Generating Graphs for the

Earth-Moon Problem with Edge Flips
Revisiting Sulanke’s Algorithm

Master Thesis Applied Mathematics

Bob Vermeulen

Supervisor: Prof.dr. F.M. Spieksma

September 21, 2025

Universiteit
5 S .
J Leiden

CONTENTS CONTENTS
Contents
1 Introduction 2
1.1 Defining the Earth-Moon problem 2
1.2 Sulanke’s Earth-Moon graph L Lo 4
1.3 Empire graphs e 4
2 Sulanke’s Algorithm 7
2.1 Origin and definition 0oL 7
2.2 Randomizing flips. 10
2.3 Counting cliques L 14
2.4 Initial triangulated graphso 16
2.5 Adapted Algorithm 25
2.6 Results of the algorithm L 28
3 Research on the upper bound 29
3.1 Developments on the four colour theorem 30
3.2 Mappings between graphs L Lo 33
4 Future of the Earth-Moon problem 34
4.1 Potential of Sulanke’s Algorithm Lo 35
4.2 Size of a chromatic number 12 graph 0 oL 35
A Bibliography 37
B Generated Graphs 38

1 INTRODUCTION

1 Introduction

We start out with some basic definitions and notations of graph theory, such that we can properly
define the Earth-Moon Problem: What is the minimum number of colours required to colour any map
that can be split into two planar graphs? Currently the Earth-Moon problem is unsolved, but we do
have a lower and upper bound on the minimum number of required colours. We show both of these
bounds and provide proofs for them later in this section.

Section 2 is all about Sulanke’s Algorithm. This was the best known algorithm for generating Earth-
Moon graphs, until it was lost for over a decade. Luckily, the algorithm was recovered in 2022 [1], but
the information about edge cases and other details about about implementation are still lost. We fill
in the missing gaps ourself to create an altered version of Sulanke’s Algorithm and provide theorems
to support the changes we made. In particular, we made a constructive proof that every edge-maximal
planar graph can be obtained from any other edge-maximal planar graph with the same number of
vertices, by applying so called edge flips. This proof is a new result, which shows that Sulanke’s
Algorithm can generate all graphs we are interested in. We also put our adapted algorithm to the
test, and the most interesting graphs we found are shown in Appendix B.

Two other leads for the Earth-Moon problem are discussed in Section 3. First, we give a brief summary
of Tilley’s new view on the 4-colour theorem and theorise whether that information is also applicable
to the Earth-Moon Problem. Second, we delve deeper into 2-pire graphs. These graphs are currently
the key to the best upper bound that we have of the Earth-Moon Problem and we explore an idea
that might lead to an even tighter upper bound with the help of 2-pire graphs.

Our research did not lead to a new bound for the Earth-Moon problem, but that does not stop further
research on the topic. We discuss possible continuations of our research and mention some other ideas
on the topic in Section 4. From our research it seems unlikely that Sulanke’s Algorithm can improve
the current lower bound on the Earth-Moon problem, but we do think that the bound can be improved
by approaching the problem with different algorithms.

1.1 Defining the Earth-Moon problem

This subsection contains some graph theory basics and other commonly used definitions in this thesis,
starting with simple graphs.

Definition 1.1 (Simple graph) A graph G = (V| E) consists of a set of vertices V' and a set of edges
E, where each edge is an unordered pair of two vertices. G is simple, if all edges are unique and each
edge is associated with two different vertices.

Given a graph G = (V, E), we will call the number of vertices |V| = n and the number edges |E| = m.
Furthermore, we call duplicate edges parallel edges, and we call edges that connect a vertex to itself
self-loops. We are mostly interested in simple graphs for the Earth-Moon problem, as the existence
of non-simple graphs will complicate things, as seen later on. Another relevant property for graphs is
planarity. A graph is called planar, if the graph can be drawn on a plane, such that edges are connected
to their corresponding vertices and the edges do not intersect. We call such a representation a planar
embedding of the graph.

The Earth-Moon problem is all about colouring graphs, which leads us to the next definition.

Definition 1.2 (Graph colouring) A (proper) colouring of a graph G is a labelling of the vertices
where we assign each vertex a colour such that adjacent vertices have different colours. The chromatic
number x(G) of a graph is the minimal number of colours required to colour the vertices of graph G.

Graphs with self-loops cannot be properly coloured and parallel edges are redundant when colouring
a graph. Therefore restricting ourselves to simple graphs when colouring graphs is preferable.

Arguably, the most famous theorem about chromatic numbers and planar graphs is the 4-colour
theorem, proven by Appel and Haken in 1976 [2]. This theorem can be seen as the predecessor of the
Earth-Moon problem.

1.1 Defining the Earth-Moon problem 1 INTRODUCTION

Theorem 1.3 (4-colour theorem) Let G be a simple planar graph. Then x(G) < 4 holds.

There exist simple planar graphs with chromatic number 4. For example, x(K4) = 4. It follows, that
the bound of the 4-colour theorem is tight.

This theorem is famous for being one of the first theorems that heavily relies on computer technology
for its proof, therefore it is not realistic to show a proof here. We will however cover a conjecture made
by Tilley in 2018 [3] about the 4-colour theorem. If his conjecture is true, it would provide a more
intuitive proof for the 4-colour theorem than the current computer assisted proofs. Tilley’s conjecture
is covered in Subsection 3.1. There, we examine whether concepts used in the conjecture could help
with the Earth-moon problem as well. Colouring planar graphs with as few colours as possible can
also be seen as a map colouring problem, in which we want to colour all countries on a map with the
fewest number of colours, such that countries with a shared border have different colours. We will
mostly look at the graph theoretic approach of colouring problems though.

We are especially interested in graphs with a high chromatic number. Adding an edge to a graph
never decreases its chromatic number. Therefore, adding as many edges as possible to a graph is
desired if we want to maximize its chromatic number. An important subset of simple planar graphs
for colouring problems is the set of all edge-maximal planar graphs. This set consists of all simple
planar graphs, that are no longer simple and planar if any edge is added to them. The next simple
yet convenient theorem shows two additional identifying properties for edge-maximal planar graphs.

Theorem 1.4 (Triangulated graph) Let G be a simple planar graph with n = 3 vertices, m edges and
a planar embedding. Then the following is equivalent:

(1) If any edge is added to G, it is no longer a simple planar graph.
(2) All faces of the planar embedding of G are triangles.
(8) m = 3n — 6 holds.

A simple planar graph that satisfies any of these properties is called an edge-mazimal graph or trian-
gulated graph. These two names can be used interchangeably.

Proof. (1) = (2) Since G is simple, each face consists of at least 3 vertices. Assume there is a face
with 4 or more vertices. We can add an edge between two non-adjacent vertices of that face and G
will still be simple and planar. This is in contradiction with the edge-maximal property, thus there
are no faces with 4 or more vertices. We conclude that all faces have exactly 3 vertices. Faces with
three vertices are known as triangles.

(2) = (3) Denote f as the number of faces of G. Euler’s Polyhedron Formula gives us a relation
between the number of vertices, edges and faces of a graph with a planar embedding. It tells us that
n —m + f = 2 must hold. Since all faces are triangles, each face is adjacent to exactly 3 edges and
each edge is adjacent to exactly 2 faces. Thus the equality 2m = 3f must also hold. We use this
equality to eliminate f from Euler’s Formula and get that m = 3n — 6 must be satisfied by G.

(3) = (1) Since G is simple, all faces have at least 3 edges. Therefore, each face is adjacent to at
least 3 edges and each edge is adjacent to exactly 2 faces. This gives us the inequality 2m > 3f. By
substituting this inequality into Euler’s Formula we get m < 3n — 6, which holds for all simple planar
graphs. If we were to add an edge to G we have 3n — 5 edges in total, which means the new graph
can not be a simple planar graph.]

It is important to note, that in context of this thesis, triangulated graphs are simple and planar by
definition.

Figure 1 shows two graphs where the vertices v; and vy are swapped. These two graphs are similar,
but not equal, because vertex v; has a different degree in each graph. We call graphs that are the
same, up to the order of their vertices, isomorphic graphs. Two isomorphic graphs always have the

1.2 Sulanke’s Earth-Moon graph 1 INTRODUCTION

Figure 1: Two different graphs that are isomorphic.

same chromatic number. Graph isomorphism will play an important role in some of the upcoming
sections.

Definition 1.5 (Graph Isomorphism) Let G = (V1, Ey) and H = (Va, E2) be two graphs. G and H
are isomorphic if there exists a bijection f : Vi — V3, such that any two vertices v, w € V; are adjacent
in G if and only if f(v) and f(w) are adjacent in H. We denote this property as G ~ H.

We require one more definition before we can state the Earth-Moon Problem, namely the so-called
thickness of a graph. The thickness can be seen as a way of measuring how “planar” a graph is.

Definition 1.6 (Thickness) For a graph G = (V, E) we define the thickness 0(G) as the minimal
number of partitions of E, such that each partition with vertex set V is a planar graph.

Graphs on subsets of the edge set are called subgraphs, which are also used more generally. Graphs
with a thickness of 1 are planar graphs and graphs with a higher thickness are not. We define the
Earth-Moon problem by extending the 4-colour problem to graphs with a thickness of 2.

Problem 1.7 (Earth-Moon problem) What is the maximum chromatic number a thickness 2 graph
can have?

This problem was first introduced by Ringel [4] in 1959, when the 4-colour theorem was still a conjec-
ture. He predicted that 8 colours are sufficient to colour any graph with thickness 2. The problem can
also be formulated as follows: Let be given a map of countries, but each country has one enclave on
the moon. We want to assign a single colour to each country and enclave pair, such that countries and
enclaves that share a border have different colours. This formulation is the origin of the Earth-Moon
Problem’s name.

1.2 Sulanke’s Earth-Moon graph

In 1974, 15 years after Ringel stated the Earth-Moon problem, it turned out that Ringel’s prediction
was false and that there do exist Earth-Moon graphs with a chromatic number of 9. Inspired by
a problem proposed by the popular mathematician Gardner, Sulanke discovered the assumedly first
known Earth-Moon graph with a chromatic number of 9, which is shown in Figure 2 [5]. That makes
this graph a counterexample to Ringel’s prediction.

Because Sulanke’s graph can be split into two planar graphs, we know it has thickness 2. Furthermore,
we see that the vertices 6 through 11 form the complete graph Ky, which requires 6 different colours.
Vertices 1 through 5 are all directly connected to each vertex of the Kg, so that vertices 1 through 5
must use different colours than the 6 already used. These 5 vertices form a cycle of length 5, which
requires 3 different colours. In total we need at least 64+3=9 colours to properly colour Sulanke’s
graph, giving it chromatic number 9.

As of today, this is the best known lower bound of the Earth-Moon problem. Many other examples of
thickness 2 graphs with chromatic number 9 have been found by Sulanke and Gethner. They created
an algorithm to find these graphs, which is known as Sulanke’s Algorithm nowadays [6]. So far, this
is the best known algorithm for generating thickness 2 graphs with chromatic number 9. In Section 2
we discuss this algorithm.

1.3 Empire graphs

Apart from a lower bound for the Earth-Moon Problem, an upper bound is known. To prove this
upper bound we use a set of graphs, where vertices are grouped in a way that is reminiscent of graph
thickness.

1.3 Empire graphs 1 INTRODUCTION

Figure 2: Earth-Moon map and its corresponding graph with a chromatic number of 9 by Sulanke [5].

Definition 1.8 (M-pire graph) For M > 1, an M-pire graph is a planar graph, where the set of vertices
is partitioned into sets we call empires. Empires contain at most M vertices and no pair of vertices
in an empire share an edge. We call such a set of vertices that do not share edges an independent set.
A proper colouring of an M-pire graph follows the same rules as stated in Definition 1.2, but has the
extra restriction that all vertices in an empire must be coloured with the same colour.

We are interested in the highest chromatic number an M-pire graph can have. Heawood found an
upper bound for this problem in 1890 [7].

Theorem 1.9 Let G be an M-pire graph for M > 1. Then x(G) < 6M [7].
Proof. We prove this theorem by contradiction. Assume that there exists an M-pire graph with a

chromatic number of at least 6 M + 1. Let G = (V, E)) be an M-pire graph with the smallest number of
vertices, such that x(G) = 6M + 1 holds. With this graph, we construct a new graph G* = (V*, E*)

1.3 Empire graphs 1 INTRODUCTION

by merging the vertices of each empire into one vertex. Each empire in G is a vertex in V* and two
empires are connected in G* if there is a pair of connected vertices in the two associated empires.
Since the structure of the graph is preserved, G and G* have the same chromatic number.

For these two graphs |V| < M|V*| holds, because empires in G contain at most M vertices. Further-
more |E*| < |E| is also true, because there could be multiple edges between two empires in G which
we reduce to a single edge in E*.

To get to a contradiction, we look at the average vertex degree D = 2“‘9:” of graph G*. Note, 2|E*| is
the sum of all the vertex degrees. Euler’s polyhedron formula gives us the upper bound |E| < 3|V|—6,

which we use to give an upper bound on D. We also use the two aforementioned upper bounds.

_2ABY _2B| _ 23|V —6) 6|V|—12 _ 6MV*|—12 12

V=l v V| V|

D
V] V]

As x(G*) = 6M + 1 > 2 holds, G* must contain at least one vertex. It follows that % > 0 holds, so
that D < 6M is true. For the average degree to be this small, there must exist a vertex in V* with a
degree of at most 60 — 1. This corresponds to an empire in G that is adjacent to at most 6M — 1
other empires. We remove this empire and its corresponding edges from G to construct a new graph

G. Since G is the smallest M-pire graph with x(G) = 6M + 1, we have x(G) < 6M.

Let G be coloured with 6M colours and apply the same colouring to G. One empire is still uncoloured
in G. By construction, this empire is adjacent to at most 6/ — 1 empires. At least one of the 6M
colours is still available to colour this empire, which results in a proper colouring of G with only 6M
colours. This is a contradiction with x(G) = 6 M + 1 as there should not exist a proper colouring with
6M colours of G. Therefore, there does not exist a smallest M-pire graph G with a chromatic number
of at least 6 M + 1 and we conclude that there cannot exist an M-pire graph with chromatic number
6M + 1 or greater. O

Heawood also showed that the bound of Theorem 1.9 is tight for M = 2 [7]. About a century later,
Ringel and Young proved that the bound is tight for all M > 1 [8]. We only provide an example that
shows the bound is tight for M = 2, because the M = 2 case is relevant for the Earth-Moon problem.

Figure 3 depicts a 2-pire map with a chromatic number of 12. In this example all 12 empires are
directly connected to all other empires, which makes it a 2-pire version of the Kj5. Therefore, the
chromatic number of this example is equal to 12 = 6.

Figure 3: 2-pire graph with chromatic number 12 found by Kim, image made by Gethner[5].

We are especially interested in 2-pire graphs, because they are similar to thickness 2 graphs. If we
split a thickness 2 graph into two planar graphs and make the split vertices 2-pires, we have created a

2 SULANKE’S ALGORITHM

2-pire graph. A colouring of such a 2-pire graph is proper if and only if that same colouring is a proper
colouring of the thickness 2 graph. When viewing these families of graphs this way, thickness 2 graphs
are a subset of 2-pire graphs. Therefore we can apply Theorem 1.9 to the Earth-Moon problem.

Corollary 1.10 Let G be a graph with 0(G) = 2. Then x(G) < 12.

Despite the fact that 2-pire and thickness 2 graphs are very similar, 2-pire graphs often have a thickness
greater than 2. For example, the 2-pire version of the Ko from Figure 3 has a thickness of 3, because
it has too many edges to be a thickness 2 graphs. Theorem 1.4 tells us that planar graphs on 12
vertices have at most 3 - 12 — 6 = 30 edges and thickness 2 graphs have at most double that amount
with 60 edges. The K13 has 66 edges and thus x(K72) > 2. All 2-pire graphs with a thickness greater
than 2 are irrelevant for the Earth-Moon problem.

Currently, this is the best known upper bound on the Earth-Moon problem. It raises the question
how tight this bound is for thickness 2 graphs. A thickness 2 graph is more restricted than a 2-pire
graph, so it seems plausible that the bound could be lowered by using properties unique to Earth-
Moon graphs. Ideas for improving this upper bound are covered in Chapter 3. Thanks to Sulanke’s
graph, we know that there exist thickness 2 graphs that require 9 colours to colour and the previous
corollary shows that 12 colours are always enough to colour a thickness 2 graph. With these two facts
combined, we know that the solution of the Earth-Moon problem is 9, 10, 11 or 12.

2 Sulanke’s Algorithm

Sulanke is the creator behind the allegedly fastest known algorithm for generating thickness 2 graphs
with chromatic number 9 [6]. In this chapter, we cover Sulanke’s Algorithm and investigate if it is
realistic to find a thickness 2 graph with chromatic number 10 with the algorithm. The discovery of
such a graph would increase the lower bound of the Earth-Moon problem to 10.

2.1 Origin and definition

The most difficult part of constructing an algorithm that finds thickness 2 graphs with a high chromatic
number is the fact, that computing the chromatic number of a graph is an NP-hard problem [9]. There
are faster algorithms to compute chromatic numbers for specific families of graphs, but to our current
knowledge these families of graphs are not helpful for the Earth-Moon Problem. In practice, it does
not seem realistic to compute the exact chromatic number of the graphs we consider.

For our research, we bravely try to approximate the chromatic number of promising thickness 2 graphs
in an alternative way. The Lovéasz number gives a lower bound on chromatic number of a graph, which
can be computed in polynomial time [10]. To get a lower bound, we apply 10 different greedy colouring
algorithms, which takes linear time to compute. We apply these bounds to promising thickness 2
graphs for the Earth-Moon problem. For graphs with 17 vertices, the upper and lower bounds are
equal most of the time, but our method falls short for graphs with more vertices. Interestingly, this is
a very fast algorithm to compute the exact chromatic number of smaller graphs. Unfortunately, our
algorithm performs worse on graphs with high chromatic numbers, which are exactly the graphs we
are interested in. This ultimately led us to drop this idea.

Sulanke’s Algorithm is an algorithm made to find promising graphs for the Earth-Moon problem. It
does so by generating pairs of planar graphs that (hopefully) have a high chromatic number when
combined into a single thickness 2 graph. The algorithm also has to deal with the problem that
computing chromatic numbers of graphs is NP-hard. It uses the second best option to overcome this
problem: A lower bound on chromatic numbers obtained from of the Complement Theorem.

2.1 Origin and definition 2 SULANKE’S ALGORITHM

Theorem 2.1 (Complement Theorem) Let G = (V, E) be a graph with |V| = n vertices, such that
the complement G¢ does not have the K, as subgraph. Then,

X(G) = L:J.

Proof. The colouring of a graph with x colours can be seen as partitioning the vertices of G into x
sets of vertices with the same colour. Each subgraph induced by one of these partitions is a complete
graph in G¢, because between vertices of the same colour, there cannot be any edge. By assumption,
these subgraphs contain at most a — 1 vertices, implying that G¢ does not contain K, as a subgraph.

This yields the bound x(G) > [%1 [6]. O

Naturally we are interested in the tightest cases for which graphs satisfy the given requirements. The
six most useful cases for the Earth-Moon problem are given below.

Corollary 2.2 Let G = (V, E) be a graph with n vertices. Then the following is true:

If n =17 and K3 & G, then x(G) = 9. If n =19 and K3 & G, then x(G) = 10.
If n =25 and K4 € G¢, then x(G) = 9. If n =28 and K4 € G¢, then x(G) = 10.
If n =33 and K5 & G°, then x(G) = 9. If n =37 and K5 & G°, then x(G) = 10.

Corollary 2.2 implies that graphs with few complete subgraphs in their complement are good candi-
dates for having a high chromatic number. Sulanke’s Algorithm makes use of this fact. First pick
a number of vertices n and complete graph K, from one of the statements in Corollary 2.2. Then,
generate a graph on n vertices for which the algorithm minimizes the number of complete graphs K,
in the complement. Sulanke’s Algorithm is very good at generating graphs with chromatic number
9 and it seems plausible that it could also generate a graph with a chromatic number of 10. This
information about Sulanke’s Algorithm is from Sulanke and Gethner’s paper about the Earth-Moon
problem, which was published in 2009 [6].

Unfortunately, Sulanke and Gethner’s paper that shows the results made with Sulanke’s Algorithm
does not include the algorithm itself. They planned to publish the algorithm in a paper that has
never been released. Van der Beek worked on the Earth-Moon Problem in 2022, found Sulanke and
Gethner’s work and hit a dead end due to the missing algorithm. By contacting Sulanke, van der Beek
was able to recover and publish Sulanke’s Algorithm with the help of Sulanke himself [1]. In 2024, van
Valkengoed has successfully implemented the algorithm again as a proof of concept [11]. This thesis
can be seen as a continuation of their work on the Earth-Moon problem.

With the algorithm recovered, we can explain in detail how the algorithm works. We consider the
basic version of the algorithm that minimizes the number of K3s (or triangles) in the complement of
a thickness 2 graph. To initiate the algorithm, we need two triangulated graphs G; = (V| Ep) and
G2 = (V, E3) on the same n vertices. These two planar graphs together form the thickness 2 graph
G = (V,E1 U E»). It is possible that G; and G2 both contain the same edge e. When this is the case,
we only add edge e to G once. This prevents parallel edges from occurring in G. There are no self
loops in G, G and G, because G and G5 are simple by definition. It follows that G is also a simple
graph. We only consider triangulated planar graphs for G; and G9, because they are edge-maximal,
see Theorem 1.4. The more edges in the graph, the less edges in the complement G°.

Now that we have a starting point with two triangulated graphs, we want to turn G into a graph with
few triangles in its complement. This is done by moving edges around in one of these planar graphs
with so called flips. Figure 4 shows the configuration we require to do a flip: two faces that share an
edge in a planar representation of the graph. The figure also shows, which edge e gets replaced by
its complementary edge €. There are three reasons why flips are helpful. Firstly, flips always preserve
planarity, because they only alter the graph locally. Secondly, the configuration required to do a flip
is very common in triangulated graphs. Thirdly, flips mostly preserves the triangulated property,
since the number of edges stays the same. We have to be careful here, because flipping an edge in a

2.1 Origin and definition 2 SULANKE’S ALGORITHM

triangulated (and thus simple) graph can create a non-simple graph. How Sulanke’s Algorithm exactly
deals with this problem is unknown, but the most practical solution is to keep the graph triangulated
at all times. If a graph before and after a flip is triangulated, we call that flip a simple flip. We restrict
ourselves to simple flips for Sulanke’s Algorithm.

U1 U1

V4 U3 U4 U3

] V2

Figure 4: Example of an edge e flipped into its complementary edge €, given a planar representation.

By repeatedly doing flips that reduce the number of triangles in the complement of G, or at least keep
this amount the same, we already have a working algorithm. Unfortunately this strategy tends to get
the algorithm stuck in a local optimum, which gives poor results. To solve this, Sulanke’s Algorithm
uses simulated annealing. This is a form of probabilistic optimization, that repeatedly applies small
changes to an instance of a given problem. A change is accepted, if it improves the instance and is
sometimes rejected if it makes the instance worse. The probability of rejecting a bad change increases
over time. The idea behind simulated annealing is to accept bad changes at first to prevent the solution
getting stuck in a local optimum. When the algorithm is close to the end, we want to find the best
solution that is close to the current state. Rejecting more bad changes near the end helps with finding
the best nearby solution.

In the case of Sulanke’s Algorithm, the small changes we do are the simple flips. The algorithm
repeatedly does flips and checks whether that reduces the number of triangles in the complement. If
the number of triangles has increased, we undo the flip with a probability dependent on the number
of added triangles and the number of iterations already done.

After a fixed number of iterations or once the complement of G is triangle free, we end the algorithm.
If we do all the mentioned steps consecutively, we get Sulanke’s Algorithm as presented in Algorithm 1.

Note, that this is just the basic version of the algorithm. We can also expand it by minimizing the
number of K, for arbitrary a > 3. According to the Complement Theorem 2.1, we can consider larger
graphs for larger choices of a.

Sulanke’s Algorithm fully relies on the Complement Theorem 2.1, which is a double-edged sword for
the Earth-Moon problem. On one hand, the theorem helps Sulanke’s Algorithm allegedly to be the
best algorithm for generating thickness 2 graphs with a high chromatic number. On the other hand it
does not identify all thickness 2 graphs with a chromatic number of 10, if they do exist. For example,
consider a hypothetical thickness 2 graph G with a chromatic number of 10, 17 vertices and no triangles
in its complement. Applying the Complement Theorem to graph G, tells us it has a chromatic number
of at least 9. Therefore, Sulanke’s Algorithm would never recognize GG as a graph with a chromatic
number of 10. In the worst case, it might even be possible that thickness 2 graphs with a chromatic
number of 10 exist, but none of them can be identified by the Complement Theorem. In this worst
case, Sulanke’s Algorithm will never identify a chromatic number 10 graph, despite the existence of
such a graph.

2.2 Randomizing flips 2 SULANKE’S ALGORITHM

Algorithm 1 Sulanke’s Algorithm [1]

Let G1 = (V, E1),Gse = (V, E3) be two triangulated graphs on n given vertices.
Define G = (V, Ej U E»)
Let kmax be the maximum number of flips.

if G¢ is triangle free then

_ return G

for k=0, ..., knax do

Randomly select a simple flip with edge e in G; or G2 and its complementary edge €
if flipping e to € increases the number of triangles in G¢ then
‘ Flip the edge e to € with a probability of P(G, Gg, k).

else

 Flip the edge e to é

if G triangle free then

_ return G

: return G

—_ = e
Wy P o

—_ =
A

2.2 Randomizing flips

As of today, Sulanke’s Algorithm has been unsuccessful in finding a thickness-2 graph with chromatic
number 10, just as any other algorithm. For our research we want to maximize the efficiency of the
algorithm to get a clearer view, whether the algorithm might be able to find a chromatic number 10
graph. Algorithm 1 can be split in three parts:

Line 1: Determine which two triangulated graphs are used to initialise the algorithm.
Lines 8-12: Select a random flip and do a flip.

Lines 5 and 9: Compute the number of triangles in the complement of the graph.

Unfortunately, we do not know the best way to implement these three parts, because that information
is lost to time. We will discuss each part individually and construct an efficient implementation for each
of them. Selecting random flips and doing flips is covered in this subsection, computing the number
of triangles is covered in Subsection 2.3 and choosing the initial graphs is covered in Subsection 2.4.

Choosing a flip at random seems difficult and time consuming. Finding and selecting a random
flip configuration as shown in Figure 4 is indeed no easy feat. Since finding these configurations is
complex, we came up with a more efficient method of choosing a random flip. To do so, we start
out with determining which flips are available. Remember that the flipping operation is made on
a planar representation of a planar graph. Planar graphs have many planar representations, which
makes listing all flips complicated. The list of possible flips can differ between planar representations.
An example is shown in Figure 5 where edge (v1,v2) either flips into (vs,v4) or (vs,vs) depending on
the planar representation of the graph.

Since Sulanke’s Algorithm is restricted to triangulated graphs, we do not have to consider all planar
graphs. Given a planar representation of a triangulated graph, there is an easy way of listing all flips
of that representation. Since all faces are triangles, all edges are adjacent to exactly two triangular
faces. Two triangular faces that share an edge is precisely the configuration that is required for a flip.
I recommend taking a second look at Figure 4 to convince yourself of this fact. It follows, that each
edge corresponds to one flip that uniquely depends on its two adjacent faces. Each edge is adjacent
to two faces and those faces cover four different vertices. Two of those vertices are adjacent to the
original edge and the remaining two edges are adjacent to the complementary edge, which is the edge
we get by doing the flip. When we list all possible flips of a planar representation of a triangulated
graph, we get a list of |E| = m edges.

Flips are reminiscent of dual graphs. The dual of a planar representation is constructed by replacing

10

2.2 Randomizing flips 2 SULANKE’S ALGORITHM

U1 U1

U3 V4 U3 Us

U2 U2

Figure 5: A planar graph which has different flips depending on the planar representation. The dashed
line depicts the complementary edge of (v1,v2).

all faces with vertices and vice versa. Vertices are adjacent in the dual if their corresponding faces are
adjacent in the original planar representation. Note, that graphs can have multiple different duals,
because the dual depends on the planar representation. A relevant property of dual graphs is that they
have exactly the same amount of edges as the original graph. Each edge in the original graph becomes
an edge in the dual, which uniquely depends on the two adjacent faces in the original graph. The list
of edges and their complementary edges and the list of edges and their dual edges is practically the
same in triangulated graphs. The only difference is that the first list maps an edge to two vertices
and the latter maps an edge to two faces. If we go back to Figure 4 we see that the flip maps edge
e to the vertices v3 and vg. The dual maps e to the faces a and b, but from this pair of faces we can
also derive that e has (vs,v4) as complementary edge, as vs and vy are the only two vertices in a and
b that are not adjacent to e.

It follows that our list of flips and the list of dual edges is the same, besides a different notation.
This also implies that all planar representations of a triangulated graph support the same set of flips
if their dual does not depend on the planar representation. A dual does not depend on the planar
representation, if the corresponding graph has a unique dual. A single planar representation of a
graph would be sufficient for deriving all flips if the graph has a unique dual and it turns out that all
triangulated graphs have this special property.

Theorem 2.3 All planar representations of a triangulated graph G have a unique dual.

Proof. There are two cases we have to consider. First, we examine all triangulated graphs with at most
3 vertices. These are the Ky, K1, Ko and K3. For each of these graphs we manually check whether
their duals are isomorphic. The Ky and K; have themselves as the unique dual. The K5 has a vertex
with a self loop as unique dual and the K3 has two vertices with a triple parallel edge as unique dual.
All their duals are unique and thus the theorem is true for up to 3 vertices.

Second, we consider all triangulated graphs with 4 or more vertices. Hakimi and Schmeichel have
proven in their article On the connectivity of maximal planar graphs [12] that triangulated graphs
with 4 or more vertices are 3-connected. A graph is k-connected if the graph has more than k vertices
and at least k vertices need to be removed before the graph becomes disconnected.

Hakimi and Schmeichel’s theorem is helpful, because we can concatenate it with Whitney’s theorem.
He has proven that 3-connected graphs have a unique dual in his article Congruent Graphs and the
Connectivity of Graphs [13]. These two theorems combined prove that all triangulated graphs with 4
or more vertices have a unique dual. Since we already proved the theorem for up to 3 vertices, the
theorem is true for any triangulated graph. O

11

2.2 Randomizing flips 2 SULANKE’S ALGORITHM

Together with our previous arguments, Theorem 2.3 implies the following corollary:

Corollary 2.4 There are exactly |E| = m possible flips in a triangulated graph G = (V, E), one flip
for each edge.

This information is very useful for implementing Sulanke’s Algorithm. Instead of searching for every
single flip configuration and then choosing one at random, we can simply pick a random edge and
derive its corresponding flip. With this strategy we came up with an algorithm that selects a random
flip and performs it in constant time. Do note, that the setup at the start of the algorithm takes
linear time. That is no problem for Sulanke’s Algorithm though, because speeding up the repeating
part of the algorithm is way more relevant. In our algorithm we represent the planarity of the graph
with a list of faces. It is also possible to use the dual or a planar representation instead, but we do
not provide an algorithm for that. Figure 6 provides a visual example of the algorithm.

Algorithm 2 Edge flip in constant time

Let G = (V, E) be a triangulated graph.

Let Fy be a list of all faces and their adjacent vertices for a planar representation of G.
Let Er be a list of all edges and their adjacent faces on the same planar representation.

Randomly pick an edge (v1,v2) = e from Ep.

Read the two faces a, b that are adjacent to e from Fp.

Read the missing two vertices v3, v4 surrounding edge e from Fy .

Flip e = (v1,v2) to € = (v3,v4) in G and Ep.

Update face a in Fy by replacing v; with v3 for this face.

Update face b in Fy, by replacing vy with v4 for this face.

: Update Ef by swapping a and b for the edges with a new adjacent face in Fy .

—
—= O

Er Er
: edge | faczs % : edge) faczs %
vL,v2) 4 face vertices Us,v4) @ face vertices
(v1,v3) b e a vl Vs W (v1,v3) b e a U3 Uy U4
(v2,v3) b d b v vy v (v2,v3) @ d b v vy w3
(v1,v4) a e (v1,v4) b e '
(v2,v4) a f (vo,v4) a f

Figure 6: Example of an edge (v1,v2) flipped into edge (vs,v4) with Algorithm 2.

12

2.2 Randomizing flips 2 SULANKE’S ALGORITHM

We have omitted one important problem that arises when selecting a random flip: not all flips are
simple flips and we require flips to be simple for Sulanke’s Algorithm. All Corollary 2.4 tells us, is
that there are at most m possible simple flips in a triangulated graph. It is a recurring theme in this
thesis that non-simple flips complicate things by a lot.

The best we can do, is to work around non-simple flips. To do so, we need to know what leads to
non-simple flips. We can split these flips into two categories: flips that create a parallel edge and
flips that create a self-loop. Self-loops are the easiest case, because they require a pair of triangles
that share all their three vertices, a parallel face so to say. There is only one triangulated graph
which has a parallel face, namely the K3. Doing a flip in any other triangulated graph never creates
a self-loop. There exist planar graphs besides the K3 with flips that form self-loops, but those graphs
are non-simple, making them non-triangulated too. Figure 7 shows two examples of how flips can
create self-loops due to a parallel face being present in the graph.

—

Figure 7: A triangulated graph (above) and a non-triangulated graph (below) that create self-loops

when certain edges are flipped. The bottom left graph is not triangulated, because the graph is not
simple.

If we restrict ourselves to triangulated graphs with 4 or more vertices, we never encounter a flip that
creates a self-loop. This is barely a restriction, because small graphs are irrelevant for the Earth-Moon
problem. This also helps with proofs later on, as we do not have to consider any situation where an
edge has a self-loop as complementary edge.

The case where a flip results in a parallel edge is a lot more problematic. When doing many flips
in a triangulated graph, one is bound to encounter a flip that creates a parallel edge and there is no
elegant way of preventing this. Our solution is to simply select a different random flip, if the random
flip we found creates a parallel edge. This compromise does not have a notable impact on the speed
of the algorithm, because finding a random flip and its complementary edge can be done in constant
time. It also helps that most flips in a triangulated graph are simple.

The configuration to do a simple flip is the K4, but with a single edge missing. The configuration of a
non-simple flip is precisely the K4. We can approximate the probability of a flip being non-simple as
follows: assume that we have a triangulated graph G = (V, E) with n vertices and 3n — 6 edges. We
pick 5 edges that are in the right configuration for a (possible non-simple) flip, which is a subgraph in
the form of the K4 with 1 edge missing. This flip is non-simple if the 6th edge that would complete the
Ky is present in G. We assume that each vertex pair that does not contain one of these 5 edges, has
an equal probability of containing one of the 3n — 1 remaining edges. There are %n(n —1) —5 of these
vertex pairs. Under these assumptions, we get the this approximated probability for the occurrence
of a non-simple flip:

13

2.3 Counting cliques 2 SULANKE’S ALGORITHM

number of edges outside a flip 3n—6-5

= ~ probability of non-simple flip.
number of vertex pairs outside a flip %n(n —-1)— P Y P P

We are not interested in running Sulanke’s Algorithm on graphs with fewer than n = 17 vertices. At
17 vertices the probability of a flip being non-simple is 0.38 according to our rough approximation.
This number gets even smaller when we increase the number of vertices. In our version of Sulanke’s
Algorithm, we repeatedly generate random flips with Algorithm 2, until we find a simple flip. Each
time a non-simple flip is chosen, we waste time finding a different flip. This is not a problem in
practice, because Algorithm 2 only takes constant time. The amount of time lost due to non-simple
flips is negligible compared to the runtime of the entire algorithm.

2.3 Counting cliques

The second part of Sulanke’s Algorithm that requires more clarification, is how we count the number
of cliques with a fixed size a in the complement of the graph. A simple yet effective solution is to
use the algorithm of Chiba and Nishizeki for finding cliques of fixed size a > 3. The algorithm and
the details about the time complexity can be found in their article Arboricity and Subgraph Listing
Algorithms [14]. Different algorithms with a similar time complexity can also be used instead, but we
do not cover that here.

Algorithm 3 List all cliques of size a > 3 in a graph [14]

1: Let G = (V, E) be a graph.
2: Let C' = (J be an empty set of edges.
3: Let S = J be an empty set of cliques.
4: Label all vertices v € V with a.
5. do K(a,V).
6: return S
7. procedure K (k,U)
8: if £k =2 then
: for edge (x,y) in the subgraph induced by U do
10: - S=5U ({z,yu0).
11: else
12: Sort all vertices v € U from smallest to largest degree in the subgraph induced by U.
13: for vertex v € U in the order made in line 12 do
14: Let U’ < U be all vertices adjacent to v that have label k.
15: Relabel all vertices u € U’ with k — 1.
16: C:=Cu{v}.
17: do K(k—1,U").
18: C:=C\{v}.
19: Relabel all vertices u € U’ with k.
20: | | | Relabel vertex v with k + 1.

We denote v(G) as the arboricity of a graph G. This is the minimum number of forests required to
cover the edges of G. Note that a forest is a set of disjoint trees. For example, all trees have an
arboricity of 1. The K4 has an arboricity of 2, because one tree cannot span the Ky, but two trees
can, see Figure 8.

Algorithm 3 finds all cliques of size a in O(a’y(G)a_Zm) time in a graph with m edges. Thickness 2
graphs are sparse, which leads to a low arboricity. Conversely, the complement of thickness 2 graphs
are dense and have a high arboricity.

Due to the arboricity being so high, we simply use the worst case bound v(G) < [%\/2m + n] from
Chiba and Nishizeki’s paper for complements of thickness 2 graphs. We know the exact number of

14

2.3 Counting cliques 2 SULANKE’S ALGORITHM

Figure 8: The K} split into a black and a blue tree, which shows that its arboricity satisfies v(K4) < 2.

edges m in the complement, because triangulated graphs with at least 4 vertices have 3n — 6 edges
by Theorem 1.4. It follows that the complement has m = %nQ — %n — (3n — 6) edges, which we can
substitute in our worst case bound of the arboricity as shown in the next equation. This leads to a
time complexity of O(an®), when we want to find cliques of size a in the complement of a triangulated

graph on n vertices.

;\/2(;712 - %n — (3n — 6)) + nw , thus O(y(G)) = O(n)

O(av(G)*?*m) = O(an""*n?) = O(an®)

It turns out, that we can do better and count all cliques of size a even faster. Since we alter only
a single edge in each iteration of Sulanke’s Algorithm, the list of cliques in the complement stays
mostly the same. Instead of counting the number of cliques from scratch in each iteration, we can use
information from previous iterations. When we have a list of all cliques of size a¢ and then change a
single edge, we only have to count how many old cliques we lose and how many new cliques we gain.
This idea is demonstrated in Algorithm 4.

Algorithm 4 List all cliques of size a > 3 in the complement after a flip

Let G = (V, E) be a planar triangulated graph.
Let L be a list containing all cliques of size a in G°.
Flip a vertex e into € in G.

Make a list L_ of all cliques containing € in L.
Make a list Ly of all cliques containing e in G°.
L= (L\L_)u L4

return L

We only have to list every single clique at the start, if we use Algorithm 4 in Sulanke’s Algorithm.
After the initialisation, we repeatedly update the list while the algorithm progresses. To compute
the time complexity, we assume, that the size of the clique list is approximately constant. This is
not necessarily true in practice, but this assumption keeps the time complexity simple. Line 5 of
Algorithm 4 takes a|L| time, because there are this many vertices in the list to check. The runtime of
line 6 depends on the chosen algorithm.

Since we know that exactly one edge e = (v,w) gets added to the complement, all newly formed
cliques in that step contain edge e. This edge is adjacent to two vertices, which means we only need
a — 2 more vertices to complete a clique. For a = 3 this leads to a very fast algorithm to list all new

15

2.4 Initial triangulated graphs 2 SULANKE’S ALGORITHM

cliques. We only have to check, whether any vertices form a triangle with edge e in the complement.
All these vertices form a clique of size three with the vertices v and w. To achieve this, we need to
check all 2(n — 2) possible edges that are adjacent to v or w, which has a time complexity of O(n).

For a = 4 we list all vertices that form a triangle with edge e = (v, w) in the complement again. Then
for each edge (x,y) in the subgraph induced by this list we get the newly formed clique {v,w,z,y}.
Checking all the edges in the subgraph takes O(n?) time.

We can generalize all cases for which a > 5 holds. We need to find all cliques of size a — 2 that are
fully connected to the vertices of e. We have a — 2 > 3, thus we can use Algorithm 3 by Chiba and
Nishizeki to list all these cliques. We already computed that this algorithm has a time complexity of
O(an®) on the graphs we consider, which is the same time complexity as the other two cases a = 3
and a = 4.

All in all, the time complexity of Algorithm 4 depends on whether line 5 or 6 takes the longest. We
simply take the maximum to get a final time complexity of:

(’)(max {an®, a|L\}>.

Computing the number of cliques is the most time consuming part of Sulanke’s Algorithm, since this
has to be done every single iteration. Finding and doing a flip is also done every iteration, but that
takes constant time, which has a negligible impact on the runtime.

We now have all the information required to compute the time complexity of Sulanke’s Algorithm.
Denote the number of vertices by n, the size of cliques to eliminate in the complement by a and the
total number of attempted flips by b. Let |L| be the number of cliques in the complement, which we
assume to be mostly constant during the algorithm. This leads to the follwing time complexity of
Sulanke’s Algorithm:

O(max {ban®, ba\L|}>.

Note that, we are only interested in running the algorithm on graphs, for which it is realistic to
eliminate all cliques of size a from the complement. This leads to very small values of |L|, while
running the algorithm. As long as the algorithm is used for its intended purpose, the time complexity
can be simplified to (’)(bcma).

2.4 Initial triangulated graphs

We need two triangulated graphs to initiate Sulanke’s Algorithm, which raises the question which
graphs we should pick. Most importantly, we want to know whether our choice for the two initial
graphs locks us out of possible outcomes. All triangulated graphs on the same number of vertices
look very similar to each other, but they do differ nonetheless. Figure 9 on page 18 depicts the two
triangulated graphs Gy and Hy, which are not isomorphic. The easiest way to see that they are not
isomorphic, is by counting the degrees of the vertices. All vertices have a degree of 4 in Gy, while
only vertices v; and vy have a degree of 4 in Hy Therefore these two graphs are not isomorphic. Do
note that 6 is the smallest number of vertices n, that supports non-isomorphic triangulated graphs.
For n < 5 fixed, all triangulated graphs on n vertices are isomorphic. Furthermore, for n < 4 fixed,
all triangulated graphs on n vertices are equal.

Now that we know, that triangulated graphs can be distinctively different, we want to know whether
we can obtain all triangulated graphs, given a finite number of flips. It turns out that, if we start
with a triangulated graph on n vertices, we can obtain any other triangulated graph on n vertices
using simple flips. We first prove, that we can obtain a triangulated graph isomorphic to any other
triangulated graph given a finite number of simple simple flips. Second, we prove the stronger version
of the theorem in which we obtain equal graphs, rather than isomorphic graphs.

16

2.4 Initial triangulated graphs 2 SULANKE’S ALGORITHM

Theorem 2.5 Let be given two triangulated graphs G and H on the same vertex set V and a planar
representation of both graphs. We can transform graph G into graph G’ via a finite sequence of simple

flips on G, such that G' ~ H holds.

Proof. Given that the vertex set V' has 4 or less vertices, the problem becomes trivial. There is only
one triangulated graph on such a vertex set V. Thus, G = H holds by default and no flips are required.
For the remainder of the proof we assume, that |V| > 5.

We will give a proof by construction. Our goal is to construct a graph G, by flipping vertices in G,
such that G ~ H. We create Gt step by step, starting from graph G = Gy. We track the graphs
we make in the sequence Gy, G1, Go, ..., Gp. We also make use of a second graph sequence that starts
with graph Hy = H. Furthermore, we create a sequence of subgraphs and a sequence of cycles. All
four sequences are detailed here:

e Go,G1,Goa,...,Gp

— (41 is either equal to G; or G+ is obtained from G; by simple flips.
e Hy,Hi,Hs,....Hp

— H;.1 is obtained from H; by a permutation of the vertices, thus H; ~ H; 1 holds.
e G§,GY.GS,...,GY

— This sequence of connected subgraphs starts with G5 = &.

— The subgraph Gf contains ¢ triangular faces and is present in both G; and H;.

— The subgraph Gfﬂ is obtained by adding an adjacent triangular face to Gf , thus G;g c Gf 1
holds.

L d COa Cl) 027 CT
— (; is the cycle along the boundary of Gf .

All graphs G; and H; are triangulated and have |V| vertices. Therefore, all these graphs have exactly
T = 2n — 4 faces. (This follows from Theorem 1.4 and Eulers Formula.) If we manage to construct
the four sequences with the given properties, we end up with the graph G% This graph is a subgraph
of G and Hp. By construction, it has T triangular faces, thus G% consists of all faces in G and all
faces in Hp. It follows, that G5 = Gr = Hyp. Since the graphs G; are created by doing simple flips in
Gy and the graphs H; are created by permutations of the vertices in Hy, we get the following relation
between the first and last graphs in the sequences:

finite numbe
G, Dnitenumber o p H,.
of flips

This completes the proof. Basically, we are turning the graphs Gy and Hy into each other, one face
at a time. In the i-th step, we have the two graphs G; and H;, that both contain the subgraph GZ-S.
Because G consists of i faces, the graphs G; and H; have (at least) i faces in common.

i=0,1,2

The first two steps of the construction, where we make the graphs G, H1, G2 and Hs, are the easiest
to construct. An example is shown in Figure 9. In Gy and Hi, we make the outer faces of the graphs
equal, by permuting vertices in Hy. To construct Go and Hy, we make sure both graphs contain the
face vg,v3,v5. We only have to permute vertex vs and vg in Hy to achieve this.

The subgraphs G*l9 and G*g consist of the equal faces in the graphs. These subgraphs are precisely
the outside areas of C; and Cs respectively. We always colour cycles of sequence C, ..., Cr red in our
examples. To make sure that the equal faces we have created are preserved, we never flip any edge or
permute any vertex in subgraphs GZ-S . For example, in graph G5 of Figure 9, we cannot flip any of the
red edges, nor the edge (ve,vs3). In graph Hy, we cannot permute the vertices vy, v, v3 and vg.

17

2.4 Initial triangulated graphs 2 SULANKE’S ALGORITHM

V2 V6

(%1} V4
V6

U3 Us

V2

H,y

U1 Vg

U3

V2

U3

Figure 9: The construction of graphs G1, Hi, G2 and Hs.

For any pair of graphs Gg and Hy, we can do the first two steps, by permuting at most 4 vertices in
Hy. No edge flips are required and thus, Gy = G1 = G holds.

i=3,4,...T

From ¢ = 3 onwards, the construction becomes more complicated. Each iteration we choose an edge
(z,y) of the cycle C;. In graph H;, the edge (z,y) is adjacent to two faces: one face that is in G
and one that is not. The face that is not in Gf is the face we are interested in. We will call this face
x,1, z, where z is the third vertex of this face. Next, we flip vertices in G; and swap vertices in H;, to
make the face adjacent to (z,y) equal in the two graphs. We add this new face to Gf and repeat the
process.

The exact flips and permutations we do, depends on the location of vertex z in the graph H;. There
are three cases we have to consider, which are depicted in Figure 10.

18

2.4 Initial triangulated graphs 2 SULANKE’S ALGORITHM

Hi,

H; H;yy

C; Ciy1

Hiy

Ci+1

Figure 10: All three cases for face x,y, z in H; (left) and what graph H;,; would look like if face x,y, 2
is moved to the outside of C; to create Cj;q (right).

(A) Vertex z is inside the cycle C;, but not on C;.
(B) Vertices z,y, z are three consecutive vertices on the cycle C;.

(C) Vertex z is on Cj, but x,y, z are not consecutive vertices on Cj.

Case (C)

Case (A) and (B) are perfectly fine for our proof. Case (C) however, is the problematic case, which
we discuss first. When face x, y, z is moved to the outside of the cycle C;, we get a path C;;1 that is
not a cycle, whenever it is a case (C) face. This is shown in Figure 10. This is a problem, because we
require that the sequence C1, ..., Cr solely consists of cycles. This requirement is relevant for case (A)
faces.

If edge (z,y) leads to a case (C) face, we must find a different edge in C; that leads to a case (A) or
(B) face. To continue our construction, we must show that there always exists an edge (z,y) on C;
that creates a case (A) or (B) face in H;.

Let (z1,22) € C; be an edge that forms a case (C) face with vertex z1, as shown in Figure 11. If this

19

2.4 Initial triangulated graphs 2 SULANKE’S ALGORITHM

happens, we can select the next edge (z2,x3) counter-clockwise along C; to get a new face. If this is
a case (A) or (B) face, we are done. Else, the face adjacent to (x2,x3) contains a third vertex zo that
is on the cycle C;. Either zo = 21 holds, or z3 is a new vertex, that appears clockwise from z; along
C;. If z9 would be located counter-clockwise from z; along C;, the two faces x1,x9, 21 and x3, x3, 22
cross, which is not possible in the planar graph H;.

Ti+1@.

Figure 11: Visual proof that not all edges in C; can lead to case (C) faces.

If we repeat this procedure and only find case (C) faces, we observe that the number of available
vertices along C; decreases. The vertices z; and x;11 for j > 1 move counter-clockwise along C; and
the vertices z; for j > 1 are either stationary or move clockwise along C;. Since there are a finite
amount of edges in the cycle Cj, the vertices ;41 and z; will eventually meet up, when j large enough.
When this happens, we find the face x, x;41, 2;, consisting of three vertices that appear consecutively
on C;. This is a case (A) face. Thus, not all faces along C; are case (C) faces.

All that is left to prove, is that we can always resolve case (A) and case (B) faces. We do this by creating
the graphs G;.1, H; 11 and subgraph GZSH, from the graphs G;, H; and subgraph GZS respectively. We
start out with case (A).

Case (A)
We have the triangular face x,y,z in H; and this face is inside C;. Vertices z and y are on C; and
vertex z is not. In G, the edge (z,y) is also adjacent to a face inside C;. We call this face x,y,v. If

we can permute vertex v and z in H;, we can make the two faces equal. Then, the faces are ready to
be added to G and the case (A) face is resolved.

Sometimes, we cannot permute vertex v. This only happens when v is on the cycle C;. When this
happens, we want to do flips in G;, such that either the face x,y,z or z,y,w is in G; for some
permutable vertex w € Gf. If we end up with the face z,y,w in G;, we can permute w and z in H;.
That permutation creates the face x,y,w in H;, creating a face that matches with the face in G;.

When v is not permutable, we attempt the most straightforward solution first: doing flips to add the
face x,y, z to G;. We can create a sequence of flips in G;, that would create the face z,y, z, with the
help of a path P along the dual of G;. A path along the dual is a path that traverses faces, rather
than vertices. Let P be a path with the following properties:

e P starts in face x,y,v.
e P ends in a face that contains vertex z. This is the only face in P that contains z.
e P contains no face of the subgraph G?.

As long as any face adjacent to z and the face x, y, v are in the same connected component of the dual,
there always exists such a path P. Fortunately, all faces inside C; form one connected component

20

2.4 Initial triangulated graphs 2 SULANKE’S ALGORITHM

Y Y

Figure 12: Example of case (A). Flipping all vertices along path P’ in G; creates the face z,y, w.
Flipping all vertices along path P creates the face z,y, v, but the first flip creates an edge parallel to
the curved edge.

in the dual, as long as C; is a cycle. This is the reason why resolving case (C) faces is problematic.
When a case (C) face is added to G;S , the inside of C; gets split into two disconnected components in
the dual, which is shown on the bottom right of Figure 10.

Flipping all edges crossed by path P in order, starting from the face that contains z, creates the face
z,y, z. Figure 12 shows an example of flipping edges along a path on the dual. Note that, the edges
along path P’ are flipped and not P in the example. Path P’ is used a bit later in the construction.

The figure also shows, that all edges along the path are adjacent to the same vertex after they are
flipped. Flipping edges along path P’ makes all edges adjacent to w and flipping edges along path
P makes all flipped edges adjacent to z. Hence the faces z,y,w and z,y, z are obtained respectively,
depending on which path is chosen.

We are not done yet, because path P might lead to non-simple flips. For example, if we flip vertices
along path P in Figure 12, we run into a non-simple flip. The very first flip creates an edge parallel to
the curved edge. To solve this, we create a new path P’, such that all flips along path P’ are simple.

21

2.4 Initial triangulated graphs 2 SULANKE’S ALGORITHM

Walk along path P, starting from the face z,y, v, and note all faces we visit. Stop at the first face
visited by P, that contains a vertex w ¢ C;. Denote the resulting path by P’. It is possible that the
path P and P’ are equal. If that happens, w = z holds. The shorter path P’ contains only one face
that does not have all its vertices in C;, namely the last face along path P’. Only vertex w of this last
face is not on C;. We use this fact to prove, that flips given by path P’ are all simple.

Each flip of edge e into € along P’, uses two faces. Before the flip, only one face has a vertex that is
not on Cj;, namely the vertex w ¢ C;. See Figure 12. e consists of two vertices on C; and € has only
one vertex on C;. This exact configuration guarantees that the flip is simple. Flipping edges along
path P’ guarantees that each flip has this configuration, which is not true for path P.

Once all edges along P’ are flipped, we obtain the face z,y,w in G;. We permute w and z, to create
the face x,y,w in H;. Lastly, we add face z,y,w to GZS and update cycle C;.

Case (B)

In case (B), all three vertices z,vy,z are in C;. The edges (z,y) and (y, 2) are in the subgraph G?.
This means that we only have to make sure the edge (z, z) is in graph G;;1, to create a face that is
in both graphs. A generalisation of this case is shown in Figure 13. If edge (z, 2) is already in G;, we
get a so called closed fan as shown on the right of the figure.

If the edge (z, z) is not in Gy, then y has at least two adjacent faces within C;, as shown on the left
side of Figure 13. We call all these faces together an open fan, which we want to turn into a closed
fan with flips. If we flip all the centre edges in an open fan, we get the closed fan we want. The edges
we want to flip are highlighted in blue in Figure 13. Every time one of the centre edges is flipped,
the number of faces in the fan decreases by one. The fan closes when all the centre edges are flipped,
independent of the order in which they are flipped. Nonetheless, the order should still be chosen
carefully to prevent non-simple flips.

Figure 13: Closed fan (left) and open fan (right) in the graph G;, which are used to solve case (B).

There is a strategy to prevent non-simple flips, when closing the fan. Let (y,v) and (y,w) be two edges
in the fan that share a face, but neither edge contains vertex x or z, as shown on the left of Figure 14.
(y,v) and (y,w) are of the two edges we must flip to close the fan and are therefore highlighted in blue
in the figure. Unfortunately, it is possible that flipping (y,v) or (y,w) creates a parallel edge together
with an edge outside of the fan. However, if both of these adjacent edges would form a parallel edge
when flipped, the graph is no longer planar due to the presence of the two conflicting edges. These
two hypothetical problematic edges are depicted with dashed lines.

If neither of the blue edges in Figure 14 correspond to a simple flip, both dashed edges must be present
in G;. Then, G; cannot be planar, which is a contradiction. It follows, that at least one of the two
blue edges correspond to a simple flip.

22

2.4 Initial triangulated graphs 2 SULANKE’S ALGORITHM

Pae AR 4 heS

4 S -~

. * -

. . . .
e ¢ M hS
. VL S W .
@ . J
X z

Y Y

C, C,

[
Y Y

Figure 14: Two examples in which the black dashed edges would make the graph non-planar. Triangles
represent faces and non-triangular areas consist of at least one face.

Fans that contain three or more faces always contain two edges that are adjacent in this way, thus
we can always flip an edge with a simple flip to make fans smaller. By repeatedly flipping edges in
an open fan this way, we eventually end up with a fan with exactly two faces. Only one more edge
needs to be flipped to close the fan. If the last flip is a simple flip we are done, because we can simply
perform the last flip.

Call the last edge that needs to be flipped e, which flips into the edge é = (x, z), as shown on the right
side of Figure 14. If this last flip is non-simple, there must be an edge e* = (x, z) outside the fan. If
e* e GZ-S holds, e* is also present in the graph H;. However, the edge € is also in graph H;. This leads
to the contradiction of H; containing the two parallel edges € and e*.

Thus, if the last flip is non-simple, the conflicting edge e* must be within C;. It follows, that we can
attempt to flip the edge e* in G;. Let €* be the complementary edge of e*. Figure 14 shows the exact
configuration the edges e* and é* have in this situation. From the figure, it is clear that an edge
parallel to é* would make G; non-planar, thus there does not exist an edge parallel to é*. Therefore,
we can do the simple flip that replaces vertex e¢* with é*. This makes the flipping e a simple flip and
we can close the fan, which completes case (B).

There is one special version of case (B), which is encountered in the second to last graphs Gp_; and
Hrp_1. There is only a single face z, y, z within the cycle Cr_;. This means, that all edges and vertices
of Gr_1 and Hp_; are fixed. We cannot do any flip or swap any vertex. This also means, that the
face x,y, z is already present in both Gr_; and Hy_;. No flips or vertex swaps are required.

This concludes the construction of the sequences Gy, ...,Gr, Ho,...Hr, G, ...,G% and Cy, ..., Cp.
Specifically, we have constructed the graph Gt by performing simple flips, such that Gr ~ Hy holds.
This proves, that there does indeed exist a finite sequence of flips that makes graph Gg isomorphic to
Hy. O

Next we prove the stronger version of Theorem 2.5. Instead of making isomorphic graphs, we want to
make equal graphs. Only then can we be sure, that Sulanke’s Algorithm can create any triangulated
graph on n vertices, no matter which two initial graphs on n vertices are chosen.

Theorem 2.6 Given two triangulated graphs G and H on the same vertex set V and a planar rep-

resentation of both graphs. We can transform graph G into graph G’ via a finite sequence of simple
flips on G, such that G' = H holds.

Proof. Let two triangulated graphs G and H on vertex set V be given and denote n = |V| as the
number of vertices. With the proof of Theorem 2.5, we can create the graph G’ by doing simple flips

23

2.4 Initial triangulated graphs 2 SULANKE’S ALGORITHM

in G, such that G’ ~ H holds. Denote 7 as the permutation on V', for which 7(G’) = H holds.

First, we will show that we can perform some vertex permutations in G’ by doing simple flips. This
means that we can create a new graph G”, using simple flips on G’, such that G’ ~ G” holds. Then,
we expand the number of permutations we can do in G’ with flips, so that we can eventually express
7 as a sequence of flips on G'.

We start with the most simple permutation in G’. Let Gg be a triangulated graph on n vertices
that contains the two adjacent vertices v; and vy. Let vy, vs,v3 be a face of Gy. We will construct a
sequence of simple flips that permutes v; and vy. Such a permutation is denoted as (vyv2).

Let Hy be a trivial graph on n vertices as seen in Figure 15. The trivial graph has the interesting
property, that it contains two vertices that are connected to all other vertices, which we call the two
high degree vertices. Let these vertices be denoted by v; and ve. Let v 1,v9,v3 span a face in Hy, as
seen Figure 15. Next, we apply the construction in the proof of Theorem 2.5 to the graphs Gy and
Hy. Thus, we do simple flips in Gy to create the graph G and permute vertices in Hy to create the
graph Hp, such that Gy ~ Hp holds. It is important that we never permute vertex v1 or vy in Hp.

We do the first step of the construction manually, to make sure v; and vy are not permuted. We
choose our graph Hy in such a way that Gg and Hy both contain the face v1, v9,v3. We add this face
to the subgraph Gf , which fixes the vertices v1, v and vs. This guarantees we never swap the vertices
v1 and vg in any of the graphs H;. The first step of the construction is now completed, without doing
any flips or permutations. We continue the remainder of the construction as normal.

The final result is a sequence of flips that turns Gy into the trivial graph G = Hp. Because we never
permuted vertex vy or ve, they are still the two high degree vertices of Hp, which makes them the
high degree vertices of G too. Because v; and v9 are connected to all edges, they are symmetric in
the trivial graph G, see Figure 15. This allows us to undo all the flips we did to get graph G, but
with vertex v; and v9 permuted in all flips. After undoing all flips in this manner, we get graph Gg
again, but with vertex vy and vy permuted. All in all, we have found a sequence of flips in Gy that
permutes the two adjacent vertices v; and wvs.

Multiple permutations of adjacent vertices, allows us to permute non-adjacent vertices too. Since
triangulated graphs are connected, there always exists a path between any two vertices. Let vy and
vy be two vertices in a triangulated graph and let vy, v1,vs...,Un_2,UN_1,UnN be a path of length N
between these two vertices. Consider the following product of permutations o:

o= ((Uo’Ul)(’()1’[)2)...(’UN_QUN_l)(UN_lvN)(UN_Q’UN_l)...(’Ul’UQ)(’UQUl)).

o solely consists of permutations between adjacent vertices and the entire product is equal to the
permutation (vw). It follows that, we can permute any pair of vertices in a triangulated graph with
simple flips.

A well known theorem from algebra is, that any permutation can be expressed as a product of permu-
tations that permute two elements. Specifically, the permutation m we want to perform with simple
flips on G’, can be expressed as a product of permutations that permute two vertices. Since each
permutation of two vertices can be done with simple flips, permutation 7 can also be executed with
simple flips. We conclude that we can turn any triangulated graph G into any other triangulated
graph H on the same vertex set by only doing simple flips in G. 0

From Theorem 2.6 it follows that the starting condition for Sulanke’s Algorithm is not too important,
since all graphs are obtainable by the two initial triangulated graphs. We still have to consider
which initial graphs we choose. Since we want to generate a thickness 2 graph with few cliques in its
complement, we prefer that the initial thickness 2 graph also has few cliques in its complement. Thus,
a simple way to initiate Sulanke’s Algorithm is to run another instance of Sulanke’s Algorithm. We
can use two different trivial triangulated graphs for the first instance of the algorithm and we can use
the resulting output as the initial state for the second instance.

24

2.5 Adapted Algorithm 2 SULANKE’S ALGORITHM

U1

U3

V2

Figure 15: The trivial triangulated graph for n = 6 with v; and ve as symmetric vertices.

A different strategy would be to start with two different triangulated graphs again, but rather than
running the algorithm twice, we run it once but with more iterations. Testing this strategy has shown
that it performs worse. On the other hand, increasing the number of times we run the algorithm, at
the cost of having less iterations for each run, turns out to improve the performance. The best ratio
of how often we run the algorithm and how many iterations each algorithm has, depends on the other
variables used in the algorithm.

Using two trivial graphs as initial state is far from optimal. We did not improve our choice for the
initial state, because our tests have shown that Sulanke’s Algorithm is extremely fast in removing
the first lot of cliques in the complement. Far more time is required to remove cliques, when there
are few cliques left in the complement. This difference is so big, that the amount of time saved is
negligible when using a better initial state. From our experience of running the algorithm, starting
with two trivial triangulated graphs works. For readers who are interested in more optimized initial
states, I recommend van der Beek’s thesis on the Earth-Moon Problem [1]. He proposes the use of
so called permuted layer graphs to generate a random initial state, instead of always using the same
initial graphs as we do.

It is important to note that the initial state is not completely irrelevant. When picking two equal
triangulated graphs, we have to remove half of the edges when merging them in the thickness 2 graph.
This adds a lot of edges to the complement, which tremendously increases the number of cliques in
the complement. Such an initial state is ill-advised.

2.5 Adapted Algorithm

So far, we have constructed fast and explicit methods for the important parts of Sulanke’s Algorithm.
There are still some details left to fill in, before we can combine everything we learned into an adapted
version of the algorithm.

In Subsection 2.2 we observed that doing random flips in a triangulated graph can create parallel
edges. To circumvent this problem, we keep selecting a new random flip until we find a non-simple
flip. However, there is a second way to get undesired edges. We have two triangulated graphs that
form a thickness 2 graph when combined. Sometimes the triangulated graphs both contain the same
edge. When this happens, we only add one of these edges to the thickness 2 graph. If we add both
edges to the thickness 2 graph, we would get an undesired parallel edge.

At first this sounds like a perfectly fine solution. When we lose an edge while merging, due to an edge
being present in both triangulated graphs, it will only increase the number of edges in the complement.
More edges in the complement leads to more cliques in the complement, thus the odds of accepting
a flip that creates a parallel edge is at a disadvantage. After doing the last flip in the algorithm, we
prefer that there are few to none of these parallel edges, but in practice we often end up with quite a
lot of them.

We can improve the algorithm by adding a more direct method of discouraging parallel edges, that

25

2.5 Adapted Algorithm 2 SULANKE’S ALGORITHM

are present in both of the two triangulated graphs. We could reject every single flip that creates a
parallel edge. But if we do that, we cannot say for sure whether we can still make all triangulated
graphs, because we cannot apply Theorem 2.6 any more. Instead, we propose to give the addition of
such a parallel edge the same weight as the addition of one clique in the complement. Thus, a flip
that creates an edge that is already present in the other triangulated graph, is just as likely to be
rejected as a flip that adds one additional clique. This change increases the performance of Sulanke’s
Algorithm. Do note, giving a parallel edge the same weight as one clique is an arbitrary choice. A
different weighting might be better, but finding the best weight would require thorough testing.

We also have to consider the probability function that accepts unfavourable flips. The function we
ended up using is the best performing one from van Valkengoed’s research on implementing Sulanke’s
Algorithm [11]. The best performing probability function from her research is one of the most com-
monly used functions for simulated annealing. Let b be the total number of iterations we want to do
and j the iteration we are currently at. Assume the flip proposed in iteration j increases the number
of cliques by x > 0. Then, the probability of accepting this flip is as follows:

exp(7)

There are differences between our and van Valkengoed’s version of Sulanke’s Algorithm. For example,
in our version of the Algorithm x is increased by 1 if the flip in iteration j creates a parallel edge
between the two triangulated graphs. All the other changes to the algorithm we mentioned earlier,
further differentiate our algorithms. The biggest difference is that van Valkengoed’s implementation
did not prioritize a fast runtime. With a lot of help from van Valkengoed’s version of Sulanke’s
Algorithm, we managed to make our own version that is designed for having a high performance. Our
algorithm is approximately 21,000 times faster than van Valkengoed’s implementation. This creates
the problem that her data on which probability function works best, has become negligible compared
to the amount of data our new algorithm can generate. Together with the fact that our algorithm
is also defined slightly differently, we conclude that more research is required to determine which
probability function is best for our adapted version of Sulanke’s Algorithm.

This covers all changes we made to create our own version of Sulanke’s Algorithm, which we call the
adapted version of Sulanke’s Algorithm. The exact algorithm is shown in Algorithm 5.

Algorithm 5 shows our final algorithm that contains everything we have discussed in this section. We
have also tried other ideas to improve the algorithm, but all of these got scrapped. We list them here
to give some insight in our development of the altered version of Sulanke’s Algorithm.

e Reject flips that create vertices with a degree below 8 or 9 in the thickness 2 graph.

— Vertices with a low degree are not directly relevant for the chromatic number in the graphs
we consider.

e Reject flips that reduce connectivity.
— In Subsection 3.1 we discuss why a high connectivity might be favourable.
e Reject flips that reduce the approximated chromatic number.

— Our approzimations of the chromatic number are not very accurate. Therefore they poorly
indicate whether a flip is favourable.

These ideas slowed down the algorithm due to being slow to compute or due to having a negligible
impact on the algorithm’s outcome. Most of our scrapped ideas were both slow and had a negligible
impact on the outcome.

26

2.5 Adapted Algorithm 2 SULANKE’S ALGORITHM

Algorithm 5 Adapted version of Sulanke’s Algorithm

1: Let n = 5 be a number of vertices.
2: Let ¢ = 3 be a clique size.
3: Let a = 0 be the maximum number of times we run Sulanke’s Algorithm.
4: Let b = 0 be the maximum number of iterations we run each Sulanke’s Algorithm.
5:
6: Let G1 = G2 be two adjacency matrices of the trivial triangulated graph on n vertices.
7: Let Fh = FE»s be the edge list of the trivial triangulated graph that also contains the two adjacent
faces for each edge.
8: Let F} = F5 be the face list of the trivial triangulated graph that also contains the three adjacent
vertices for each face.
9: Randomly shuffle the vertices of the second graph and change Go, Fo and F» accordingly.
10: Define GO = (V, Eiu EQ).
11: List all cliques of size ¢ in G in the list Q.
12: Define G = H = (Go,Q,Gl,El,Fl,GQ,EQ,FQ).
13: Define [Qg| = [Qu = |Q).
14: if ‘Qg| = (0 then
15: return G Graph Gg has the desired number of cliques and is outputted.
16: for i =0,...,a do
17: do |Qg| := 5(G,q,|Qg| — 1,b). Do Sulanke’s Algorithm, which ends after b iterations or
when a graph is found that has fewer cliques than our current best graph.
18: if |Qg| < |Qu| then
19: if |Qg| < 0 then
20: . return G
21: H:=G Owverwrite the saved graph with the new graph, because the new graph is at least
as good.
22: else
23: | G:=H Discard the new graph, because it is worse than the saved graph.
24: return ¢
25: function S(K,p, s,d) (K contains the thickness 2 graph K, the two triangulated graphs K, Ko,
the clique list Qx, among other data, as shown in line 12.)
26: for j =0,...,d do
27: Randomly select £ =1 or £ = 2.
28: Select a random edge e from edge list E; € K.
29: Find the corresponding flip € in graph K, € K with Algorithm 2.
30: if e € Ky, then
31: Return to line 27. Flip is non-simple, thus we try again to find a simple flip.
32: Define Q_ as the list of all cliques with size p in Qx that contain edge €.
33: Define Q4+ as the list of all new cliques in K if € is replaced with e in the complement.
34: Define z = [Q4] — |Q—]
35: if ee Ko then The edge € is already in the other triangulated graph.
36: . x:=x+1 This flip is undesirable, thus we decrease the odds of it being accepted.
37 if x <0 then
38: ‘ Go to line 19. flip is accepted
39: else if the flip is accepted with a probability of exp () then
40: ‘ Go to line 19. flip is accepted
41: else
42: .~ Go toline 22. flip is rejected
43: Flip edge e into € in all objects of K.
44: if ’QIC‘ s then
45: . return |Qx| A new best graph has been found.
46: Jji=3+1
47 return |Qk|

27

2.6 Results of the algorithm 2 SULANKE’S ALGORITHM

H Vertices n ‘ Clique size ¢ ‘ Flips/Iteration b Time ‘ Cliques H

17 3 500, 000 4 seconds 0
25 4 4,000, 000 15 minutes 0
19 3 30,000, 000 10 hours 5
28 4 4,000, 000 10 hours 30

Figure 16: Different tests ran with the Adapted Sulanke’s Algorithm.

2.6 Results of the algorithm

Unfortunately the time allotted for this research did not leave much room for generating and reviewing
data with the adapted version of Sulanke’s Algorithm. We do have some interesting results to show,
but we cannot draw significant conclusions without a proper analysis.

Most importantly, we want our algorithm to be at least as effective as the original version of Sulanke’s
Algorithm as seen in Thickness-Two Graphs Part Two by Gethner and Sulanke [6]. Three types
of differently sized graphs with chromatic number 9 are shown in their paper. These correspond to
thickness 2 graphs with 17, 25 and 33 vertices that do not have any K3, K4 and K5 in their complement
respectively.

We successfully found graphs on 17 vertices with without any K3 in their complement and on 25
vertices without any K4 in their complement, by using the adapted version of Sulanke’s Algorithm.
How fast we could generate these graphs is shown in the first two rows of the table in Figure 16. We
can eliminate all triangles in the complement of a thickness 2 graph on 17 vertices within seconds.
Eliminating all occurrences of the K4 on a graph on 25 vertices takes about 15 minutes with our
algorithm. Due to timing restrictions, we were unable to program a version of the Adapted Algorithm
that minimizes the number of K5s in the complement. Therefore a graph with 33 vertices and without
any K3 in its complement is missing from our results.

The choice of parameter b is important for getting good results from the algorithm. b corresponds to
the number of flips done in each iteration of the algorithm. We have chosen the values of b for our
different experiments with some trial and error. We made a rough approximation for which value of b
the algorithm eliminates cliques the fastest. When the value of b is too high, the algorithm becomes
slow, as it wastes a lot of time when a sequence of flips is unfavourable. A value of b that is too
small, restricts the number of flips to much to create a graph that is sufficiently different. This leads
to new graphs being very similar to the input, but we require notably different graphs to progress the
algorithm. Thus, when the value of b is too low, the algorithm is not able to eliminate all cliques.

In the same table we also show attempts at finding graphs with a chromatic number of 10. These
are mostly shown as a point of reference for others who want to implement Sulanke’s Algorithm.
According to the Complement Theorem, 19 vertices is the best choice when eliminating instances of
the K3 and 28 vertices is the best choice when eliminating instances of the K4. Our attempts were
unsuccessful as in our best results we were left with 5 K3s and 30 Kys respectively. The table does
not show, that we found the first graph on 19 vertices with 5 K3s in its complement within 1 minute.
Thus, running the algorithm for almost 10 hours did not yield any improvement beyond the 1 minute
mark.

Similarly, it took about 2 hours to find a graph on 28 vertices with only 30 instances of the Ky in
the complement. In the other 8 hours the algorithm was unable to improve on this graph. The time
required to remove an additional clique seems to be worse than exponential. Even if we manage to
reduce the number of cliques below 5 and 30 respectively, it seems unlikely that we can reduce these
numbers all the way to 0 with the current algorithm, due to the removal of each subsequent clique
taking tremendously longer than the previous clique.

Since minimizing for cliques with a size of 3 and 4 does not look favourable, we could look at the

28

3 RESEARCH ON THE UPPER BOUND

performance of the algorithm with greater clique sizes. However, the algorithm seems to perform
worse, the higher the clique size is. We do not know whether this is because the Complement Theorem
gives a worse bound the bigger the clique size is, or whether the altered Sulanke’s Algorithm becomes
too slow to find good graphs when a bigger clique size is chosen. Not only does the algorithm become
exponentially slower, when we search for cliques of a larger size, we also have to increase the number
of vertices to satisfy the Complement Theorem. More vertices slows down the algorithm further and
the graph space we have to traverse becomes a lot bigger too. Due to the graph space being bigger, we
expect that the amount of flips per iteration b needs to be increased to prevent the algorithm getting
stuck. With three different factors slowing down the algorithm, we doubt it is feasible to generate
useful graphs with a large clique size.

According to Theorem 2.6, we can make any triangulated graph by doing flips, thus our adapted
algorithm has a non-zero chance of generating any edge-maximal thickness 2 graph. If there exists
a thickness 2 graph on 19 vertices, without any K3 in its complement, we expect the algorithm to
eventually find this graph. However, extrapolating our results gives the impression that our algorithm
will never find a qualifying graph on 19 vertices. This gives the impression that there does no exist a
thickness 2 graph on 19 vertices, without any K3 in its complement.

Since increasing the clique size and the number of vertices gives worse results, we do not expect the
algorithm to find a chromatic number 10 graph by eliminating cliques of size a > 4. These observations
together lead us to a conjecture, which might explain why Sulanke’s Algorithm is seemingly unable to
break the chromatic number 10 barrier. Sulanke’s Algorithm should be able to find chromatic number
10 graphs if they exist within the bounds of the Complement Theorem. Since our results get nowhere
close to discovering a chromatic number 10 graph, we predict that these graphs do not exist within
the bounds of the Complement Theorem. Seemingly, the Complement Theorem’s bound is not tight
enough to actually contain any chromatic number 10 graphs in the thickness 2 case. Do note, we have
not done enough tests to confidently back up this conjecture.

Conjecture 2.7 Let G = (V, E) be a graph with thickness 2 and a chromatic number of 10. Denote
n as the number of vertices in E and a as the biggest integer for which the edge complement of G
contains no K,. We conjecture that the following inequality holds:

n
10.
L_1]< 0

If our conjecture is true, it would imply that there does not exist a thickness 2 graph, that the
Complement Theorem 2.1 would identify as a graph with a chromatic number of 10 or higher. As a
result, our current version of Sulanke’s Algorithm would not be able to find any chromatic number 10
graph. Regardless of the validity of the conjecture, Sulanke’s Algorithm still is an efficient algorithm
for finding edge-maximal graphs with a specific property. The Complement Theorem’s bound can be
replaced with a different bound in Sulanke’s Algorithm, to try to solve the problems caused by the
Complement Theorem. The discovery of a different bound for indicating chromatic number 10 graphs,
one that is tighter than the Complement’s Theorem bound, might lead to a new breakthrough for the
Earth-Moon Problem.

3 Research on the upper bound

In Subsection 1.3 we quoted that the upper bound for the Earth-Moon problem is 12, because we
know, that there cannot exist any thickness 2 graph with a chromatic number of 13. Finding tighter
upper bounds is tricky, because that requires a solid proof, rather than a simple counterexample that
would be enough to improve the lower bound. We will investigate two different ideas, that might lead
to a new upper bound for the Earth-Moon problem. We start out by examining new developments
on the four colour theorem, followed by the use of mappings between thickness 2 graphs and 2-pire
graphs in Subsection 3.2.

29

3.1 Developments on the four colour theorem 3 RESEARCH ON THE UPPER BOUND

3.1 Developments on the four colour theorem

In 2018 J. A. Tilley wrote a paper on a possible alternate proof for the 4 colour theorem 1.3 [3]. Since
the 4 colour theorem is closely related to the Earth-Moon problem, Tilley’s research could be helpful for
the Earth-Moon problem. We investigate, whether that is the case, despite the paper still being peer-
reviewed. This entire subsection is a short summary of the preprint Kempe-Locking Configurations
by J. A. Tilley [3] and we discuss how it relates to the Earth-Moon problem. Our summary is quite
brief, so I recommend reading Tilley’s preprint instead for readers, who are interested in the specifics.

All known proofs of the 4 colour theorem are extremely tedious to verify without the help of computers.
These proofs do not offer much insight on the reason why the 4 colour theorem is true. Tilley has
formulated a conjecture that would provide a more insightful proof of the 4 colour theorem, provided
that the conjecture is true of course. This is an interesting development that has reignited the interest
of mathematicians on this already solved problem.

Before we start explaining Tilley’s conjecture, we assume that the 4 colour theorem is merely a
conjecture. Otherwise a lot of the upcoming statements are trivialised by the fact, that we already
know that no planar graphs exist that have a chromatic number of 5.

To reduce the number of planar graphs, that we have to consider in order to be a counterexample
to the 4 colour conjecture, we restrict ourselves to minimal counterexamples: planar graphs with the
smallest number of vertices while still having a chromatic number of 5. There are two properties all
minimum counterexamples share and these properties are seemingly mutually exclusive. If they are
indeed mutually exclusive, this would provide an alternate proof of the 4 colour theorem.

The first property is similar to k-connectedness, which we briefly covered in Theorem 2.3. We repeat
the definition as a reminder: a graph is k-connected if the graph has more than k vertices and at least
k vertices need to be removed before the graph becomes disconnected. An average degree of at least 6
is required for a graph to be 6-connected, but from Fuler’s Formula it follows that the average degree
of a planar graph is strictly smaller than 6. Therefore the highest connectivity a planar graph can
have is 5. There does exist a class of planar graphs that consists of almost 6-connected graphs.

Definition 3.1 (Internally 6-connected) A planar graph with a planar representation is said to be
internally 6-connected if its minimum degree is 5 and if it has no cycle of length 5 or less for which
there are two or more vertices both inside and outside the cycle.

It turns out that a minimal counterexample must have a very high connectivity, hence our interest in
internally 6-connected graphs. This leads to the first property a minimum counterexample must have.

Theorem 3.2 A minimum counterezample to the 4-colour theorem is internally 6-connected.

Proof. This theorem has originally been proven by Birkhoff in 1913 [15]. A modern version of this
proof can be found in Steinberger’s work from 2009 [16]. O

The second property is all about Kempe chains. These are helpful and well-known tools for graph
colouring problems. These chains are named after the mathematician Kempe, who worked on the
4-colour problem and got very close to a proof of said problem [17]. Let a coloured graph G, a vertex
v with colour a and a second colour b be given. A Kempe chain is the maximal connected subgraph
of vertices that have the colour a or b. There might be multiple disconnected subgraphs on vertices
with the colour a and b, thus we also require that vertex v is contained in the subgraph to get a
unique subgraph. We call this an (a, b)-Kempe chain. When all vertices coloured a or b form a single
connected component, all vertices with these two colours are in this Kempe chain. Else there are
multiple disconnected (a, b)-Kempe chains in the graph.

Kempe chains offer an easy method of finding different colourings of a graph, given that we already
have a first colouring of that graph. We can simply take a Kempe chain and swap all colours along
the chain. Since all vertices adjacent to the Kempe chain do not share a colour with vertices in the
chain, the colouring is still proper after the swap.

30

3.1 Developments on the four colour theorem 3 RESEARCH ON THE UPPER BOUND

We also introduce the concept of a “near triangulated graph”, in order to formulate the second
property. Given a triangulated graph G and an edge (v, w), the near triangulated graph G,) is the
graph G with edge (v, w) removed. The resulting graph has triangular faces for all but one face. The
one non-triangular face is quadrangular, because it is a merging of the two triangular faces adjacent
to the removed edge (v, w).

Definition 3.3 (Kempe-locked) Given a triangulated graph G and an edge (v, w), we say that G is
Kempe-locked with respect to (v, w) if the following holds: in every 4-colouring of the near triangulated
graph G,), in which v and w have the same colour, all Kempe chains that contain one of these two
vertices also contain the other vertex.

A graph G being Kempe-locked with respect to the edge (v, w) basically means that in the near
triangulated graph G, it is difficult to give vertex v and w a different colour. If v and w are the
same colour in a given colouring, we can use the trick with Kempe chains as mentioned before to try
to give them two different colours. If there is a Kempe chain that contains vertex v, but not w, we
can swap the two colours in that Kempe chain. This would result in a proper colouring where v has
gotten a different colour than w. However, such a Kempe chain does not exist in this case, because
G is Kempe-locked with respect to the edge (v, w). If we use a Kempe chain to swap the colour of v,
that Kempe chain also contains w which gets swapped to the same colour simultaneously.

Theorem 3.4 A minimum counterexample to the j-colour theorem is Kempe-locked with respect to
each edge in the graph.

Proof. We use contradiction to prove the theorem. Let G = (V| E) be a minimum counterexample to
the 4-colour theorem and (v, w) € E an edge for which G is not Kempe-locked with respect to (v, w).
Thus there must exist a 4-colouring of the near triangulated graph G, ,,) in which the vertices v and
w have the same colour, such that there is a Kempe chain that contains v, but not w. We can swap
the colours along that Kempe chain to get a proper colouring of G, ,,) in which vertex v and w have
different colours. If we add back the edge (v, w), the colouring is still proper, because the two edges
have different colours. Now we have coloured our counterexample to the 4-colour theorem with 4
colours. This is a contradiction and we conclude that a counterexample to the 4-colour theorem must
be Kempe-locked with respect to every single edge.

We have left some details out of this proof to keep this summary brief. A complete proof can be found
in the preprint Kempe-Locking Configurations. [3] O

When we combine Theorems 3.2 and 3.4, we know that a minimum counterexample to the 4-colour
theorem is both internally 6-connected and Kempe-locked with respect to each edge in the graph.
Individually these are two strong properties, that not many triangulated graphs satisfy and it is
seemingly impossible for a triangulated graph to satisfy both properties. During his research Tilley
has not been able to find a triangulated graph that is internally 6-connected, which is also Kampe-
locked to even a single edge! This led to the main conjecture of his work.

Conjecture 3.5 No planar triangulation that is Kempe-locked with respect to an edge, is internally
6-connected.

At this point Tilley’s research becomes even more interesting. In a systematic search among trian-
gulated graphs, he found an infinite amount of Kempe-locked graphs. Furthermore, all triangulated
graphs that are known to be Kempe-locked, all share a very specific property. Every single one of
them contains a Birkhoff diamond, which is shown in Figure 17. A triangulated graph that contains
a Birkhoff diamond is clearly not internally 6-connected, because the six vertices in the hexagonal
shape can be removed to split the graph into two disjoint sets that contain two or more vertices. Thus
graphs that contain a Birkhoff diamond cannot be a minimum counterexample.

The Birkhoff diamond plays a crucial role in the original proof of the 4-colour theorem, thus it
is interesting to see it show up again in this different approach to the problem. The diamond is

31

3.1 Developments on the four colour theorem 3 RESEARCH ON THE UPPER BOUND

Figure 17: The Birkhoff diamond.

named after the same mathematician who proved the internally 6-connected property of a minimal
counterexample, which we talked about earlier.

All in all, we have two properties that a minimal counterexample for the 4-colour theorem must satisfy
and they are seemingly incompatible. How does all this translate into the Earth-Moon problem?
Theorem 3.4 tells us that a minimal thickness 1 graphs with a chromatic number of 5 must be Kempe-
locked to each of its edges, but the proof of this theorem does not rely on the graph having a thickness
of 1. If we extend the definition of Kempe-locked 3.3, such that it is also applicable to thickness
2 graph, the proof of Theorem 3.4 becomes applicable to thickness 2 graphs too. It follows that a
hypothetical minimal thickness 2 graph with a chromatic number of 12 is Kempe-locked for each edge.

We are not sure how practical the Kempe-locked requirement is in the thickness 2 case. This property
is already difficult to prove for thickness 1 graphs. Imagine how difficult it becomes to do the same for
thickness 2 graphs. Furthermore, all thickness 1 graphs that are Kempe-locked with respect to a single
edge seem to contain the fundamental Birkhoff diamond, but we do not know whether a subgraph
with similar properties exists in the thickness 2 case.

The minimal connectivity a minimal counterexample for the Earth-Moon problem must have is more
difficult to derive. Since we are attempting to colour thickness 2 graphs with 12 colours, we expect that
the minimal counterexample for this case would have a minimal connectivity of somewhere around
12. Unfortunately Birkhoff’s proof that a minimal counterexample of the thickness 1 case must be
internally 6-connected [15] does not apply to thickness 2 graphs. We were unsuccessful at finding
any non-trivial connectivity requirements a minimal thickness 2 graph with a chromatic number of 12
must have.

This leaves us with the question: “What is the highest k-connectivity a minimal thickness 2 graph
with a chromatic number of 12 must have?” Admittedly we barely know anything about the answer
to this question, because this is beyond our area of expertise. We do not even know if the answer to
this question has any relevance in advancing the Earth-Moon problem.

Lastly, the two properties that a minimum counterexample to the 4-colour theorem must have are
not too interesting on their own. It is the combination of the two properties and the unavoidability
of a Birkhoff diamond that makes Tilley’s conjecture so interesting. Currently we have no reason to
believe we can construct a similarly powerful conjecture for the Earth-Moon problem. Furthermore,
the Kempe-locked property is hard to compute and the connectivity property is seemingly hard to
prove in the thickness 2 case.

There is also another problem with extending Tilley’s conjecture to the Earth-Moon problem. Tilley
states that his conjecture is “likely to be true but beyond difficult to prove” [3], which does not bode
well for extending it to the even more complex thickness 2 case. There is one part of Tilley’s conjecture
that might not be computationally difficult if it could be extended to the Earth-Moon problem. It
would be interesting, if there exists a decently sized subgraph that all minimum thickness 2 graphs
with a chromatic number of 12 must contain, similarly to the Birkhoff diamond. There are no leads
to the existence of such a graph, thus this is mere speculation.

32

3.2 Mappings between graphs 3 RESEARCH ON THE UPPER BOUND

3.2 Mappings between graphs

In this section we introduce a different approach to search for upper bounds of the Earth-Moon
problem. The idea is to use mappings between thickness 2 graphs and 2-pire graphs. Since more is
known about 2-pire graphs, we might be able to extend some of that knowledge to thickness 2 graphs
with the help of these mappings. Corollary 1.10 is a basic example of this concept, which proves that
thickness 2 graphs have a chromatic number of at most 12. For this proof a mapping from the set
of 2-pire graphs to the set of thickness 2 graphs is used. We can also use different mappings to find
more relations between these two sets of graphs. We came up with two theorems that show how other
mappings could be useful for the Earth-Moon problem. Note, we have not done much research on
these theorems. They are merely meant as food for thought.

Theorem 3.6 Denote Gy, as the set of all graphs with thickness 2 and Ga, as the set all 2-pire graphs.
If there exists a mapping f : Gem — Gop such that X(f(G)) > x(Q) is true for all G € Ge,, there does
not exist a thickness 2 graph with a chromatic number of 12.

Proof. Let f be a mapping as given in the theorem and assume that there exists a thickness 2 graph
G € Gem with x(G) = 12. Then there also exists the 2-pire graph f(G) € Gap, for which we have
this lower bound on its chromatic number: X(f (G)) > 12 = x(G). A 2-pire graph with a chromatic
number greater than 12 does not exist as it contradicts with Theorem 1.9. We conclude that if a
mapping f exists, there does not exist a thickness 2 graph with a chromatic number of 12. O

A mapping f as seen in Theorem 3.6 does not seem realistic, because it is very difficult to increase the
chromatic number of a (thickness 2) graph without restricting the mapping to a very specific subset
of graphs. The theorem does show that some mappings could lead to interesting information about
thickness 2 graphs. The following theorem we derived is a more complex example of the mapping
concept.

Theorem 3.7 Let G = (V,E) be a 2-pire graph with x(G) = 12 that contains an empire v € V
consisting of only a single vertex. Furthermore, the 2-pire graph G', which is the graph G without the
1-pire v, must satisfy x(G') = 11. If there does not exist a 2-pire graph G with these properties, no
thickness 2 graphs with a chromatic number of 12 exist either.

Proof. By inverting the theorem we get the following equivalent statement: If there exists a thickness
2 graph H with x(H) = 12, then there exists a 2-pire graph G as described in the theorem. Assume
such a graph H exists. This implies the existence of a minimum thickness 2 graph with a chromatic
number of 12. Let H' = (V', E’) be a thickness 2 graph that has the smallest amount of vertices that
satisfies x(H') = 12.

We use the thickness 2 property to split H’ into two planar graphs. Let H] = (V' E}),H) = (V', E}) <
H' be two disjoint planar subgraphs of H’ such that E] and E) are a partition of E. We can now
construct the graph G merging H{ and H) into one 2-pire graph. Two vertices that are equal are
replaced by a 2-pire in G. We still need to create an empire which has 1 rather than 2 vertices. To
do so, we pick any 2-pire v. The 2-pire v has two vertices, one in each disjoint subgraph of G. We
can merge the two vertices of v by placing the two disjointed subgraphs on top of each other, which
preserves the adjacency matrix of the M-pires. An example of this procedure with a smaller graph
is shown in Figure 18. The size and the chromatic number of the thickness 2 graph does not matter,
because we can always merge the two planar subgraphs into a 2-pire graph this way.

We have x(G) = 12, because it G has the same adjacency matrix as H'. Since H' is a minimum graph
with a chromatic number of 12, removing any vertex in H' or empire in G decreases the chromatic
number. Notably, removing the empire v from G reduces the chromatic number to 11.

Under the assumption that there exists a thickness 2 graph H with y(H) = 12, we have constructed
a 2-pire graph G with x(G) = 12. We can create the 2-pire graph G’ by removing empire v from G,
such that x(G’) = 11 holds, where v is an empire that consists of a single vertex. This is exactly a

33

4 FUTURE OF THE EARTH-MOON PROBLEM

Figure 18: The thickness 2 graph Kg drawn in two different ways. On top we have the Ky split into
two planar graphs and below the K¢ as a 2-pire. The 2-pire graph is created by placing the two planar
graphs on top of each other.

2-pire graph G we wanted to prove the existence of, as mentioned at the beginning of the proof. With
this we have proven the statement that is equivalent to the theorem, thus the theorem is true too. [

The mapping in the proof of Theorem 3.7 shows that 2-pire graphs can be used in different ways to
upper bound the Earth-Moon problem. Checking the existence of such a graph G might give more
insight on the problem. Currently, we have no clue whether such a graph G exists or not.

4 Future of the Earth-Moon problem

Our research did not lead to an improvement to the bounds of the Earth-Moon problem, but did gather
new knowledge on this topic. In this section, we summarize the parts of this thesis that, according to
our opinion, have the most potential for future research on the Earth-Moon problem.

34

4.1 Potential of Sulanke’s Algorithm 4 FUTURE OF THE EARTH-MOON PROBLEM

4.1 Potential of Sulanke’s Algorithm

The results of our altered version of Sulanke’s Algorithm shown in Subsection 2.6 fall short to prove
anything meaningful due to the small amount of analysed data. We have not done extensive research
to optimize the parameters of our algorithm and we do not have the data to back up Conjecture 2.7 in
which we predict that Sulanke’s Algorithm cannot find a thickness 2 graph with a chromatic number
of 10.

By optimizing the different parameters, Algorithm 5 can be improved. Most importantly we do
not know the best choice for the parameters a and b. a is the maximum number of times we run
the original Sulanke’s Algorithm and b is the maximum number of iterations we run each of these
algorithms. Increasing a or b improves the output of the algorithm, but the runtime of the algorithm
is roughly linear in a - b. Therefore we cannot simply increase a and b indefinitely. A good balance
between the two parameters has to be found, which depends on a lot of different factors.

Another unoptimized part of the algorithm is the probability to accept a flip. In Subsection 2.5 we
explain in detail, why we chose this probability and why it is unlikely to be optimal. Specifically,
the probability function that accepts flips, can probably be improved. Also the weight of additional
cliques compared to adding a parallel edge leaves room for optimization. Currently, they have the
same weight. This is a choice made out of simplicity rather than efficiency. By running a lot of tests,
it should be possible to find a good approximation for which probability to accept flips works best.

I believe that the altered version of Sulanke’s Algorithm can be speeded up quite a bit when it is
optimized. However, the improvement might be polynomial at best and this will not have a big
impact on the grand scheme of things. According to our results, we still are far off a potential graph
with a chromatic number of 10 and we might never achieve it with our algorithm. Nonetheless, it is
still interesting so see how close we can get to such a graph after optimizing the parameters of our
algorithm.

Our results show, that removing cliques from thickness 2 graphs gets slower, the fewer cliques are left.
This time required for removing each additional clique seems a lot slower than exponential. The time
required to remove an additional clique grows so fast, that it does not seem realistic to ever generate
a chromatic number 10 graph with the algorithm. We hope, that someone can give more insight
whether this is actually true by running more experiments. The best possible outcome would be that
our extrapolation of our results is a poor representation of reality. If our prediction is correct on the
other hand and Conjecture 2.7 is true, it would mean that we have reached the limit of Sulanke’s
Algorithm.

Regardless of the outcome, it would be interesting to see someone beat our results shown in Figure 16.
A thickness 2 graph on 19 vertices and less than 5 K3s in its complement would be an improvement
on the graph we found. Similarly, a thickness 2 graph on 28 vertices with less than 30 Kj3s in its
complement would be an improvement too. We are also missing data on graphs where we minimize
over the number of cliques with a size of 5 or greater. Maybe there is a clique size ¢ > 5 for which
Sulanke’s Algorithm performs better than the ones we investigated.

4.2 Size of a chromatic number 12 graph

One of the reasons why we doubt that we can make progress on the Earth-Moon problem with Sulanke’s
Algorithm, is because the algorithm seemingly performs worse the bigger the graph gets. This could
be problematic, because big graphs might be key to find graphs with a high chromatic number.

We used the Complement Theorem 2.1 to find the most promising numbers of vertices to use with
Sulanke’s Algorithm. As an example, let G be a graph with n = 23 vertices and no cliques of size
a = 3 in the complement. This graph would have a chromatic number of 12. The following theorem
shows that G does not exist, because graphs with a chromatic number of 12 have at least 24 vertices.

Theorem 4.1 Let G be the set of graphs that have both the properties 0(G) = 2 and x(G) = 12. All
graphs G = (V, E) € G satisfy |V| =n = 24.

35

4.2 Size of a chromatic number 12 graph 4 FUTURE OF THE EARTH-MOON PROBLEM

Proof. If G = J, the theorem is trivial and true by default. Otherwise we consider a graph H € G
that has the least number of vertices in G. We use a similar proof to that of Theorem 1.9. Assume,
that H has a vertex v with degree < 10 and create a new graph H' by removing vertex v. Since H
was the smallest graph with a chromatic number of 12, we can colour H’ with 11 colours. Next, we
apply the same colouring with 11 colours to H, which leaves v without a colour. v is adjacent to at
most 10 vertices in H, thus there is at least 1 of the 11 colours missing among the neighbours of v. We
can colour v with this colour to get a proper colouring of H with 11 colours. This is a contradiction
with H having a chromatic colour of 12. Therefore all vertices of H have a degree of at least 11.

Since all vertices in H have a degree of at least 11, the average degree D is at least 11 too. Theorem 1.4
gives us the upper bound m < 3n — 6 on the number of edges in a planar graph. A thickness 2 graph
can have at most double that amount, with 2(3n — 6) = 6n — 12 edges. We can use this to bound the
average degree.

Hep_2m _223n-6 12m-24 ., 2
n n n n

For n = 24 equality holds. Since 12 — % is strictly increasing in n, the equality does not hold for all
n < 24. We conclude that a graph with the least number of vertices in G has at least 24 vertices,
which must also be true for all other graphs in G. O

The proof of Theorem 4.1 shows that a graph on n = 23 vertices and no K3s in its complement has
too low of an average degree to have a chromatic number of 12. On top of that, it is unrealistic that a
thickness 2 graph G with 24 vertices and a chromatic number of 12 exists. It would require that in all
colourings of G each vertex is adjacent to exactly 11 colours, without any duplicates colours among
neighbouring vertices. This is a bit of an extreme example, but Theorem 4.1 does show us that a high
average degree is important for getting high chromatic numbers in thickness 2 graphs. A high average
degree in a thickness 2 graph requires the graph to have a lot of vertices. The Theorem also shows us
that an average degree of 12 is not achievable in a thickness 2 graph, but we can get asymptotically
close to 12 by increasing the number of vertices.

We think that the best way to approach the lower bound of the Earth-Moon problem is by con-
structing an algorithm that can generate very large thickness 2 graphs with a high chromatic number.
Theorem 4.1 seems to point into that direction and other mathematicians also share this vision. For
example, Gethner has stated the following about thickness 2 graph with a chromatic number of 10:
“Our intuition is that such graphs exist, but the smallest examples may have 100s of vertices and hence
have been, up until now, computationally infeasible to find” [5].

Currently, there is no such algorithm that can generate interesting large graphs with a high chromatic
number. Van der Beek does discuss the idea of an algorithm that might be able to generate large
graphs [1]. In Sulanke’s Algorithm we start out with a thickness 2 graph and alter it to make the
chromatic number as high as possible. We can also do the opposite where we start out with a graph
that has a chromatic number of 10 and try to split it into two planar graphs to prove it has a thickness
of 2. The biggest advantage of such an algorithm is, that we can check in linear time whether a
subgraph is planar. This was proven by Hopcroft and Tarjan [18]. Van der Beek goes into more detail
of what such an algorithm might look like [1], but we currently do not know of any algorithms that use
this strategy. This type of algorithm brings its own complications. Determining the exact thickness
is NP [19]. Computing the exact thickness of large graphs is infeasible with algorithms, thus we have
to rely on heuristics to prove a graph has a thickness of 2. Furthermore, we require graphs that have
a chromatic number of 10 and have a small thickness. Finding and selecting these graphs can prove
challenging too.

36

A BIBLIOGRAPHY

S

Bibliography

B.W.B. van der Beek. Graph-Theoretical Methods for Ringel’s Farth-Moon Problem. 2022.

K. Appel and W. Haken. “Every planar map is four colorable”. In: Bulletin of the American
Mathematical Society 82.5 (1976), pp. 711-712.

J. A. Tilley. Kempe-Locking Configurations (preprint). 2018.

G. Ringel. Farbungsprobleme auf Flachen und Graphen. Deutscher Verlag der Wissenschaften,
1959.

E. Gethner. “To the Moon and Beyond”. In: Graph Theory, Favorite Conjectures and Open
Problems 2 (2018), pp. 115-133.

T. Sulanke E. Gethner. “Thickness-Two Graphs Part Two: More New Nine-Critical Graphs,
Independence Ratio, Cloned Planar Graphs, and Singly and Doubly Outerplanar Graphs”. In:
Graphs and Combinatorics 25 (2009), pp. 197-217.

P.J. Haywood. “Map-Colour Theorem”. In: Quarterly Journal of Mathematics, Ozford 24 (1890),
pp. 332-338.

B. Jackson and G. Ringel. “Solution of Heawood’s empire problem in the plane.” In: Journal
fir die reine und angewandte Mathematik 1984.347 (1984), pp. 146-153.

T. Husfeldt A. Bjérklund and M. Koivisto. “Set Partitioning via Inclusion-Exclusion”. In: STAM
Journal on Computing 39.2 (2009), pp. 546-563.

L. Lovéasz. “On the Shannon capacity of a graph”. In: IEEFE Transaction on Information Theory
IT-25.1 (1979), pp. 1-7.

L.E. van Valkengoed. The FEarth-Moon Problem: A Better Approach. 2024.

S. L. Hakimi and E. F. Schmeichel. “On the connectivity of maximal planar graphs”. In: Journal
of Graph Theory 2.4 (1978), pp. 307-314.

H. Whitney. “Congruent Graphs and the Connectivity of Graphs”. In: American Journal of
Mathematics 54.1 (1932), pp. 150-168.

N. Chiba and T. Nishizeki. “Arboricity and Subgraph Listing Algorithms”. In: SIAM Journal
on Computing 14.1 (1985), pp. 210-223.

G. D. Birkhoff. “The Reducibility of Maps”. In: American Journal of Mathematics 35 (1913),
p. 115.

J. Steinberger. An unavoidable set of D-reducible configurations. 2009.

A. B. Kempe. “On the Geographical Problem of the Four Colours”. In: American Journal of
Mathematics 2.3 (1879), pp. 193-200.

J. Hopcroft and R. Tarjan. “Efficient Planarity Testing”. In: J. ACM 21.4 (1974), pp. 549-568.
Anthony Mansfield. “Determining the thickness of graphs is NP-hard”. In: Mathematical Pro-
ceedings of the Cambridge Philosophical Society 93.1 (1983), pp. 9-23.

37

B GENERATED GRAPHS

B Generated Graphs

0 2 3
1 3 8
2 3 4
3 5 8
4 5 6
5 6 7
6 7 12
7 12 13
8 9 10
9 10 11
10 11 13
11 13 15
12 14 16
13 15 16
14 15 18
15 17

16 17 18
17

18

4 5 6 7 8 12 14 16 18
9 10 11 13 15 17

5 6 7 8 9 10 11 13 14 15 16 18
9 10 11 14 15 17 18

7 8 12 13 14 16 18

12 14 16 18

14 16 18

14 16 18

11 13 15 16 17

13 14 15 17

15 16 17

16 17

18

17 18

Adjacency list of the thickness-2 graph G on 19 vertices and 5 triangles in its complement.

0 J O Ui Wi+ O

Ne)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

O© O O i W NN

8§ 10 12
10 12 18
11 13 14
12 15 19
13 14 15
16 18 19
14 15 16
15 16 17
16 17 22
17 18 19
18 27
19 24
23 24
21 22 24
22 25 26
24 25 26
24 26 27

25

27

25
27

6
14
20
23
23
27
19
20
16
21
17
22
18
19
26

14
19
19
21
26
26

20
21
17
22
18
24

24
27

15
21
20
23
27
27

21
22
18
24
27
25

16
23
21
26

22
24
26
25

17
26
22
27

24
25
27
27

18 19 24
27
23 24 25 26

25

Adjacency list of the thickness-2 graph H on 28 vertices and 30 triangles in its complement.

38

	Introduction
	Defining the Earth-Moon problem
	Sulanke's Earth-Moon graph
	Empire graphs

	Sulanke's Algorithm
	Origin and definition
	Randomizing flips
	Counting cliques
	Initial triangulated graphs
	Adapted Algorithm
	Results of the algorithm

	Research on the upper bound
	Developments on the four colour theorem
	Mappings between graphs

	Future of the Earth-Moon problem
	Potential of Sulanke's Algorithm
	Size of a chromatic number 12 graph

	Bibliography
	Generated Graphs

