Cb1, Cb2} (note that these hands are unordered multisets);

� the current player is the one indicated by the set aside card: π = χ(Cs);

� on the board, the masters are on their own temple arches: Btr = mr, Btb = mb. The students
occupy the other tiles in those rows: Bx,1 = sr for x ∈ [1..n] s.t. (x, 1) ̸= tr, and Bx,m = sb for
x ∈ [1..n] s.t. (x,m) ̸= tb. The rest of the tiles are empty: Bxy = ∅ for x ∈ [1..n], y ∈ [2..m− 1].
The initial 5× 5 board state is displayed in Figure 1.

De�nition 8 (terminal state). A game state is called terminal if and only if at least one of the

following holds:

� ∃m ∈ {mr,mb} : Bxy ̸= m ∀ (x, y) ∈ [1..n] × [1..m] (a master got captured and got taken o� of

the board);

� Btr = mb or Btb = mr (a master reached the temple arch of the opponent).

T ⊂ X denotes the set of all terminal states that are reachable from the initial state.

De�nition 9 (move). A move m := (o, d, C) ∈ M := ([1..n]× [1..m])2 × P([−2..2]2) holds an origin
o and destination d, as well as a card C such that d− o ∈ C.

A move m = (o, d, C) is considered valid for a speci�c game state S = (π,B,Cs, CR, CB) if and only
if C ∈ Cπ, Bo ∈ {mπ, sπ} and Bd ̸∈ {mπ, sπ}, i.e., if and only if the move is de�ned by one of the
current player's cards, and it moves one of the current player's pawns to either an empty tile, or one
occupied by an opponent's pawn.

We de�ne MS as the set of all valid moves pertaining to a game state S. In the rare case that by
this de�nition MS = ∅ with S ̸∈ T , we instead de�ne MS = Cπ�the two cards the player has choice
between discarding. For terminal states S ∈ T we do simply set MS = ∅.

For each move m = (o, d, C) we also de�ne a mapping m : {S ∈ X | m ∈MS} → X from any state for
which this move is valid to its next state with the move applied: let S = (π,B,Cs, CR, CB) such that
m ∈MS , then m(S) := (π′, B′, C ′

s, C
′
R, C

′
B), where

� π′ = π�the current player's opponent;

� C ′
π = Cπ, C

′
s = C and C ′

π = (Cπ \ {C}) ∪ {Cs}�the used card is swapped with the set-aside
card;

� B′
xy = Bxy for all (x, y) ̸= o, d, remaining unaltered, with only B′

o = ∅ and B′
d = Bo�the pawn

moving from its origin to its destination.

In the rare case that there are no valid conventional moves, and therefore move m = C ∈ P([−2..2]2)
is a card to discard, then m(S) is the same, except that B′ = B.

2 Retrograde analysis

For deterministic turn-based games, each decision point for a player can be considered a game state,
where each valid move alters the game state into a new one. We can render the connections between

5

these game states by means of a graph, where the vertices represent the game states reachable from
the initial state, and the arrows represent the valid moves between these game states.

De�nition 10 (state graph). Let G = (V,A) be a directed graph, with the nodes V = X consisting

of all reachable game states from the initial state, and the edges being between two states reachable via

single valid move: A := {(S, S′) ∈ V 2 | ∃m ∈MS s.t. m(S) = S′}. We call G the state graph for the

game Onitama.

In this graph, each play of the game�each sequence of game states and moves from an initial state�
can be represented as a path through the state graph. As by de�nition each terminal state has no
valid moves, each vertex corresponding to a terminal state has no outgoing edges, meaning each path
that ends up in a terminal state has to end there.

For the remainder of this thesis, when referring to a `path through the state graph,' we implicitly
assume this path to either end in a terminal state, or go on forever.

In this section we de�ne strategies based on these state graphs, associate those with optimal play, and
discuss an algorithm �t for �nding such optimal strategies for Onitama.

2.1 Positional strategies

As all non-terminal game states mark a decision point for a player, and every game state inherently
stores all relevant history within itself, each deterministic strategy should always provide the same
move to every individual game state, regardless of the history of the game.

For this reason, deterministic strategies can be reduced from algorithms assigning a game state its
move, to simply the complete mapping itself. We call such mappings `positional strategies.'

De�nition 11 (positional strategy). A positional strategy1 is a deterministic mapping x : X → M,

assigning a speci�c move to be performed for each reachable, non-terminal game state.

Positional strategies say nothing about the quality of their outcomes; they merely assign moves to
game states. We would like to have a notion of a `perfect' strategy�one that cannot be improved for
a single player by the sole actions of that player.

De�nition 12 (Perfect positional strategy). A positional strategy x is called perfect if and only if

for each player π no positional strategy x′ exists in which all of π's moves are given by x, and when

starting in some state S ∈ X, π ends up with a better outcome than they get through x.

Every perfect positional strategy x also associates each node with a quality Qx : X → {Win,Draw,Loss},
dictating the best outcome the current player can enforce by following x. The ordering of these qualities
is obviously Win > Draw > Loss.

Perfect positional strategies induce Nash equilibria: under a perfect positional strategy, no single player
can improve their outcome by deviating from it, so long as their opponent continues playing according
to the perfect positional strategy. In Section 2.2 we show such a perfect positional strategy always
exists.

For perfect positional strategies, each player is guaranteed their best possible outcome given their
opponent's strategy.

Once a perfect positional strategy starting in the initial state has been found, one could argue that
such deterministic games have no merit being played anymore, as by virtue of the perfect positional
strategy, the optimal way of play has already been found. As such, all games would be played in the
exact same way; the game is, in essence, solved.

De�nition 13 (Strong solution). A game is considered strongly solved if there exists an algorithm

that can construct a perfect positional strategy covering all game states reachable from all initial states

1Referred to as pure positional strategies in [And+10].

6

with feasible computational resources2.

Many games are too complicated to be solved strongly; their state space is too large to analyse for a
perfect positional strategy in a feasible amount of time. For such complicated games, there is also the
notion of a weak solution, for which the space that needs to be analysed can be greatly reduced.

De�nition 14 (Weak solution). A game is considered weakly solved if there exists an algorithm that

can construct part of a perfect positional strategy x : X ′ →M, X ′ ⊂ X such that from all initial states,

both players have their next optimal move de�ned by x regardless of what move their opponent would

perform, with feasible computational resources2.

Weak solutions, in comparison with strong solutions, allow for a large part of the state graph to be
pruned for analysis. Because weak solutions only concern themselves with strategies where at least
one player plays optimally, weak solutions do not have to consider game states that are only reachable
through suboptimal play by both players.

If, for example, from a vertex S with current player π, a move to a state that is losing for π (and thus
winning for π) is found, then the optimal move out of S has been found. Therefore, all other moves
out of S are suboptimal. Weak solutions do not concern themselves with strategies where both players
play suboptimally, so when analysing beyond any suboptimal move out of S, one would only still need
to search for optimal moves for π, as π will have at that point already played suboptimally. If in some
state S′ beyond S, an optimal move for π has been found, then no other move out of S′ has to be
analysed anymore, as beyond that point both players will have played suboptimally. Subsequent states
can therefore be left completely unanalysed. This pruning can severely decrease the number of nodes
and edges that would need to be analysed, cutting down on the amount of resources necessary to �nd
a solution.

In this thesis, we consider all possible initial states for Onitama as issuing individual subgames to
the main board game. As such, with `solving Onitama' we mean �nding a (weak or strong) solution
from a given initial state, after the cards have already been dealt, and an staring player has thus been
assigned.

We �rst discuss an algorithm capable of strongly solving Onitama, given enough time and resources:
retrograde analysis.

2.2 Retrograde analysis

In �nite games, perfect positional strategies can often be computed using a simple Minimax algorithm.
Such algorithms work bottom-up, evaluating the quality of each terminal state, and then iteratively
moving up the state tree, mapping each node to both the optimal outcome for that state's player as
well as the move resulting in that optimal outcome.

Such a strategy, however, only works for �nite games with state trees. Once in�nite play is allowed
(and occasionally bene�cial), evaluating the quality of terminal states and working bottom-up is no
longer guaranteed to work, as not all games are guaranteed to terminate under perfect play by all
players.

We call such games chess-like. A game is chess-like if it is strictly competitive3, has perfect information,
the outcome of each game is either win, lose or draw with in�nite play being associated with draws,
and each game state is at a �nite distance from the initial state and has a �nite number of immediate
successors[Ewe02]. Onitama is one such chess-like game.

In [And+10], an algorithm for solving games with potential in�nite play is discussed: retrograde ana-

lysis. Retrograde analysis is able to compute perfect positional strategies for chess-like games for which
an explicit state graph is given. Retrograde analysis' steps are formally worked out for Onitama in

2For this thesis, `feasible computational resources' means taking under two hours to compute on an AMD Ryzen 5
2600 CPU with 16GB of DDR4 SDRAM.

3A game is considered strictly competitive if an outcome is better for one player if and only if it is worse for another.

7

Algorithm 1. (Note that this algorithm already contains several generalisations in preparation for
Algorithm 2. In particular, for the regular retrograde analysis algorithm the full state graph is given,
meaning there are no unexpanded leaf nodes: VL = ∅, and all unlabelled states are fully expanded:
VF = VU . Additionally anything to do with draw nodes in AnalyseEdge is super�uous for retrograde
analysis, as it only labels Draws as a �nal step.)

Retrograde analysis starts o� by labelling each terminal state with its associated outcome (in our case
always losing for what would be its current player). It then iteratively picks an unlabelled edge (u, v)
from an unlabelled state u to a labelled state v, which it then labels according to u's interests using
the information provided by v:

� if v is losing, then this edge provides a winning move for u's player: it will label u winning, (u, v)
optimal, and all other outgoing edges from u redundant;

� if v is winning, then this edge guarantees a loss for u's player. This is thus only the optimal move
for u if all moves out of u lead to a winning node: if (u, v) is the last unlabelled edge out of u,
it will label it optimal and label u losing. Otherwise, it will simply label (u, v) redundant.

Through these rules, a node is only labelled after all of its outgoing edges have been considered and
labelled as well, with only a single outgoing edge per vertex being labelled `optimal.'

Once no such unlabelled edges from an unlabelled node to a labelled one exist anymore, all remaining
unlabelled edges are between two unlabelled nodes. Furthermore, every node for which all edges have
been labelled, has itself been labelled as well, meaning all remaining unlabelled nodes have at least
one outgoing edge still unlabelled. These two facts combined tell us that every unlabelled node has an
in�nite path starting in that node going through exclusively unlabelled nodes and edges.

Note that if for any of these unlabelled nodes there is an edge to a losing node, it would have been
marked optimal and the node would have been labelled. Therefore, every outgoing edge from these
nodes either leads to an unlabelled node, or to a winning node.

As an in�nite game never assigns a winner nor a loser, they e�ectively form draws�which is preferred
over the loss that might follow upon deviating from this unlabelled path. In accordance with this
preference, every unlabelled node will be labelled a `draw,' with any arbitrary one of its unlabelled
outgoing edges labelled optimal (and the rest redundant).

As such, this algorithm always produces a perfect positional strategy.

A more formal proof of this algorithm can be found in [And+10].

2.3 Optimal strategies

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Figure 3: The boar card.

This algorithm assigns a quality and an optimal move to every game state
reachable from the initial state: it strongly solves the game. Table 1 shows
which of the two players (if any) wins if both players play optimally in
games played on a variety of board sizes with all cards being the boar card
in Figure 3, allowing each pawn to move a single tile forward, left or right.
Because all cards are the boar, the set-aside card in particular is a boar as
well. The colour of the boar card is red, meaning Red is �rst to move.

m
n 1 2 3 4 5

2 Red Red Red Red Red
3 Blue Blue Blue Blue �
4 Red Red Red � �
5 Blue Draw � � �

Table 1: Winner of the game for various board sizes n × m if both players play optimally, with
exclusively boar cards. All tests without results exceeded two hours in runtime and were terminated.

8

Algorithm 1 Retrograde analysis on state graph G = (X,A)

1: x(S)← Unknown for all S ∈ X ▷ For each state, set its `optimal move' to Unknown.
2: q(S)← Unlabelled for all S ∈ X ▷ q stores the quality of all nodes. Initially no nodes are labelled.

3: ▷ Analyses edge (S, Sn), with AU storing all unlabelled edges. ◁
4: function AnalyseEdge(S, Sn, AU , q, x)
5: if q(Sn) = Lose then
6: ▷ If Sn is losing for Sn's current player, it is winning for S's current player. ◁
7: q(S)←Win
8: x(S)← m s.t. m(S) = Sn

9: AU ← AU \ {(s, sn) ∈ AU : s = S} ▷ Label all other outgoing edges redundant.

10: else if q(Sn) = Win then
11: ▷ If Sn is winning for Sn's current player, it is losing for S's current player. ◁
12: if {(s, sn) ∈ AU : s = S} = {(S, Sn)} then ▷ If this is S's last unlabelled outgoing edge.

13: if ∃m ∈MS s.t. q(m(S)) = Draw then ▷ Prefer a draw over a loss.

14: q(S)← Draw
15: x(S)← m
16: else

17: q(S)← Lose
18: x(S)← m s.t. m(S) = Sn

19: else if q(Sn) = Draw then ▷ Only occurs in Algorithm 2.

20: if {(s, sn) ∈ AU : s = S} = {(S, Sn)} then ▷ If this is S's last unlabelled outgoing edge.

21: q(S)← Draw
22: x(S)← m s.t. m(S) = Sn

23: AU ← AU \ {(S, Sn)}

24: function RetrogradeAnalysis(AU , G = (V,A), q, x) ▷ AU stores all unlabelled edges.

25: while ∃(S, Sn) ∈ AU : q(S) = Unlabelled and q(Sn) ̸= Unlabelled do
26: ▷ Use the information of Sn's label to label its incoming edge, and possibly also S. ◁
27: AnalyseEdge(S, Sn, AU , q, x)

28: ▷ Determine all unlabelled fully expanded vertices, de�ned as having no outgoing paths through

exclusively unlabelled vertices ending in an unlabelled leaf vertex.

(Only necessary for Algorithm 2; on a completed state graph VF = VU .) ◁
29: VU ← {S ∈ V : q(S) = Unlabelled} ▷ Unlabelled vertices.

30: VL ← {S ∈ VU : S has no outgoing edges in A} ▷ Leaf nodes (states that are not expanded).

31: VF ← {S ∈ VU : there is no path in A ∩ VU
2 from S to a node in VL} ▷ Fully expanded states.

32: ▷ Label all unlabelled, fully expanded vertices draws. ◁
33: for all S ∈ VF do

34: q(S)← Draw
35: x(S)← m s.t. m(S) ∈ VF or q(m(S)) = Draw
36: AU ← AU \ {(s, sn) ∈ AU : s = S}

37: ▷ The last player to move is the winner, so the `current player' during the terminal state has lost. ◁
38: q(S)← Lose for all S ∈ T
39: RetrogradeAnalysis(A,G, q, x)

9

It is worth noting that for m = 2, Red, the starting player, always wins. This is because for m = 2,
the two rows occupied by the di�erent players are directly in front of one another, meaning the blue
master will have a red pawn directly in front of it. Because the red player holds a boar card, they can
move that pawn forward and immediately capture the master, winning them the game.

For m = 3 and n ≤ 3, Blue always wins. This has to do with the fact that in the initial state there is
only a single empty row between the two players. As such, once Red moves any of their pawns forward,
that pawn will be right in front of a blue pawn, allowing Blue to capture that pawn immediately in their
subsequent turn. This blue pawn then also ensures any horizontal movement by Red will place their
pawn in front of a blue pawn as well, allowing for that red pawn to be captured. In short, regardless
of which pawn Red chooses to move and where they choose to move it to, Blue will always be able
to follow it up by capturing that pawn while giving Red no chance of retaliation. As such, Blue can
simply keep capturing red pawns each turn until the red player is forced to move, and in turn sacri�ce,
their master, guaranteeing Blue their win.

This strategy does not directly extend to n > 3, as this provides Red the opportunity to move one of
their students that is next to two other red pawns forward, and after that one gets captured, move one
of those neighbouring pawns horizontally, in front of the blue pawn. This red pawn is then guarded by
the other neighbour. As such, if the blue pawn were to capture this red pawn by moving forward onto
row 1, Red is able to subsequently capture this blue pawn�which could, through strategically picking
the �rst red pawn to move, be made to be the blue master, making it so that Red wins.

1 2

1 zZ6YP
2 1TKzZ
3 zZz
4 z1•Tk
5 6šYpz

Figure 4: 2 × 5 draw
strategy with only boar

cards.

The 2× 5 board results in a draw, which may take the form of both players
moving their master forward, and then moving their pawns back and forth
horizontally in perpetuity, as is shown in Figure 4. Deviation from this
pattern by moving the student forward allows the opponent to move their

student forward as well, after which the original player would be forced to
move one of their pawns forward, onto a tile guarded by the opponent. The
opponent could then capture this pawn while simultaneously guarding both
tiles the other player would be allowed to move their last remaining pawn
onto, ensuring the opponent would win. Deviation by moving the master
forward allows for the opponent to move their student forward, making sure
that regardless of what the other player's next move would be, they could
capture the master next.

Similar results hold for moving the students forward from the initial state,
instead of the masters, or if one moves their master forward whereas the
other moves their student. Neither player can ensure themself a win, so the best-case scenario for both
players is to continue playing forever, in a draw.

2.4 Runtime

For su�ciently complex games, the number of game states�and with it retrograde analysis' search
space�blows up dramatically, potentially demanding more computational resources than the maximum
speci�ed for a `strong solution' in De�nition 13, making it so these games cannot be considered `solved'
anymore.

Table 2 shows the combined runtime of constructing the state graph and executing retrograde analysis
on it, for a variety of di�erent board sizes. This table shows rapid growth in runtime as the size of the
board increases, in some instances going from mere seconds to over an hour by adding just a single
row or column.

As Table 3 shows, most of this time is spent on building up the state graph, with only a miniscule
fraction being taken up by retrograde analysis itself. When optimising this algorithm, it is therefore
signi�cantly more fruitful to try to reduce the size of the state space, making it so the construction of
the state graph does not take as long, as there are fewer states in all to expand.

10

m
n 1 2 3 4 5

2 0.000 s 0.000 s 0.004 s 3.797 s 4862.745 s
3 0.000 s 0.002 s 39.135 s � �
4 0.000 s 0.063 s 4503.315 s � �
5 0.000 s 0.250 s � � �

Table 2: Average runtime for the state graph construction and execution of retrograde analysis for
various board sizes n×m with exclusively boar cards. All tests without results exceeded two hours in
runtime and were terminated. Averaged over 10 runs.

m
n 1 2 3 4 5

2 0.000 s 0.000 s 0.000 s 0.010 s 0.586 s
3 0.000 s 0.000 s 0.048 s � �
4 0.000 s 0.000 s 0.597 s � �
5 0.000 s 0.003 s � � �

Table 3: Average runtime for retrograde analysis on given state graphs of various board sizes n ×m
with exclusively boar cards. For all tests without results, the construction of the state graph exceeded
two hours in runtime, meaning retrograde analysis could not be tested for those sizes. Averaged over
10 runs.

Regardless, the runtime grows so rapidly that a full 5× 5 board seems far out of reach for retrograde
analysis. We thus argue Onitama too complicated to strongly solve within the con�nes of this thesis.

3 The complexity of Onitama

Onitama, while having a very simple ruleset, has a lot of combinatorial elements that result in this
game having a remarkably complex state space.

In this section we discuss crude upper and lower bounds for the various game elements of Onitama,
and use these to formulate an argument against the feasibility of retrograde analysis strongly solving
this game on its conventional 5× 5 board.

We �rst �nd upper and lower bounds for the number of board con�gurations reachable from an initial
state in terms of the board's dimensions, which we then in subsequent subsections expand to also take
the distribution of the cards and the current player into account.

3.1 Upper bound for the number of board con�gurations

On a valid board there are only one or two masters ever present. For each player there are also
anywhere from 0 to n − 1 students in play. Each of these pawns could be on any one of the n · m
tiles of the board, as long as two pawns do not occupy the same tile. Furthermore, transpositions of
students of the same colour leaves the board invariant�we are looking for combinations of tiles for
the students as opposed to permutations. This results in the following upper bound for the number of
board con�gurations:

2∑
M=1

n−1∑
Sr=0

n−1∑
Sb=0

2

(
n ·m

M,Sr, Sb, (nm−M − Sr − Sb)

)
. (1)

In this expression, the three consecutive sums represent the number of masters, red students, and blue
students still in play respectively. For each, we take the multinomial, where we count the number of
distinct ways the n ·m tiles can be divided over the M masters, Sr red students and Sb blue students,
leaving the remaining tiles empty.

We multiply this value by 2 because the multinomial merely concerns itself with the number M of

11

masters still in play�not the colours of these masters. In the case of M = 1, this single master could
belong to any of the two players, and in the case of M = 2, both of these masters need to be of di�erent
colours, leaving only two options to colour them both.

A multinomial coe�cient is largest if its `objects' (the upper value) are dispersed as evenly as possible
over the `bins' (the lower values). For m ≥ 4, this multinomial is thus largest if M = 2 and Sr =
Sb = n− 1. Assuming this multinomial attains its largest possible value across all 2 ·n ·n terms in the
summations, the number of theoretically possible board states is in the order of

O
(
4n2

(
n ·m

2, (n− 1), (n− 1), (nm− 2[n− 1]− 2)

))
= O

(
n2 (nm)!

([n− 1]!)2 (n[m− 2])!

)
. (2)

This upper bound of distinct board con�gurations evaluated on all board sizes from a 1× 2 board up
to a 5× 5 board can be found in Table 4.

m
n 1 2 3 4 5

2 6 188 3582 55 512 766 250
3 12 1002 53 298 2 352 924 93 623 700
4 20 3320 365 004 34 048 112 2 905 957 700
5 30 8390 1 589 940 258 727 220 38 813 144 750

Table 4: Upper bounds provided by Equation (1) for the number of distinct board con�gurations of
an n×m board.

It is immediately evident that the size of the state space grows dramatically with the size of the
game board. It is also noteworthy that in almost all cases, adding one extra column grows the state
space more than adding an extra row does. This has to do with how the initial state is de�ned for
these di�erently-sized boards, and what e�ect that has on possible subsequent states. Going by this
de�nition, adding a row simply adds a row of empty tiles between the two mandatory rows of pawns
in the initial state. This increases the board size, increasing the upper variable in the multinomial
coe�cients in Equation (1), which in turn increases the number of possible pawn con�gurations. Adding
a column, however, adds an additional pawn for each player in the starting con�guration. This means
that in addition to the larger upper variable in the multinomial coe�cient, it also increases the students'
values in the multinomial coe�cient, brining them comparatively closer to the amount of empty tiles,
as opposed to further away. This means the multinomial coe�cient itself will also be closer to its
maximum attainable value, where adding an extra row would only remove it further from its maximum.
Furthermore, the added students add onto the length of the latter two sums in Equation (1), which
results in a comparatively larger increase than for rows.

Equation (1) truly provides an upper bound; this number could contain some states that are inaccessible
from the initial state through normal play. Take for example a game state where both masters occupy
each other's temple. Once the �rst master reaches the other's temple, the game immediately ends,
preventing the second master from reaching the �rst's temple. Despite this state's unreachability, it is
still counted by Equation (1). The upper bounds in Table 4 are thus not sharp.

3.2 Lower bound for the number of board con�gurations

We also provide a crude lower bound for the number of possible board con�gurations reachable from
the initial state of an n×m game, with n,m ≥ 3. We do this by providing an algorithm that can reach
any given board state that adheres to a number of conditions, with which we can then guarantee that
each state that adheres to these conditions is actually reachable from the initial state.

For this lower bound we assume the game starts in its initial state, with the �ve cards consisting
exclusively of copies of the boar card, as seen in Figure 3. This allows both players to move any of
their pawns a single tile forward, left or right. As such, the swapping of the used card with the one
that is set aside becomes irrelevant, because the set-aside card is always the boar card, and each player

12

always holds two copies of the boar card, meaning they can only ever swap a boar card for another
boar card. For the rest of this section, we therefore no longer mention the swapping of the cards, and
have that happen implicitly. The boar card dictates that it is initially Red's turn.

Our methodology is as follows: we �rst capture a student from one of the players, after which this
player is able to stall for the rest of the game by keeping its remaining pawns on their initial row,
constantly moving one of their pawns left and right onto the single empty tile on this row, allowing
the other player to �ll the remaining m− 1 rows arbitrarily.

We thus start by capturing a student.

Lemma 1. Let n,m ≥ 3. If m is even, let B ∈ Tn×m such that B1,1 = B1,m = ∅, B1,2 = sr, and
Bxy is the same as the initial board state for all other tiles (x, y). If m is odd, let B ∈ Tn×m such that

Bn,1 = Bn,m = ∅, Bn,m−1 = sb, and Bxy is the same as the initial board state for all other tiles (x, y).
Then B is reachable from the initial state.

Proof. This process is visualised for a 5× 5 board in Figure 5.

We start with the initial board con�guration. We work towards B by applying consecutive moves as
Red and Blue.

If m is even, we aim to capture the blue student starting on tile (1,m). If m is odd, we instead aim
to capture the red student starting on tile (n, 1). Let xc be the column of the student to be captured,
and let yc be 2 if m is even and m − 1 if m is odd. (xc, yc) is the tile on which the student will be
captured.

For their �rst moves, Red moves their student on tile (xc, 1) forward to tile (xc, 2) and Blue moves
their student on tile (xc,m) forward to tile (xc,m − 1). At this point, tiles (xc, 1) and (xc,m) are
empty, as is the case in B.

After this, the next few moves (m − 3 if m is even, m − 4 if m is odd odd) for the player who is to
capture their opponent's pawn consist of moving their student back and forth horizontally, hopping
onto and o� of tile (xc, yc) repeatedly. In the meantime, the other player moves their student one tile
forward m− 3 times. After these moves, the to-be-captured student is on (xc, yc), with the capturing
student one tile horizontally removed: (xc + 1, yc) if m is even and (xc − 1, yc) if m is odd.

It is at this point the capturing player's turn, meaning they can move their student horizontally over
to tile (xc, yc) and capture the other player's student.

The capturing student will then be on tile (xc, yc), one student of the opponent is captured, and all
other pawns have not moved from their initial positions, meaning we have reached B from the initial
state.

1 2 3 4 5

1 6šYP6YP1•TK6YPzZ
2 zzZzzZ6YP
3 zZzzZzzZ
4 zzZzzZ6Yp
5 6šYp6Yp1•Tk6YpzZ

■
1 2 3 4 5

1 6šYP6YP1•TK6YPzZ
2 zzZzzZz
3 zZzzZzzZ
4 zzZz6šYp6YP
5 6šYp6Yp1•Tk6YpzZ ■

1 2 3 4 5

1 6šYP6YP1•TK6YPzZ
2 zzZzzZz
3 zZzzZzzZ
4 zzZzzZ6Yp
5 6šYp6Yp1•Tk6YpzZ

■

Figure 5: An overview of the student capturing process.

Starting in this board state, we now �ll the middle m− 2 rows with the pawns of the capturing player
in any con�guration, leaving the other player's pawns as they are. We will count the number of distinct

13

ways these pawns of the capturing player can be distributed across the m−1 rows not occupied by the
opponent's pawns as a lower bound for the number of board states reachable from the initial state.

For readability, for the remainder of this section we will be assuming the case where m is even: Red is
the capturing player and Blue is the player whose student got captured. All results still analogously
hold for the case that m that is odd, and Blue is the capturing player instead.

We will also only be focussing on the red player's moves, and assume Blue constantly moves one of
their pawns horizontally onto and o� of the same empty tile on row m repeatedly, keeping o� of the
top m− 1 rows.

Theorem 1. Let n,m ≥ 3 and let B ∈ Tn×m be a board with n− 2 blue students and one blue master,

all in their initial position, with tile (1,m) empty. Furthermore, let all n− 1 red students be contained

in the upper m − 1 rows of B, with (1, 1) empty, and the red master being either on its temple or in

the centre m− 2 rows. The red temple is either empty or contains the red master. Then B is reachable

from the initial state.

Proof. We start with board B′ ∈ Tn×m such that B′
1,1 = B′

1,m = ∅, B′
1,2 = sr, and B′

xy is the same as
in the initial board state for all other tiles (x, y). B′ satis�es the conditions for Lemma 1, meaning B′

is reachable from the initial state.

Let R ⊂ [1..n] × [1..m − 1], |R| = n be the set of the coordinates of the red pawns on board B,
and Ry := {(i, j) ∈ R | j = y} the coordinates in R in row y. Also, let M ⊂ [2..n] be the columns
corresponding to the pawns that still have to be moved: x ∈ M if an only if Bx,1 ̸= B′

x,1. We will be
referring to the pawn that is currently on tile (1, 2) as the `�rst pawn.' Note that as n ≥ 3, the �rst
pawn is always a student.

We will be moving all red pawns into place, going over the target positions row by row from bottom
(row m− 1) to top (row 3), and within each row from right (column n) to left (column 1). Row 2 will
be dealt with separately. Once a pawn has been permanently moved to its destination, that pawn is
considered placed. An overview of the process of the placement of these rows is displayed in Figure 6.

1 2 3 4 5

1 zZ6YP1•TK6YP6šYP
2 6YPzZzzZz
3 zZzzZzzZ
4 zzZzzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 zZ6YP1•TK6YP6šYP
2 zzZz6šYPz
3 zZzzZzzZ
4 zzZzzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 zZ6YPzZ6YP6šYP
2 zzZz6šYPz
3 zZzzZzzZ
4 1TKzZzzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 zZ6YPzZ6YP6šYP
2 6YPzZzzZz
3 zZzzZzzZ
4 1TKzZzzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 zZ6YPzZ6YP6šYP
2 zzZzzZz
3 zZzzZ6YPzZ
4 1TKzZzzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 zZ6YPzZz6šYP
2 zzZzzZz
3 6šYPzzZ6YPzZ
4 1TKzZzzZz
5 zZ6Yp1•Tk6Yp6šYp

Figure 6: An overview of the placement of the bottom m− 2 rows.

Let (x, y) iterate over R in the order just described. We need to place one of our pawns onto tile (x, y).

14

If Bxy = mr, this needs to be our master. In the case that Bxy = sr, if the �rst pawn has not yet been
placed, we will move it instead. Otherwise we place the pawn in row 1 and the column c such that
c ∈ M as small as possible (if it has not yet been placed, but should be), after which M := M \ {c}.
In all cases, let (px, py) be the current location of our chosen pawn.

If our pawn is the master, the �rst pawn has not yet been placed, and x = 1, then move the �rst pawn
horizontally to be one column to the right of the temple. This is possible because n ≥ 3, and we are
only still �lling the bottom m− 2 rows, meaning row 2 currently only contains the �rst student, and
is otherwise empty.

If py = 1, which is the case for all pawns except for the �rst student, move our pawn forward to row 2.
This is again possible because we're only still �lling the bottom m− 2 rows, and the only tile on row 2
that could possibly be occupied in this stage is (1, 2), whereas if py = 1, then px ≥ 2.

From row 2, our pawn can without issue move horizontally to column x, because if necessary for the
master, the �rst pawn has been moved out of the way, and if our pawn is a student then the �rst pawn
should already have been placed beforehand (or is currently being placed). Row 2 is otherwise empty.

Finally, our pawn can move vertically to row y, and be placed. This is possible because all rows
between py and y are completely empty, due to our iterating row by row from bottom to top.

If the �rst pawn was moved out of the way to the column right of the temple, move it back to (1, 2).

Once this has been done for rows m − 1 through 3, rows 3 through m are identical to B. All that is
left is to �x rows 1 and 2. We separately handle three cases: the master has already been placed, the
master has not yet been placed, but still has to be, and the master should not be placed. Let s2 be
the number of students in row 2 in board B.

We �rst handle the case where the master has already been placed. An overview of the process is
visualised in Figure 7.

1 2 3 4 5

1 zZ6YPzZ6YP6šYP
2 6YPzZzzZz
3 zZzzZzzZ
4 zzZ1TKzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 zZ6YPzZ6YP6šYP
2 zzZzzZ6YP
3 zZzzZzzZ
4 zzZ1TKzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 zZzzZ6YP6šYP
2 zzZ6YPzZ6YP
3 zZzzZzzZ
4 zzZ1TKzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 6šYP6YPzZzzZ
2 zzZ6YPzZ6YP
3 zZzzZzzZ
4 zzZ1TKzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 6šYPzzZ6YPzZ
2 zzZ6YPzZ6YP
3 zZzzZzzZ
4 zzZ1TKzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 zZ6YPzZ6YPzZ
2 zzZ6YPzZ6YP
3 zZzzZzzZ
4 zzZ1TKzZz
5 zZ6Yp1•Tk6Yp6šYp

Figure 7: An overview of how rows 1 and 2 are �xed when the master has already been placed.

If the master has already been placed in rows 3 through m− 1, then rows 1 and 2 contain exclusively
red students. In this case we �ll the tiles of R2 from right to left by moving our pawns in the order

15

starting with the �rst pawn if it has not already been placed, followed by the pawns in row 1 from left
to right.

For the �rst s2 students in this ordering, do the following: if we are placing the �rst pawn, move
it horizontally to the destination column (as at this point this pawn is the only one in its row, this
path does not cross any other pawns). If we are instead placing a student starting in row 1, �rst
move it horizontally to column 1 (as it is at this point always the leftmost pawn in row 1, its path is
unimpeded), after which it is moved one tile forward to row 2. From here, move it horizontally, placing
it onto the destination column. As we are �lling them up right-to-left, this is an unimpeded path.

For row 1, all that needs to be done is move the remaining pawns as far to the left as possible from left
to right, and then place them from right to left to their corresponding destination tile in R1, mapped
right-to-left. After this, board B has been reached from B′.

Next we handle the case where the master has not yet been placed, but still has to be. An overview of
this process is visualised in Figure 8.

1 2 3 4 5

1 zZ6YP1•TK6YP6šYP
2 zzZ6YPzZz
3 zZzzZzzZ
4 zzZzzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 zZ6YP1•TK6YP6šYP
2 z6šYPzzZz
3 zZzzZzzZ
4 zzZzzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 zZ6YPzZ6YP6šYP
2 z6šYPz1•TKz
3 zZzzZzzZ
4 zzZzzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 zZ6YPzZ6YP6šYP
2 zzZ6YP1•TKz
3 zZzzZzzZ
4 zzZzzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 zZzzZ6YP6šYP
2 6YPzZ6YP1•TKz
3 zZzzZzzZ
4 zzZzzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 zZ6YPzZ6YPzZ
2 6YPzZ6YP1•TKz
3 zZzzZzzZ
4 zzZzzZz
5 zZ6Yp1•Tk6Yp6šYp

Figure 8: An overview of how rows 1 and 2 are �xed when the master still has to be placed.

If the �rst pawn has not yet been placed, move it to the rightmost student destination in R2. After
this we place the master. As rows m − 1 through 3 have already been dealt with, and the master is
not allowed to be placed on any other tile in row 1, its destination has to be in row 2. If the �rst pawn
is still in row 2, and the �rst pawn's column is between the master's current column and the master's
destination column, move the �rst pawn horizontally beyond the temple column so the master's path
becomes unimpeded. This is possible as n ≥ 3. Next, in either case, the master can now be moved one
tile forward, and be horizontally placed onto its destination. Finally, if the �rst pawn has just been
moved out of the way, move it back to its destination.

Next, as row 1 now only consists of students, they can easily be moved horizontally such that every
empty tile in row 2 that has a student in B has a student above it in row 1. All these students can
then move one tile forward, placing them onto their destination.

The students in row 1 then still need to be placed onto their correct spots, which can easily be done
as before, because there is no master on this row. After this, board B has been reached from B′.

16

Finally there is the case that the master has not yet been placed, and should not be either. An overview
of this process is visualised in Figure 9.

1 2 3 4 5

1 zZ6YP1•TK6YP6šYP
2 6YPzZzzZz
3 zZzzZzzZ
4 zzZzzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 zZ6YP1•TKzzZ
2 6YPzZz6šYP6YP
3 zZzzZzzZ
4 zzZzzZz
5 zZ6Yp1•Tk6Yp6šYp

1 2 3 4 5

1 zZ6YP1•TKzzZ
2 6YP6šYP6YPzZz
3 zZzzZzzZ
4 zzZzzZz
5 zZ6Yp1•Tk6Yp6šYp

Figure 9: An overview of how rows 1 and 2 are �xed when the master should not be placed.

Move all students in row 1 in columns in M one tile forward. This is possible as the only tile in row 2
that could be occupied is (1, 2) (by the �rst pawn), with M ranging from columns 2 through n.

Now all pawns in row 2 are red students, meaning we can move all pawns on this row to the left as
far as possible (from left to right), followed by placing them onto their corresponding tile in R2 (from
right to left).

As all pawns in row 1 with columns in M have not been moved, row 1 is also equal to row 1 in B,
meaning we have reached board B from B′.

In all cases, every row is now equal to its corresponding row in B, meaning board B has been reached
from B′. As B′ is itself reachable from the initial state, by transitivity B is also reachable from the
initial state.

Theorem 1 gives us a set of boards that are guaranteed to be reachable from the initial state.

Corollary 1. The number of reachable board states Theorem 1 gives us, is expressed by

1∑
M=0

n−1∑
S=1

(
n− 2

S − 1

)(
n(m− 2)

M,S, n(m− 2)−M − S

)
. (3)

Proof. In this equation, the sums overM and S respectively represent whether the red master is moved
out of row 1, and the number of red students S that are moved out of row 1. S is at least 1, because
in the theorem's prepositions, tile (1, 1) has to be empty, meaning at least one red student needs to be
moved out of row 1. If M = 0, the master stays on its temple�as that is the only tile on row 1 the
red master is allowed to occupy�and if M = 1 it is placed somewhere in the centre m− 2 rows.

The rightmost multinomial coe�cient represents the number of distinct con�gurations the S students
and M masters could form in the middle m− 2 rows, leaving the remaining tiles in these rows empty.

This value is multiplied by
(
n−2
S−1

)
, representing the number of ways S− 1 students could be chosen out

of the n− 2 on the �rst row that need to move out of row 1, in addition to the red pawn that captured
the blue student.

This lower bound of distinct board con�gurations evaluated for all subgames from a 3× 3 board up to
a 6× 6 board can be found in Table 5.

We wish to �nd a simple expression showing a lower bound rate of growth for the number of reachable
game states with respect to the dimensions of the game board, which will serve as its lower bound

17

order. To this end we instead analyse the following even lower bound:

(3) ≥

First pawn︷ ︸︸ ︷
n(m− 2)

n− 1

Master o� temple︷ ︸︸ ︷
(n[m− 2]− 1 +

Master on temple︷︸︸︷
1)

Remaining n− 2 students︷ ︸︸ ︷(
n(m− 1)− 4

n− 2

)
. (4)

m
n 3 4 5 6

3 15 111 369 870
4 60 792 3796 11 696
5 245 5665 38 760 155 155
6 1008 40 404 392 616 2 035 800

Table 5: Lower bounds provided by Equation (3)
for the number of distinct board con�gurations of
an n×m board.

Here, the term n(m−2)
n−1 refers to the number of

locations the �rst pawn can be placed. Because
it has to capture the blue pawn, it has to step
forward one row, and therefore has to end up in
one of the m − 2 centre rows, on any one of its
n columns. This value is divided by n− 1 in ac-
cordance with the symmetry where in every con-
�guration the �rst pawn could be swapped with
any other red pawn without changing the board
state�to count each distinct game state at most
once.

The factor (n[m − 2] − 1 + 1) represents the n[m − 2] − 1 tiles the master could be placed on in the
centre m− 2 rows (disallowing the �rst pawn's chosen location), in addition to its temple arch where
it is allowed to remain.

Finally, the binomial coe�cient represents the number of distinct ways the n − 2 remaining pawns
could be placed on the n(m−1)− 4 valid tiles. The four prohibited tiles subtracted from the n(m− 1)
tiles in the upper m − 1 rows are the tiles occupied by the �rst pawn and the master, as well as the
temple arch and tile (1, 1), as these are required not to contain a student by Theorem 1.

Equation (4) thus sums up at most as many distinct board states as Equation (3). This value can be
strictly smaller, as in the case that the master stays on the temple, the binomial coe�cient needlessly
discounts a tile from the positions the remaining n − 2 students could be placed on in counting the
master's current and initial positions as being di�erent.

The divisor n − 1 is also in some cases larger than strictly necessary. Not all of these pawn-swapped
symmetries are allowed by Theorem 1. This pawn-swapping is only valid if both pawns could reach the
other's location from their starting position, while all other pawns end in the same location as before.
The �rst pawn could, for example, never be swapped out for a pawn placed in row 1. This is because
we have secured the boar card, which does not allow for backward movement, making it impossible for
the �rst pawn�starting on row 2�to move back to row 1.

This means Equation (4) provides an even lower bound to our lower bound of the number of distinct
board states reachable from the initial state. We reduce this even further to a simple expression.

(4) =
(n[m− 2])2

n− 1

(
n(m− 1)− 4

n− 2

)
≥ (n[m− 2])2

n

(
n(m− 1)− 4

n− 2

)
= n(m− 2)2

(
n(m− 1)− 4

n− 2

)
= n(m− 2)2

[n(m− 1)− 4]!

(n− 2)! [n(m− 2)− 2]!

Here, note that the largest n−3 factors of [n(m−1)−4]! are multiplying factors greater than or equal
to n(m− 2). All factors smaller than [n(m− 2)− 1] are divided out by [n(m− 2)− 2]!. Therefore, the

whole [n(m−1)−4]!
[n(m−2)−2]! ≥ [n(m− 2)]n−3[n(m− 2)− 1] ≥ [n(m− 2)]n−3, i.e., the (n− 3)-rd largest of these

factors multiplied by itself n− 3 times. We can thus reduce this further to:

n(m− 2)2
[n(m− 1)− 4]!

(n− 2)! [n(m− 2)− 2]!
≥ n(m− 2)2

(n− 2)!
[n(m− 2)]n−3 =

nn−2(m− 2)n−1

(n− 2)!

≥ nn−2

(n− 2)n−2
(m− 2)n−1 ≥ nn−2

nn−2
(m− 2)n−1

= (m− 2)n−1.

18

Equation (3) (the number of distinct board states reachable by Theorem 1) is thus bounded from below
by (m− 2)n−1:

1∑
M=0

n−1∑
S=1

(
n− 2

S − 1

)(
n(m− 2)

M,S, n(m− 2)−M − S

)
= Ω

(
[m− 2]n−1

)
. (5)

While the complexity is not as great as Equation (2), Equation (5) is still exponential in the width
of the board, with the base of this exponent being linear in the height of the board. The size of the
board thus incurs a great cost onto the number of distinct reachable game states retrograde analysis
would have to analyse.

Equation (3), and by extension Equation (5), are only directly applicable to games with �ve identical
boar cards. Despite this, it is not a huge leap to apply the order of this equation to games with other
sets of cards, so long as these supply both forward and bidirectional horizontal movement (which the
standard deck of Onitama guarantees). Equation (3) provides a very conservative lower bound�only
e�ectively taking one of the two players into account�and is only meant to emphasise the rapid growth
of the number of reachable game states with the size of the board. As such, we believe any potential
di�erence in the number of reachable states under an arbitrary set of cards in comparison to having
all boar cards is compensated by the degree to which this lower bound is conservative. We thus believe
the order of this lower bound is still applicable to any set of cards.

For these reasons, we will still use the order of this applied lower bound in arguments for the general
case of the game, despite the lower bound itself not being directly applicable. Regardless, all data
supplied in this thesis by simulations of the game are provided by games with exclusively boar cards.

3.3 Card con�gurations

Along with the state of the board, a game state is also determined by the distribution of the cards
among the players, as well as who the current player is. At the start of the game, �ve move cards
are randomly drawn. Throughout the duration of the game, these cards do not change�merely their
distribution over the players' hands changes.

Each player holds two cards in their hand, with the remaining one being set aside. The order of these
two cards does not matter, so this adds a constant multiplicative factor of

(
5
2

)(
3
2

)
= 30 to our upper

bound of game states.

Ordinarily these cards are drawn randomly from a �xed deck of 16 cards, with no repeats, allowing
for

(
16
5

)
initial drawings. We relax this restriction, assuming the power set of o�sets in [−2..2]2 as our

`deck' of cards: P([−2..2]2). We also allow duplicates among our �ve drawn cards, possibly reducing
our multiplicative term to 1, in the case of �ve identical cards.

There are
∣∣[−2..2]2∣∣ = 52 = 25 o�sets allowed on a card. A card can hold any subset of these, giving

us a total of
∣∣P([−2..2]2)∣∣ = 225 cards in our `deck.' As we relax the restriction on �ve unique cards in

a drawing, we allow for
(
225+5−1

5

)
= (225+5−1)!

(225−1)! 5!
≈ 3.545× 1035 initial drawings: the number of distinct

combinations of �ve cards that can be drawn from a deck of 225 cards, with replacement.

3.4 The actual number of reachable game states

Tests were performed evaluating the actual number of game states reachable from the initial state for
various board sizes. The number of vertices in the state graph�representing the number of reachable
game states�can be found in Table 6, and the number of edges in the state graph�representing the
number of moves possible in the game�can be found in Table 7.

These values show clear exponential growth, just as determined in Section 3.2. The number of edges
in the graph also does not seem to grow signi�cantly quicker than the number of vertices in the graph.
This is to be expected, because for our chosen distribution of cards, each non-terminal game state has

19

m
n 1 2 3 4 5

2 2 6 658 20 819 493 092
3 3 512 59 666 � �
4 4 3031 431 793 � �
5 5 8120 � � �

Table 6: Number of game states reachable from the initial state with only boar cards on a variety of
board sizes n×m. All tests without results exceeded two hours in runtime and were terminated.

m
n 1 2 3 4 5

2 1 5 1007 50 716 1 701 183
3 2 752 168 860 � �
4 3 6055 1 569 941 � �
5 4 18 744 � � �

Table 7: Number of edges in the state graph of games with only boar cards on a variety of board sizes
n×m. All tests without results exceeded two hours in runtime and were terminated.

anywhere from 1 to at most 3n outgoing edges, which is still a very manageable number given the
small values of n in our experiments.

Comparing Table 6 to its upper and lower bounds in Tables 4 and 5, we see that the actual number of
reachable game states is closer to the upper bound than it is to the lower bound. This would suggest
the actual complexity of the number of reachable board states with exclusively boar cards is closer to
Equation (2) than it is to Equation (5).

While comparing these numbers, keep in mind that Table 6 counts game states�which includes the
current player�while Tables 4 and 5 count board states�which excludes the current player. As such,
for a simple conversion, the upper bound could be multiplied by a factor of two to assume each board
state is accessible for both players, and the lower bound could simply be taken as an even more
conservative one, that only takes a single player's turns into account.

3.5 The complexity of retrograde analysis

The complexity of retrograde analysis is linear in the number of edges in the state graph[And+10].
Note that each vertex in the state graph (except for the initial state) needs to have at least one incoming
edge or it would not be reachable from the initial state. As such, the number of edges in the state
graph grows at least as quickly as the number of vertices in the state graph. Therefore, the complexity
of strongly solving Onitama with retrograde analysis is roughly equivalent to the complexity of the
number of game states reachable from the initial state. By Equation (5), this means the complexity
of retrograde analysis is at least exponential in the width of the game board, with the base of the
exponent being linear in the height of the game board.

Due to this high complexity, and judging from the runtimes of the construction of the state graphs and
their labelling by retrograde analysis in Table 2, we do not expect to be able to strongly solve Onitama
on a larger board than described within that table. We would rather cut down on the number of moves
and game states that need to be analysed for a solution. We would prefer an adjusted algorithm that
can weakly solve the game instead; only taking the initial state as input, as opposed to the full state
graph.

4 Forward-looking retrograde analysis

Retrograde analysis assumes an explicit state graph is given. Furthermore, it computes the quality of
each state and move in the entire game, even if these states could never be reached through perfect

20

play, or are not required for �nding a perfect positional strategy from the initial position: it provides
a strong solution for the game.

Due to Onitama's complexity, strongly solving this game would require a considerable amount of
computational power. We would thus prefer an algorithm that is able to weakly solve Onitama; one
that only provides a perfect positional strategy from the initial state, and does not have to analyse the
entire state graph.

We developed Algorithm 2 to ful�l this purpose. Algorithm 2 can weakly solve the game for all players
that cannot lose under optimal play. This algorithm is a derivative of retrograde analysis that looks
forward from the initial state, as opposed to backward from the terminal states. This algorithm also
prunes a large part of the search space during its analysis.

4.1 Forward-looking retrograde analysis

Forward-looking retrograde analysis maintains its own state graph G = (V,A). G starts out only
containing the initial state S0, and is built up throughout the algorithm's runtime. The algorithm also
keeps track of the optimal move x : X →M, as well as the quality q : X → {Win, Draw, Lose} of each
game state, which are both initially unknown for all states.

In a depth-�rst manner it recursively calls Expand on every game state S it comes across, starting with
S0. These calls analyse the currently expanding node and its outgoing edges in an attempt to label
them.

Expand �rst adds S to the set VE of expanding game states, to make sure the function is not needlessly
called on this state again.

After this, it updates the state graph, adding all nodes and edges out of S to the graph according to
the rules of the game. If in doing so it �nds a terminal state, this terminal state will immediately be
labelled Losing and added to VE , due to terminal states not having outgoing edges.

After all new vertices and edges have been added to the graph, if a terminal state has been found, there
is a new endpoint for retrograde analysis to analyse the whole graph. As such, in this case, retrograde
analysis is called on all unlabelled edges between two expanding vertices�ignoring the edges adjacent
to vertices on which Expand has not yet been called�after which the set AU of all unlabelled edges is
updated by removing all newly labelled edges. Because there is a direct move from the current game
state to a terminal (losing) state, S is necessarily marked winning by retrograde analysis, meaning this
Expand call can return.

If no terminal state was found, it then loops over all outgoing edges (S, Sn) of S. If Sn ̸∈ VE , then
Sn still needs to be expanded, so Expand is recursively called on Sn. If this call happens to label the
current state S we can return from this function call immediately thereafter. If it instead managed
to label the initial state S0, then we are able to exit the algorithm entirely by continuously returning,
as a weak solution has been found for all players that cannot lose from the initial state under optimal
play.

Regardless of whether Sn was already expanded or not, the algorithm then checks if Sn is labelled, with
the edge (S, Sn) still unlabelled. If both are the case, it attempts to label this edge manually, using
the AnalyseEdge function from Algorithm 1, which tries to label S with the information its currently
analysed successor Sn provides:

� If Sn is losing, then S can immediately be labelled winning, with (S, Sn) being its optimal
outgoing edge.

� If Sn is winning, then S is only labelled if this is its last unlabelled outgoing edge, in the hope
that there is still a non-losing move. If there are no other unlabelled outgoing edges, then if
there is an outgoing edge to a draw node, that one is optimal and S is a draw as well, otherwise
(S, Sn) is optimal and S is losing.

21

Algorithm 2 Forward-looking retrograde analysis on the initial game state S0

1: G = (V,A)← ({S0},∅)
2: x(S)← Unknown for all S ∈ X ▷ For each state, set its `optimal move' to Unknown.
3: q(S)← Unlabelled for all S ∈ X ▷ q stores the quality of all nodes. Initially no nodes are labelled.

4: VE ← ∅ ▷ VE keeps track of all expanding vertices.

5: AU ← ∅ ▷ AU keeps track of all unlabelled edges.

6: function Expand(S,G = (V,A), q, x, VE , AU)
7: VE ← VE ∪ {S} ▷ Ensure Expand is not called on S again.

8: for all m ∈MS do ▷ Place all newly found nodes and edges in the graph.

9: Sn ← m(S)
10: V ← V ∪ {Sn}
11: A← A ∪ {(S, Sn)}
12: AU ← AU ∪ {(S, Sn)}

13: if Sn ∈ T then

14: q(Sn)← Lose ▷ A terminal node is losing for the `current player.'

15: VE ← VE ∪ {Sn} ▷ Terminal states have no outgoing edges.

16: if ∃m ∈MS : m(S) ∈ T then

17: ▷ Use the terminal state as an endpoint for retrograde analysis. ◁
18: RetrogradeAnalysis(AU , G, q, x)
19: return ▷ Because there is a direct move to a losing node, S must have been labelled winning.

20: for all m ∈MS do ▷ Analyse all available moves for the optimal one.

21: Sn ← m(S)
22: if Sn ̸∈ VE then

23: Expand(Sn, G, q, x, VE , AU) ▷ Recurse down to assert the quality of the next state.

24: if q(S) or q(S0) ̸= Unlabelled then
25: ▷ If S0 is labelled, then a weak solution has been found for non-losing players: exit.

If S is labelled, then its optimal edge has been found and cannot change. ◁
26: return

27: if q(Sn) ̸= Unlabelled and (S, Sn) ∈ AU then

28: AnalyseEdge(S, Sn, AU , q, x) ▷ Try to label this edge manually.

29: if q(S) ̸= Unlabelled then return

30: Expand(S0, G, q, x, VE , AU)
31: if q(S0) = Unlabelled then RetrogradeAnalysis(AU , G, q, x)

22

� If Sn is a draw, then S is only labelled a draw with (S, Sn) optimal if this is its last unlabelled
outgoing edge, in the hope that there is still a winning move.

Labelling nodes and edges in this part of the algorithm is not strictly necessary, as retrograde analysis
would already label these nodes and edges on its next call. Labelling these nodes and edges along
the way can, however, speed up the algorithm by eliminating suboptimal search paths early, without
having to wait until the next terminal state. As such, if this manages to label S, we can return from
this function call.

Once S has been labelled, or all outgoing edges have been analysed, the call can return, continuing the
expansion of its predecessor.

Once the initial expand call on S0 has �nished, S0 has either been labelled already, or the currently
mapped out state graph is entirely bounded by labelled vertices, meaning one more call to retrograde
analysis labels S0 as well.

This completes the algorithm, guaranteeing a perfect positional strategy from the initial state S0. We
now prove the correctness of this algorithm in small steps, starting by proving only unlabelled states
ever get their label changed.

Lemma 2. Throughout Algorithm 2, if a game state S gets assigned a label or optimal move, it will

hold that same label or move for the entire remaining duration of the algorithm.

Proof. First note that the functions in Algorithm 2 do not directly set any game state labels, nor
optimal moves (with the exception of terminal states, which are always losing and have no optimal
moves). All labelling is done in AnalyseEdge and RetrogradeAnalysis, where the labelling of a game
state and setting the state's optimal move always happens in conjunction with one another.

Within Expand, after each call that can change S's label (RetrogradeAnalysis, Expand, AnalyseEdge),
the algorithm immediately returns if S has been labelled. Therefore, these functions are only ever called
if S is still unlabelled.

Within RetrogradeAnalysis as well, AnalyseEdge is only called on an arbitrary edge (s, sn) if s is
unlabelled. In AnalyseEdge, if the source state is labelled winning, all of its other outgoing edges
are labelled redundant. If the source state was instead labelled losing or a draw, all other outgoing
edges were already labelled. Hence, all unlabelled edges at the point of assigning the draws have their
starting point yet unlabelled.

The draws are then assigned, which is only done for a subset of the unlabelled game states. Hence,
this is once again only done once for exclusively unlabelled states.

Therefore only unlabelled states ever get their label changed, always and exclusively in conjunction
with their optimal move; once a node has been given a label and move, it will keep those for the entire
remaining duration of the algorithm.

Using this fact we prove the required properties of the relation between the qualities of the game states
and the qualities of their successors.

Lemma 3. Let x be a positional strategy provided by Algorithm 2. Every path that starts in a winning

or losing node S, and follows a positional strategy x′ for which every move from a winning node is

given by x, alternates between winning and losing nodes.

Proof. We �rst prove that every winning node leads to a losing node. Let S be winning, and let x′ be
a positional strategy for which every move from a winning node is given by x.

Wins are only assigned in AnalyseEdge, with a state being labelled a Win if and only if a successor Sn

is found that is labelled a Loss, after which the optimal move is set to (S, Sn), with the other outgoing
edges being labelled redundant.

23

Because after this, by Lemma 2, the quality of both S and Sn, as well as the optimal move x(S), are
set in stone, all winning nodes lead to losing nodes through x. As every move from a winning node in
x′ is given by x, the same holds for x′.

Next, we prove that every valid move from a losing node leads to a winning node. Let S be losing. If
S ∈ T , then by de�nition S has no valid moves. Let S ̸∈ T .

AnalyseEdge is the only function that can label a non-terminal node losing. Such a non-terminal node
S is only labelled losing, if the function is analysing an edge whose target Sn is labelled winning, all
other outgoing edges have already been labelled, and none of them lead to a draw node.

AnalyseEdge is only called on unlabelled edges that still have an unlabelled source node. If it comes
across an edge leading to a losing node, then the source is immediately labelled a Win, meaning
AnalyseEdge will never be called on any one of its outgoing edges again. As such, if in AnalyseEdge

the target is winning, and it is the last unlabelled outgoing edge of S, then S cannot have any edges
leading to losing nodes.

An edge whose source is not labelled is only ever labelled if its target is labelled (during the assigning
of the draws in RetrogradeAnalysis, the source is already permanently labelled a draw before the
outgoing edges are labelled, and the assigning of a winning node in AnalyseEdge labels the source
winning before it labels all of its outgoing edges). As such, if AnalyseEdge comes across the last
unlabelled edge out of a certain unlabelled state, all this state's outgoing edges lead to labelled states.

If a state S is thus marked losing, it cannot have any edges leading to an unlabelled state, a losing
state, or a draw state: all of its outgoing edges have to lead to winning states.

Hence, for all positional strategies x′, every losing node has to lead to a winning node through x′.

This means that for every positional strategy x′ for which every move from a winning node is given by
x, every path starting in a winning or losing node following x′ has to alternate between winning and
losing nodes.

Next we would like to prove something similar for draw nodes: that the successor of each draw node
through Algorithm 2 is itself also a draw node.

Lemma 4. Let x be a positional strategy provided by Algorithm 2. For all draw nodes S, its immediate

successor Sn through x is also a draw node.

Proof. A node S can be labelled a draw in two places: AnalyseEdge and RetrogradeAnalysis.

Assume S is assigned a draw by an AnalyseEdge call for (S, Sn). AnalyseEdge assigns S a Draw if and
only if (S, Sn) is the last unlabelled edge out of S, Sn is either a Draw or a Win, and S has at least
one outgoing edge to a draw node. The optimal move out of S is then also set such that S's successor
is a draw node.

As stated before in the proof of Lemma 3, if AnalyseEdge comes across the last unlabelled edge out of
a certain unlabelled state, all this state's outgoing edges lead to labelled states. If any of these states
were to lead to a losing node, then AnalyseEdge would have already labelled S winning, meaning no
outgoing edge of S can lead to a losing node.

If S is instead labelled by RetrogradeAnalysis, then in that call S ∈ VF , and S's optimal move gets
changed to lead to either a draw node directly, or to another node in VF . That loop assigns all vertices
in VF to draws, meaning S's successor will in both cases lead to a draw node.

Note that the assignment of this optimal move is valid, because of the following observations: First,
S has at least one outgoing edge, because S ̸∈ VL. Second, at least one of these outgoing edges has
to lead to a node Sn that was also still unlabelled on line 29, because otherwise S would have been
labelled by AnalyseEdge. For this reason as well, S cannot have any edges leading to losing nodes.
Third, this node Sn cannot have a path in A ∩ VU

2 to a node in VL, because otherwise S would have
such a path as well.

24

As all of S's neighbouring nodes that were still unlabelled on line 29 are thus in VF , and all nodes
in VF are subsequently labelled a draw, all neighbouring nodes to S must be labelled after this
RetrogradeAnalysis call. None of these can be losing nodes, and at least one must be a draw,
meaning the optimal move out of S is one such move leading to a draw node.

By Lemma 2, S then remains a Draw for the rest of the algorithm, with its optimal move continuing
to lead to a draw node as well.

A draw node S thus always points to another draw node through x.

Now we can prove that all paths following the positional strategies produced by Algorithm 2 actually
deliver upon the quality they assign to each game state.

Lemma 5. Let x be provided by Algorithm 2. For each positional strategy x′ for which every move

from a winning node is provided by x, every path following x′ starting in a winning node terminates in

an odd number of edges and thus contains no cycles.

Proof. As there are only a �nite number of game states, a path can only be in�nite if it contains a
cycle. A positional strategy is a deterministic mapping from game states to valid moves, meaning if a
cycle is formed, it is followed in perpetuity.

Let x′ be a positional strategy for which every move from a winning node is provided by x. Consider
the path following x′ starting in some winning node.

It is proven by Lemma 3 that through x′ every winning node leads to a losing node, and that every
losing node is either terminal or leads to a winning node. This means that through x′ every winning
node leads to either a terminal node, or a losing node that leads to another winning node.

There has to be a state Sf on our path that was labelled winning by our algorithm before any other
state on our path: the �rst winning state on our path. If through x′, Sf leads to a non-terminal node
Sn, then Sn has to lead to another winning node Sw.

For Sf to be labelled a Win by our algorithm, Sn needs to be labelled a Loss �rst. For Sn to be
labelled a Loss without being terminal, all of its potential subsequent states�including Sw�need to
be labelled a Win �rst, despite Sf being the �rst of the path to be labelled winning. This is only
possible if Sf = Sw.

In this case, however, we have a bootstrap paradox: Sf can only point to Sn if Sn has been labelled a
Loss beforehand. Similarly, Sn can only point to Sf if all successors of Sn�including Sf�have already
been labelled a Win. Sn and Sf 's labels are thus codependent, and could only have been labelled at
the same time, which is impossible. We conclude that Sf cannot lead to a non-terminal node.

Hence, Sf has to lead to a terminal node, meaning our path in x′ has to terminate in a losing node. As
our path starts in a winning node and alternates between Wins and Losses, the path has to terminate
in an odd number of edges and cannot contain a cycle.

Lemma 6. Let x be provided by Algorithm 2. For each positional strategy x′ for which every move

from a winning node is provided by x, every path following x′ starting in a losing node SL terminates

in an even number of edges and contains no cycles.

Proof. Let x′ be a positional strategy for which every move from a winning node is provided by x, and
let SL be a losing node.

If SL ∈ T , then SL has no outgoing edges, meaning the path following x′ starting in SL immediately
terminates after 0 edges: an even number. Let SL ̸∈ T .

Lemma 3 tells us SL leads to a winning state through x′. Lemma 5 then tells us x′'s path will from
there eventually terminate in an odd number of edges, and will thus not contain any cycles. x′'s path
starting in SL thus contains no cycles, and terminates in an even number of edges.

25

Lemma 7. Given a positional strategy x provided by Algorithm 2, every path de�ned by x starting in

a draw node SD contains a cycle consisting of exclusively draw nodes.

Proof. We prove this by contradiction. Let SD be a draw node.

Assume the path de�ned by x starting in SD does not contain a cycle. As there is only a �nite number
of states, and every in�nite path thus needs to contain a cycle, this path must have an endpoint Se.

As Se is an endpoint�and thus does not lead anywhere�it has to be a terminal state, and therefore
has to be a losing node. By Lemma 4, the successor of every draw node through x is again a draw
node, meaning Se cannot be on the path starting in SD: a contradiction. Hence, every path following
x starting in a draw node has to contain a cycle.

Putting this all together, we can prove forward-looking retrograde analysis provides a perfect positional
strategy for each game state it labels.

Theorem 2. Algorithm 2 de�nes a perfect positional strategy for each labelled state.

Note that some states may still be unlabelled after Algorithm 2. We come back to this after the proof.

Proof. Let x be provided by Algorithm 2.

By Lemma 5, for every winning node, x provides a path leading to the current player's win, regardless
of their opponent's (the even-numbered) moves. The de�ned path is thus optimal for the current
player, as it guarantees them a win.

By Lemma 6, every path from a losing node leads to the current player's loss, regardless of their own
(the odd-numbered) moves. As there is nothing the player can do to prevent their loss, the de�ned
path is optimal for the current player.

By Lemma 7, every path in x starting in a draw node contains a cycle, continuing the game in
perpetuity, ensuring the current player does not lose. In Lemma 4's proof it is also shown that no valid
moves from a draw node can lead to a losing node, meaning any deviation from x by either player
can at best move them to another draw node�not meaningfully altering their situation�and at worst
move them to a winning node�providing their opponent the opportunity to win. The de�ned path is
thus optimal for both players.

Hence, Algorithm 2 provides a positional strategy granting the optimal move for the current player for
every labelled node: it de�nes a perfect positional strategy for each labelled game state.

Just because the algorithm provides a perfect positional strategy covering all states it labels, this does
not immediately imply that it weakly solves the game for all non-losing players, as there is no guarantee
the algorithm ever labels any state�and most importantly S0�at all. We continue by proving that
Algorithm 2 always labels at least S0, and thus always provides a perfect positional strategy from this
initial state.

Lemma 8. During Algorithm 2, if an Expand call on game state S returns earlier than the bottom of

the function (earlier than the implicit return), then S or S0 has been labelled.

Proof. Along with the bottom of the function, there are three other places where Expand can return:
lines 19, 26 and 29.

If the function returns on line 19, then S has a move leading to a (losing) terminal state, meaning the
RetrogradeAnalysis call must have labelled S winning.

The return on line 26 is only taken if S or S0 are labelled, and similarly the return on line 29 is only
taken if S is labelled.

Hence, if an Expand call on game state S returns earlier than the bottom of the function, then S or
S0 has been labelled.

26

Lemma 9. During Algorithm 2, if an Expand call on game state S ends through the bottom of the

function, then at least one of the following holds: S is labelled, there is no path in the graph from S
through exclusively unlabelled vertices ending in an unlabelled leaf, or S0 is labelled.

Proof. Assume, for the sake of contradiction, that after a certain game state S's Expand call S is still
unlabelled, it has a path through exclusively unlabelled vertices ending in an unlabelled leaf and S0 is
not yet labelled.

By Lemma 8, each call to Expand that does not return through the bottom of the function either labels
its associated state, or labels S0.

Because neither S nor S0 are labelled, S's Expand call must have returned through the bottom of
the function. As such, it must have passed the for loop that recursively calls Expand on all of S's
unexpanded successors.

Crucially, this means that at the end of S's Expand call, S's successor in the path must also have been
expanded. Because the path goes through exclusively unlabelled vertices, this Expand call must have
also returned through the bottom of the function.

This recursive relationship continues, ensuring every game state in the path has had Expand called
upon it.

Let Sl be the leaf node of this path, and Sp be Sl's predecessor in the path.

Because Expand was called upon Sp, all of its valid moves have been added to the graph. If any of
these moves lead to a terminal state, that state would have been labelled losing. As Sl is unlabelled,
Sl is non-terminal.

In Sl's Expand call, all of its valid moves were added to the graph as well. As Sl is a leaf, however, it
has no valid moves. By De�nition 9, only terminal states can have no valid moves: contradiction.

As such, if an Expand call on S ends through the bottom of the function, then S is labelled, or there
is no path in the graph through exclusively unlabelled vertices ending in an unlabelled leaf, or S0 is
labelled.

Theorem 3. Algorithm 2 weakly solves Onitama for all non-losing players, given enough computational

resources.

Proof. By Theorem 2, Algorithm 2 provides a perfect positional strategy for every labelled node. To
prove that this algorithm weakly solves Onitama for all non-losing players, we thus only have to prove
that it labels the initial state S0. Assume S0 is unlabelled.

By Lemma 2, the algorithm never strips the label from an already labelled state�once a state is
labelled, it will preserve that label for the rest of the algorithm. For S0 to be unlabelled it can thus
never be assigned a label throughout the entire algorithm.

By Lemma 8, if the Expand call on S0 did not return through the bottom of the function, S0 would
have been labelled. Because S0 is unlabelled, it returned through the bottom of the function. As
such, by Lemma 9, there is no path in the graph through exclusively unlabelled vertices ending in an
unlabelled leaf.

Because S0 is unlabelled, RetrogradeAnalysis is called after S0's Expand call. Because S0 is unla-
belled, it cannot be labelled by any one of this function's AnalyseEdge calls.

However, S0 ∈ VF , because S0 is unlabelled and has no path in A ∩ VU
2 from S0 to a node in VL.

Therefore, S0 will be labelled a draw in the subsequent loop over VF .

This induces a contradiction, meaning the initial state S0 will always be labelled by Algorithm 2.
Therefore, this algorithm weakly solves Onitama for all non-losing players.

27

Algorithm 2 does not necessarily weakly solve Onitama for a losing player, as this algorithm prunes all
other branches out of a winning node once an edge to a losing node is found. This means that if the
current player in a winning game state were to perform a suboptimal move�one that has not been
analysed by the algorithm�there is no guarantee the game will end up in a game state with a de�ned
optimal move.

For a node to be marked as either losing or a draw, all outgoing edges must have been analysed,
meaning even if the current player in such a node plays suboptimally, the following game state will
have still been analysed, and an optimal move will be de�ned.

Therefore, by Lemmas 3 and 4, Algorithm 2 only guarantees a weak solution for non-losing players:
it provides a perfect positional strategy from all game states that are marked winning or a draw,
regardless of what moves their opponent performs, because the optimal move out of these game states
lead to either a losing or a draw node, for which all outgoing edges have been analysed.

4.2 Complexity

Algorithm 2 is a recursive algorithm. Because every Expand call immediately adds its subject to VE ,
and Expand is only ever recursively called on game states not in VE , Expand is at most evaluated once
for each game state.

By far the most expensive line in Expand (excluding its own recursive call) is the call to Algorithm 1's
function RetrogradeAnalysis, which is itself of complexity Θ(|A|)[And+10]. This call works on
the currently discovered graph G, and keeps track of what edges have already been labelled in
prior calls. Therefore, all calls to RetrogradeAnalysis can at most incur an equal cost to calling
RetrogradeAnalysis once on the full state graph.

The rest of the algorithm is mostly linearly bounded by the two loops over all outgoing edges of S,
meaning these operations through the entire algorithm incur at most a cost of complexity O(|A|) of
the full graph�in the theoretical case that every game state has all of its edges analysed.

In total, the worst-case complexity of forward-looking retrograde analysis is thus O(|A|) + O(|A|) =
O(|A|)�the same worst-case complexity as regular retrograde analysis. Furthermore, in the absolute
worst case, Algorithm 2 will have to map out the full state space anyway, not providing any bene�t to
retrograde analysis.

While the worst-case complexity is just as bad as retrograde analysis, due to it analysing the in-progress
graph while it is still being built up, it is often able to exit far before the entire state space is mapped
out. This gives forward-looking retrograde analysis a signi�cantly better lower bound than retrograde
analysis, which requires the full state graph in all cases.

Next we look at some results forward-looking retrograde analysis provides in real-world experimenta-
tion.

4.3 Results

The algorithm has been executed on a variety of board sizes. The average amount of time these runs
took are displayed in Table 8.

Comparing Table 8 with the runtimes for retrograde analysis (including graph construction) in Table 2,
we see a blanket improvement in runtime for forward-looking retrograde analysis compared to retro-
grade analysis.

There is a particularly large di�erence for the 3× 4 and 4× 3 boards, which took retrograde analysis
4503.315 s and over two hours respectively, whereas forward-looking retrograde analysis only took
201.976 s and 250.325 s respectively�over 22 times faster for the former and at least 28 times faster
for the latter.

28

m
n 1 2 3 4 5

2 0.000 s 0.000 s 0.000 s 0.000 s 0.000 s
3 0.000 s 0.000 s 0.042 s 250.325 s �
4 0.000 s 0.001 s 201.976 s � �
5 0.000 s 0.039 s � � �

Table 8: Average runtime for forward-looking retrograde analysis on various board sizes n ×m with
exclusively boar cards. All tests without results exceeded two hours in runtime and were terminated.
Averaged over 100 runs.

We also quanti�ed the number of distinct game states forward-looking retrograde analysis visited
during its execution across di�erent board sizes. These results are displayed in Table 9.

Comparing Table 9 with the total number of reachable game states from the initial state displayed in
Table 6, we immediately notice a few characteristics.

m
n 1 2 3 4 5

2 2 3 4 5 6
3 3 17 4068 161 138 �
4 4 260 144 354 � �
5 5 3480 � � �

Table 9: Number of game states analysed
by forward-looking retrograde analysis on
various board sizes n × m with exclus-
ively boar cards. All tests without results
exceeded two hours in runtime and were
terminated.

Column n = 1 is completely identical between the two.
This is because with a single-tile-wide board, both players
always have only one move they can perform: move their
only pawn forward. This means forward-looking retrograde
analysis has no choice but to visit every reachable game
state, as that is the only possible path through the game.

The di�erence seems greatest in row m = 2, as for these
cases forward-looking retrograde analysis could simply ob-
serve that the starting player can in their �rst move capture
the master of their opponent by moving one of their pawns
forward, after which the algorithm can immediately exit
with that optimal move, whereas retrograde analysis would
still have to analyse all other possible moves to completion.

The di�erence in the number of game states visited between retrograde analysis and forward-looking
retrograde analysis also seems to decrease as the height m of the board increases. This likely has to
do with the height of the board determining how far apart the opposing pawns start, meaning taller
boards allow for more con�gurations before any pawns get captured. As such, a lot more game states
need to be considered before the algorithm stumbles upon a winning strategy, and can guarantee its
correctness.

The growth in runtime and the number of states that need to be analysed is still rapid, making it
unlikely for this algorithm in its current state to �nd a weak solution for all non-losing players for
Onitama on a 5 × 5 board with a reasonable amount of computational resources. We therefore have
to look towards other methods to decrease the number of game states that would need to be analysed,
which could in turn decrease the runtime of the algorithm.

5 State symmetries

Many game states, although technically distinct, are functionally identical when it comes to analysing
their strategies. Identifying these symmetries could cut down on the number of game states that would
need to be analysed in �nding a perfect positional strategy, potentially allowing for more complicated
games to be solved.

In this section we discuss one such useful symmetry, as well as its performance when applied on
forward-looking retrograde analysis.

29

5.1 Player-swapping

Take the colours of the players. While vitally important for keeping track of which pawns and cards
belong to which player, no rule in the game assigns importance to the speci�c colours themselves�
merely to the (in)equality of colour across di�erent game elements.

Let S = (π,B,Cs, CR, CB) ∈ X be a game state, and de�ne a function ρ : Tn×m → Tn×m that rotates
a board halfway and swaps the colours: ρ(B)xy = B(n+1)−x,(m+1)−y for all B ∈ Tn×m, (x, y) ∈ [1..n]×
[1..m]. Then for determining a perfect positional strategy, S is equivalent to S := (π, ρ(B), Cs, CB, CR),
i.e., game state S with the players swapped.

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

1 2 3 4 5

1 zZzzZzzZ
2 6YPzZ1TkzZz
3 6šYpz6šYPzzZ
4 z1•TKzzZz
5 zZz6šYpzzZ ■

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

1 2 3 4 5

1 zZz6šYPzzZ
2 zzZz1•Tkz
3 zZz6šYpz6šYP
4 zzZ1TKzZ6Yp
5 zZzzZzzZ

■
Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Z0Z0Z
0Z0Z0
Z0Z0Z
0Z0Z0
Z0Z0Z

Figure 10: Two player-swapped boards. Note that the board e�ectively rotates halfway, with the
colours of the pawns swapping. All the cards (including the set-aside card) rotate accordingly, as they
have to swap to their new owner's (or, in case of the set-aside card, owner-to-be's) perspective.

First note that as the two temples are located on tiles
(
⌊n+1

2 ⌋, 1
)
and

(
⌈n+1

2 ⌉,m
)
, after player-swapping

these locations become respectively
(
n+ 1− ⌊n+1

2 ⌋,m+ 1− 1
)

=
(
⌈n+1

2 ⌉,m
)
and

(
⌊n+1

2 ⌋, 1
)
; the

temples e�ectively swap colours.

Also note that (ρ ◦ ρ(B))xy = B(n+1)−[(n+1)−x],(m+1)−[(m+1)−y] = Bxy = Bxy, meaning ρ ◦ ρ = id.

Furthermore, this means that S = (π, ρ◦ρ(B), Cs, CR, CB) = (π,B,Cs, CR, CB) = S; player-swapping
is an involution.

We wish to prove player-swapping is a symmetry on game states when it comes to �nding perfect
positional strategies. In doing so, we need to prove all the moves between these game states have a
symmetric equivalent as well.

Lemma 10. For every game state S ∈ X, (S, S′) ∈ A if and only if (S, S′) ∈ A.

Proof. Let S = (π,B,Cs, CR, CB) and m = (o, d, C) ∈ MS . As m is valid, C ∈ Cπ, d − o ∈ C,
Bo ∈ {mπ, sπ} and Bd ̸∈ {mπ, sπ}. We show that for S = (π, ρ(B), Cs, CR := CB, CB := CR), move
m := ((n+ 1,m+ 1)− o, (n+ 1,m+ 1)− d,C) ∈MS .

First note that C ∈ Cπ = Cπ. By de�nition, ρ(B)(n+1,m+1)−o = B(n+1,m+1)−((n+1,m+1)−o) = Bo ∈
{mπ, sπ} and similarly ρ(B)(n+1,m+1)−d ̸∈ {mπ, sπ}. This means that m is a valid move out of S:
m ∈MS .

Next we show that m(S) = m(S).

30

Applying a move �ips the current player, and so does player-swapping. Hence the current player in
both m(S) and m(S) is equal to π = π.

Player-swapping swaps the two players' hands, and applying a move swaps the used card in the current
player's hand with the one that is set aside. π's hand in m(S) is Cπ, meaning this is π's hand instead
in m(S). π's hand in m(S) is (Cπ \ {C}) ∪ {Cs}, meaning this is π's hand in m(S). Player-swapping
does not alter the set-aside card, so the set-aside card in both m(S) and m(S) is C.

In S, π is the current player, meaning through m the hand belonging to π stays invariant. Therefore
π's hand in m(S) is π's hand in S, which is π's hand in S: Cπ. In S, the current player π's hand is Cπ,
meaning π's hand in m(S) is (Cπ \ {C})∪ {Cs}. Player-swapping does not alter the set-aside card, so
the set-aside card in S is still Cs. In m(S) this changes to the used card C. The set-aside card and
both players' hands are thus equal across m(S) and m(S).

For the board in m(S) we have that the tiles at the coordinates t ̸= o, d are equal to Bt. Player-
swapping rotates the board halfway and �ips the colours, so for game state m(S) we have that all the
tiles at the coordinates t ̸= (n+ 1,m+ 1)− o or (n+ 1,m+ 1)− d are equal to B(n+1,m+1)−t.

Player-swapping �rst means that in state S all tiles at the coordinates t ̸= (n + 1,m + 1) − o or
(n+1,m+1)− d are equal to B(n+1,m+1)−t. Move m, having origin (n+1,m+1)− o and destination

(n+1,m+1)−d, changes nothing across these tiles, meaning these tiles in the board of m(S) are also
equal to B(n+1,m+1)−t.

In the board of m(S), tile o is emptied to ∅. After player-swapping this means that in the board of
m(S) tile (n + 1,m + 1) − o is empty instead. For m the origin is (n + 1,m + 1) − o, meaning tile
(n+ 1,m+ 1)− o is also empty in the board of m(S).

Finally, in the board of m(S), the destination tile d is set to Bo. After player-swapping, this means
tile (n+1,m+1)−d in the board of state m(S) is equal to Bo. For m, the origin is (n+1,m+1)− o,
which in the board of S is equal to Bo. Therefore, tile (n+ 1,m + 1)− d in the board of state m(S)
is also equal to Bo.

The current player, the set-aside card, both coloured hands and every tile of the board are equal
between m(S) and m(S): m(S) = m(S) for all S ∈ X and all m ∈MS .

Let (S, S′) ∈ A. Then there exists anm ∈MS such thatm(S) = S′. For S there is then the valid player-
swapped move m, for which m(S) is thus well de�ned. As we have just proven, m(S) = m(S) = S′,
meaning there is a valid move from S to S′. By de�nition of the state graph, (S, S′) ∈ A.

Due to player-swapping being an involution, the same holds from S to S = S, meaning for every game
state S ∈ X, (S, S′) ∈ A if and only if (S, S′) ∈ A.

In order for this symmetry to be useful in �nding perfect positional strategies, we need to prove a move
m ∈MS is optimal for a game state S if and only if m is optimal for S. For this, we need to prove the
quality of S assessed by a perfect positional strategy remains invariant after player-swapping to S.

Lemma 11. For every perfect positional strategy x and all game states S ∈ X, Qx(S) = Qx(S).

Proof. By de�nition of Qx, x provides a non-empty collection P of paths starting in S where all of S's
current player's moves are given by x, all of which result in an outcome of at least Qx(S).

By Lemma 10, P can be associated with a collection of equivalent player-swapped paths P starting in
S. S ∈ T if and only if S ∈ T , which provides the following properties:

� if Qx(S) = Win, all paths in P end in a terminal state after an odd number of moves;

� if Qx(S) = Draw, these paths either terminate in an odd number of moves (in case the opponent
plays suboptimally) or do not terminate at all;

31

� if Qx(S) = Lose, regardless of what the current player in S does, there exists a path that ends
in a terminal state in an even number of moves.

The paths in P explore all possible moves the opponent in S could take. By Lemma 10, as player-
swapping cannot add or remove moves, this means P explores all possible moves the opponent in
S could take. As P is non-empty, the paths in P then de�ne part of a perfect positional strategy
guaranteeing the current player in S can secure themselves an outcome of at least Qx(S) regardless of
what the opponent in S does: Qx(S) is at least as good as Qx(S).

As player-swapping is an involution, this proof also holds from S to S = S, meaning Qx(S) is at least
as good as Qx(S), ultimately proving Qx(S) = Qx(S).

Theorem 4. For determining a perfect positional strategy, game state S ∈ X is equivalent to S.

Proof. By Lemma 10, a move m ∈MS exists if and only if there is an equivalent player-swapped move
m ∈MS that leads to m(S).

By Lemma 11, Qx(S) = Qx(S), and also Qx(m(S)) = Qx(m(S)) = Qx(m(S)) for all m ∈MS , i.e., the
quality of game state S and that of all of its successors are equal to their player-swapped counterparts.
Therefore, the optimality of all moves in MS remains invariant under player-swapping.

This means that for any game state S, all local information provided by perfect positional strategies
(its optimal and redundant moves, as well as the state's quality) can directly be applied to its player-
swapped state S, and vice versa. For determining a perfect positional strategy, game state S ∈ X is
equivalent to S.

5.2 Results

Some tests were performed to observe to what degree this symmetry aids in reducing the number of
visited game states, and how much that a�ects the runtime of the algorithm. The average runtime and
number of analysed game states across a variety of board sizes for forward-looking retrograde analysis
can be found in Tables 10 and 11.

m
n 1 2 3 4 5

2 0.000 s 0.000 s 0.000 s 0.000 s 0.000 s
3 0.000 s 0.000 s 0.020 s 38.992 s �
4 0.000 s 0.001 s 76.396 s � �
5 0.000 s 0.031 s � � �

Table 10: Average runtime for forward-looking retro-
grade analysis on various board sizes n ×m with ex-
clusively boar cards, making use of player-swapping
symmetries. All tests without results exceeded two
hours in runtime and were terminated. Averaged over
100 runs.

m
n 1 2 3 4 5

2 2 3 4 5 6
3 3 17 2285 72 657 �
4 4 254 94 412 � �
5 5 2815 � � �

Table 11: Number of game states analysed
by forward-looking retrograde analysis on vari-
ous board sizes n × m with exclusively boar

cards, making use of player-swapping symmet-
ries. All tests without results exceeded two
hours in runtime and were terminated.

Comparing these values with the ones in Tables 8 and 9, we once again see a blanket improvement in
both runtime and number of game states analysed with the symmetries applied.

We observe that column n = 1 and row m = 2 are identical across the two tables. For n = 1, this is
for the same reason as laid out in Section 4.3: there is only one path that can be taken on a board
of width 1. For m = 2 the game ends immediately after the �rst move, not giving the opponent any
opportunity to perform a move. As such, player-swapping has no e�ect, because the symmetry swaps
the current player as well, which is of no importance if the game ends in a single move. In both cases,
the player-swapping symmetry thus does not provide any utility, because no player-swapped equivalent
to a previously analysed state will ever be analysed.

32

For all board sizes the number of game states visited when using symmetries is at most as much as are
visited without using symmetries, with their di�erence increasing as the size of the board increases.
This likely has to do with the fact that a larger state space overall increases the chances of coming
across a symmetric state, whereas small state spaces indicate simple games that can end before such
a symmetric state can be realised.

In accordance with this trend, we also see the di�erence in runtime increase as the size of the board
increases, with the runtime using symmetries never being longer than the one without symmetries.
This time decrease can be quite signi�cant, with the runtime for the 4×3 board decreasing by roughly
84.42% when making use of symmetries. The number of game states analysed in the process decreases
to merely 45.09% of the number analysed without this symmetry applied.

The larger decrease in runtime compared to the decrease in the number of states analysed can be
explained by how the state graph that is worked with is often smaller when using symmetries. With
a smaller state graph, some repeated operations in the algorithm whose runtimes depend on the
size of the graph can then be performed quicker. For example, within the implementation of Al-
gorithm 1, the set of vertices in the state graph is iterated over in order to construct the subset of
unlabelled, expanded vertices. With a smaller overall state graph, this operation, and in turn each call
to RetrogradeAnalysis, will resolve more quickly.

Furthermore, the testing application uses a std::unordered_map and a std::unordered_set as un-
derlying data structures for the state graph and the unlabelled edges in retrograde analysis respectively.
These data structures have faster lookups if there are fewer collisions within these structures, which
naturally occurs less often if there are fewer vertices in these structures in the �rst place.

Finally, if a symmetric state is found, it could at that point already be labelled due to its symmetric
equivalent having been labelled before. As such, any expanding state that leads to this symmetric
state could potentially immediately be labelled without having to expand any subsequent states that
would normally have been expanded if no symmetries were used. Therefore, making use of symmetries
can induce a greater decrease in the number of states analysed than the decrease of the full state space
this symmetry provides.

Player-swapping thus has a meaningful impact on the runtime of forward-looking retrograde analysis.
Regardless, as player-swapping always cuts the full search space in half at best, this symmetry does
not reduce the complexity of the algorithm, meaning a 5 × 5 solution still seems to be out of reach
with this approach.

6 Conclusion and further research

6.1 Conclusion

In this thesis we applied retrograde analysis to the board game Onitama. We found that Onitama is too
complex of a game for retrograde analysis to strongly solve, having to analyse all game states reachable
from the initial state, with the number of board states bounded from below and above respectively by

Ω([m− 2]n−1) and O
(

n2(nm)!

([n− 1]!)2(n[m− 2])!

)
in relation to the game's board size n × m. As the number of reachable game states is at most a
constant factor larger than the number of reachable board states, these complexity values can also be
applied to the size of the game's state graph itself.

By experimentation, most of retrograde analysis' runtime is spent building up the state graph. A
forward-looking derivative of retrograde analysis was discussed, which can analyse a state graph as it
is still being constructed. This allows the algorithm to exit the moment it �nds a weak solution from
the initial state for all non-losing players, without having to construct and analyse the full state graph.

33

Forward-looking retrograde analysis was formally proven to provide weak solutions to the game for all
players that cannot lose under optimal play from the initial state. Forward-looking retrograde analysis
was shown to provide signi�cantly faster results than retrograde analysis, despite having equivalent
worst-case complexity. On a 3 × 4 board with exclusively boar cards, forward-looking retrograde
analysis found a solution 95.51% faster than retrograde-analysis.

In addition, a symmetry was discussed which could be applied on the game states with regard to
�nding perfect positional strategies, reducing the state space even further. This symmetry was also
shown to provide signi�cant time improvements when applied to forward-looking retrograde analysis.

Despite all these advancements, the game (using only boar cards) was only able to be strongly solved
by retrograde analysis up to a 3 × 4 board, with forward-looking retrograde analysis only being able
to improve this by �nding a weak solution for all non-losing players up to a 4 × 3 board. All larger
board sizes took over two hours on both algorithms. Forward-looking retrograde analysis making use
of symmetries was able to solve the 3× 4 board roughly 98.30% faster than retrograde analysis could
while not making use of symmetries. Solving a 4× 3 board using forward-looking retrograde analysis
was shown to take roughly 84.42% less time if symmetries were used, compared to the same algorithm
not making use of symmetries.

6.2 Further research

During our studies we were not able to fully solve Onitama with a 5× 5 board in a reasonable amount
of time. There are several approaches that could still be investigated to improve upon our results, and
potentially bring a solution for the 5× 5 board within reach:

� One could apply a heuristic upon each move during forward-looking retrograde analysis, to
improve the chances of stumbling across the perfect positional strategy, allowing it to exit with
even fewer states analysed.

� The state graph generation is by far the most resource-intensive computation for retrograde ana-
lysis. Graph exploration lends itself well to parallelisation[HOO11]. Therefore, a well-performing
multithreaded graph-generating algorithm could be used in conjunction with retrograde analysis
to theoretically improve runtime.

� The codebase used for testing is written in a way that prioritises readability, extendability and
modi�ability, as this thesis mostly concerned itself with theory as opposed to practical results.
In some cases, these prioritisations degrade the program's performance. Lengths could be taken
to rewrite the codebase in a more performant manner, or run the program on more powerful
hardware for a longer amount of time.

Apart from these improvements that could be made on (forward-looking) retrograde analysis in context
of Onitama, the game itself also has a number of unanswered questions that promise an interesting
study:

� One could more closely research what game states are reachable given a speci�c set of cards, and
improve the upper and lower bounds found in this thesis.

� More symmetries could be discovered and analysed to further reduce the state space of the game.

� This game is very complex, and does not have any trivial metric that could be applied on heuristic
strategies for �nding a good, but not necessarily optimal, move to be performed. Research could
be done into how game states can be scored against one another to improve heuristic strategies.

� Research on the perfect positional strategies themselves could be performed to distil (parts of)
a strategy that can be used by people in real-world play.

� At the moment of the publication of this thesis there are three expansion sets to the game:
Sensei's Path, Way of the Wind, and Light & Shadow [OniEx]. While Sensei's Path merely adds
sixteen new cards to the game, Way of the Wind introduces a new pawn that can be moved by

34

both players, and Light & Shadow adds elements of imperfect information to the game. These
expansions invite many new questions to study and gameplay mechanics to analyse.

Finally, forward-looking retrograde analysis could also be studied in the context of other chess-like
games, comparing its performance to retrograde analysis in those scenarios.

35

References

[And+10] Daniel Andersson et al. `Deterministic Graphical Games Revisited'. In: Journal of Logic
and Computation 22.2 (Feb. 2010), pp. 165�178. issn: 0955-792X. doi: https://doi.org/
10.1093/logcom/exq001.

[Arn21] Robert Arntzenius. `Agents for the Strategy Game Onitama'. Bachelor's Thesis. Leiden
University, 2021. url: https://theses.liacs.nl/pdf/2020-2021-ArntzeniusR.pdf.

[Boe24] Teun Boekholt. `How does using Theory of Mind in an Agent-Based Model In�uence
the Results of the Two-Player Board Game of Onitama'. Bachelor's Thesis. University
of Groningen, 2024. url: https://fse.studenttheses.ub.rug.nl/33601/1/Bachelor
ThesisTeunBoekholt.pdf.

[Ewe02] Christian Ewerhart. `Backward Induction and the Game-Theoretic Analysis of Chess'. In:
Games and economic behavior. 39.2 (2002), pp. 206�214. issn: 0899-8256. doi: https:
//doi.org/10.1006/game.2001.0900.

[HOO11] Sungpack Hong, Tayo Oguntebi and Kunle Olukotun. `E�cient Parallel Graph Exploration
on Multi-Core CPU and GPU'. In: 2011 International Conference on Parallel Architectures

and Compilation Techniques. 2011, pp. 78�88. doi: 10.1109/PACT.2011.14.
[ISR02] Hiroyuki Iida, Makoto Sakuta and Je� Rollason. `Computer shogi'. In: Arti�cial intelligence

134.1 (2002), pp. 121�144. issn: 0004-3702. doi: https://doi.org/10.1016/S0004-
3702(01)00157-6.

[OniEx] Onitama. Arcane Wonders. url: https://www.arcanewonders.com/product/onitama/
#eael-advance-tabs-7eea470 (visited on 25/05/2025).

[Sat] Shimpei Sato. Onitama Rulebook. Arcane Wonders. url: https://www.arcanewonders.
com/wp-content/uploads/2021/05/Onitama-Rulebook.pdf (visited on 12/02/2025).

[Sch+07] Jonathan Schae�er et al. `Checkers Is Solved'. In: Science 317 (Oct. 2007), pp. 1518�1522.
doi: 10.1126/science.1144079.

[Wer04] Erik van der Werf. `AI techniques for the game of Go'. PhD thesis. Maastricht University,
2004. isbn: 90 5278 445 0. url: https://project.dke.maastrichtuniversity.nl/
games/files/phd/Van%20der%20Werf_thesis.pdf.

36

https://doi.org/https://doi.org/10.1093/logcom/exq001
https://doi.org/https://doi.org/10.1093/logcom/exq001
https://theses.liacs.nl/pdf/2020-2021-ArntzeniusR.pdf
https://fse.studenttheses.ub.rug.nl/33601/1/BachelorThesisTeunBoekholt.pdf
https://fse.studenttheses.ub.rug.nl/33601/1/BachelorThesisTeunBoekholt.pdf
https://doi.org/https://doi.org/10.1006/game.2001.0900
https://doi.org/https://doi.org/10.1006/game.2001.0900
https://doi.org/10.1109/PACT.2011.14
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00157-6
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00157-6
https://www.arcanewonders.com/product/onitama/#eael-advance-tabs-7eea470
https://www.arcanewonders.com/product/onitama/#eael-advance-tabs-7eea470
https://www.arcanewonders.com/wp-content/uploads/2021/05/Onitama-Rulebook.pdf
https://www.arcanewonders.com/wp-content/uploads/2021/05/Onitama-Rulebook.pdf
https://doi.org/10.1126/science.1144079
https://project.dke.maastrichtuniversity.nl/games/files/phd/Van%20der%20Werf_thesis.pdf
https://project.dke.maastrichtuniversity.nl/games/files/phd/Van%20der%20Werf_thesis.pdf

Glossary

board A board B is an n×m grid of tiles: B ∈ Tn×m, with n ≥ 1, m ≥ 2. n and m denote the width
and height of the board respectively. For any board B, Bxy denotes the tile in the x-th column
from the left and the y-th row from the top, where the red player is always seated at the top.

capture When a pawn moves onto a tile holding a pawn of its opposing colour, the opposing-coloured
pawn is captured, and taken out of play.

card A card C depicts a set of o�sets from the origin. A card permits the player to move any of their
pawns in accordance with any of these o�sets. C ⊂ [−2..2]2. Each card is also associated with
a colour: χ : P([−2..2]2) → {r, b}. The colour of the set-aside card in the initial state dictates
which player's turn it is �rst.

game state A game state S = (π,B,Cs, CR, CB) is a 5-tuple consisting of the current player π (either
red or blue), a board B ∈ Tn×m and �ve cards (⊂ [−2..2]2), in the order of the set-aside card
Cs, the multiset of the two cards CR := {Cr1, Cr2} belonging to the red player, and the multiset
of the two cards CB := {Cb1, Cb2} belonging to the blue player. X denotes the set of all game
states reachable from the initial state.

master A type of pawn, depicted as either mr or mb for respectively a red and a blue master. Each
player starts with one of them, and if this piece is captured or reaches the temple arch of the
opponent, the game ends.

move A move m := (o, d, C) ∈M := ([1..n]× [1..m])2×P([−2..2]2) holds an origin o and destination

d, as well as a card C such that d− o ∈ C.

pawn A pawn p is either a master or a student, pertaining to a particular player π. p ∈ P :=
{mr,mb, sr, sb}. p denotes the same pawn type (master or student) of the other player (red ↔
blue).

player A player π is either red (r) or blue (b). π denotes π's opponent.

state graph Let G = (V,A) be a directed graph, with the nodes V = X consisting of all reachable
game states from the initial state, and the edges being between two states reachable via single
valid move: A := {(S, S′) ∈ V 2 | ∃m ∈ MS s.t. m(S) = S′}. We call G the state graph for the
game Onitama.

student A type of pawn, depicted as either sr or sb for respectively a red and a blue student. In an
n×m game, each player starts with n− 1 students.

temple arch tr := (⌊n+1
2 ⌋, 1) and tb := (⌈n+1

2 ⌉,m) are the temple arches of respectively the red and
blue players. These are the starting positions of the masters. If a master reaches the temple arch
of opposing colour, the game ends.

terminal state A game state is called terminal if and only if at least one of the following holds:

� ∃m ∈ {mr,mb} : Bxy ̸= m∀ (x, y) ∈ [1..n]× [1..m] (a master got captured and got taken o�
of the board);

� Btr = mb or Btb = mr (a master reached the temple arch of the opponent).

T ⊂ X denotes the set of all terminal states that are reachable from the initial state.

tile A tile t represents a position on a board and is either empty (∅), or a pawn (∈ P): t ∈ T :=
P ∪ {∅}.

37

valid move A move m = (o, d, C) is considered valid for a speci�c game state S = (π,B,Cs, CR, CB)
if and only if C ∈ Cπ, Bo ∈ {mπ, sπ} and Bd ̸∈ {mπ, sπ}, i.e., if and only if the move is de�ned
by one of the current player's cards, and it moves one of the current player's pawns to either an
empty tile, or one occupied by an opponent's pawn.

38

Appendix

Data collection and source code

All data in this thesis was collected using a custom-made simulation of Onitama, which is publicly
accessible under the MIT License via GitHub: https://github.com/PringlesGang/Onitama/. Ver-
sion 1.1.1 of the software was used for all data collection, which can be downloaded here: https:

//github.com/PringlesGang/Onitama/releases/tag/v1.1.1.

All tests were performed in release mode on an AMD Ryzen 5 2600 CPU with 16GB of DDR4 SDRAM.
Tests were terminated and deemed to take `too long' if they took more than two hours to process.

Reproduce data

The data collected throughout this thesis can be reproduced using the aforementioned program with
the following commands. In all these commands, the variables $Width and $Height refer to the width
n and height m of the game board respectively.

� The data in Tables 2, 3, 6 and 7 were collected by executing the program with the following
arguments:

experiment stategraph retrograde -analysis 0 game --size $Width

$Height --cards boar --disable -symmetries

� The data in Tables 8 and 9 were collected by executing the program with the following arguments:

experiment stategraph forward -retrograde -analysis game --size

$Width $Height --cards boar --disable -symmetries

� The data in Tables 10 and 11 were collected by executing the program with the following argu-
ments:

experiment stategraph forward -retrograde -analysis game --size

$Width $Height --cards boar

Table 1 was �lled using data corroborated by all three of these experiments, with only the 4 × 3
datapoint not being able to be corroborated by retrograde analysis, as its runtime exceeded two hours.

39

https://github.com/PringlesGang/Onitama/
https://github.com/PringlesGang/Onitama/releases/tag/v1.1.1
https://github.com/PringlesGang/Onitama/releases/tag/v1.1.1

	Introduction
	Rules
	Definitions

	Retrograde analysis
	Positional strategies
	Retrograde analysis
	Optimal strategies
	Runtime

	The complexity of Onitama
	Upper bound for the number of board configurations
	Lower bound for the number of board configurations
	Card configurations
	The actual number of reachable game states
	The complexity of retrograde analysis

	Forward-looking retrograde analysis
	Forward-looking retrograde analysis
	Complexity
	Results

	State symmetries
	Player-swapping
	Results

	Conclusion and further research
	Conclusion
	Further research

	References
	Glossary
	Appendix
	Data collection and source code

