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Abstract

Cosmological fields can tell us many important things about the struc-
ture and evolution of the universe. These fields have complex structures,
making them difficult to analyze with standard statistical methods. One
method to estimate distributions is the principle of maximum entropy
(MaxEnt). In this thesis, two questions were investigated: how can a
MaxEnt distribution be found, and how well can the marginal distribu-
tion of cosmological fields be described with a MaxEnt distribution based
on skewness and kurtosis?

To this end, two methods were implemented to find MaxEnt distribu-
tions. The first depends on solving a system of equations, but was unsuc-
cessful due to the complex form of these equations. The second method
works by minimizing a strictly convex function, and was found to be reli-
able and fast. The main limitation of this method arises from a numerical
approximation of the function. This approximation can cause bad per-
formance for certain parameters, and make it difficult to use many con-
straints. This method could be improved by making these approximations
more accurate.

Using projection maps from the FLAMINGO cosmological simulations,
MaxEnt distributions were found using the skewness and kurtosis of these
maps. These distributions were not good approximations of the data due
to the large right tails of such cosmological fields.

Overall, a MaxEnt distribution can be found efficiently by minimizing
a strictly convex function, but this density is only useful when based on
the right constraints.
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Chapter 1
Introduction

Cosmological images can contain a wealth of information. For example,
structures like the cosmic web show how galaxy clusters are positioned
in thread-like filaments, with large areas of seemingly empty space in be-
tween. The way all this matter is distributed throughout the universe can
tell us much about the evolution and structure of the universe, like the
cosmic expansion rate, or the prevalence of dark matter and dark energy.
In order to extract such knowledge from cosmological fields, reliable sta-
tistical techniques have to be used.

Due to the non-linear expansion of the universe, these fields have com-
plex structures, consisting of large areas of mostly empty space, with very
dense regions being few and far between. These complex images are often
difficult to analyze using standard statistical techniques, and developing
new methods to this end is an area of active research.

One technique to estimate distributions is the principle of maximum
entropy (MaxEnt). It states that the density that best describes the current
state of knowledge is a density which maximizes the entropy while satis-
fying this knowledge. Intuitively, the most general distribution is chosen
which complies to the current knowledge. This knowledge, also called
constraints, can for instance consist of the first four moments of a distribu-
tion.

In this thesis, an algorithm was developed to calculate MaxEnt dis-
tributions. This algorithm was applied to cosmological images from the
FLAMINGO simulations. Using the skewness and kurtosis of those fields
as constraints, MaxEnt distributions were determined with the aim to de-
scribe the marginal distribution of these cosmological fields.

Chapter 2 introduces the concept of entropy (2.1) and the principle of
maximum entropy (2.2). Some instances of maximum entropy distribu-
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Introduction

tions are presented (2.3), along with several cases where no such distri-
bution exists (2.4). In Chapter 3, two algorithms were developed that
determine MaxEnt distributions. The first method attempted to solve a
system of equations (3.1), while the second algorithm minimized a func-
tion (3.2). The performance of the second algorithm was tested on prob-
lems with a known solution, and on cases where the skewness and kur-
tosis is known. In Chapter 4, the second algorithm was applied to some
cosmological fields from the FLAMINGO simulations. The results are dis-
cussed in Chapter 5, and Chapter 6 summarizes the findings.
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Chapter 2
The principle of maximum entropy

Probability density estimation is a common problem in statistics: given
prior knowledge about a distribution, how can the most likely density be
reconstructed? An example of this problem is choosing a prior density
in Bayesian statistics, where one often has some knowledge about results
from previous experiments. Usually, many distributions could have given
rise to the measured prior knowledge, and choosing one of those densities
can be subject to subjective assumptions of the scientist.

For example, a common approach is to estimate a distribution by as-
suming the distribution is part of a parametric model, like the class of all
normal distributions or exponential distributions. From this class, a par-
ticular distribution can be selected with parameter inference. However,
the method is subjective, since the choice of the model often depends on
the ideas of the scientist, and not solely on the data.

This subjectivity largely disappears if we adopt the non-parametric ap-
proach of choosing the density with the highest entropy among all distri-
butions which satisfy the prior knowledge. This approach is called the
principle of maximum entropy (MaxEnt).

Entropy is a widely used concept in many areas of science, and mul-
tiple interpretations exist. In general, two kinds of entropy exist: experi-
mental entropy and informational entropy. The former describes the state
of a system and is important in the theory of thermodynamics, while the
latter is a property of probability distributions and originated in informa-
tion theory. There are many similarities between the two forms of entropy,
but both theories can be developed independently. This text only concerns
itself with the latter notion.

The informational entropy roughly describes the inherent uncertainty
of a distribution: if you take samples from a known distribution, how
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The principle of maximum entropy

surprised will you be on average?
This Section begins by introducing the concept of entropy as a measure

of uncertainty of a distribution (2.1). Then the principle of maximum en-
tropy is defined, along with a general formula for MaxEnt distributions
and two ways for finding these distributions (2.2). Afterwards, some ex-
amples of MaxEnt distributions are given (2.3). Lastly, three different cases
are discussed were no MaxEnt distribution exists (2.4).

2.1 Entropy

First defined in 1948 by Claude Shannon [1, 2], entropy can be seen as the
expected ‘surprise’ of a random experiment, given the underlying proba-
bilities are known. Here, a derivation, inspired by Shannon, is presented
of a function which captures this surprise in the case of discrete outcomes.
The expectation of this surprise is defined as the entropy, and can be gen-
eralized to non-discrete cases.

Let X be a discrete random variable with range E and probability mass
function p with pi := P(X = i) for i ∈ E. Let S ⊆ E be the support of X,
i.e. the set of outcomes with non-zero probability.

Suppose we want to find a function which measures how surprised
we are when observing an outcome i ∈ S . This information function or
surprisal I : (0, 1] → R≥0 should measure how surprised we are when ob-
serving an event with a certain probability. It should satisfy three intuitive
properties:

(i) the function I should be strictly decreasing (if an event gets more
likely, the surprise decreases);

(ii) I(1) = 0 (an event that always happens, is not surprising at all);

(iii) for two independent events with probabilities p1 and p2, the equality
I(p1 · p2) = I(p1) + I(p2) should hold (measuring two independent
events should be as as surprising as the sum of measuring them sep-
arately).

The only functions which satisfy these three properties are of the form
I(p) = c log p, where c < 0 is some negative constant. Changing c is
equivalent to changing the base of the logarithm. Since only the relative
changes in surprisal are important, this constant is arbitrary. Tradition-
ally c = −1 is used, while the base may vary depending on the field of
research.

6



2.1 Entropy

In conclusion, I(pi) = − log(pi) is a measure for how surprised we are
when observing some outcome i ∈ S . The expected value of the surprisal
is also called the Shannon entropy.

Definition 2.1. Given a discrete random variable X with probability mass
function p and support S , the (Shannon) entropy of X is defined as

H(X) := EX∼p[I(pX)] = − ∑
i∈S

pi log pi.

Originally conceived to measure the amount of information in pieces
of text, in particular bit strings, the base of the logarithm used by Shannon
was 2. In the field of physics and astronomy, however, the natural loga-
rithm is often preferred, and this will be used throughout the rest of the
text.

Likewise, the entropy of continuous random variables is given in Def-
inition 2.2.

Definition 2.2. Given a continuous random variable X with probability
density function (pdf) p and support S , the (differential) entropy of X is
defined as

h(X) := −
∫
S

p(x) log p(x)dx.

This version of entropy for continuous random variables was not de-
rived by Shannon. He just assumed that replacing a sum by an integral
was a good choice. The differential entropy indeed has many similar prop-
erties as the Shannon entropy, but misses some intuitive properties that the
Shannon entropy does have, such as non-negativity and invariance under
change of variables. An alternate concept which does satisfy these proper-
ties is the limiting density of discrete points, introduced by E. T. Jaynes [3].
However, this version of entropy is hard to work with, so in practice Def-
inition 2.2 is often used. The differential entropy is still quite useful and
will be used in the rest of the text. From now on, only continuous random
variables will be considered.

As an example of differential entropy, Figure 2.1 shows three contin-
uous distributions on the interval [0, 1]. Their entropies are shown in Ta-
ble 2.1. Among these, the uniform distribution has the highest entropy.
This can be intuitively understood, since it is quite uncertain what its out-
come will be, and in the the other distributions, one would expect the out-
come to be closer to 0.5 on average. Furthermore, it can be proven that the
uniform distribution has the highest entropy over all possible densities on
[0, 1]. Thus it can be seen as being the most surprising distribution on this
interval.
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Continuous densities on [0,1]

Unif[0,1]

Beta(2,2)

Triangular

p h(p)
Unif[0, 1] 0
Beta(2, 2) −0.13
Triangular −0.19

Figure 2.1 & Table 2.1: Three continuous densities on the interval [0, 1], along with
their entropy. The uniform density has the highest entropy, and can therefore be consid-
ered the ‘most surprising’.

2.2 Maximizing the entropy

As described in the beginning of this Chapter, a common problem in statis-
tics is finding the probability distribution which gave rise to observed
data. Since there is no one ‘correct’ answer, all approaches have to make
use of assumptions or subjective interpretations.

One possible solution to this problem is the principle of maximum en-
tropy: among all distributions which could have given rise to our data,
choose the one with the highest entropy. Intuitively, this principle states
that, among all possible distributions which could describe our data, we
should choose the most general one, i.e. the one that makes the least
amount of assumptions. Definition 2.3 formalizes this idea.

Definition 2.3. Let X be a random variable with pdf q and support S ,
and k ∈ N0 a number. Let fi : R → R and Fi ∈ R be functions and
real numbers such that Fi = EX∼q[ fi(X)] for i = 1, . . . , k. The principle
of maximum entropy states the best estimate for q is the non-negative
function p which maximizes the entropy

h(p) = −
∫
S

p(x) log p(x)dx

subject to the constraints ∫
S

p(x)dx = 1, (2.1)

∫
S

p(x) fi(x)dx = Fi, i = 1, . . . , k. (2.2)
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2.2 Maximizing the entropy

A density p which satisfies these conditions, is called a maximum entropy
distribution, or MaxEnt distribution for short. The equalities in Equa-
tion 2.2 are called constraints.

In later Chapters, it’s useful to use vector notation indicate the con-
straints. So we write F = (F1, . . . , Fk) and f = ( f1, . . . , fk).

Note that, when using this principle instead of the more classical pa-
rameter inference setting as described above, different assumptions have
to be made. Instead of assuming a parametric model, it is assumed that
certain expectations of functions of X are known. In particular, no uncer-
tainties on these expectations can be taken into account. Therefore, it is
important that these constraints are accurate, which can be ensured with
sufficiently large sample sizes.

One MaxEnt distribution has already been discussed: the uniform dis-
tribution on [0, 1]. Except normalization constraint 2.1, there are no con-
straints. So with k = 0 and support S = [0, 1], it can be shown that the
highest entropy is attained by the uniform distribution. Other more inter-
esting examples of MaxEnt distributions are given in Section 2.3.

Assuming a solution exists, the MaxEnt density can be shown to have
a particular form.

Theorem 2.1. Given a MaxEnt distribution p exists, it can be written in the
following way:

p(x) = Z(λ1, . . . , λk)
−1 exp

(
k

∑
i=1

λi fi(x)

)
, (2.3)

where

Z(λ1, . . . , λk) :=
∫
S

exp

(
k

∑
i=1

λi fi(x)

)
dx

and λ1, . . . , λk are such that

Fi =
δ

δλi
log Z(λ1, . . . , λk), i = 1, . . . , k. (2.4)

The proof relies on the method of Lagrange multipliers and functional
derivation [4, 5]. In the context of this text, the variables λ1, . . . , λk, which
give a distribution via Equation 2.3, will be called the Lagrange parame-
ters. For short, the vector notation λ = (λ1, . . . , λk) is used. Theorem 2.1
states the maximization problem is equivalent to the problem of solving
a system of k equations with k variables. If there does not exist a MaxEnt
distribution, the system of equations is often not solvable.
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The principle of maximum entropy

Note that for k = 0, one gets the uniform distribution if the convention
is used that the empty sum evaluates to 0. In the rest of the text, we assume
k ≥ 1.

The MaxEnt density in Equation 2.3 can be formulated in an equivalent
way. Multiplying both sides of the fraction in Equation 2.3 by exp(−∑i λiFi)
gives an alternative formulation of the MaxEnt distribution:

p(x) = Q(λ1, . . . , λk)
−1 exp

(
k

∑
i=1

λi( fi(x)− Fi)

)
, (2.5)

where Q is a normalization constant:

Q(λ1, . . . , λk) :=
∫
S

exp

(
k

∑
i=1

λi( fi(x)− Fi)

)
dx. (2.6)

This may seem like a trivial reformulation of the solution. However, it
is useful to consider Q instead of Z, and Theorem 2.2 tells us why. The
Theorem is inspired by [5], where only the case fi(x) = xi was considered.

Theorem 2.2. If fi are continuously differentiable functions on S , the La-
grange parameters λ = (λ1, . . . , λk) solve the system of equations 2.4 pre-
cisely when they minimize Q.

Proof. Suppose
∂Q
∂λm

= 0 for all m = 1, . . . , k. If the functions fi are con-

tinuously differentiable on S for all i, the derivative and integral can be
interchanged using the Leibniz integral rule [6, p. 422]. This gives the fol-
lowing expression for the derivative:

∂Q
∂λm

=
∫
S
( fm(x)− Fm) exp

(
k

∑
i=1

λi( fi(x)− Fi)

)
dx.

Since Q is a positive constant with respect to x, both sided can be divided
by Q to see that,

0 =
∫
S
( fm(x)− Fm)p(x)dx, m = 1, . . . , k,

which is equivalent to the constraints in Equation 2.2. Therefore, at an ex-
treme value of Q, the corresponding Lagrange parameters give a MaxEnt
distribution via Equation 2.3.
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2.3 Some MaxEnt distributions

In fact, Q has at most one extreme value, and it is a minimum. To see
this, consider the second partial derivatives:

∂2Q
∂λm∂λn

=
∫

S
( fm(x)− Fm)( fm(x)− Fn) exp

(
k

∑
i=1

λi( fi(x)− Fi)

)
dx.

Dividing by Q again gives the following:

∂2Q(λ)

∂λm∂λn

1
Q(λ)

=
∫

S
( fm(x)− Fm)( fm(x)− Fn)p(x)dx,

which is the covariance of fm(X) and fn(X). The matrix(
∂2Q(λ)

∂λm∂λn

1
Q(λ)

)
1≤m,n≤k

is therefore a covariance matrix. This implies it’s symmetric and positive
semi-definite. For properly chosen constraints, a covariance matrix is pos-
itive definite. Multiplying the matrix with the positive value Q(λ) gives
the Hessian of Q evaluated in λ, which then is positive definite, as well.
Since the Hessian is positive definite for every value of λ, Q is strictly con-
vex. This implies that there exists at most one minimum of Q.

Since its partial derivatives are often considered, the function Q will be
referred to as a potential function. Note that the proof assumes Q has an
extreme value. If a MaxEnt distribution exists, it is unique.

In conclusion, there are two ways to find the Lagrange parameters
λ = (λ1, . . . , λk) which give a MaxEnt distribution by way of Equation 2.3
or 2.5: solve a system of equations, or minimize a strictly convex potential
function Q. In Chapter 3, both of these approaches are attempted.

2.3 Some MaxEnt distributions

Despite the complicated forms of Equations 2.3 and 2.4, many common-
place distributions can be found using the principle of maximum entropy.
As discussed before, for a finite support S = [l, u] and no constraints,
the MaxEnt distribution is the uniform distribution on [l, u]. For support
S = R and a specified mean µ and variance σ2, the MaxEnt distribution is
the normal distribution N (µ, σ2) [7].

More examples of continuous MaxEnt distributions are shown in Ta-
ble 2.2. In the Table, it can be seen that the constraints giving rise to some
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The principle of maximum entropy

distributions are relatively simple: on the positive reals, a specified mean
leads to an exponential distribution. Some slightly more complicated re-
straints give rise to other densities, such as the Pareto or von Mises distri-
butions.

2.4 Existence of MaxEnt distributions

Sadly, there does not always exist a MaxEnt distribution. Three distinc-
tions can be made. Let C be the class of all pdfs p which satisfy the con-
straints of Equation 2.2, and denote by

h(C) := {h(p) : p ∈ C}

the set of all entropies attained by elements of C.
The first case is that the set C could be empty: no distribution would

exist that satisfies all constraints. For example, the mean of X can be con-
strained as being both 0 and 1. In practice, this is easy to identify and
avoid.

Secondly, h(C) could have no upper bound, in which case the entropy
could become arbitrarily large. Consider the case with possible support R

and one constraint: E [X] = 0. To see this, consider the uniform density
pa = Unif[−a, a] for a > 0. The entropy of pa is h(pa) = log(2a), which
goes to infinity as a increases. Such a case could be remedied by adding
extra constraints, or decreasing the size of the support.

Lastly, and perhaps most interestingly, h(C) could have an upper bound,
but no maximum; the supremum of h(C) could then be approached arbi-
trarily well, but no distribution’s entropy would achieve this value. An
example is the problem with the first three moments as constraints [9,
Ch. 12.3].
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Chapter 3
Methods for finding a maximum
entropy distribution

Two approaches for finding a MaxEnt distribution were discussed in the
previous Chapter. The first method solves system of equations 2.4, while
the second minimizes the potential function Q defined in Equation 2.6.

In Section 3.1, the first method was implemented in Mathematica and
solved many MaxEnt problems with one constraint (3.1.1), but failed when
generalizing to two constraints (3.1.2). Section 3.2 describes the second al-
gorithm, which was written in Python (3.2.1). Its performance was tested
on a MaxEnt distribution (3.2.2), and on the case with skewness and kur-
tosis as constraints (3.2.3). Section 3.3 briefly summarizes the finding of
the Chapter. All code, as well as most results presented in this thesis, can
be found on the GitHub page in [10].

3.1 Solving a system of equations

Given that the constraints admit a MaxEnt distribution, its form can be
found by solving system of equations 2.4. These equations can take on
complex forms. Using the programming language Wolfram Mathematica,
a notebook was created that attempts to solve this set of equations. Mathe-
matica is a powerful programming language equipped with many built-in
tools to solve mathematical problems, especially related to calculus.

Algorithm 1 outlines the structure and simplicity of the code. The Al-
gorithm merely defines the necessary equations, and in step 3 the ‘Solve’
function is called on the system of equations.

The difficulty lies in providing the right assumptions to the Algorithm.
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Methods for finding a maximum entropy distribution

Algorithm 1: Find a MaxEnt distribution by solving the system
of equations 2.4, written for Mathematica. The argument assump-
tions is a Boolean statement defining the constraints on the param-
eters belonging to Fi and fi, and specifying the Lagrange parame-
ters belonging to R. ‘·’ denotes the inner product.

Input: k ∈ N1;
F = (F1, . . . , Fk) ∈ Rk;
f = ( f1, . . . , fk) : R → Rk;
S = [a, b] with a, b ∈ [−∞, ∞];
assumptions

Output: Lagrange parameter λ ∈ Rk

1 Define Z(λ, assumptions) :=
∫
S exp(λ · f (x))dx, where

assumptions are used when evaluating the integral.

2 Define dZ(λ, assumptions) :=
(

∂ log Z(λ, assumptions)
∂λi

)
1≤i≤k

.

3 Solve dZ(λ, assumptions) = F over λ given assumptions are true.

This argument consists of Boolean statements such as σ2 > 0 or λ1 ∈ R. In
practice, one always needs to specify all normal and Lagrange parameters
are real numbers to get sensible results. Often, it’s also necessary (or time-
efficient) to specify some Lagrange parameter is positive or negative. This
can be necessary to let Mathematica perform calculations. For example, to
evaluate the integral

∫
R

exp(ax2)dx, it’s necessary to know a < 0. Note
there has to be at least one constraint for the Algorithm to work.

3.1.1 One constraint

All first four distributions with one constraint in Table 2.2 were found this
way, with run times varying between 0.10 and 10 s. Plugging the result λ
into Equation 2.3 The resulting distributions were exact, and no numerical
approximations had to be made.

Other MaxEnt densities with one constraint could also be found. Fig-
ure 3.1 shows a MaxEnt density arising from the positive real support R≥0
and a fixed third moment: E

[
X3] = c with c > 0.

However, this approach did not succeed for the Cauchy distribution. In
this case, the system of equations could be solved, but the program could
not prove that this solution was the only one. This caused the program to
quit and give an error message. Using the function ‘FindInstance’, which
only searches for one solution, solved this issue. However, this approach
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Figure 3.1: The MaxEnt distribution arising from support R≥0 and constraint
E
[
X3] = c. The resulting Lagrange parameter of Algorithm 1 was converted into a

density via Equation 2.3. The closed-form equation for the solution for is shown on the
plot, along with three example densities for fixed c.

only worked because the Cauchy distribution has no parameters.
The Cauchy distribution is usually a curious case in probability; its

mean and variance are undefined due to the divergence of their integrals.
Therefore, many standard theorems in probability theory, such as the Cen-
tral Limit Theorem, do not apply to this distribution. This abnormal be-
havior of the distribution makes it not very surprising that the program
had issues in that case.

Since Algorithm 1 worked well in most cases with one constraint, the
next step was to generalize to two constraints.

3.1.2 Multiple constraints

It was attempted to apply Algorithm 1 to the distributions with two con-
straints in Table 2.2. While it performed well for the normal and lognormal
distribution, the other distributions couldn’t be found in this way; the sys-
tem of equations became too complex for the the ‘Solve’ function, and the
program quit with an error message. It was attempted to provide a solving
method to the ‘Solve’ function, but this also didn’t improve performance.

Since for practical purposes, the objective wasn’t necessarily to find
closed-form solutions, the problem was relaxed; the values for parameters
could be fixed before finding the MaxEnt distribution. The solution could
then be achieved using the ‘NSolve’ function. This way, the gamma distri-
bution could be found within about 30 s. However, other problems with
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Methods for finding a maximum entropy distribution

two constraints could not be solved, providing an error message. Since the
envisioned application of finding MaxEnt distributions was more complex
than these cases, the approach with Algorithm 1 was discontinued.

Unless more efficient solving-methods can be found, it is not feasible
to calculate or approximate complex MaxEnt densities by solving system
of equations 2.4.

3.2 Minimizing a potential

Since solving the system of equations was not feasible with Mathemat-
ica, a different approach was used to find the MaxEnt distribution. Here,
the potential function Q (Eq. 2.6) is minimized using Newton’s method
for optimization in Python. This approach was inspired by Rockinger
& Jondeau [5]. However, it was slightly adapted; Rockinger & Jondeau
only considered the first k moments as constraints, i.e. fi(x) = xi for
i = 1, . . . , k. The algorithm implemented here allows for more general
constraint functions.

3.2.1 The algorithm

As discussed in Section 2.2, another way to find the MaxEnt distribution
is to minimize the potential Q, defined in Equation 2.6. Theorem 2.2 states
that if a solution exists, this minimum is unique. This makes Newton’s
method for optimization an appropriate way of finding this minimum.
See [11, Sect. 3.1] for some background on the technique. Algorithm 2 im-
plements this, and attempts to find the Lagrange parameters which mini-
mize the potential.

In order to apply this Algorithm, two approximations have to be made
for practical purposes. First, to efficiently calculate the gradient and Hes-
sian of Q, the integral over S in the definition of Q is approximated by a
sum using an n-point Gaussian quadrature. Furthermore, the support S
is approximated with a finite support of the form [l, u], which is necessary
for the n-point Gaussian quadrature.

The n-point Gaussian quadrature is numerical technique for evaluat-
ing integrals by approximating an integral over the interval [−1, 1] with a
sum over n elements. The technique uses so-called weights w1, . . . , wn and
nodes z1, . . . , zn ∈ [−1, 1]. Their values are such that, for some integrable
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3.2 Minimizing a potential

function g, ∫ 1

−1
g(z)dz ≈

n

∑
i=1

wig(zi).

The values of the nodes and weights do not depend on the function which
is integrated. As a consequence of using the Gaussian quadrature, the
support S has to be approximated with a finite interval of the form [a, b].
Hence, the potential is approximated as

Q(λ) ≈
n

∑
i=1

wi exp

(
k

∑
j=1

λj( f j(xi)− Fj)

)
, (3.1)

where xi is a linearly rescaled value of zi, also called a node. The n-point
Gaussian quadrature is useful for quickly and easily calculating the gradi-
ent and Hessian of Q.

This approximation of Q is minimized in Algorithm 2. The first step
defines the nodes and weights, whose values can be found using numer-
ical packages. Step 2 rescales the nodes linearly from the interval [−1, 1]
to [l, u]. Next, the matrix A is defined to recast Equation 3.1 into matrix-
form, and then the potential is defined in step 4. Next, the iterator and the
Lagrange parameters are initialized to zero.

For each iteration step, the gradient and Hessian of Q are evaluated in
λi. In this case, the automatic differentiation technique was used with the
‘autograd’ package in Python. Then a step d is calculated by solving a linear
system of equations, and λi is updated according to Newton’s method.
This procedure is repeated until either the step size becomes very small,
in which case the algorithm is said to converge, or until the maximum
number of iterations has been reached.

If convergence is reached, the output of Lagrange parameters then
identify a MaxEnt distribution via Equation 2.3.

3.2.2 Performance on constraints with a known solution

Once the constraints have been set, several other parameters should be
given to Algorithm 2: the quadrature number n, the maximum amount of
iterations imax, and the borders of the closed interval [l, u]. This raises the
question of how these parameters should be chosen. Intuitively, one may
expect that the larger the chosen support and the higher the quadrature
number n, the more accurate the result. As shown below, however, this is
not always the case.
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Methods for finding a maximum entropy distribution

Algorithm 2: Minimize the potential Q with an n-point Gaussian
quadrature and Newton’s method for optimization. Convergence
is said to be reached when the condition in step 11 is satisfied.
In case of convergence, the resulting Lagrange parameters give
a MaxEnt distribution via Equation 2.3. The exponent ‘exp’ acts
element-wise on vectors. The Euclidian norm is denoted by || · ||2.

Input: n, k, imax ∈ N1;
[l, u] with l, u ∈ R, l < u;
F = (F1, . . . , Fk) ∈ Rk;
f = ( f1, . . . , fk) : R → Rk

Output: Lagrange parameters λ ∈ Rk

1 Let z = (z1, . . . , zn) and w = (w1, . . . , wn) be the nodes and
weights of the n-point Gaussian quadrature.

2 Set xi := ((u − l)zi + (u + l))/2 for i = 1, . . . , n.
3 Define the matrix A = (aij)1≤i≤k, 1≤j≤n with aij := f j(xi)− Fj.
4 Define the potential function Q(λ) := w · exp(Aλ).
5 Initialize i := 0 and λ0 := 0 ∈ Rk.
6 while i < imax do
7 Let gi := ∇Q(λi) be the gradient, and Gi := HQ(λ

i) the
Hessian of Q evaluated in λi.

8 Let di ∈ Rk be the solution to the system of linear equations
Gidi = −gi.

9 λi+1 := λi + di

10 i++
11 if ||di||2 < 10−9 then
12 STOP by setting imax := i.
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3.2 Minimizing a potential

The value imax that should be used generally depends on the number
of constraints k. In the case of one or two constraints, given the Algorithm
doesn’t diverge, converges within 10 to 100 iterations. As a consequence,
the influence of this parameter does not need to be investigated here, and
by default is set to 100 for one or two constraints.

Example: the Laplace distribution

To illustrate the implemented Algorithm, consider the Laplace distribu-
tion with parameter c = 1. Then the inputs for the algorithm are k = 1,
imax = 100, F1 = 1, and f1(x) = |x|.

Since the distribution is symmetric around 0, a logical choice for the
support interval is [−u, u] for some u > 0. It’s obvious that u should be
chosen such that most of the mass of the distribution is contained in that
interval. But the interval shouldn’t be too large, either, as can bee seen in
Figure 3.2. A bigger interval resulted in a worse result.

Both of these examples, however, did converge to a solution within
about ten iterations. When increasing to u = 40, the algorithm diverged;
see Figure 3.3.

Performance plots

Most distributions in Table 2.2 have infinite support. To apply Algorithm 2,
a closed interval has to be fixed. To see how the size of the interval in-
fluences the results, the Algorithm was tested for various supports and
values for n. Here the interval had the form [−u, u] (for real support R),
or [a, u], a ∈ R (for real support [a, ∞]) is used, for varying u. For each
instance, three things were evaluated:

(i) how much of the mass of the ‘real’ distribution fell within the inter-
val [l, u];

(ii) whether the algorithm converged;

(iii) given that the algorithm converges, how far the solution λ was from
the theoretical value. This error is denoted by λerr, the Euclidean
distance between theoretical value and λ.

The resulting performance plots are shown in Figure 3.4. In each Fig-
ure, the same data is visualized in two plots. The contour plot on the
left shows the areas of non-convergence well, while the scatter plot on the
right shows the influence of the support size and n more accurately.
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(a) Lagrange parameter vs. iteration using
support [−8, 8]. The resulting parameter is
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(b) The resulting MaxEnt density using sup-
port [−8, 8] with λ = −1.01.
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(c) Lagrange parameter vs. iteration using
support [−20, 20]. The resulting parameter is
λ = −1.17.
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(d) The resulting MaxEnt density using sup-
port [−20, 20] with λ = −1.17.

Figure 3.2: Two visualizations of Algorithm 2 and resulting densities using the Laplace
constraint E [|X − µ|] = 1/c with µ = 0 and c = 1, varying support and n = 50. The
correct Lagrange parameter is λ = −1.

22



3.2 Minimizing a potential
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Figure 3.3: Algorithm 2 does not always converge to a solution. The evolution
of the Lagrange parameter is shown during Algorithm 2 on the Laplace constraint
E [|X − µ|] = 1/c with µ = 0 and c = 1, support [−40, 40] and n = 50. The
correct Lagrange parameter is λ = −1.

23



Methods for finding a maximum entropy distribution

10 20 10 16 10 12 10 8 10 4

Fraction of prob. mass outside S

101

102

Qu
ad

ra
tu

re
 n

um
be

r n

Contour plot of quality

10 20 10 16 10 12 10 8 10 4

Fraction of prob. mass outside S

10 15

10 12

10 9

10 6

10 3

100

er
r

Quality vs. support

10 16

10 11

10 6

10 1

err

101

102

n

Performance of Algorithm 2 on Normal(0,1) with one constraint

(a) The performance of Algorithm 2 on the normal distribution with parameters µ = 0
and σ2 = 1, using one constraint. The support used for the Algorithm was S = [−u, u],
where u varied from 0.2 to 10 in 100 steps on a linear scale.
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Performance of Algorithm 2 on Exponential(1)

(b) The performance of Algorithm 2 on the exponential distribution with parameter
c = 1. The support used for the Algorithm was S = [0, u], where u varied from 0.5 to
50 in 100 steps on a linear scale.
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Performance of Algorithm 2 on Laplace(1)

(c) The performance of Algorithm 2 on the Laplace distribution with parameter c = 1.
The support used for the Algorithm was S = [−u, u], where u varied from 0.5 to 40 in
100 steps on a linear scale.
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Performance of Algorithm 2 on Pareto(1,1)

(d) The performance of Algorithm 2 on the Pareto distribution with parameters α = 1
and xm = 1. The support used for the Algorithm was S = [1, u], where u varied from 5
to 10, 000 in 100 steps on a linear scale.
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Performance of Algorithm 2 on Cauchy

(e) The performance of Algorithm 2 on the Cauchy distribution. The support used for
the Algorithm was S = [−u, u], where u varied from 1.38 to 3183 in 100 steps on a
linear scale.
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Performance of Algorithm 2 on Normal(0,1) with 2 constraints

(f) The performance of Algorithm 2 on the normal distribution with parameters
µ = 0 and σ2 = 1, using two constraints. The support used for the Algorithm was
S = [−u, u], where u varied from 0.4 to 10 in 100 steps on a linear scale.
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Performance of Algorithm 2 on Logormal(0,1)

(g) The performance of Algorithm 2 on the lognormal distribution with parameters
µ = 0 and σ2 = 1. The support used for the Algorithm was S = [0, u], where u varied
from 1.29 to 2102 in 100 steps on a linear scale.
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(h) The performance of Algorithm 2 on the von Mises distribution with parameters
µ = 0 and κ = 1. The quality of the result is shown as a function of quadrature number
n. The support was fixed at [0, 2π].
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Performance of Algorithm 2 on Rayleigh(1)

(i) The performance of Algorithm 2 on the Rayleigh distribution with parameter σ2 = 1.
The support used for the Algorithm was S = [0, u], where u varied from 1.18 to 8.57 in
100 steps on a linear scale.
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Performance of Algorithm 2 on Gamma(2,2)

(j) The performance of Algorithm 2 on the gamma distribution with parameters k = 2
and θ = 2. The support used for the Algorithm was S = [0, u], where u varied from
2.19 to 76.4 in 100 steps on a linear scale.

Figure 3.4: The performance of Algorithm 2 on several distributions from Table 2.2.
Left, a contour plot shows the error of the solution λerr as a function of the fraction of
probability mass outside support S , and n. Empty areas belong to non-converging cases.
Right, the same information is plotted in a different way. n was varied from 10 to 316 in
20 steps on a logarithmic scale, and u was varied as specified under the Figure. The von
Mises distribution is presented differently.
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Conclusions about performance

From the performance figures, a few observations can be made:

(i) In each instance, there is a certain value for the minimum fraction of
probability mass that needs to be in the interval [l, u] before conver-
gence was possible, no matter the value of n. This fraction usually
lies below 0.90. This means that in practice, it is often easy to make
the interval large enough.

(ii) Once the support fraction is larger than the above-mentioned mini-
mal value, two general cases can be distinguished: situations where
the error is decreased by making the interval larger, and ones where
the error is decreased by increasing n. Sometimes, increasing the
support may cause the result to be worse, or even diverge. Increas-
ing n usually doesn’t negatively impact performance.

In general, these results are encouraging: the outcome can be made
quite accurate, and the Algorithm can be executed dozens of times per
second. Note however, that the performance depends on which distribu-
tion which is approximated. The Cauchy and lognormal distribution do
not have great convergence, and it’s easy to make the support too large.

From these Figures, it is also not known how the amount of constraints
k influences performance. In the next Subsection, a particular MaxEnt
problem with four constraints is investigated.

3.2.3 Skewness and kurtosis

Two parameters that are often used to describe the shape of a distribution
are the skewness and kurtosis. Generally speaking, skewness indicates the
asymmetry of a distribution, while kurtosis measures the prominence of the
tails. Formally, they are defined by Definition 3.1.

Definition 3.1. Let X be a random variable with mean µ and non-zero
variance σ2. The skewness γ1 and kurtosis γ′

2 of X are defined as

γ1 := E

[(
X − µ

σ

)3
]

and γ′
2 := E

[(
X − µ

σ

)4
]

.

Since these two parameters are common ways of describing distribu-
tions, it’s interesting to consider what the MaxEnt distribution is for some
fixed mean, variance, skewness and kurtosis. There is no known closed-
form MaxEnt distribution for these constraints [5].
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Note that skewness and kurtosis are invariant under linear transfor-
mations; without loss of generality, one can set the mean and variance to
0 and 1, respectively. In this case, the skewness and kurtosis are equal
to the third and fourth moment. The resulting density can afterwards be
rescaled to adjust for the desired mean and variance.

Formally, the following case is considered: the support is R with k = 4
constraints, and constraints f (x) = (x, x2, x3, x4) and F = (0, 1, γ1, γ′

2).
One instance with γ1 = 1 and γ′

2 = 3 is shown in Figure 3.5. The path
the Lagrange parameters take toward the minimum can be quite complex.

Rockinger & Jondeau investigated this skewness-kurtosis problem in
the same paper from which Algorithm 2 was inspired [5]. Figure 3.6 shows
the convergence of the algorithm for varying skewness and kurtosis, which
corresponds well to Figure 1 of [5]. However, increasing n from n = 40
(used in the paper) to n = 200, gave a slightly larger domain of con-
vergence. A larger area of convergence than in Figure 3.6 could not be
found. Outside the region of convergence in Figure 3.6, there often exists
no MaxEnt distribution according to [5]. Adjusting the parameters there-
fore won’t work in this case.

3.3 Conclusions on finding a MaxEnt distribu-
tion

Two methods have been implemented to find a MaxEnt distribution. Al-
gorithm 1 attempts to solve the system of equations 2.4 in Mathematica.
However, it could only do so reliably with no more than one constraint,
because the form of the equations quickly became too complicated. Also,
even if it worked, it was not fast, usually taking over one second. The per-
formance of this Algorithm was hindered by computational complexity,
and might be implemented with better results by using another program
or function with an appropriate system-solving method.

The second Algorithm performed much better. It was very fast, allow-
ing dozens of runs per second, and performed well under constraints with
a known solution. The downside of this method is the approximations
which have to be made: the support has to be approximated with a fi-
nite interval, and the integral in the definition of the potential is evaluated
with an n-point Gaussian quadrature. Depending on the chosen support
and value for n, Algorithm 2 can perform badly or not converge at all.

In the next Chapter, Algorithm 2 is applied to some simulated cosmo-
logical fields, using their skewness and kurtosis as constraints.
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Figure 3.5: A visualization of Algorithm 2 and resulting density using the constraints
f (x) = (x, x2, x3, x4) and F = (0, 1, 1, 3), support [−20, 20] and n = 200.
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Figure 3.6: A contour plot showing the convergence of Algorithm 2 with vary-
ing skewness γ1 and kurtosis γ′

2. The constraints were f (x) = (x, x2, x3, x4) and
F = (0, 1, γ1, γ′

2), with support [−20, 20] and quadrature number n = 200. This
is a recreation of Figure 1 in [5].
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Chapter 4
Analyzing cosmological fields with
skewness and kurtosis

If you would describe the universe as consisting only of empty space, you
would be mostly correct. However, this would not a very interesting de-
scription of the universe; most things we know, like planets, stars or black
holes, wouldn’t exist.

Likewise, most of the night sky is dark, with sparse bursts of light, way
brighter than the background. When statistically describing the night sky,
we need to model both the large patches of relative darkness, as well as
the small amount of very bright areas. This implies that when considering
the marginal distribution of the brightness, it should have a very large tail
toward the brighter areas. This motivates the suspicion that the sample
skewness and kurtosis might describe these distributions.

In this Chapter, we analyze projection maps from the FLAMINGO project.
First, some explanation is given about FLAMINGO and the data (4.1). The
analysis is presented in Section 4.2, where Algorithm 2 calculated MaxEnt
distributions using the skewness and kurtosis as constraints.

4.1 FLAMINGO

The standard cosmological model can give a good description of the large-
scale structure of the universe. It can model the evolution of the universe
over billions of years. However, some parameters of the cosmological
model have proved to be very hard to determine. One infamous exam-
ple is the Hubble constant, a parameter indicating how fast the universe is
expanding. Over the last decades, two different methods have been used
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DMO Hydrodynamical
Skewness Kurtosis Skewness Kurtosis

Planck 2.8 ± 0.2 22 ± 4 2.9 ± 0.2 24 ± 4
Fiducial 2.8 ± 0.3 23 ± 5 2.9 ± 0.3 24 ± 5
Low sigma8 2.7 ± 0.2 21 ± 3 2.8 ± 0.2 22 ± 3

Table 4.1: Average skewness and kurtosis of the FLAMINGO projection maps, with their
standard deviation, based on five projection maps each.

to measure this value. Both led to significantly different results and it’s still
unclear why [12]. Another way to constrain cosmological parameters is be
to do simulations with different sets of cosmological parameters (different
cosmologies), and assessing for which of these parameters the simulation
resembles our universe.

Due to the extreme computational difficulty of such large-scale simula-
tions, an often-used simplification is the dark matter only (DMO) model.
However, this only works for large scales. To accurately simulate on smaller
scales, baryonic matter also needs to be taken into account. These simula-
tions, which use both dark and baryonic matter, are called hydrodynami-
cal simulations, and are computationally much more demanding.

FLAMINGO is a project of the Virgo Consortium for Cosmological Su-
percomputer Simulations. The aim is to execute accurate hydrodynamical
simulations for various cosmologies [13]. Each of these simulations results
in slightly different kinds of visible structure.

The images used for the analysis below are projection maps made from
the results of the simulations; the 3D state of the simulation was trans-
formed into full-sky maps (images as one would see the sky), and small
patches, called projection maps, were taken from these full-sky maps. The
projection maps were provided by Maria Marinichenko, a member of the
same research group as for which this thesis was written.

Three different cosmologies were considered (Planck, fiducial and LS8/
Low sigma8), and both hydrodynamical and DMO simulations were per-
formed. The cosmological parameters that correspond to the three cos-
mologies can be found in Table 4 of [13]. For each of these six simulations,
we have five projection maps. Table 4.1 shows the skewness and kurto-
sis of the projection maps. Since there is no significant difference between
those statistics, it was chosen to only consider one image per simulation
type for the following analysis. Those images are shown in Figure 4.1.
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4.1 FLAMINGO
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Projection maps of different FLAMINGO simulations

Figure 4.1: Projection maps of several FLAMINGO simulations. The cosmological pa-
rameters that indicate the Planck, low sigma8, and fiducial cosmologies are shown in
Table 4 of [13].
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4.2 Analysis of the projection maps

The goal of this Section is to analyze the FLAMINGO fields by deter-
mining a MaxEnt distribution based on the skewness and kurtosis of the
marginal distribution of the pixel brightness. To determine how well this
distribution describes the data, samples were drawn from it, and then
compared with the original data using a Kolmogorov-Smirnov test.

The main part of the analysis is shown in Algorithm 3. As explained
in Subsection 3.2.3, the image can be standardized using the mean and the
variance, which happens in step 3. This makes the skewness and kurtosis
equal to the third and fourth moments, which are calculated in step 4. Step
5 fixes the support as the interval with the minimum and maximum values
of the image pixel brightness as its borders, which is reasonable given the
sample size is of order 105. Then Algorithm 2 is performed with the first
four moments as constraints.

Once the MaxEnt density has been determined, samples are drawn
from it using rejection sampling in step 7. Described in Algorithm 4, re-
jection sampling is a sampling technique that can produce samples from a
density g using a so-called dominating density f . One says f dominates g
if there exists a constant C > 0 such that g(x) ≤ C f (x) for all x. Further-
more, to use rejection sampling, it should be possible to sample from the
dominating density. Since the MaxEnt distribution is defined on a finite
support [l, u], the uniform distribution is an appropriate dominating den-
sity. In step 8 of Algorithm 3, the samples are rescaled with the original
mean and variance.

Figures 4.2a to 4.2f show the results of the analysis. As the tails of
the distribution are not visible in the normal histogram, the second figure
has a logarithmic axis. The Figures also show the p-value of the 2-sample
Kolmogorov-Smirnov test (KS test). Appendix A shows the results of the
same analysis on other types of images.

The two samples are markedly different in all Figures. Accordingly,
the p-value is very low. This is the case for all six projection maps. There
is no big difference between the performance on the different simulations
that can’t be attributed to chance. Also, the MaxEnt distributions have
trouble capturing the tails of the real distribution. However, these regions
with high pixel values are important to model correctly, since this is the
area where interesting phenomena like stars exist. Therefore, it’s crucial to
describe the tails accurately. This implies the skewness and kurtosis alone
aren’t good enough to describe the shape of such cosmological images
accurately.
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4.2 Analysis of the projection maps

Algorithm 3: Find a MaxEnt distribution of the marginal distri-
bution of an image, with skewness and kurtosis constraints, and
take samples from this distribution.

Input: image;
quadrature number n

Output: sample from the MaxEnt distribution based on skewness
and kurtosis, with the same sample size as the amount of
pixels in image.

1 Let µ and σ2 be the sample mean and sample variance of the pixel
values of image.

2 Let m := |image| be the amount of pixels.
3 Standardize the image: image_st := (image − µ)/σ.
4 Let the skewness γ1 and kurtosis γ′

2 be the third and fourth sample
moments of image_st, respectively.

5 Define l := min(image_st) and u := max(image_st).
6 With support [l, u], quadrature number n, find the MaxEnt

distribution with Algorithm 2 with constraints
f (x) = (x, x2, x3, x4) and F = (0, 1, γ1, γ′

2). Call this density g.
7 Sample m i.i.d. values from g using rejection sampling

(Algorithm 4), with dominating density Unif[l, u] and constant
C := max {g(x) : x ∈ [l, u]} · (u − l).

8 Rescale the samples by multiplying by σ, and adding µ.

Algorithm 4: Sample from g with rejection sampling. For more
background on this technique, see [14, Ch. II.2b].

Input: density g;
dominating density f on the same support as g from which

one can sample;
constant C such that g(x) ≤ C f (x) for all x

Output: random sample X from g
1 Sample Y ∼ f and U ∼ Unif[0, 1] independently.
2 if U > g(Y)/C f (Y) then
3 return to step 1.

4 Return X := Y.
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(a) Results using an image from a dark matter only simulation with the Planck
cosmology.
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(b) Results using an image from a dark matter only simulation with the fidu-
cial cosmology.
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(c) Results using an image from a dark matter only simulation with the low
sigma8 cosmology.
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(d) Results using an image from a hydrodynamical simulation with the Planck
cosmology.
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(e) Results using an image from a hydrodynamical simulation with the
fiducial cosmology.
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(f) Results using an image from a hydrodynamical simulation with the low
sigma8 cosmology.

Figure 4.2: The results of Algorithm 3 with various projection maps and n = 350 in two
histograms. In red, the image values are plotted, while in blue, samples from the MaxEnt
distribution based on the skewness and kurtosis are shown. Both histograms show the
same data, but the lower plot has a logarithmic scale on the density.
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Chapter 5
Discussion

The method of solving system of equations 2.4 did not succeed in reliably
finding MaxEnt distributions for multiple constraints. However, if bet-
ter solving methods are found which are suited to this type of problem,
it would be worth investigating, because this method can provide exact
MaxEnt distributions.

Minimizing the potential Q does appear to be a reliable way to find
MaxEnt distribution. It performed equally well as in [5] in the case of
moment constraints. Due to the more general implementation, it could
also find MaxEnt distributions for other types of constraints.

However, it is not perfect: the performance relies heavily on two pa-
rameters: the size of the interval of support, and the value for n used in
the n-point Gaussian quadrature. These parameters influence the approxi-
mation of the potential function, which can shift, or even remove, the min-
imum. Further research could focus on methods to determine the optimal
values for these parameters, and whether a support which is asymmetric
about the mean could improve performance.

Even though a larger n generally increases accuracy, the current appli-
cation does not allow for an unlimited increase in n, since the quadrature
nodes and weights used are potentially not accurate for n > 100 accord-
ing to the NumPy documentation. To remedy this, the Algorithm could
be adjusted in one of two ways: (i) find more accurate quadrature nodes
and weights, or (ii) stop using the quadrature approximation, and eval-
uate the integral in another way. While this Algorithm uses automatic
differentiation, the implementation of (ii) may be better achieved with a
finite-difference approach.

A limitation of Algorithm 2 is the amount of constraints: when choos-
ing six or more constraints, the algorithm rarely converges (see e.g. Ap-
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pendix B). This problem can probably only be solved if the Gaussian quadra-
ture approximation were replaced by a more robust technique to evaluate
the integral.

The marginal distribution of cosmological fields couldn’t described ac-
curately by the MaxEnt distribution using skewness and kurtosis, since the
right tail was too large. This can be seen in Appendix A, where the same
analysis was performed on various kinds of patterns. The same analysis
worked a lot better when applying the Algorithm to turbulence-like pat-
terns.

It was also attempted to add the eighth moment as a fifth constraint to
the skewness-kurtosis analysis. This marginally improved the results, but
not by much. A better result could perhaps be achieved with a logarithmic
constraint.

While this particular application did not lead to a very accurate de-
scription of the data, the principle of maximum entropy is nonetheless a
powerful tool for density estimation. When information is sparse, one can
still make an educated guess on the original density, which can for instance
be used as a prior density, or to simulate data for follow-up simulations.
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Chapter 6
Conclusion

An effective way to approximate MaxEnt distributions has been devel-
oped in Algorithm 2, which minimizes a strictly convex function Q. This
approach was inspired by [5], but instead of only taking moments as con-
straints, it was generalized to arbitrary constraint functions. As can be
seen in Figures 3.4a to 3.4j, all MaxEnt distributions from Table 2.2 with
at least one constraint could be approximated reasonably well: for some
distributions, like the Laplace, Pareto or Cauchy, the error in the Lagrange
parameters was at best about 10−3, while for others, like the normal, ex-
ponential and von Mises, the error could reach below 10−12.

Algorithm 2 also determined MaxEnt distributions for skewness and
kurtosis constraints. They were the same as in [5], but increasing n from
40 to 200 increased the region of convergence, as shown in Figure 3.6.

A less successful method to calculate the MaxEnt distribution is Algo-
rithm 1, which solves the system of equations 2.4 using Wolfram Mathe-
matica. It worked reasonably well for one constraint, but scaling up to two
constraints caused the equations to be too complex to solve in many cases.

Using Algorithm 2, some projection maps from the FLAMINGO project
were analyzed. The MaxEnt distribution with skewness and kurtosis con-
straints did not accurately describe the marginal distribution of these cos-
mological fields (Figures 4.2a to 4.2f).

All in all, minimizing a potential function is a reliable and fast way
to find MaxEnt distributions, although one should take care to use con-
straints which appropriately describe the distribution.
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Appendix A
Extra analyses with skewness and
kurtosis

The procedure from Chapter 4 was also applied to other types of pat-
terns than cosmological fields. The images originate from Sihao Cheng’s
GitHub page on the scattering transform [15]. The file is called ‘exam-
ple_fields.npy’ and is located in the map ‘data/physical_fields’.

Figures A.1a to A.1g show various types of patterns from that file; some
resemble the cosmological fields as seen before in this thesis, while others
look like turbulence patterns. The upper part of the Figures show the im-
age, and the bottom part shows the image’s pixel values in a histogram,
along with samples based on the MaxEnt distribution with skewness and
kurtosis as generated by Algorithm 3.

The variation in patterns illustrates how this skewness-kurtosis anal-
ysis performs for different kinds of input. The images with long right
tails have bad approximations and accordingly low p-values (Figures A.1a
and A.1c). However, the other images, which have smaller tails, can be ap-
proximated reasonably well with the MaxEnt approach and have markedly
higher p-values. Algorithm 3 therefore works better for turbulence-like
patterns than for cosmological images.
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(a) First image of ‘example_fields.npy’.
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(b) Second image of ‘example_fields.npy’.
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(c) Third image of ‘example_fields.npy’.
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(d) Fourth image of ‘example_fields.npy’.
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(e) Fifth image of ‘example_fields.npy’.
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(f) Sixth image of ‘example_fields.npy’.
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(g) Seventh image of ‘example_fields.npy’.

Figure A.1: The results of Algorithm 3 on several images and n = 250. Below, a his-
togram shows the results: in red, the image values are plotted, while in blue, the samples
from the MaxEnt distribution based on the skewness and kurtosis are shown. The images
are the first seven images contained in the file ‘example_fields.npy’ from Cheng’s GitHub
page [15].
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Appendix B
Describing the lognormal
distribution with its moments

The moment generating function (mgf) of a random variable X is defined
by

MX(t) := E
[
etX
]

for all t for which this expectation exists. Since this expectation always
exists for t = 0, one says the mgf exists if, for all t in some neighborhood
of 0, the mgf is defined [16, Sect. 2.3].

If the mgf exists, it is unique. This means if two random variables
have an mgf which coincide in some neighborhood of 0, they must have
the same distribution. Also, for all t in this neighborhood, a sum and
expectation can be interchanged in the following way:

MX(t) = E
[
etX
]

= E

[
∞

∑
n=0

(tX)n

n!

]

=
∞

∑
n=0

tnE [Xn]

n!
,

from which it becomes clear how the mgf can generate moments:

M(k)
X (0) = E

[
Xk
]

.

The uniqueness of the mgf implies that for all random variables with ex-
isting mgfs, their moments uniquely identify the distribution.
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Figure B.1: Two densities on R≥0 with the same moments E [Xn] = en2/2: the lognor-
mal distribution with parameters µ = 0 and σ = 1 and pdf f1(x), and the distribution
with pdf f2(x) = f1(x)(1 + sin(2π log x)). Inspiration was taken from Example 2.3.10
in [16].

However, not every random variable has an mgf. One example is the
lognormal distribution. All moments exist, but its mgf does not. For this
reason, it’s said that the lognormal distribution is not described by its mo-
ments. In fact, there exists another distinct distribution with exactly the
same moments as the lognormal distribution with µ = 0 and σ = 1, as
shown in Figure B.1.

As one can also guess by looking at Figure B.1, the entropy of the sec-
ond distribution f2, which is 1.11, is lower than the entropy of the log-
normal distribution at 1.42. This raises the question whether, among all
distributions with the same moments, the lognormal has the highest en-
tropy. In fact, this is the case, as proven in [17]. The lognormal distribution
can then be described by its moments after all.

Therefore, it was attempted with Algorithm 2 to approach the lognor-
mal distribution using the moments as constraints. In theory, the distri-
bution should converge as the amount of moments used is increased. The
similarity of two pdfs can be quantified with the KL divergence. A lower
KL divergence means a bigger resemblance.

The results are shown in Table B.1, and the resulting densities in Fig-
ure B.2. Convergence could only be achieved for at most five constraints.
At six, the system of linear equations (in step 8 of the Algorithm) could
not be solved. Choosing a different initializing value for λ did not help.
At seven and eight constraints, the Lagrange parameters diverged.
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(c) k = 3

0 2 4 6 8 10
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pd
f

MaxEnt with 4 moments for lognorm distr.
Result algorithm
Actual density

(d) k = 4
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Figure B.2: Five MaxEnt distributions from Algorithm 2 with the first k moments of
the lognormal distribution as constraints. The lognormal distribution with parameters
µ = 0 and σ2 = 1 was considered. Results were obtained with n = 350 and support
[0, u], where u is such that a fraction 1 − 107 of the mass of the lognormal distribution is
inside the interval.
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k λ1 λ2 λ3 λ4 λ5 KL div. (·10−2)
1 −0.61 − − − − 8.10
2 −0.63 0.003 − − − 7.51
3 −0.76 0.021 −2.0 · 10−4 − − 6.08
4 −0.77 0.023 −3.0 · 10−4 1.08 · 10−6 − 6.06
5 −0.71 0.006 8.1 · 10−4 −2.1 · 10−5 9.2 · 10−8 6.31

Table B.1: The results of Algorithm 2 with the first k moments of the lognormal distri-
bution as constraints, for k = 1, . . . , 5. The resulting Lagrange parameters are shown,
along with the KL divergence DKL(p||q), where p is the lognormal, and q the MaxEnt
density. The lognormal distribution with parameters µ = 0 and σ2 = 1 was considered.
Results were obtained with n = 350 and support [0, u], where u is such that a fraction
1 − 107 of the mass of the lognormal distribution is inside the interval.

The resulting MaxEnt density appears to get closer to the actual density
as k increases. Accordingly, in Table B.1, we see the KL divergence decreas-
ing, albeit slowly. Only for k = 5 does it rise again. For five constraints, the
Lagrange parameters also deviate from the previous calculations. Perhaps
the Algorithm provided an inaccurate MaxEnt distribution in that case.

All in all, no conclusions can be drawn due to the small amount of con-
straints used and potential numerical inaccuracies. The Algorithm would
need to perform better under more constraints to investigate this prop-
erly.

56


	Introduction
	The principle of maximum entropy
	Entropy
	Maximizing the entropy
	Some MaxEnt distributions
	Existence of MaxEnt distributions

	Methods for finding a maximum entropy distribution
	Solving a system of equations
	One constraint
	Multiple constraints

	Minimizing a potential
	The algorithm
	Performance on constraints with a known solution
	Skewness and kurtosis

	Conclusions on finding a MaxEnt distribution

	Analyzing cosmological fields with skewness and kurtosis
	FLAMINGO
	Analysis of the projection maps

	Discussion
	Conclusion
	References
	Appendices
	Extra analyses with skewness and kurtosis
	Describing the lognormal distribution with its moments

