Universiteit

4 Leiden
The Netherlands

Let bandits tell you when to maintain your machines: A study of the

maintenance planning problem
Roodenburg, Alexander

Citation
Roodenburg, A. (2025). Let bandits tell you when to maintain your machines: A study of the
maintenance planning problem.

Version: Not Applicable (or Unknown)
) License to inclusion and publication of a Bachelor or Master Thesis,
License: 2023

Downloaded from: https://hdl.handle.net/1887/4262843

Note: To cite this publication please use the final published version (if applicable).


https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/4262843

A. Roodenburg

Let bandits tell you when to maintain your
machines

A study of the maintenance planning problem

Bachelor thesis

June 2025

Thesis supervisor: Dr. D. van der Hoeven

Leiden University
Mathematical Institute



Abstract

In this thesis algorithms are developed that learn when to plan maintenance. In essence, the
main challenge is optimizing the planning problem wherewith cost can be saved by maintaining
the part until just before it breaks. The core of the challenge lies in the fact that we do not
know when the part will break. The different algorithms that are developed in this paper have
the choice between exploring: gaining more knowledge about the failure time by letting the
part break and paying for the repair, or exploiting: to plan maintenance early and thereby save
cost but not knowing how long the part would have functioned. Notice that letting the part
break is expensive, but planning maintenance too early, and thereby too often, is expensive
as well.

Three algorithms were designed, which all use a different strategy. The first algorithm has
an exploration phase and then an exploitation phase. Which means that this algorithm lets
the part break for a certain amount of times, and after that it plans maintenance on the day
that would have given the smallest loss in the explore phase. The second algorithm has an
’explore while exploiting’ strategy. It does so by being optimistic about the expected loss of
the possible actions: not choosing the best known option, but choosing what could be the best
option. And the third algorithm exploits only: every round it chooses the best known option.

These algorithms are then compared by mathematical analysis and simulations of the
pseudo regret. From this is concluded what the strong and weak points of every algorithm
are. The discussion contains suggestions for further analysis.
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1 Introduction

When working with machines, one knows that if no maintenance is done, after a certain period of
time the machine will break down. Machines break down when parts of them fail. To make the
machine work again, the particular part needs to be repaired against a certain cost. This can be
expensive when a part needs to be ordered, a mechanic needs to install it, and because the machine
does not work for a period of time. However, it is also possible to maintain the part before it fails.
If it costs more to maintain a part than to repair a part, it is trivial that the optimal strategy is to
let the part break. Therefore, this thesis treats the case where costs can be saved by maintaining
the part before it breaks. But planning maintenance is no easy task: when a part is maintained
too early money could be saved by maintaining later, but when maintenance is planned too late
the part will break and needs to be repaired.

The problem is first defined, and the type of algorithm that will be used is introduced. To
design a good maintenance strategy, some key insights are given: about what information we gain
after choosing an action, that the best day to maintain a part is the day before it breaks, and that
choosing the best day to maintain is based on the probability distribution of the failure time of
the part. Using these key insights, a formula for the expected loss of every action is formulated.
The algorithms will later use this formula to try to find the optimal action.

After fully understanding the problem, three algorithms are designed and compared by math-
ematical analysis and simulations. The simulations allow us to observe the behavior of the algo-
rithms and to see when and why the algorithms do or do not work. The analysis shows how good
the algorithms perform for every given set of parameters. Finally, the strong and weak points of
the three algorithms are highlighted and discussed.

1.1 Problem definition

At the start two constants are given: the cost of repair C,. > 0 and the cost of maintenance Cp,, > 0.
As discussed in the introduction, this thesis focuses on the case where costs can be saved by
maintaining the part before it breaks, therefore C;. > C,,. Then T rounds are played. Each round
we choose to maintain the part on a certain day, and the part will break on a certain day. In
other words: each round ¢ € {1,...,T} =: [T] we choose action a; € [K] and the part will break
on day f; € [K], where K is chosen such that f; € [K] for all t. If the part is still functioning
when maintenance is planned, we pay C,,/a;. If the part breaks on day f; before maintenance is
planned, we pay C.,./f;. This gives the following loss function for action @ in round ¢

a0 - 210 < iy + Sitas 1

To decide which algorithm works best, we define the pseudo regret: the sum over all rounds of
the expected loss of the action chosen by the algorithm minus the the expected loss of the optimal
action. As we will find out in Section 2.3, the expected loss of an action depends on the probability
distribution of the failure time of the part. The optimal action is defined as the action that has
the minimal expected loss based on the true probability distribution of the failure time. Thus the
pseudo regret is

T
Rr=E ;(gt(at)_ét(a*)) )

where a; is the action chosen in round ¢ and a* = arg min, [ E[¢;(a)] is the optimal action. Notice
that a* is the same every round since the probability distribution of the failure time is the same
every round. We define the algorithm that works best as the algorithm with the smallest pseudo
regret. In Chapter 3 we will try to bound the pseudo regret of the algorithms.

1.2 Bandit algorithms

In Chapter 3 three algorithms will be designed to decide when to plan maintenance. Decision
making algorithms which make a new decision every round based on the knowledge gained in the
rounds before, are called Bandit algorithms. This name comes from the classic problem of the
multi-armed bandits, where a gambler has the choice to play K different slot machines. These slot
machines are also known as one-armed bandits, hence the name for the type of algorithm. The
gambler wants to play the slot machine that has the highest payout distribution, but the only way



to figure out their payout distribution is to play them. Therefore the gambler needs to choose
between exploring all the possible options and exploiting his best known option.

An example of a bandit is the Epsilon Greedy algorithm. A gambler using this strategy will
start with a ’explore only’ phase and after that an ’exploit only’ phase. So first he plays each slot
machine a certain amount of rounds, and after that he will only play on the machine that gave
him the highest payout. The Epsilon Greedy algorithm is introduced in Auer et al., 2002.

Another bandit algorithm is the Upper Confidence Bound algorithm. This algorithm does not
explore and then exploit, but rather explores while exploiting. A gambler using this strategy is
optimistic about the payout of the slot machines. So if he knows that one machine will give him
a payout between 9% and 11$ and the other will give him a payout between 4$ and 12$, he will
not choose the first machine based on the average payout but he will choose the second machine
because he is optimistic and wants 12$. The Upper Confidence Bound algorithm is also introduced
in Auer et al., 2002.

Notice that this gambling problem is different from the maintenance planning problem. The
gambler wants to maximize payout while we want to minimize costs, the gambler needs to estimate
K different probability distributions while we only need to estimate the probability distribution of
the failure time (which will be shown in Section 2.3), and the gambler only gains knowledge from a
slot machines when he plays it, while we also gain knowledge about the days before maintenance is
done. What knowledge is exactly gained after a certain action is chosen is discussed in Section 2.1.
Although the gambling problem is different from the maintenance planning problem, the concepts
of the two algorithms introduced above will be used to design algorithms to solve the maintenance
planning problem in Chapter 3.



2 Understanding the problem

To develop a good maintenance strategy, it is important to first fully understand the problem. In
this chapter we highlight the key concepts of our setting; the feedback model, the loss function
and since the goal is to minimize the expected regret; the expected loss.

2.1 Feedback model

At the start of each round is decided on which day to do maintenance based on the knowledge
gained in the rounds before. Therefore we need to look carefully at what feedback is given when
choosing an action, and what information is useful when planning maintenance.

In round ¢, when a part is maintained on day a; it is possible to calculate the loss for days
a < ag, but not for days a > a; as the failure time f; is not observed (recall the loss function given in
Section 1.1). This can also be seen in the first graph of Figure 1. Where the arrows represent for
which days feedback is received after choosing action a. When maintenance is planned on day ay,
but the part breaks down on day f; < a;, the failure time is observed and therefore it is possible to
calculate the loss for all actions a € [K]. This can be seen in the second graph of Figure 1. Where
this time the arrows also go to all nodes on the right of a. This might seem like a rich feedback

Figure 1: graph representation of the feedback model

model because it either gives feedback for actions a € [a;] or for every action, but don’t be fooled:
not all information is useful. Notice that f; = a is never observed for a > a;. This means that the
observations for a > a; in the case of f; < a; are biased, since it tells us that we have not seen the
part break on day a while we did not have the opportunity to actually see it break. Therefore, if
this information is used to estimate the probability that the part breaks on day a, this probability
is underestimated for large a. Thus in the analysis, we will only use the unbiased feedback. We
define the number of times were feedback is received for day a, as the number of times when we
could have seen the part break, which is

t

ni(a) = ). Ha<ag}.

s=1

This also means that the only way to receive feedback for every action a, is to select a; = K. We
define receiving feedback for every action as receiving full feedback.

2.2 Behavior of the loss function

Since we are looking for the action that gives us the smallest loss, it is good to understand the
behavior of the loss function. In Figure 2 we can see that the best day to maintain the part is
the day before it breaks. But the problem is that we do not know when the part will fail. In this
figure we can also see that the loss is constant after the part has broken. This means that if the
part breaks, we would rather be far to late with planning maintenance than just to late, because
£(f:) = L(K). In other words: a; = f; gives you the same loss as a; = K, but the second option
gives you more unbiased feedback.
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Figure 2: loss functions where C,. = 100, C,,, = 30 and the failure time is varied

2.3 Expected loss

As mentioned earlier the goal is to minimize the pseudo regret, which is the expected loss of
the actions chosen by the algorithm minus the expected loss of the optimal choice. So to bound
the pseudo regret, it is necessary to work out the expected value of the loss function. And the
algorithms will need a function that they can use to determine which action will give them the
minimum loss based on their observations.

Theorem 1 (Expected loss).
fi € [K] for all t € [T].

Let C,.,C,, € R,y such that C,. > C,,, and K,T € N5y such that
Then the expected loss of action a is equal to

)

a i=1

Cn

E[,(a)] = (& G

== SR VR(f =),

i
Proof. To calculate the expected loss per action a first recall the loss function introduced in Section

1.1
)= " a< fy+ a1,
a ft

To determine the expected value of this function, Lemma 1 from Weiss et al., 2005 is introduced.

b

Lemma 1 (Tower Rule). Let Ay,...,An be a partition of the sample space, and let X be an
integrable random variable. Then
N
E[X]= Y E[X | Ai]-P(A)).
i=1
Therefore
K
E[¢i(a)] = Y, E[£:(a)lfe = i]P(f; = i) (1)
=1
a—1 K
=) Eli(a)|fe = i]P(fe =14) + Z [e(a)lfe = FIP(fe = 7) (2)
=1 j=a
a-1 CT ' K Cm '
=Y P(fr=i)+ Y, —P(fi=j) (3)
-1 ¢ j=a @
a—1 P =i Cm K )
=C. ), (ftl ) +sz(ftzj)- (4)
i=1 j=a

Equality (1) is the implementation of the tower rule. In the next step the summation is split by
action a. This is done because the loss is equal to Cy,/a for a < f; and C,./f; for a > f;, which is
used in (3). In (4) the terms are rearranged so that the constants are in front of the summations.

In section 2.1 we found out that we have more unbiased feedback for small a than for large a
(recall n¢(a) = ¥'_;I{a < a;}). To use this observation the equation above will be rewritten using



Zfil P(f; =4) = 1. Which is done below. Notice that for this step it seems that the assumption
f+ € [K] is necessary, but this can be resolved by defining P(f; = K) := P(f; > K).

Zp(ft ( ZP t—@))

E[¢:(a)] =

alC Cm alc

_ Z —P(fi=i)+ 2; —P(fi =1) (6)
:%+Z(%—Q)P(ﬁ_z) (7)
=1

In step (6) we get rid of the brackets, and in the final step the summations are put together. Notice

aC_rl —CT’” > % > 0 because C, > C,,. O

Notice that from Theorem 1 we know the expected loss of action a only depends on the constants
C,, Cp, and the probability distribution of the failure time f;.

With the formula above the expected loss can be calculated given the probability density
function of f;, the cost of repair and the cost of maintenance. Which is done in Figure 3.
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Figure 3: expected loss function for binomial and uniform distribution with parameters C,. = 100
and C,, = 30

In this figure the failure time is first given the binomial distribution, and then the uniform
distribution. The two lower plots show the resulting expected loss functions. In these two lower
plots we can see that for this parameters we would rather maintain too late (a > a*) than too early
(a <a*). Notice that the optimal action a* is the lowest point of this function. And we can see that
the regret for actions a > a* is relatively small when the failure time has a uniform distribution, as
the expected loss function increases slowly after its lowest point.



3 Algorithms

The algorithms will have to make a choice between exploring and exploiting: gaining knowledge
about the failure time by letting the part break, or exploiting the best known option. Explor-
ing is expensive, but exploiting has the risk that the best known option is not the best option.
This chapter will cover three algorithms that all have a different strategy in terms of exploring
and exploiting. The first has an explore and then exploit strategy, the second has an explore
while exploiting strategy, and the last is an exploit-only strategy. The ideas behind the first two
were introduced in Section 1.1: the Epsilon Greedy algorithm and the Upper Confidence Bound
algorithm. The third algorithm was designed specifically for this problem, which is named the
Empirical Bandit.

As seen in Section 2.3, the key challenge is estimating P(f = i) := p;. To estimate p; the
algorithms will use the empirical probability of a part breaking on day a. Which says that in
round t the chance that the part breaks on day i is equal to the number of times the part has
broken on day i, divided by the number of times we could have seen it break on day i. Denote by
be(i) = X' T{fs = i}1{i < a;} the number of times the part has broken on day i. Here the second
indicator function makes sure that the failure is actually observable. And we use n:(i) which was
introduced in Section 2.1. Then the empirical probability is defined as

by, = 0D | Eea s = )i < ac}
) Yo li<ay

Now define p(a) the expected loss of action a based on p;. And fi;(a) the estimated expected
loss for action a based on the empirical probability p; after ¢ rounds. Using Theorem 1 gives

a—l(cr Cm)
+ — - — | Piy
— ] a

Cr O\ .
+ (7—7)%,1%

=1

OT n

p(a) =

-

SIS
|

fir(a) =

@‘Q S

3.1 Epsilon Greedy

This algorithm first explores only for the first T rounds. By Section 2.1 we know that the only way
to get unbiased feedback for every action is by choosing action K. Thus a; = K for t € [Tp]. After
this explore phase the algorithm starts to exploit the best known option. It does so by selecting
the action that has the minimal loss based on the first T observations. This strategy is described
in Algorithm 1.

Algorithm 1 Epsilon Greedy
EG(K,T,C,,Cp)

1: for ¢ in range(7p) do > exploration phase
2: ar =K > let the part break and therefore observe f;
3: b(fr)+=1 > update number of times part has broken on day f;
4: end for

5: n(a) =Ty for a € [K] > for every action feedback is received T times
6: p; =b(i)/n(4) > calculate empirical probability
7 fi(a) = %” + Yt (% - C;" )i for a e [K] > calculate the expected loss for every action
8: for t in range(7p,T) do > exploitation phase
9: a; = arg minge[x fi(a) > choose best known action
10: end for

return ay,...,ar

The pseudo regret bound of the algorithm tells us how good the algorithm works for every
given set of parameters, and is given in Theorem 2.

Theorem 2. The pseudo regret of the Epsilon Greedy algorithm can be bounded by

a—1 2
ToCr+2(T-Tp) Y. Ay (g - Cm)exp(_ToAa),
a:Ay>0 i=1 \ a 8



2
with probability at least 1 — 0, where § = exp(—TOTA“).

Proof. This proof follows the same structure of Luo, 2017. As mentioned in the introduction, the
goal of this problem is to minimize the pseudo regret

T
Rr = ;E[f(at) —{(a”)].

Define A, = p(a) — u(a*). Then the pseudo regret can be rewritten as

Ry = tZT;E[Aat] - iE[éH{at - a}Aa] - i iE[H{at =a}] A = a:gwAaIE[é]I{at - a}].

t=1i=a

Since epsilon greedy explores for the first T rounds against the cost ZZ;OI % < Ty C,, the pseudo
regret is bounded by

T
Ry =ToCr + Z AGIE[ Z I{a; :a}].
a:Aq>0 t=To+1

To find a bound for the expected value it is rewritten

T
E[ > ]I{at:a}:lz(T—To)IP’(at:a).

t=To+1
Note that

P(at = a) <P (fr,(a) < fir, (a”))
since the algorithm chooses action a; = a if a = argmin,e[xq iy, (@), thus if fig, (a) < fig, (i) for all
i € [ K] and therefore also for a*. And notice that if fir, (a) < fir; (a*) than one of the two following
rare events must happen

firy (a) < pa) = Aaf2,
firy(a”) 2 p(a™) + Ao /2,

since otherwise i, (a) > p(a) = Aq/2 = u(a*) + Ay /2 > i1, (a*). This can also be seen in figure 4.

p(a*) p(a*) + Aa/2 = p(a) - Aa/2 H()
» T »
I
)
Aa

Figure 4: Visualization of the argument. If ji(a) is on the left side of the center and fig, (a*) is
on the right side, then fir, (a) < fiz, (a*). Also notice that u(a*) < p(a) for all actions a € [K] by
definition of a*.

Because both events imply that |u(a) — fir, (a)| > Aq/2, the probability that one of these events
happens is equal to the following

8, 12)
®)

. Aa/z) )

m ~
— | PTy,i
a

2P(|M(a)_ﬂTO(a)|>Aa/2):QP(‘C;H+a_ (Cr Cm) c (i(cr o

Il
—

i

“‘1(@ Cm) “‘1(07« Cm)A
—Q - — |Pi— - pTg,i
" s 1 a

i=-1 \ ¢ a 1=1
a—1 C’r Cm R
=2P( (.—)'|pi—pTo,i|>Aa/2) (10)
i=1 \ ! a
oliC. Cn .
=2 (T_T)P(|pi_pTo,i|>Aa/2)' (11)
=1



Equality (8) uses the definition of p(a), and the formula from Theorem 1. In the next step the
terms C,,/a cancel each other out. Then the summations are put together, and in the last step
the constants are taken out of the probability. To determine a bound for this probability, Lemma
2 from Hoeffding, 1963 is introduced.

Lemma 2 (Hoeffding’s inequality). Let Xi,...,Xr € [-B,B] for some B > 0 be independent
random variables such that E[X;] =0 for all t € [T], then we have for all § € (0,1),

T
]P’(Z X; > B\/2T In 1/5) <4

t=1
By definition of n:(7) and the fact that the algorithm chooses a; = K for the first Ty rounds
we know that nr, (i) = Ty for all ¢ € [K]. Therefore pr, ; = T% ZST;’l I{fs = i}, so the properties of

Lemma 2 are satisfied. Now using Lemma 2 and rewriting ToA,/2 = /2T5In1/6 to § = exp(—T“TAi)
gives the following bound

~ TA2
]P)(|pi_pTo,i|>Aa/2)§exp(_ 0 a)’

8

therefore

. “liC, Cn ToA2
P<|u(a>—uTo<a>|>Aa/2>szz(‘—)exp(— |
i a 8
Putting everything together then gives the bound for the pseudo regret of the Epsilon Greedy
algorithm given in the theorem. O

The bound of Theorem 2 shows that the algorithm suffers from linear regret: O(T).

Now we will simulate the maintenance planning problem to see how the Epsilon Greedy algo-
rithm (:EG) behaves. When T increases, relatively less observations are necessary to make a good
guess \/oi the optimal action. Therefore in the simulations below the exploration phase is of length
To=VT.

f~Binomial(K,0.5) f~Uniform(K)
100 7= 100 1=
— EG — EG
—_— —_—
80 A 80
-ul - _ul -
o 60 o' 60
c c
o he]
= =
& 40 & 40
20 20
0 T T T T T T 0 T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
round t round t

Figure 5: Behavior of EG with parameters K =100, T = 1000, C}, = 100, C,, = 30 where different
probability distributions are used for the failure time.

In Figure 5 the behavior of EG can be seen. First the part breaks v/T times and after that
an action is chosen. In the left plot can be seen that an action is chosen that is close to the
optimal action a*. This means that after an expensive exploration phase, the regret will grow
relatively slow (but linear). In the right plot the algorithm selected an action that is further from
the optimal action. Therefore the regret will grow faster (also linear) over time. This is the flaw of
this algorithm: after the exploration phase the algorithm stops learning. So if an action is chosen
that is not the optimal action, EG will suffer linear regret.

10



3.2 Optimistic Bandit

Where the Epsilon Greedy algorithm had an explore phase and an exploit phase, the Optimistic
Bandit algorithm exploits while exploring. It does so by not choosing the best know option, but by
being optimistic about the random variable and therefore choosing what could be the best option.
This strategy was briefly discussed in the introduction as Upper Confidence Bound. There the
upper bound of the payout of the slot machines was taken because the gambler wants to maximize
payout. In the maintenance strategy problem we need to take the lower bound of the empirical
probabilities since we want to minimize costs. But first a confidence bound needs to be calculated.
Therefore, Lemma 3 from Maurer and Pontil, 2009 is introduced.

Lemma 3 (data dependent Bennett’s inequality). Let Zi,...,Z, be i.i.d. random variables with
values in [0,1] and let § > 0. Then with probability at least 1 — & we have

1& 2V, (Z)In(2/6) 7In(2/6)
EZ—E;ZiS\/ " METEER

where V,(Z) = ﬁ Yicicjen(Zi — Z;)? is the sample variance.

In the maintenance strategy problem, the failure time is the random variable. Therefore this
theorem allows us to bound the probability P(f; =4) = p;. Thus with probability at least 1 -0 we
have p; € [Pr,i = Bt.i» Pr.i + Bri], where

o 2pe,i (1 = Pr,i) In(2/0) 7In(2/9)
P = \J ne (i) T3 (i) -1)

Using this confidence bound, the strategy works as follows. The first two rounds the part is
broken, and therefore the algorithm gets full feedback twice. After that the algorithm every round
calculates the empirical probabilities and their confidence bounds. It then uses the lower bound
of the probabilities to optimistically determine the expected loss for every action. After that the
action with the minimum expected loss is chosen and n; (i) and b;(4) (introduced at the beginning
of this chapter) are updated if necessary. This is also described in algorithm 2.

Algorithm 2 Optimistic Bandit
OB(K,T,C.,Cy)

ar=K,0(f1)=1,n+=1 > let the part break and update b and n
2: for ¢ in range(2,7T) do

3: Pr,i = b(3)/n(3) > empirical probability
4 Bra= \/ 2ﬁt’i(1_f;t(’;)) In(2/3) 37(17?((1‘2)/— 51)) > calculate confidence bound
5: Py = max(pyi — Bti, 0) > take the lower bound
6: for a in range(K) do

7: uy (a) = C;"' + Yot (% - CT*") Dri > calculate expected loss for each action
8: end for

9; a; = argminge[ i) 17 (a) > choose action with least expected loss
10: n(i)+=1fori<a; > update n
11: if f; <a; then > the part breaks
12: b(fr)+=1 > update f
13: end if
14: end for

return ay,...,ar

To determine how good the Optimistic Bandit algorithm works for all sets of parameters, we
look at the bound of the pseudo regret of this algorithm, which is given by Theorem 3.

Theorem 3. The pseudo regret of the Optimistic Bandit algorithm can be bounded by

K-1 22 2
43 (9 - CK—m)+8KC’,« 21nA(T ) ” +4I§C’” In(7?) In IH(AT ) A )
=1t \ 9+9y/1+ g + R 9+9\/1+ e + JRme

with probability at least 1 - & where § = 1/T2.

11



Proof. In this proof the data dependent bound for the empirical probability of Lemma 3 is not
used to simplify calculations. Instead we use the bound of Lemma 4, which is also introduced in
Maurer and Pontil, 2009. The bound of Lemma 4 uses the true probabilities p; instead of the
estimations p;. The algorithm can not use this bound since the true probabilities are not known
beforehand.

Lemma 4 (Bennett’s inequality). Let Z,Z1, ..., Zy, be i.i.d. random variables with values in [0,1]
and let § € (0,1). Then with probability at least 1 - we have that

EZ—EZZ,'S /2VZ1111/6+1111/57
n3 n 3n

where VZ =E(Z -EZ)? is the variance.

So now define

Br,i =

\J 2pi(1-p)) In(1/9) _ In(1/9)

From Lemma 4 it then follows that after ¢ rounds, p; is bounded from below by p;; = pri — Bt
with high probability. Therefore, with high probability the expected loss of action a is bounded
from below by
C “lic, C
E[f;(a)] = <2 + (4_£)
I
Denote by A ; the event that for all ¢ € [K] we have that |p; — pr 4| > Bt This event will be
used in the calculation of the bound of the pseudo regret, and therefore we want to bound the
probability of this event happening. Notice that we can not use Lemma 4 directly as n:(i) is a
random variable. The probability that the event ) ; happens is bounded by

P (i) =P (Ipi = pe,il > Br.i) (12)
= IP’(|Pi - Pl > \j 2p:(1 —n[t)i(z)ln(l/d) + lgr(ztl(/f)) (13)
< IP’(EIn € [T] such that |p; - % i I{fs=i}| > \/QPi(l _p;L) In(1/9) + ln(?)ln/é)) (14)
< i[@( pie iﬂ{fs - i}‘ > ¢2p"(1 ‘p;) In{1/o) , 1“2)17{5)) (15)
T
<> 5=T0. (16)

n=1

Equality (12) follows from the definition of A;; and the next equality follows from the definition
of B ;. After that we use the definition of p;; to rewrite the term so that the probability can be
bounded in a way that Lemma 4 can be applied. Inequality (15) uses that the probability that
there is such a n € [T'] is less or equal than the probability of the sum over all n € [T], and the last
inequality uses Lemma 4.

To calculate a bound for the pseudo regret of the Optimistic Bandit, first the expected regret
for action a; is calculated as follows

E[li(ar) = ti(a)] = E[li(ar)] - E[6; (ar)] + E[6; (a2)] - E[£:(a™)].

To make calculations clearer, the first two terms will be bounded first and then the second two
terms. The first two terms can be bounded as follows
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E[f:(a))] ~E[£; (ar)] = E Z}(?‘ify‘E@fW%] -
- (g ) Cm) B[} (i -pe) + I} (i -p)] - (18)
<k “: (CT B C;T) (B[] + B[} (0= Bei+ Bi)])  (19)
s[5 % %)) o o) Bl i) @
<E atg (% - (’;’t”) (P (M) +P(A;,) - E[26:4]) (21)
< (g ) C) +(T6 +2E [B14]) (22)

i=1 \

stSI_{l(q"—(/;?)+2E[Z(C;—O) i< ap}- ﬂm]. (24)

=1

=T5]E[af(0f —C’;)]+2E[at21(c—c)ﬂm] (23)

Equality (17) comes from using the formula of the expected loss of Theorem 1. Equality (18) uses
L=T{\ i} +I{A{,; }. Inequality (19) bounds p; —p;; < 1 and uses the definition of the lower bound of
the empirical probability p; ;. Equality (20) comes from E[I4] = P(A) and E[I4-B] = P(A)E(B|A).
Inequality (21) then uses the definition of the event ), ;, which means that if A{; then p; —p; ; < B¢ ;.
(22) uses the earlier proven bound for the event A, ; happening and bounds IF’(/\ ;) < 1. Equality
(25) works out the brackets, and the last inequality uses that a; < K and -1/a; < -1/K to get rid
of the expected value of the first term, and the summation 521 ig rewritten as Z:Kf1 I{i < as} so
that both summations sum up to K —1.
The second two terms of the pseudo regret can be bounded by

E[f; (a)]=E[l(a)] <E[f; (a")] - E[f(a”)] (25)
5

E[p; - pi] (26)

E [H{)\t,i} : (pt_,i —Pi) + H{)‘gz} : (pt_,i —Pi)] (27)

(P (M) +P(XS) E[pri —pi - Bralris])  (29)

)
)
& O LRIV EION) G- pi-Bu)]) (29)
)|
)
)

i i ar
<E _11 %—(’;T - (POw) +P(AS,) E[Bri - Bii]) (30)
<E Z G Cu)ls (31)
<75 S CT—C?) (32)

Inequality (25) uses that E[¢; (a;)] < E[{; (a*)] since a; = arg ming k] E[¢; (a)]. (26)-(30) then do
exactly the same as (17)-(21), but notice that this time the (;;’s do not add up but cancel each
other out. (31) uses the earlier proven bound for the event \;; happening, and the last inequality
uses that a; < K and -1/a; < -1/K.
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Putting the above together gives the following pseudo regret bound for action a

c. Cp C. Cp
o1 (C - o) s (- )t ] )
1 K S\
As the pseudo regret of the algorithm is calculated by adding the regret of all actions a; together,
we can find a bound for the pseudo regret by summing the bound above from ¢ =1 to ¢t =T which
gives

T
Rt =E [; ét(at) - Et(a*):| (34)
:E[;H{atia*}-(ft(at)—ﬁt(a*))] (35)

<2T25z (%—i) QE[iKzl(C—C) H{a #a*} - Hi<a}-Bus|.  (36)

t=1 ¢=1

Where in the first step the indicator function is added because l;(a:) —1:(a*) = 0 when a; = a*. To
calculate the second term, Lemma 5 from Gaillard et al., 2014 is introduced.

Lemma 5. Let ag > 0 and ay,...,am € [0,1] and let f: (0,+00) - [0,+00) be a non increasing
function. Then

m 277:;0 a;

> aif(ao+aii) < flao)+ [~ fupdu

i=1 ao

Define the following function

g(z) = \/21%(1 —p;) In(1/5)  In(1/5)

3z

and notice that g(n:(¢)) = B¢,. The integral of this function will be used in following calculations
and is equal to

[ 9@y = 2/2p (L= p) In(1/6)a + %ln(l/é) In(z) + C.

Now the second term of the pseudo regret can be bounded by

T K-1 C C
ZE[ZZ(—) I{a,#a™} - Wi<a}- By (37)
K-1
<2C, > E Yo Har#a'} Hi<a) B+ Yoo Har#a'} I{i<a}- By (38)
i=1 timg (3)<n* (z) t:ng (i) 2n* (i)

<2C KZ: l2¢2pl(l p)In(1/8)n* (i) + = ln(l/é)ln(n (i) + > I{a; ¢a*}-]l{i<at}-ﬁt,i:|.
t:ng (i)2n* (7)

(39)

In the first step the summation Y7 is split at the value ¢ : n¢(i) = n* (i) and C; - 07’” is bounded
by C, for all i. Inequality (39) uses the function g and Lemma 5 where a; = I{i < a;} and
Yneo @i =n*(i).

Now recall A, =E[l;(a) —l;(a*)] and Apin = ming.q+ A,. Then the pseudo regret is equal to
the expected value of Y1, A,, and therefore

R,=2R,-E [i Aat] (40)
<2R, E[i Amin] (41)
1

K-
<41’ (C %)+40 ZE[Z\/QpZ(l p)In(1/o)n (i)+%ln(1/5)ln(n*(i)):| (42)

=1

K-1
+4C, Z E Z I{ag #a*} - T{i<a}- ﬂt,i:| - E[ Z Anin |- (43)
i=1 tmy (3)2n* (2) ting (4)2n* (2)
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Equality (40) uses that « = 2z —x. After that A, > Ay, is used. The Ry in (41) is replaced for
the last found bound for the pseudo regret in (42)-(43). (42) is an inequality because Y7 Apin 2
Ytiny (i)2n (i) Dmin- Now combine and bound the two terms of (43) by

K, 2p;(1-p;)In(1/8) In(1/6) ~ Anin
4CT;E tmt(ém(i)(\J ne () " 3000 4KOT) (44)
US 2In(1/6)  n(1/0)  Awin
S4C- L F m)z()( @ 3 4KOT) | 1)

where we bound p; < 1 and use that n;(7) > n*(¢). To minimize this bound of the pseudo regret,
we want to choose n* (i) such that

20(1/0) | W(1/3) _ Awin
n*(i)  3n*(i) 4KC,
Let z =/ 11:1(*1(/;;), then we need to solve

1 2 Amin
- % - =0
3tV AKC,

thus use the abe-formula with a =1/3, b= V2, ¢= —ﬁé% to find

— /b2 — .
o= b+Vb 4ac:_§ \/§:F 24 Amln )
2a 2 3KC,

So now substitute x to get

ln(1/5)_ 3 Amin
() ‘_2(ﬁ+ 2+3KCT)'

Then square both sides and simplify the right term

In(1/9) _ 9(2+M 5 e Buin o, Amm)

n*(i) 4 3KC, 3KC,

| ©

4+ i 24 Amim " Arﬂin
V2 3KC, 3KC,
1 AInin Amin
=911+—=4/2
( T AV T 3ke, T 12KCT)

Amin 9Amim
= 1
N Ske, T zRe,

Amin 3Amin
= 1 .
SN+ GRe, T aKRC,
And therefore choose (1/6
(i) - n(1/9)

b
Amin 3Amin
9+9,/1+ GHes + IRe

so that (45) is equal to zero. Notice that K >0, C, >0 and A, > 0 by definition, so we have no

15



division by zero. Thus the pseudo regret is bounded by

41?5 Z (%-%)wc Z ]E[Q\/2pl(1 PO () + 5 In(10) I ()] (46)

<4T?%5 Z ((’; C’”) (47)
Kl In(1/6) 1 In(1/6)

CT 2 | 2In(1/6) —In(1/6)In 48

AN o e B \ovoie e )

sars 2 (T-F) .

+8KC, 21n*(1/0) G (1) In(1/9) (50)

mln 3Amin 3 Amin , 3Amin
9+9\/1+ + 58 9+9,/1+ Y

In the first inequality the chosen value for n*(4) is substituted and p; < 1 is used. The second
inequality uses that K — 1 < K. Substituting § = 1/7? then finalizes the proof.
O

Theorem 3 shows us that the pseudo regret of the Optimistic Bandit algorithm is O(InT?).
Now we will do four simulations of this algorithm to see how it behaves.

f~Binomial(K,0.5) f~Uniform(K)
100 A 100
— OB — OB
a* a*
80 - 80 |
) >
o 60 o 601
c c
© =]
0 o
8 40 S 404
20 1 20
0l . . . : . 01— . . . . :
0 200 400 600 800 1000 0 200 400 600 800 1000
round t round t

Figure 6: Behavior of OB with parameters K =100, T = 1000, C,. =100, C,, = 30 where different
probability distributions are used for the failure time.

From the simulations of figure 6 can be seen that for those parameters the algorithm chooses
a; = K —1 nearly all the time, and that for this time span the Optimistic Bandit works pretty bad.
This also shows that the algorithm takes a relatively long time to learn before it starts to make its
guess for the optimal action.

Figures 7, 9 and 8 show that there are instances in which the algorithm functions better: if K
gets smaller (Figure 7), if C,/C, gets smaller (Figure 8), or if T' gets bigger (Figure 9). In Figure
7 can be seen that the Optimal Bandit indeed works better for smaller values of K, but that it
still takes relatively long before the algorithm gets close to the optimal action. Figure 8 shows that
the action chosen by the algorithm gets closer to the optimal action quicker if C,,/C, is smaller
(notice that T = 5000 in Figure 7 and T = 1000 in Figure 8). This seems to have a stronger effect
in the case where the failure time has a uniform distribution. Figure 9 shows that also for the
parameters of Figure 6 the algorithm seems to eventually choose the optimal action (notice that
T = 500000).
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Figure 7: Behavior of OB with parameters K = 10, T = 5000, C,. = 100, C,, = 30 where different
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Figure 8: Behavior of OB with parameters K = 10, T = 1000, C, = 100, C,, = 1 where different

10 A

f~Binomial(K,0.5)

T T T T
2000 3000 4000 5000

round t

T
o] 1000

f~Uniform(K)

— 0B
—_

10 4

actiona t

— OB
—_

L

T T T T T
o] 400 600 800 1000

round t

T
200

probability distributions are used for the failure time.

100 A

f~Binomial(K,0.5)

T T T T
400 600 800 1000

round t

T
o] 200

f~Uniform(K)

— OB
a*

100 A

— OB
a

80+ 80 A

I 60 I B0+

action a_t
actiona t

40 A

'S
o
L

20 20 4

0-—
0

T T T T T
100000 200000 300000 400000 500000
round t

T T T T T T
100000 200000 300000 400000 500000 0

round t

Figure 9: Behavior of OB with parameters K = 100, 7" = 500000, C. = 100, C,, = 30 where different
probability distributions are used for the failure time.

3.3 Empirical Bandit

This algorithm has an exploit only strategy: every round it chooses the best known option. But
notice that by exploiting it also keeps learning every round since we get feedback for all days a
for which a < a;. As the name says this algorithm focuses purely on the empirical probability and
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not on any confidence bounds and it works as follows. The first round action a; = K is chosen
to receive full feedback and observe f;. Then for the following rounds the empirical probability is
used to calculate the expected loss for every action. The action that gives the smallest loss is then
chosen. After that n is updated and if the part breaks b is also updated. This can also be seen

algorithm 3

Algorithm 3 Empirical Bandit

EB(K,T,C,,Cy)

1: a1 =K, b(f1)=1,n(i)=1for all i e [K]

2: for t in range(2,T") do
3 P =0(i)/n(i)

4: for a in range(K) do

5: fe(a) = CC:" + Yt (C; - C;
6: end for

7 ap = argminge k) fit(a)

8: n(i)+=1fori<a;

9: if f; <a; then

10: b(fe)+=1

11: end if

12: end for

return ay,...,ar

> let the part break and update b and n
> empirical probability

> calculate expected loss for each action
> choose action with least expected loss
> update n

> the part breaks
> update f

Theorem 4. The pseudo regret of the Empirical Bandit algorithm can be bounded by

Cr Cn
i

2(T-%

with probability at least 1—§ where § = 1/T2.

) : (1 +T\/2In(T2) + %TIH(T2)) ;

Proof. In this proof we again use that P(\;;) < T from the proof of the bound for the Optimist
Bandit (see (12)-(16)). First note that the expected loss of action a after ¢ rounds is equal to

E[l(a)] =

a-1

+ 2

i=1

T Cm)A

Pti-

To calculate a bound for the pseudo regret of the Empirical Bandit, first the expected regret for
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action a; is calculated as follows

E[li(ar) = €(a™)] =E[li(ar)] - E [ét(at)] +E [ét(at)] -E[4i(a™)] (51)

<E[t(a)] - E[f(ar)] + E[li(a*)] - E[li(a®)] (52)

:E[GZ (?_%)].E[m_ﬁt’i]ﬁ_Elaﬁ; (%_ i’in) E[pri-pi] (53)
K-1

e (F - %) Elm-pu (54)
K-1

=5 (G - S R [Bwhlp d +T08,) =l -

< 3 (9 - S2) (BEOAT+BIOG -1l (56)
K-1

- L (%‘%n)'(P(Am)+P(A§,¢)'E[Ipi—;ﬁt,illx\i,i]) (57)
& Cr Cm c

“ & (F-F) Bowp(L) BB (58)
G Cnm 2pi(1-pi)In(1/8)  In(1/3)

: i=1 (Z’_K).(T(SHE[\' ne (1) i 3n4 (i) U (59)

SK__:(CZ-'T_C}’?)'(T(sJFIE"[\/QPi(l—?91')111(1/5)+:1))111(1/6)]) (60)
K-1

<% (%—%)-(T§+\/21n(1/5)+ ém(w)). (61)

Equality (51) comes from adding and subtracting the same term. Inequality (52) uses that
E[;(a;)] < E[¢,(a*)] since a; = arg minge[x] E[/;(a)]. After that we use Theorem 1. Inequal-
ity (54) is a rough bound: we use that either E[p; —py ;] or E[p; - p: ;] is negative, so we bound the
negative term with zero. We do not know if this is the right or left term, so therefore we bound the
sum by K since for both cases we have Y1 < ¥ and Z“*_l < ¥ Then we do the same as in
(17)-(21). Inequality (59) then uses the bound P(\;;) < T'¢ and the definition of 3; ;. Inequality
(60) is the next rough bound: we use that n:(7) > 1. Notice that we can not use the same trick as
in the proof of Theorem 3 because we do not have the indicator function I{i < a;}. In the last step
we bound p; < 1.

As the pseudo regret of the algorithm is calculated by adding the regret of all actions at together,
we can find a bound for the pseudo regret by summing the bound above from ¢t =1 to ¢ =7 which
gives

T
Rt = Z ]E [ét(at) - Et(a*)] (62)
=1
LIS c, C 1
<3 (—_T—?’”)-(T5+\/21n(1/5)+§1n(1/5)) (63)
t=1 =1 \ !
K-1
- (%-%)-(T25+T 21n(1/5)+1T1n(1/5)). (64)
g\ K 3
Substitute § = 1/T? to finalize the proof. O

Theorem 4 shows that the pseudo regret of the Empirical Bandit algorithm is O(T InT?).
Notice that this is pretty bad and that here improvements can be made.

In Figure 10 the following behavior can be seen. The algorithm quickly chooses a; near the
optimal action, and over time it seems to get close to the optimal action.
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f~Binomial(K,0.5) f~Uniform(K)

100 A 100 A

— EB — EB
— —_—
80 80
JJI 4_1‘ 4
o 60 o 60
c c
(=] o
= =
@ 409 dF=pemr—r @ 40+
Nim
1= | | m—
20 20
01— T T T T T 0+ T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
round t round t

Figure 10: Behavior of EB with parameters K =100, T'= 1000, C, = 100, C}, = 30 where different
probability distributions are used for the failure time.

When looking at this figure we could ask ourselves why this ’exploit-only’ algorithm seems to
be exploring sometimes. To understand this behavior of the Empirical Bandit, observe the proof
of the following claim.

Claim 1. The ’exploit-only’ algorithm the Empirical Bandit also explores when necessary.

Proof. Tt is necessary to explore when the algorithm chooses to maintain before the optimal day
of maintenance. In that case we would expect to repeatedly not see the part break. When the
algorithm chooses a;, we know that E[¢(a;)] < E[{(a; + 1)]. Now use Theorem 1 to find the
following inequality

Cnm, C, Cn Cm 2t (C, Cm \ .
Cu (G Cu)y o Co $1(C Ca )y

a3\ 1 a ar+1 N\ i a+1

Multiply the first term on the left with ZZ—E and the first term on the right with Z—Z Also work
out the brackets to get the following inequality

Cm(az+1) ES 1Ptz m WS Cmai & Pt
+C, _om < lpte
at(at+1) Z Qg Zptl a¢ at+1) T; 7 at+1zptl

Now we can subtract the first term on the right of both sides. Also subtract the second term on
the left from both sides to get the following inequality

Cm gl Cm

m pt,at _
&t(&t+1) ag Zptl_ " ag

at
1 Zﬁt,i«
i=1

Then multiply the second term on the left with Zzﬂ and take the last term out the summation on

the right. That gives the following inequality

1 a—1 A u as—1
Cnm _ Cm(at + ) Z ﬁt,i < Crpt, t Cnay Z pt DD a
at(at+1) at(at+1) izl ag at(at+1)
Now we can add aC(:;t D PN ! Dt to both sides to get the following inequality
Cm C ol pt a Cmat
i(ap+1—ap) <C—=~ — Dt a, ) -
ai(ag+1) at(at+1) Z Pri (ot ) a;  ag(ag+1) (Pt.ar)

Clean up the terms and multiply the first term on the right with Zz—ﬂ so that every term is divided
by a;(a; +1). This gives us the following inequality

Cnm a’zlp pt,at(at +1) B CinaPi,a,
at(at+1) at(at+1) tl_ r at(at+1) at(at-t-l)'
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And finally multiply every term with a;(a;+1) and take Cp, out of the brackets in the left and p; 4,
out of the brackets on the right to get the following inequality that holds whenever a; is chosen in
round ¢

a—1

Cm (1 - Z ﬁtﬂ') Sﬁt,at (Cr(at + 1) - Cmat) .

i=1
Notice that if p; 4, = 0 then Z?ztl_l Dt,; needs to be equal to 1 for the inequality to hold. Which is
only possible if fi,...,f; =1 and aq,...,a; = 1. And if this rare event happens there is no better
option for the algorithm to plan maintenance as every action gives loss C,.. (Note that if you have
a part that breaks every first day you should probably look for an other supplier for the parts of
your machine.) In other words, the algorithm only chooses a; if p;q, > 0, which means that we
have seen the part break on day a; at least once.

Now look at the case where it is necessary that the algorithm explores higher values of a. As
stated earlier it is necessary to explore when we repeatedly have not seen the part. If action a; is
chosen and the part does not break (a; < f;) in round ¢ then nsy1(2) = n:(3) + 1 and bgy1(4) = be ()
for all i < a;. This means that

a

o~

-1 ar—1 . ar—1 : at—1 . . a—1 .
S b (f) S b)) S b)) me() n (i)
= Pee1i ; Ngy1(7) ; ng(i) +1 ; ng (i) ne(i) +1 ; b ng(i)+1°

Thus the sum on the left side of the inequality will shrink when we do not observe the part braking.
This causes the left side of the inequality to grow. So if we repeatedly do not see the part break,
sooner or later the inequality will not hold, so then E[¢;,1(a;)] > E[f¢41(a; +1)]. As the algorithm
chooses a1 = arg min, e[k E[Z;1(a)], the algorithm will then choose a higher value a and therefore
explore higher values of a.

Also notice that when C,,, grows that the left side of the inequality grows, and the right side
of the inequality shrinks. This means that when the cost of maintenance gets closer to the cost
of repair, the algorithm will explore earlier. And when C,,, gets smaller the opposite happens. So
when the cost of maintenance gets smaller the algorithm is less likely to explore. This is exactly
the behavior we would want to see as a rational person would take more risk if C,, — C,. and take
less risk when C), << C,.. O
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4 Simulations of the pseudo regret

In this chapter the algorithms of Chapter 3 are compared by simulations of the pseudo regret.
The plots will also show the actions chosen by the algorithms since the actions are a good way
to understand the behavior of the pseudo regret of the algorithms. The simulations are done for
different sets of parameters to see in which cases which algorithm performs best. The figures below
show the simulations and they all have the same structure: the left plots show the simulations
where the failure time has the binomial distribution, and in the right plots the failure time has
the uniform distribution. The top plots show the average actions chosen by the algorithms. The
bottom plots show the average expected regret for the chosen actions. All plots show the average
action/regret of 100 simulations.

f~Binomial(K,0.5) f~Uniform(K)
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L —
o 60 60 EG
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Figure 11: The average actions chosen by EG, EB and OB and their average expected regret over
100 simulations with parameters K =100, T =100, C} =100, C}, = 30 where different probability
distributions are used for the failure time.

Figure 11 shows the short term performance of the algorithms. The first thing that stands out
is that the Optimistic Bandit performs bad for these parameters. We can see that the Optimistic
Bandit gets a lot of information by choosing a; = K-1 but that it does not (yet) use this information
to make a good guess for the optimal action. Also observe that Epsilon Greedy makes a relatively
good choice when f; has the binomial distribution, but that it has a harder time when f; has the
binomial distribution (in the lower left plot the blue line increases slower than in the lower right
plot). In both cases the Empirical Bandit performs best as the pseudo regret is the smallest. Note
that the choice a; of the Empirical Bandit gets better over time, as we can see that in the lower
plots the regret increases slower over time.
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Figure 12: The average actions chosen by EG, EB and OB and their average expected regret over
100 simulations with parameters K = 10, T"= 10000, C}, = 100, C,, = 40 where different probability
distributions are used for the failure time.

In Figure 12 we can again see that Epsilon Greedy performs better when f; has the binomial
distribution, then when f; has the uniform distribution. We can also see that when f; has the
binomial distribution, both the Optimistic Bandit and the Empirical Bandit find the optimal
solution after a certain period of time, but that the Empirical Bandit needs less time and therefore
has least regret.

Interesting to see in the right plots is that the Empirical Bandit does not choose the optimal
solution every time, but that the regret nevertheless appears minimal. The average action chosen
by the Empirical Bandit is around 3.5, so approximately half of the time the algorithm chooses
a; = 4 and half of the time a; = 3 over time. Since the regret of the Empirical Bandit does not seem
to grow after 7' = 5000 and since a; = 4 is the optimal action, this should mean that the regret of
a; = 3 is close to zero for these parameters. So let us calculate the regret of a = 3 to see if this is
really the case. Use Theorem 1 and K =10, C,, =40, C,. = 100 to find

40 40 40 1 100 1
==+ (@o0-= ) H]=1 -1 - == 10)) —
E[((3)] - 5 +(( 00- )+ (50 5 ))10 E[¢(4)] 0+((100 0) +(50-10) + (= 10)) ~
:@+(@+“0)i :10+(90+40+@)i
3 3 3 /10 3/ 10

4 1
:—O+gzﬁ :@+7(27+12+7):E.
3 3 3 3 3 3

Therefore the regret of action a = 3 is indeed relatively small:1/3, and looking at the values on the
y-axis one can understand that this increase of regret is not noticeable in this plot.
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Figure 13: The average actions chosen by EG, EB and OB and their average expected regret over
100 simulations with parameters K =20, T = 20000, Cp = 100, C,, = 1 where different probability
distributions are used for the failure time.

Figure 13 shows the case where it is relatively cheap to do maintenance. From the plots of the
pseudo regret we can see that Epsilon Greedy has a decent guess of the optimal action when f;
has the binomial distribution, and that it chooses the optimal action every time when f; has the
uniform distribution. We can also see that both the Optimistic Bandit and the Empirical bandit
find the optimal solution after a certain amount of time, but that the Empirical Bandit needs less
time and therefore has least pseudo regret.

Notice the behavior of the Optimistic Bandit in the top left plot: the algorithm appears to
explore in steps. This observation will be used in the following page.
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Figure 14: The average actions chosen by EG, EB and OB and their average expected regret over
100 simulations with parameters K =20, T = 20000, C}, = 100, C,, = 75 where different probability
distributions are used for the failure time.

Figure 14 shows the case where it is relatively expensive to do maintenance. We can see that
the Optimistic Bandit needs a lot of time to learn in both cases. But because of the bound of
Theorem 3 and the behavior of OB in the top left plot of Figure 13 we would expect that this
algorithm will find the optimal action over time.

In the simulations where f; has the binomial distribution the pseudo regret of the Empirical
Bandit appears to be optimal, and in the top left plot we also see that the algorithm finds the
optimal action relatively quick. When f; has the uniform distribution the Empirical Bandit also
performs best, but it is not clear if it will find the optimal action over time.
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5 Conclusion

We start with the conclusions that can be made about the maintenance planning problem. Section
2.1 showed us that not all information gained from the rounds before is useful: in the case where
the part breaks before maintenance is planned we can calculate what would have been the loss for
every action. But because f; = a is never observed for a > a;, the observations for a > a; in the
case of f; < a; are biased, since it tells us that we have not seen the part break on day a while
we did not have the opportunity to actually see it break. Therefore, if this information is used to
estimate the probability that the part breaks on day a, this probability is underestimated for large
a. From this follows that selecting a; = K is the only way to receive unbiased feedback for every
action. From Section 2.2 we learned that the best day to plan maintenance is the day before the
part breaks. And that if the part breaks, we would rather be far to late with planning maintenance
than just to late, as we get more feedback when maintenance is planned far to late. Section 2.3
showed us that the expected loss for every action can be calculated in a way that makes use of the
feedback model, and that the expected loss depends on the probability distribution of the failure
time. So from Chapter 2 we conclude that the challenge of the maintenance planning problem is
to estimate the probability distribution of the failure time. Which means that the algorithms need
to make a choice of letting the part break to learn more about the failure time, or to try to guess
the optimal action to save the repair cost.

Now we move on to the conclusions about the performance of the three algorithms that where
designed to solve the maintenance planning problem. We start with the Epsilon Greedy algorithm.
The bound of Theorem 2 proved that the algorithm suffers from linear pseudo regret. In the
simulations we saw that the regret is indeed linear, but that it can take the Optimistic quite some
time before it outperforms Epsilon Greedy. When f; has the uniform distribution we see that most
of the time the Epsilon Greedy algorithm chooses an action a; < ¢, and from Figure 3 we know
that that gets punished with a bigger expected loss, and therefore the pseudo regret grows harder
in this case.

Secondly we observe the Optimistic Bandit algorithm. Theorem 3 gave us a promising pseudo
regret bound, but in the simulations we saw the flaw of this algorithm: it indeed finds the optimal
action over time, but it needs a relatively long time to do so. We observed in Section 3.2 that
the Optimistic Bandit algorithm needs more time to explore when K is big, or when it is rela-
tively expensive to do maintenance (C,,/Cj is big). Notice that when it is relatively cheap to do
maintenance, it is relatively expensive to explore. Therefore there is an incentive to exploit earlier.

And last but not least we observe the Empirical Bandit algorithm. The bound that was found
in Theorem 4 was by far the worst, but this algorithm has performed best for all simulations. The
reason that this algorithm works so well might be because of the feedback model and Theorem 1:
when action a; is chosen we receive feedback for days i < a;, and when we want to calculate the
expected loss for a; we do not need the observations for all days but only for days i < a;. In the
simulations can be seen that the actions chosen by the Empirical Bandit algorithm get close to
the optimal action impressively quick, and then over time stay close to the optimal action. The
simulations however do not imply that the algorithm will always find the optimal action when T
gets bigger.

To conclude this thesis; let the Empirical Bandit tell you when to maintain your machines.
Since this algorithm seems to work best for most sets of parameters.

26



6 Discussion

Below are suggestions for further analysis on the three algorithms that were designed to solve the
maintenance planning problem.

To improve the Epsilon Greedy algorithm, further analysis could be done on how to choose Tj.
For short term use T = v/T seems to work well, but it is not proven why. For long term use we
need to choose Tj such that we can say with high probability after Tj rounds we know the optimal
solution. Then with high probability the regret will not grow after the exploration phase.

As concluded in the previous chapter, the Optimistic Bandit is good at finding the optimal
action, but the algorithm needs a long time to do so. Therefore we could try to modify the
algorithm in a way such that it starts to exploit earlier. Notice that the Epsilon Greedy algorithm
is given a certain time to explore, while the Optimistic Bandit algorithm decides by itself when it
is time to exploit. So we could try to use the same principle of Epsilon greedy to let the algorithm
exploit earlier. However we should be careful with the modifications to make sure that the bound
of Theorem 3 still holds.

For the Empirical Bandit algorithm, further analysis could be done to improve the bound of
the pseudo regret. To improve this bound we could start at inequality (54). Instead of this rough
estimation we could do the following
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E[6:(ar) ~ b(a)] SE }j(.—H~EU9 - 1] [}j( ) Eli-p] (6)
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Equality (66) uses that E[p;; —pi] = —~E[p; — P¢,;]- The next step then bounds —Cy,/a; and -C,, [a*
by -C,,/ maxat,a” before the summations are subtracted from each other. Then (68)-(72) use
the event A\;; = {|p; — Pr,i| > Br,; and the bound P(A,;) < T'¢ which were also used in the proof of
Theorem 3. The last inequality first works out the brackets and bounds the first term with the
worst case: a; = 1 and a = K or the other way around. The second term is bounded as follows

: -l,a*-1 , K-1
Sty | <PV = T Hmax(ar, @)

If a; > a* for all ¢, then the indicator function is equal to I{i < a;}. Then recognize that the
bound above is equal to half of the pseudo regret bound for action a; of (33). From this follows
that when a; > a* for all ¢, then the bound of the pseudo regret of the Empirical Bandit is exactly
half of the bound found for the Optimistic Bandit of Theorem 3.
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If a; > a* does not hold for all ¢, we would need to find another way. Therefore look at the
second rough bound of inequality (60). Here we used the worst case n;(i) = 1 for all ¢: the algorithm
chooses a; = 1 all the time. But Claim 1 shows that this can not happen. The claim shows that
the algorithm does explore and that therefore n.(i) will get bigger over time for i < a*. To use
this in the pseudo regret bound of the algorithm we would need to know how fast n.(¢) grows for
i<a”.

If a; < a* holds for all ¢, the pseudo regret can be bounded by

) Z (CZ’—C)+E|:Z (CT—C?) I{i < max(as,a*)} - ﬁ“] (74)
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The second term can be bounded in a same way as is done in the proof of Theorem 3. Then the
challenge remains to bound the last term.
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