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Chapter 1. Introduction: Model Fragmentation, Theoretical Indeterminacy, and the 
Possibility of Integration 

In 1976, Hilary Putnam opened his Presidential Address to the American Philosophical 
Association with a striking claim: “Realism is an empirical theory […explaining…] that scientific 
theories tend to 'converge' in the sense that earlier theories are, very often, limiting cases of later 
theories.” 1 This introduced the Model-Theoretic Argument (MTA), which challenges the idea that 
formal systems uniquely determine reference—the relation between terms in a language or 
theory and what they denote, even in scientific contexts. Putnam linked realism to the 
unification of disparate models into more general theories.  
But nowadays, many philosophers of science would agree with Sandra Mitchell that ‘science is 
disunified, and […] this disunification […] brings strength and stability’, 2, or that ‘integrative 
pluralism’ better reflects practice through ‘an expanded epistemology … embracing both 
reductive and multilevel, context-dependent approaches’3  Nancy Cartwright even contends 
that ‘[natural] laws form a patchwork, not a pyramid. […M]uch of nature may follow no law but 
negotiation between domains. The dappled world is what comes naturally; regimented 
behaviour results from good engineering’.4 In physics, for instance, Historian-physicist Peter 
Galison, notices that ‘forms of work, modes of demonstration, [and] ontological commitments 
differ’ across its  many traditions.5 Physics practice divides into experiment, theory, and 
instrumentation ‘matching Kuhn’s criteria for separate communities’6—and ‘even specialties 
within physics cannot be considered homogeneous communities’.7 
  Mitchell also argues that scientific progress often depended on moving beyond the search for 
‘universal, exceptionless laws, since much of what we now know about complex, contingent, 
and evolved structures would otherwise be excluded’.8 Biology illustrates this vividly. In the 
Enlightenment, natural diversity was modeled by Linnaeus through a universal taxonomy. In the 
nineteenth century this was refined by Darwinian evolution, Mendelian inheritance, Lamarckian 
adaptability, and Humboldtian ecology—each capturing different aspects of life’s complexity. 
Rather than unifying these accounts, these separations caused disagreements between 
competing frameworks—like evolutionists vs creationists, or inheritable vs adaptable 
accounts.9 Today, subfields such as population genetics, developmental biology, ecology, 
combinations (‘evo-devo’10) and systems biology remain internally coherent yet structurally 
divergent. As biologist Eva Neumann-Held argued: ‘Biology still needs to perform its integrative 
descriptive function.’11 Instead, a mosaic of partially overlapping scientific explanatory models 
developed—each acting as a ‘sub-model’ giving a different account of Linnaeus’s all-

 
1 Putnam (1977), 483 
2 Galison (1997), 781-2 
3 Mitchell (2009), 2 
4 Cartwright (1999) 
5 Galison (1997), 782 
6 Ibid., 797 
7 Ibid. 
8 Mitchell (2009): 2 
9 Huxley (1942, 1974) 
10 Arthur (2002) 
11 Neumann-Held (1998), 107 
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encompassing taxonomic model: regional variances (Humboldt), adaptive capabilities 
(Lamarck), evolutionary origins (Darwin), and inheritable traits (Mendel). These ‘submodels’ act 
within the Linnaean order of biological diversity,12 and they are effective within their scope. They 
are also difficult to reconcile with the others, even though they reference the same biological 
domain—Linnaeus’s Kingdoms of Nature. 
  This fragmentation sharpens a problem identified by Putnam: how can reference remain 
stable across divergent conceptual frameworks? If models differ in structure and interpretation 
yet describe the same phenomena, what justifies saying they refer to the same “piece of THE 
WORLD”.13 Putnam’s MTA draws on the Löwenheim–Skolem theorems to show that even our best 
theories can have multiple, non-isomorphic models satisfying the same axioms, allowing 
meaning to shift across models.14 For Putnam, scientists construct “symbolic representations of 
their environment” shaped by practices, interests, and linguistic conventions.15 Putnam found a 
solution in internal realism, which holds that truth and reference are fixed within conceptual 
frameworks. He opposed the metaphysical realist’s unique, theory-independent mapping from 
language to THE WORLD. Critics, however, disputed this view for blurring truth and justification 
and inviting relativism. Putnam himself later moved toward a pragmatic natural realism aligned 
with scientific practice, stating that ‘there is no conflict between natural realism and 
science’.16,17 However, he never seemed to fully abandoned internal realism.18,19,20  
  The core insight of MTA—the non-uniqueness of models—remains influential. Philosophers 
continue to ask how best to account for the success of diverse formal models of a single 
scientific theory, which, despite structural differences, yield accurate or useful descriptions of 
the same phenomena.21 Some call for ‘a revised and expanded epistemology’ to understand 
complex explanatory structures that, despite disparities, work remarkably well.22  
  Against this background, this thesis revisits Putnam’s concerns, seeking to reframe rather 
than oppose them. It proposes Model Adaptation by Shared Satisfaction (MASS) as a new formal 
framework for managing indeterminacy. MASS identifies sentences satisfied across structurally 
divergent submodels—reference sentences—that serve as connective elements linking different 
perspectives without requiring full unification (§3.2.3, §4.1). Fragmentation is treated as multiple 
vantage points rather than a flaw: unlike pluralists who take diversity to imply disunity, 23,24,25  the 
world itself remains unified, even if our perspectives do not—and they can mutually enrich one 
another. As Sandra Mitchell notes, modeling can bridge gaps between pragmatism, complexity, 

 
12 Chapter 3 (Insert-1) will define ‘submodels’ formally. 
13 Putnam (1977), 484 
14 Hale et al. (2017) ‘‘Chapter 27-Putnam’s Model-Theoretic Argument Against Metaphysical Realism,’’ 938–970 
15 Putnam (1977), 483 
16 Putnam (1994), “Dewey Lecture I:” 465 
17 Hildebrand (2000), 109-132 
18 Passmore(1985), 104: ‘[Putnam] still stands by what he calls ‘internal realism’.’ 
19 Putnam, Hilary (1994), “ Dewey Lecture I,” 463, note 41: ‘Am I then giving up "internal realism?’ 
20 Rothmaler (2014) 
21 Hodges (2003), 18–21: “5-Models and Modelling”: “We have a confusing halfway situation when a scientist 
describes a phenomenon in the world by an equation… Is the model the theory consisting of the equation, or are 
these solutions themselves models of the phenomenon?” This ambiguity also shows in the informal use in this 
Introduction of terms like ‘models’, ‘sub-models’, ‘account’, ‘perspective’ or ‘viewpoint’, as neutral labels for 
structures satisfying a theory—not for independent theories or informal interpretations. In the rest of this thesis, 
models and submodels will consistently be understood in a formal model-theoretic sense (See §3.1, Insert-1). 
22 Mitchell (2009), 3 
23 Various standpoints are defended by Cartwright, Galison and Mitchell—and summarized broadly in Galison (1997), 
781-797: “Ch.9—The Trading Zone” 
24 Cartwright (1999), 1 
25 Galison (1997) 
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and theory across scientific disciplines.26 
  MASS offers a model-theoretic alternative to both the metaphysical realist’s external 
reference and the relativist implications of internal realism. Each scientific submodel is treated 
as a partial realization of a broader, often underspecified theory. When a reference sentence φ is 
satisfied in multiple submodels, it signals a common structural component. This approach can, 
in principle, link scientific submodels, accepting that indeterminacy is inherent to scientific 
representation but demonstrating that it is formally manageable. MASS provides a meta-
theoretical strategy for this, employing model-theoretic tools augmented by graph- and sheaf-
theoretic methods to stabilize reference while preserving the specificity of submodels.  
  In this thesis, the development of (sub)models for biological diversity serves as a recurring 
case study to illustrate how distinct frameworks can refer to overlapping domains without 
reduction to a single theory. It will be shown that they can, in principle, be linked by recent 
advances in molecular biology—although this would require a new ‘interactionist molecular 
paradigm’.27 The central question of this thesis is whether MASS can manage scientific model 
fragmentation by preserving stable reference, and how shared elements across submodels can 
connect formal viewpoints that capture specific aspects of a theory while maintaining their 
distinctiveness. Chapter 2 offers a historical overview of (sub-)models of biological diversity. 
Chapter 3 introduces model-theoretic concepts more formally, and focuses on the Löwenheim–
Skolem theorems and their implications for model indeterminacy. Chapter 4 develops MASS in 
detail, and Chapter 5 how this contributes to unification. Chapter 6 discusses MASS in relation 
to Putnam’s MTA, and applies it to (sub-)models of biological diversity—which are presented 
next. 
  

 
26 Mitchell (2009), 85: ‘Political scientists, economists, logicians, decision theorists, and others have been modeling 
for decades’. 
27 Neumann-Held  (2006) 
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Chapter 2. Biological Diversity as a Case Study in Model Fragmentation and Reintegration 

Scientific fragmentation is vividly exemplified by theories of biology diversity. What began in the 
Enlightenment as a systematic classification of nature, evolved into diverse models addressing 
variation, inheritance, evolution, development, and adaptation from distinct perspectives. These 
models share the empirical domain of all living organisms but differ in structure, scope, and 
aims—often sharply enough to generate conflict. This raises the thesis’s central challenge: 
relating divergent models without losing their explanatory values. 
  In the eighteenth century, Linnaeus’s Systema Naturae established one of the first formal 
frameworks for organizing biological knowledge. Amid the age of exploration, Linnaeus classified 
the increasing  numbers of known organisms into nested hierarchies, treating species as fixed 
natural kinds. Despite its theological roots, Linnaean taxonomy became a durable framework 
that is still used. By the nineteenth century, ideas about this system fragmented. New models—
Humboldt’s environmental mappings, Lamarck’s organic adaptivity, Darwin’s evolution, and 
Mendel’s inheritance—introduced differing assumptions and methods. Though all concerned 
life’s diversity, these models diverged in explanatory structures and concepts. 
  The twentieth century sought to reconnect these strands, notably via the Modern Synthesis 
merging Darwinian and Mendelian principles——although it did not integrate developmental or 
ecological perspectives. Recent advances in epigenetics and systems biology have enriched but 
also multiplied conceptual frameworks. The following sections trace these developments and 
set the stage for applying MASS to submodels of biological diversity in §6.2. 

2.1 Linnaean Taxonomy: A Model of Classification 
Carolus Linnaeus (1707–1778) considered natural history to reflect a perfect Divine order, and 
he began classifying plants into nested hierarchies based on shared traits.28 The species, as the 
core unit, was a natural kind—fixed, bounded, identified by visible traits and reproductive 
compatibility. Linnaeus transformed the diverse descriptive practices of his time—based on 
appearance, use, and tradition—into a coherent system via a binomial nomenclature of genus 
and species. His final Systema Naturae (1735–1758) organized life into Three Kingdoms of 
Nature: Regnum Animale, Regnum Vegetabile and Regnum Lapideum.29 Genera and species 
referred to stable sets under shared morphological predicates, forming the basis for modern 
botanical and zoological nomenclature. While broadly encompassing all life, the immutability of 
species was soon challenged by emerging observations in nature. 

2.2 Lamarckian ‘Life Force’: A Model of Developmental Adaptation 
Jean-Baptiste de Lamarck (1744–1829) introduced the term biologie for the scientific study of 
life, and moved beyond static morphology to consider development and adaptation. He 
proposed that a vital organizing force (le pouvoir de la vie) drives organisms toward greater 
complexity, while adaptation to environmental conditions (l'influence des circonstances) 
shapes their specific traits. In Philosophie Zoologique (1809), Lamarck formulated two biological 
laws:30 organs used frequently develop further while unused ones atrophy; and acquired traits 
can be passed on to descendants. The giraffe’s neck elongation in response to taller trees 
exemplified this. Lamarck’s ideas were influential, but they lacked mechanism and would later 
be contested by Darwin’s evolutionism, which emphasizes group-based selection of random 
traits rather than individual development of adaptive traits. 

2.3 Humboldtian Environmentalism: A Model of Relational Variation 
Alexander von Humboldt (1769–1859) world-wide voyages of discovery led him to re-envision 

 
28 Linnaeus, Species Plantarum (1753-1759) 
29 Linnaeus, Systema Naturae (1758) the ‘Kingdom of Minerals’ also included fossils.  
30 Lamarck (1809) 



5 
 

natural history as a dynamic system shaped by environmental conditions. He portrayed 
biological variation as ecologically modulated continuity rather than fixed taxonomic 
categories.31 Organisms formed parts of ecological gradients and geographic patterns—an 
interconnected Naturgemälde.32 Humboldt stressed connectedness over identity, restructuring 
Linnaean taxonomy into a relational framework based on altitude, latitude, humidity, and soil. 
His model partially reorganized life by establishing environmental networks rather than replacing 
taxonomy, and also lacked mechanisms for adaptation or persistence of ecological variations. 

2.4 Darwinian Evolution: A Model of Historical Descent 
Charles Darwin (1809–1882) followed Humboldt’s idea to understand nature by exploring it, but 
his Voyage of the Beagle (1839) revealed different patterns. On the Origin of Species (1859) 
described species as products of natural selection acting on random inherited variation. The 
Linnaean tree became genealogical: species were evolutionary entities, not static. Darwin 
acknowledged Lamarck’s and Humboldt’s insights that diversity is dynamic rather than static, 
but he framed ‘survival of the fittest’ more mechanistically. However, this was still vaguely 
represented by ‘trait transmission’ from organs to reproductive cells. The timescales involved 
and the complexity of transitions between species remained difficult to reconcile. 

2.5 Mendelian Genetics: A Model of Generational Hybridization 
In 1865, Gregor Mendel (1822–1884), unknown to Darwin, published experiments on pea 
plants.33 His systematic results indicated particulate ‘factors’ (Anlagen—later genes) that were 
predictably inherited as dominant, recessive, or incomplete.34 Mendel’s mechanistic, rigorous 
model introduced generational hybridization via quantifiable, rule-based interpretations linking 
‘factors’ to binary traits. His controlled experiments abstracted from natural complexity and 
environment, clashing with Darwin’s gradual evolution, Lamarck’s individual adaptation, and 
Humboldt’s ecological gradients. Mendel’s model did not affect Linnaean taxonomy, which 
already identified hybrids. 

By the early twentieth century, biology remained taxonomically Linnaean but fractured into 
distinct partial models: Mendelian inheritance focused on discrete factors, Darwinian evolution 
on chance and selection, Humboldtian ecology on environmental distribution. Lamarck seemed 
largely forgotten. Though sharing the domain of life, these models differed structurally and 
conceptually, often incommensurable, forming a disjointed patchwork rather than a pluralistic 
synthesis. 

2.6 The Modern Synthesis 
From the 1920s–30s, statistician Ronald Fisher, biologist J.B.S. Haldane, and geneticist Sewall 
Wright collectively rediscovered Mendel’s work and integrated it with Darwinian selection using 
recent advances in population statistics. In 1942, this became the Modern Neo-Darwinian 
Synthesis:35 evolution as changing gene frequencies over time. It preserved the strengths of 
Darwin’s evolutionary and Mendel’s generational coherence, and reinterpreted Linnaeus’s 
categories as gene clusters. Humboldt’s insights were partially absorbed as ecological 
pressures. Lamarck’s laws were now rejected as incompatible and unsupported. 
  Molecular explanations of genetic transmission came in sight when Watson and Crick’s 
multidisciplinary team elucidated the structure of DNA (1953). DNA genetics offered powerful 

 
31 Wulf (2017) 
32 Ibid. 
33 Mendel (1866), 3–47 
34 Ibid., 24: ‘Soweit die Erfahrung reicht, [werden] constante Nachkommen nur gebildet […] wenn Keimzellen und 
befruchtender Pollen gleichartig sind […und] mit der Anlage ausgerüstet, völlig gleiche Individuen zu beleben.’ 
35 Huxley (1942-1974) 
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tools for species classification, from morphology to gene patterns. Over time, this gave rise to 
widespread genetic reclassifications.36,37 This still respects Linnaean hierarchical life model, but 
does not explain short-term adaptability or resilience.38 Neo-Darwinism also struggles with the 
fossil record’s lack of expected intermediate forms under gradual mutation and selection. 

2.7 Beyond Genetics: Epigenetic and Regulatory Models of Development and Adaptation 
Over the past fifty years, biology’s focus on molecular life mechanisms deepened, with genetics 
becoming a biochemistry specialization. Around 2000, it was demonstrated that gene 
expression can adapt and transmit to offspring without DNA changes.39 Epigenetic and 
regulatory mechanisms revealed that inheritance, development, and adaptation are 
interconnected, extending classical Mendelian genetics. Genes are now seen in regulatory 
networks where adaptations arise from subtle chemical shifts in cells, rather than isolated 
mutations.40,41 These findings enrich debates on processes driving evolutionary adaptations42 
and challenge traditional genetic inheritance.43  

This historical development illustrates scientific fragmentation, where partial, structurally 
distinct, and sometimes conflicting submodels represent overlapping features of a general 
model. Model theory helps understand how models can fragment into submodels, and 
theoretical possibilities and limitations for reconciliation. The next chapter introduces the 
essentials of model theory—interpretation, satisfaction, cardinality—which provides the formal 
structure for understanding model-theoretic indeterminacy and, ultimately, for developing the 
framework of Model Adaptation by Shared Satisfaction (MASS) as a strategy for coherent 
reintegration. 
 

  

 
36 Wiley & Lieberman(2011) 
37 Hedges & Kumar (2009), 3–18: “Chapter 1 - Discovering the Timetree of Life.” 
38 Wulf (2017). Humboldt noted the harm caused by monocultures and the strong adaptability of introduced foreign crops in 
colonial territories, as well as ecosystems recovering from large-scale agricultural disruptions. 
39 Meaney & Szyf (2005), 103–123 
40 Neumann-Held (2006) 
41 Lee (2014), 4221 
42 Johannes & Becker (2025) 
43 Meaney & Szyf (2005) 
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44 Doets (1996) Basic Model Theory 
45 Button (2018), 225-236: “Appendix 1-Model Theory Primer” 
46 Rothmaler (2014), 1-38: “I-Basics” 
47 Lutz, Sebastian, (2015), 563-579: “Partial Model Theory as Model Theory”  
48 Hodges (1997), Shorter Model Theory, 2-3 
49 Ibid., 4-5 
50 Ibid, vii 

Chapter 3  Insert-1—Model Theory44,45,46,47 
Model theory formalizes the structural relationships between objects in a domain and the terms of a formal 
language 𝓛𝓛(Σ), where the non-logical symbols of a signature Σ are interpreted according to axioms and rules. 

Basic Definitions48 
A model-theoretic structure (a model M of 𝓛𝓛(Σ)) consists of: 

• Domain D: a non-empty set of objects over which variables range 

• Signature Σ: a set of non-logical symbols, specifying 
o predicate symbols Pᵢ of arity mᵢ 
o function symbols Fⱼ of arity nⱼ 
o constant symbols cₖ 

• Language 𝓛𝓛(Σ): the set of well-formed formulas generated from Σ using logical connectives and 
quantifiers 

• Subsignature L: a subset of Σ containing only some of its non-logical symbols:  Σ′ ⊆ Σ 
The language 𝓛𝓛(Σ′) is then a sublanguage of 𝓛𝓛(Σ):—a ‘rudimentary language’49 tied to the 
corresponding submodel M‘ 

• Interpretation function I: assigns meanings to the non-logical symbols 
• Theory T: a set of sentences Γ in 𝓛𝓛(Σ), closed under logical consequence 
• Valid sentences (φ, ψ, …): satisfied in all models of 𝓛𝓛(Σ) (ie M-⊨-φ) 
• Model class: MOD(T)-=-{M-∣-M-⊨-T}. 

Semantic assignments: 
• I(Pᵢ)-⊆-Dᵐⁱ  assigns a relation to each predicate 
• I(Fⱼ):-Dⁿʲ-→-D assigns a function to each function symbol 
• I(cₖ)-∈-D assigns an element of the domain to each constant. 

 
Embeddings and Submodels50 
An embedding is an injective, structure-preserving map 
h : M-→-M 
that preserves the interpretations of relations, functions, and constants.  
In model theory, a partial sub-model is the special case where h is inclusion (D′ ⊆ D), so that M′ is fully 
contained (‘nested’) in M.  
In the MASS framework ( Insert-2, §4.6), I extend this to a broader concept of submodels M′ which include: 

• Partial sub-models: the signature remains the same (Σ), but the domain is restricted (D′ ⊆ D). 
• Reducts: the domain remains the same, but the signature is reduced to a subsignature (L′ ⊆ Σ).  

The submodel M′ then interprets only the non-logical symbols in L′. 
• Hybrid submodels: combinations of components from different submodels.  

A partial isomorphism is a structure-preserving map between overlapping fragments of models—
domain elements, predicates, constants, and variables—that preserves satisfaction of sentences 
restricted to the shared structure. 

 
Interpretation 
In this thesis, the general framework assumes a ‘universal’ model MU of a theory TU. Submodels M′ (eg 
MA,B,C,..H,H’,…S,..#) may be related by partial isomorphisms, ensuring that shared components are consistently 
interpreted so that a reference sentence φ is preserved across them. Such partial isomorphisms must be 
embeddable in MU, even when other components differ. This includes reducts, where the domain is identical 
but the active subsignature is smaller, and hybrid submodels that incorporate elements from models of 
other theories, provided no logical contradictions arise. 
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Chapter 3. Model Theory 

3.1. Essentials of Model Theory  
This section gives a brief overview of model theory, with technical details in Insert-1.51 
In first-order logic, a theory T is a set of sentences (Γ) in a formal language L. Truth is alwaysonly 
relative to models: a sentence φ is true in a model M (written M_⊨_φ) iff M satisfies φ under its 
interpretation.52 A model comprises a domain D of objects together with an interpretation 
function I that assigns: to each constant symbol an element of D, to each n-ary function symbol 
an operation on Dⁿ-→-D, and to each n-ary predicate symbol a subset of Dⁿ. 
  A model satisfies T if all sentences in T hold. Even in a fixed language, many distinct models 
of T arise by varying interpretations, so a sentence from Γ may be true in multiple models. This 
core indeterminacy is closely tied to the model’s cardinality |M|, determined by its domain D. 
Domains may be finite, countably infinite (like ℕ with cardinality ℵ0), or uncountably infinite (like 
ℝ or larger—ℵ1,ℵ2 etc). Larger domains yield vastly more structurally distinct models.  
  These model-theoretic concepts also affect scientific modeling, especially in complex fields 
like biological diversity. Biological diversity models split into sub-frameworks emphasizing 
ecology, adaptation, selection, or inheritance. Each can be treated, for present purposes, as a 
submodel of a broader (essentially Linnaean) ‘diversity model’: they share a basic commitment 
to describing and explaining life’s diversity within Linnaeus’s systematic taxonomy, but differ 
internally in how their interpretation functions assign meaning to the same non-logical 
vocabulary. Domains vary from countable discrete traits and parental inheritance, to 
uncountable continuous ecological gradients and entire populations. 
  The set of all models satisfying T is M_∣_M_⊨_T}. A sentence φ is true in M if it holds under M’s 
interpretations. For example, ‘x has a long neck’ may be satisfied in Lamarck’s model (where the 
predicate is interpreted as habitual stretching), in Darwin’s (as survival advantage), in Mendel’s 
(as inherited trait), or in Humboldt’s (as ecological niche). Although φ(x) refers to the same 
observable characteristic, its satisfaction conditions differ across models—illustrating the 
model-relativity of truth. 
  Philosophers have recognized the importance of model-building in understanding reality. 
Some philosophers see it as a key method for understanding reality.53,54 Timothy Williamson, for 
instance, argues that model-building is an underappreciated method of doing philosophy, 
especially in formal metaphysics.55 Others consider modeling as a structured cognitive and 
epistemic way to theorize about reality.56, 57 Many philosophers work on mathematical 
frameworks for metaphysical explanation, proof and grounding.58, 59 Some even attempt to 
model the world itself as a metaphysical higher-order graphical structure.60 Putnam observed a 
similar “striking connection” between foundational issues in science and mathematics.61 He 
also noted that this flexibility challenges the idea of a single true model of THE WORLD: scientific 
theories may be expressed by many valid but structurally different models, raising questions 
about unity and reality. These issues are formalized by the Löwenheim–Skolem theorems from 
which Putnam’s Model-Theoretic Argument is derived. 

 
51 §3.1 and Insert-1 largely compiled from Doets (1996), Button(2013) and Rothmaler (2014).  
52 Hodges (2018), 448 
53 Mitchell (2012), 85—See footnote 26. 
54 Godfrey-Smith (2006) 
55 Williamson (2022), 372-385 
56 Dym (2004), 3 
57 Weisberg (2018), 7-23, 19-20  
58 Poggiolesi & Genco (2023) 
59 Litland (2023) 
60 Shackel (2011), 10–21 
61 Putnam (1980), 473 
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3.2. Löwenheim-Skolem Theorems and Indeterminacies of Scientific Fragmentation 
Scientific theories often give rise to multiple models that capture certain regularities in the 
world. Each model selects a different domain and relies on different assumptions about the 
same underlying reality. Hence, a single unified model is rarely determined. Putnam suggested 
that realism could be understood as the hypothesis that science converges over time, with 
earlier theories becoming limiting cases of broader, more accurate ones.62 However, the 
Löwenheim–Skolem theorems point in a different direction ny first-order theory with an infinite 
model has many models of different sizes and internal structure, showing that logical models 
alone provide no indication that earlier theories become “limiting cases of later ones”. Applied 
to science, this shows that even when different scientific models explain the same phenomena 
equally well, they may still be structurally incompatible—especially when drawn from different 
disciplines. Scientific development often results in a collection of specialized models difficult to 
integrate.  

3.2.1 The Löwenheim–Skolem Theorems and Their Structural Implications 
As noted, in science it is common to construct general models from limited or sparse data—say, 
a few measurements in biology or ecology. A simple curve may fit the data well, but infinitely 
many alternative models—some more complex, or based on different assumptions—could also 
match the observations. In this sense, the data alone underdetermines the model. The 
Löwenheim–Skolem theorems reveal a similar phenomenon in logic: even a precisely 
formulated first-order theory can have many models. These models differ not only in size but 
also in their internal relational structure and domain composition. The logical form of a theory 
constrains the relations between its terms, but it does not uniquely determine the domain or 
structure of any model that satisfies it, because the axioms specify conditions compatible with 
many different structures. The Downward and Upward Löwenheim–Skolem Theorems formalize 
this:63 any first-order theory with an infinite model will have a range of models—some smaller, 
some larger, and many structurally distinct—each capable of satisfying the same sentences 
from Γ, but doing so over different domains.  
  The Downward Löwenheim–Skolem Theorem states that if a first-order theory is expressed 
using a countable language—that is, a language with only countably many non-logical symbols, 
such as predicates, functions, and constants64—and this theory has an infinite model, then it 
also has a model whose domain is countably infinite. This result holds even when a theory is 
meant to describe an uncountably large domain, such as the real numbers or an entire 
ecosystem. Smaller models can ‘encode’ portions of the original domain within a limited 
structure, yet still satisfies all the theory’s axioms. 
  The Upward Löwenheim–Skolem Theorem shows that any infinite model has models of 
arbitrarily large cardinality. These larger models can embed the original structure while 
remaining elementarily equivalent: they satisfy the same first-order sentences, even if 
instantiated differently. A natural illustration is the extension of Mendelian inheritance into the 
Modern Synthesis. Mendel’s pea experiments form a countable model, studying fifteen to twenty 
variants from two closely related genera, with three types of transmission across discrete 
generations for about seven heritable traits. In nature, tens of thousands of potentially 
hybridizable pea variants and roughly 30,000–40,000 genes give rise to an effectively 
uncountable range of traits. Mendel’s model is thus elementarily embedded within a population-
based model (both submodels of biological diversity) that applies the same axioms to a vastly 
expanded domain, of which Mendel’s greenhouse experiments examined only a tiny subset.  

 
62 Putnam (1977), 483 
63 Rothmaler (2014), 49-50: “5.1-The Löwenheim-Skolem Theorem Upward”; 119: “8.4 Existence of Elementary 
Substructures and Extensions” 
64 See §3.1 and Insert-1 for clarification of model-theoretic symbols and concepts. 



10 
 

  In reality, the Modern Synthesis also included many structural modifications that go beyond 
what the Löwenheim–Skolem Theorems require—such as multiple populations species, and 
extinct lineages, additional traits (‘fitness’), new interpretation functions (‘survival’), and 
statistical methods for allele frequencies and evolutionary dynamics. §6.2 will discuss how 
MASS can deal with these contributions for ‘external theories’. However, if for illustration we 
restrict population genetics to the original Mendelian rules applied across this larger domain, we 
obtain a larger, elementarily equivalent model, exemplifying the Upward Löwenheim–Skolem 
Theorem by showing how a single theory can support models of vastly different cardinality and 
structure. 

3.2.2 Structural Fragmentation and the Local Underdetermination of Scientific Models 
The Löwenheim–Skolem theorems show that no first-order theory with an infinite model can 
single out one canonical model fixing both the identity and structure of its objects. But 
indeterminacy is not merely about size: models satisfying the same axioms can also diverge in 
how they represent relations and operations.  Hilary Putnam took this structural openness to be 
central to his argument against metaphysical realism: if a theory is compatible with many 
models that differ not only in domain size but also in internal relational structure, the idea of a 
single theory-determined ‘external’ reference model collapses. Quine similarly warned that 
cardinality indeterminacy should not be dismissed as a mere technical oddity. 65 For both, the 
inability to fix a unique ‘intended’ model undermines the notion that theories straightforwardly 
correspond to THE WORLD. 
  Clear counterparts to this form of cardinality indeterminacy are rare in the empirical 
sciences, but in physics, some theorists recognize direct analogues. Lee Smolin, for example, 
argued that spacetime itself may not be continuous, but instead could be modeled in radically 
different yet empirically indistinguishable ways—discrete, continuous, or something in 
between—without any single one being fixed as the correct structure by current theory or 
evidence.66 Scientists usually generate a plurality of domain-specific constructions reflecting 
different disciplinary emphases, research traditions, methodological constraints, and 
theoretical inputs. One model may focus on morphology, another on genetics, others on ecology 
or phylogenetics. Each is internally coherent yet incomplete, and the differences between them 
are structural, not merely informational: they diverge in how entities, relations, and reference 
classes are defined and applied. For instance, one model might treat species as discrete units, 
another as populations with variable traits, and a third might focus on ecological interactions 
across those populations (see §6.2 for a formal application of MASS to submodels of biological 
diversity). 
  This fragmentation is not simply a matter of pragmatic limitation. It follows from the model-
theoretic fact that a single first-order theory can support multiple, equally legitimate submodels 
that are not mutually reducible. The underdetermination thus applies not only globally—across 
the space of all full models MOD(T)—but also locally, in the construction of submodels adapted 
to specific research perspectives. Philosophers of science have long recognized this. Patrick 
Suppes, for example, developed a semantic view of theories that explicitly accommodates a 
multiplicity of non-equivalent models.67 Clark Glymour similarly emphasized the context-
dependence of modeling practices.68 Some of these ideas resonate in Kuhn. Although he did not 

 
65 Putnam (1981), 41: ‘W.V.Quine has urged that that is what reference in fact is—indeterminate! […] If the range of 
values is infinite, any infinite range can be made to serve; this is the Skolem-Lowenheim theorem. The true sentences 
stay true under all such changes.” Putnam cites Quine (1977), 176-196, 190–191 
66 Smolin (2021)  
67 Suppes (1960), 163–85 
68 Glymour (1980) 
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directly engage directly with model theory or the fragmented structure of science, 69 Kuhn later 
described scientific paradigms as sets of ‘metaphysical interpretations of basic models’ 
embedded within disciplinary matrices.70 This notion aligns with the idea that scientific 
modeling across disciplines involves distinct structural commitments that can diverge even 
when the overarching theory is shared. Kuhn’s concept of incommensurability—where different 
scientific communities operate with mutually incompatible standards of evidence and 
meaning—echoes the model-theoretic insight that structurally distinct models may all satisfy 
the same theory yet resist straightforward translation into one another. 
  From this perspective, scientific paradigms can be understood as non-isomorphic local 
models of a broader theoretical space. This allows Kuhn’s historical insights to be seen as 
responses to structural features of formal representation, rather than purely sociological or 
psychological phenomena. The deeper lesson from model theory is that such fragmentation is 
not just possible but inevitable under the expressive limitations of first-order logic. The 
Löwenheim–Skolem theorem shows that any theory represented within this framework admits 
multiple non-equivalent models, none of which can be singled out as uniquely correct on logical 
grounds alone. Moreover, there is no guarantee that a given local model is not itself part of a 
larger model or that it could be straightforwardly extended to one. 
  In this light, model fragmentation should not be seen as a failure of scientific unity, but rather 
as a formally grounded expectation. In science, the coherence—if attainable at all—must be 
achieved not by positing a single privileged model but through processes of coordination, 
adaptation, and partial integration among multiple models. While model theory offers tools for 
understanding such relations, it does not supply ready-made theorems that resolve these 
complex, cross-model interactions. This is the subject of Model Adaptation by Shared 
Satisfaction (MASS), which aims to integrate submodels that are part of an encompassing 
model, as explained in Chapter 4. Their interactions will be examined in Chapter 5, from the 
perspective of graph-theoretic interconnections between models. Technically, these rely on 
shared satisfaction of a formal reference sentence by partially isomorphic submodels—a 
mechanism that also underlies Putnam’s model-theoretic argument, which will be revisited in 
§6.1. 

3.2.3 Referential Indeterminacy and the Role of Interpretation 
Putnam did not address theory-fragmentation directly, but he rejected the idea of a knowable 
“God’s-eye point of view”. We only have situated perspectives shaped by specific purposes71—
fragmenting any imagined total model into context-specific interpretations. Linnaeus’s 
taxonomy was one such universal view, which was diversified into Darwin’s and Humboldt’s 
expeditions, Mendel’s experiments, and other approaches. This raises the question: how do 
individual sentences retain—or lose—reference across diverging interpretations? A single 
reference sentence φ can link otherwise different models. For instance, ‘the African Wildcat 
(Felis silvestris lybica) is the progenitor of the domestic cat’ may hold in a morphology-based 
species model, an inheritance model, an evolutionary model, or an ecological model—each 
with adjustments that interpret the claim in terms of phenotype, descent, population genetics, 

 
69 Barnes (1974), 95; cited in Matthews (2022), 26: ‘Kuhn’s work reveals little sensitivity to the highly differentiated 
structure of science and the […] competition […] between […] ‘schools’ or specialities. It leaves us unprepared […] 
that a combination of […] specialties led to the elucidation of the structure of DNA and hence […] a new basic model 
for biological investigators.’ 
70 Kuhn (1970), 182-187; cited in Matthews (2022), 13: Kuhn replaced ‘paradigm’ with ‘disciplinary matrix,’ comprising 
symbolic generalizations, metaphysical interpretations of models, shared values, and exemplars guiding puzzle-
solving. 
71 Putnam (1981), 49-74: “Chapter 3 - Two Philosophical Perspectives,” 50. See also 3.2.3 (re footnote 74) for a 
comment on Putnam’s consideration of indeterminacies as a problem of persons (‘speakers’ and ‘hearers’), and 
footnote 74 for my motivation to adopt this terminology. 
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or hybridization72 
  Putnam’s central concern was the deeper indeterminacy of reference itself. He argued that 
metaphysical realism cannot explain why “cat” refers to cats rather than to some systematically 
permuted set (eg dogs).73 A formal satisfaction correspondence between words and sets of 
things may capture regularities in collective speaker behaviour74—yet without additional 
constraints it fails to secure a unique mapping.75 Even in a unified theory TU , truth is model-
relative: its full model MU satisfies all its sentences, but submodels may satisfy only a subset. A 
true sentence in MU may be false or irrelevant in one of the submodels, and vice versa when the 
submodels omit essential fragments of MU. Satisfaction in one submodel may suggest 
plausibility but not truth in the theory, unless it holds across all submodels of MU (as explained 
and nuanced by the Compactness Theorem in the next subsection). As Michael Dummett notes, 
“there may be no such thing as a conclusive verification,” so meaning must rest on grounds of 
assertion that fall short of conclusiveness.76 
  Like indeterminacy by cardinality or model fragmentation, referential instability is no mere 
technical anomaly—it shapes how theories maintain coherence across diverse modelling 
contexts. Later chapters develop a method for preserving shared reference despite model 
fragmentation: Model Adaptation by Shared Satisfaction (MASS). Chapter 4 (§4.6) formalizes it; 
Chapter 5 (§5.2) operationalizes it. While most of this thesis addresses the scientific and 
philosophical aspects of a model-theoretically effective and scientifically meaningful reference 
sentence (§4.1, Chapter 6), a simple formal example appears in Insert-2. 

3.2.4 Compactness and the Constraints on Global Integration 
The fragmentation of a universal model into submodels is not necessarily detrimental. As stated 
earlier, some philosophers and scientists consider pluralism as fundamental to nature77 and 
even essential for scientific progress.78 Many scientific theories—especially those addressing 
complex empirical domains like biological diversity—are applied through multiple submodels, 
each emphasizing different structural features (see Chapter 2). However, this fragmentation 
leads to indeterminacy about how these submodels relate to a unified explanatory theory. The 
Compactness Theorem offers a partial answer. It states that if every finite subset of a set Γ  of 
first-order sentences is satisfiable (ie each finite subset has some model that makes all 
sentences true), then the entire set Γ  is satisfiable.79,80,81 In terms of fragmented modeling, if 
each submodel represents a finite, internally consistent portion of a broader theory TU, then 
there exists at least one global model MU in which all these fragments coexist.82 However, this 
guarantee is purely existential and non-constructive. Compactness does not require that this 
recombined global model either mirrors the original structure or preserves the interpretive 
integrity of its fragments. For example, consider local theories {TH1, TH2, TH3} modeling 
morphological, genetic and ecological aspects via partial models (MH1, MH2, MH3). Compactness 

 
72 This illustrative example of has limited scientific and integrative value. See §§4.1 and 6.2 for more discussion. 
73 Putnam, Hilary, 22-48: “Chapter 2 - A Problem about Reference” 
74 This thesis Is about scientific theory, but I will adopt the ‘Tarskian’ perspective of a ‘speaker’ and a ‘hearer’ who can 
each have individual ‘partial sub-models of THE WORLD. I previously explored this speaker-hearer interaction in an 
essay, hence the use of MS  (‘speaker’) and MH  (‘hearer’) for presenting and receiving sub-models. I cannot argue here 
how interpersonal communication is a case for MASS. 
75 Putnam (1977), 483 
76 Dummett (1978), xxxvii 
77 Cartwright (1999), 1: Nature is a jumbled world, mostly governed by negotiation rather than strict laws.’ 
78 Galison (1997) 
79 Hodges (1997), 124: “Theorem 5.1.1 (Compactness […]):  
Let T be a first order theory. If every finite subset of [sentences from Γ] T has a model then T has a model.” 
80 Doets (1996), 51-55: “4.1 Compactness” 
81 See Insert-1 for concepts and symbols. 
82 Hodges (1997), 124 
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ensures there is some model MΓ satisfying all sentences, but this MΓ might combine 
morphological traits of one species with ecological or genetic features from others—producing 
an abstract amalgam that is formally consistent but biologically unviable. 
  This non-constructiveness of Compactness reveals a key limitation: global coherence cannot 
be assumed from local consistency alone. MASS addresses this by not demanding one fully 
unified global model. Instead, it proposes an adaptive process that incrementally adjusts local 
partial models—through minimal ‘push-through’ modifications of interpretation functions and 
other elements (§4.3)—preserving shared reference points at the level of key sentences φ. Thus, 
while Compactness guarantees the theoretical possibility of a global model, MASS 
operationalizes this by ensuring local coherence through progressive, context-sensitive 
adaptation. Rather than assembling a disjointed collection of fragments in a ‘bag of balls’, MASS 
uses shared sentences as a kind of ‘glue’ to shape fragments into a coherent ‘sphere’ (as visually 
illustrated in Figure 2, §5.2).83 Local successes in achieving shared satisfaction form the 
practical foundation of theoretical coherence despite the multiplicity of models revealed by 
Löwenheim–Skolem theorems. 

Chapters 4 and 5 will develop this further, showing how tools such as the push-through of 
shared structures, sheaf-theoretic amalgamation, and graph-theoretic mappings serve as 
technical means to apply this ‘glue’. These methods secure points of shared reference and 
supportive structures across partial models, while allowing each submodel to preserve its 
essential structure. The next chapter will illustrate this ‘toolbox’ (schematized in Insert 4 and 
outlined in §4.6), explaining how a reference sentence can be propagated stepwise through a 
fragmented network of models with minimal adaptation. 

  

 
83 For visual illustration see Figure 2, §5.2. 
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Chapter 4. Towards an Internal Resolution of  Indeterminacy by Model Fragmentation  
—Shared Satisfaction of a Reference Sentence with Minimal Model Adaptation  
The preceding chapters have shown that model-theoretic indeterminacy, as revealed by the 
Löwenheim–Skolem theorems and tempered by Compactness, blocks the straightforward 
construction of a single, fully unified model representing a complex scientific theory. 
Compactness guarantees the existence of a global model MU consistent with all finite fragments 
(MH1, MH2, etc), but offers no constructive method for achieving coherence across a fragmented 
network of submodels. 
  This chapter introduces Model Adaptation by Shared Satisfaction (MASS), an iterative 
framework for bridging fragmented models via a carefully chosen reference sentence φ. Rather 
than imposing rigid structural uniformity, MASS establishes common ground by ensuring that φ 
is satisfied across submodels through minimal, controlled adaptations. The method preserves 
diversity in legitimate perspectives while providing a flexible coordination of interpretations. By 
focusing on shared satisfaction rather than full unification, MASS offers a stepwise path to 
internal theoretical coherence. The chapter begins with the features of a reference sentence 
that enable effective sharing among partial models (§4.1), before examining how such 
sentences can bind them together (§4.2). 

4.1 Reference Sentences and Their Function in MASS 
The strategy begins with a reference sentence φ: a nontrivial structural claim grounded in the 
Unified Theoretical Framework (TU). It captures a principle whose truth cannot be confined to 
any single submodel without undermining the coherence and explanatory power of TU. In this 
sense, φ represents a core hypothesis of TU, designed to unify coherent but not immediately 
compatible submodels—such as those from distinct disciplines or rival frameworks—that 
describe different aspects of reality. 
  As discussed in §3.2.3, the content of φ is critical to MASS. It must be neither trivial nor too 
general, nor unduly complex. Full satisfiability across all submodels is neither expected nor 
required; progress comes through iterative refinement of φ and the submodels. φ should not be 
mistaken for a higher-order truth covering all phenomena at once. Because the classical model 
theory used here is grounded in first-order logic, the expressive scope of model-theoretic 
sentences remains limited. Attempting to force a universal claim into a fragmented network 
risks imposing unrealistic structural demands. Nor should φ be an axiom of TU or a self-evident 
feature of MU already shared by every submodel. Models satisfying φ must not be mere 
homomorphic copies of one another, as this would mask meaningful structural differences and 
defeat the purpose of MASS to mediate between genuinely distinct submodels. 
  This approach accommodates a wide range of complexities in φ while remaining adaptable 
and self-correcting. Later sections (§4.4; Chapter 5) trace how shared satisfaction spreads 
across submodels and where it encounters limits. To explain MASS, φ need only be challenging 
enough to advance both scientific and philosophical insight, while the submodels must be 
sufficiently distinct to make integration worthwhile. When referring to TU as the ‘Unified 
Theoretical Framework’ and φ as a ‘meaningful reference sentence,’ I aim to keep the same 
deliberate vagueness—and constructive ambition—that Putnam used for his ‘ideal scientific 
theory T1.’ 84 In Chapter 6, however, I return to a richer example from biological diversity than the 
African Wildcat of §3.2.3. 

 
84 Putnam (1980), 473: ‘[A] possible formalization of present-day total science T, and a possible formalization of ideal 
scientific theory T1. T1 is epistemically ‘ideal’: […] when God makes up T1, He constructs […] a limit of theories […] 
rational [for scientists] to accept, as more and more evidence accumulates, […] relative to which T can be 
quantitatively compared.’ 



15 
 

4.2 Fixation of Indeterminacy by Shared Satisfaction across Fragmented Models 
  Our reference sentence φ is assumed to capture a core aspect of TU and thius is satisfied in 
its full model MU. However, this satisfaction can only be confirmed if φ is preserved—ie remains 
true—across all submodels of MU. When TU is complex and MU is fragmented, direct proof is 
generally impossible due to indeterminacies from model fragmentation and cardinality. 
  The strategy is to fix satisfaction through the shared structure of φ. If φ is true in MU and 
satisfied in one submodel, it should also be satisfiable in others, provided these submodels 
overlap in the structural core component π expressed by φ. If φ is universally satisfied, it cannot 
be logically contradictory in any submodel or the full model of TU, and no other true sentence ψ 
in TU is refuted by it. This does not mean that every submodel will be able to satisfy φ from the 
outset. For one, Φ must satisfy strict conditions within TU  and interact coherently with 
overlapping submodels to ensure satisfaction can be maintained or restored. These constraints 
help mitigate destabilizing consequences of the Löwenheim–Skolem theorems. In this thesis, 
they are formalized using model-theoretic tools and graph-theoretic descriptions of the network 
of submodels described in this Chapter and the next. 
  The remainder of this Chapter demonstrates how the functions and structures of 
interconnected submodels are internally constrained by imposing a shared isomorphism central 
to MU, hence compatible with any submodel—though not necessarily entailed in each. Φ 
expresses the supportive partial structure π, enabling shared satisfaction with minimal 
adaptation. This builds on model theory (§3.1), but employs integrative tools like push-through 
construction (§4.3) and sheaf-amalgamation (§4.4). Other advanced approaches are considered 
(§4.5) but found unsuitable for fragmentation-induced indeterminacy. In §4.6 these tools are 
employed in ΑMA→SS, a model-adaptation axiom schema of Model Adaptation by Shared 
Satisfaction. Insert-2 (above §4.6) shows how their stepwise application leads to progressive 
adaptation of partial models or refinement of φ—or their rejection as unsustainable. The 
dynamics of these adaptations are analyzed in Chapter 5 via graph theory, showing how 
increasing satisfaction across submodels generates a coherent network sharing φ’s content and 
structure. Chapter 6 discusses how far this reduces indeterminacy from model fragmentation, 
illustrated with recent molecular (epi)genetic advances integrating distinct models of biological 
diversity. 

4.3  Push-Through Construction of Reference Sentence Structures 
Scientific theories often cover various aspects of reality, described by different hypotheses 
within the same framework. A hypothesis gains support when critically compared with others 
under the same theory. In model-theoretic terms, this mirrors how sentences in submodels are 
tested for consistency and satisfaction relative to other submodels. 
  Here, the reference sentence φ plays the role of a unifying hypothesis in our unified 
theoretical framework TU, even though TU also accommodates other, more specific hypotheses 
with their own submodels. If φ is true in TU, it should be satisfiable in all submodels of MU. 
However, satisfaction is not guaranteed in submodels lacking the structural elements needed 
for φ (see § 3.2.2 on model fragmentation). Thus, φ may be provable in some submodels but 
unprovable in others, without entailing a contradiction. 
  The push-through construction addresses this by transferring the isomorphic core structure 
of φ—π—from one submodel to another.85 In standard model theory, push-through may also 
include a permutation function giving a one-to-one ‘translation’ between the mappings of 
submodels, which can radically alter their referential interpretation. As we will discuss in §6.1, 
Putnam used this to enforce his model-theoretic argument for indeterminacy of reference. In the 
present approach, however, the partial isomorphism π includes only the elements necessary to 

 
85 Button & Walsh (2018), 35-37: “2.1 Isomorphism and the Push-Through Construction.” 
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satisfy the reference sentence φ. Specifically, push-through constructs the shared elements of 
two interconnected submodels of MU—a presenting model MS (‘speaker’) and a receiving model 
MH (‘hearer’).86 Satisfaction of φ can be achieved via different forms of π, and π may need to be 
adapted as φ is passed to further receiving models MH, M′

H, M′′
H, M′…′

H. 
  This reveals a key limitation of push-through: in its basic form, it does not modify φ or π—it 
merely transfers the structure of π into a receiving model, provided no internal conflicts arise. 
Full satisfaction across all shared submodels is possible only if the structure of MS (on which π 
is based) is already compatible with all others. This imposes an unrealistically high demand: φ 
would need to be flawless from the start, with π matching every submodel structurally. 
  A more flexible approach allows φ to be progressively refined through its interaction with 
different submodels. Without such flexibility, only exceptionally well-formed φ could be 
propagated without friction. Model theory offers several constructs to reduce this burden . The 
rest of this chapter discuss model-theoretic approaches that support structured adaptation of 
interconnected models—some readily applicable (§ 4.4), others more problematic (§4.5). ΑMA→SS 
(§4.6) integrates these into a meta-theoretic axiom schema for stepwise model harmonization 
and refinement of φ. Push-through corresponds to Step 3 (Insert-2), where a partial 
isomorphism π between a presenting and a receiving model is established, ensuring that the 
structural core of φ is preserved without disruption. The conditions described here—
compatibility of π, non-modification of φ, and the role of an amalgamated carrier model built on 
π (MA)—are invoked in that step as discussed next. 
 
4.4 Amalgamation and Other Constructs of Model Integration 
4.4.1 Push-Through and Structural Reconciliation 
Push-through extends the partial isomorphism π from MS  to MH. Since π is not a model and 
therefore cannot on its own verify φ’s satisfaction, it instead scaffolds the construction of an 
amalgamated model MA, which consolidates shared structure from MS, MH, and other 
submodels.87 MA integrates information from MS, MH, and subsequent ‘hearer submodels’, 
preserving their common structure. A φ true in both MS and MH can then be proved in MA, 
because MA incorporates the elements to π necessay to bridge submodels by aligning domains 
and interpretation functions. Each time MS is pushed through to MH, MA helps preserve internal 
consistency. 
  MA can also operate as a standalone model, integrating elements from receptive submodels. 
By amalgamating structural elements that consistently accompany φ’s satisfaction, MA  
could develop into a submodel of MU in which φ is satisfied along with additional structurally 
compatible sentences from TU. In this way, MA represents a refinement or extension of the 
original reference sentence φ, corresponding to an improved version of φ (introduced as a core 
hypothesis in §4.1), now able to unify a broader set of coherent—but previously incompatible—
submodels. The information gathered by MA is also useful when revising φ and π after push-
through failure, as discussed in §4.4.2.2. This may have several causes. In first-order logic, 
satisfaction can be flexible, depending on the precision of interpretation functions and the 
scope of reference. Related but distinct domain elements may be unevenly distributed across 
submodels, and even when submodels agree on predicates, functions, and constants, their 
interpretation functions—though derived from MU—may map to subtly different subdomains. 
Because π encodes only the minimal structure needed to satisfy φ, it may eventually encounter 
an obstructive submodel model MH—a  ‘fractured’ fragment of MU (now M#H) misaligned with π 
enough to resist push-throughs. For instance, if π includes a binary relation R(x,y) necessary for 
φ, but M#H contains only unary projections, it may reinterpret R(x,y) as two disjoint unary 

 
86 See also footnotes 71 and 74 for explanation of S -(‘speaker’) and H –(‘hearer’) suffixes. 
87 Hodges (1997), 134-141: “5.3-Elementary Amalgamation” 
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predicates R₁(x) and R₂(y), thereby rejecting MU’s binary structure. Such reinterpretation can be 
locally favored to preserve internal constraints, making π appear as a foreign insertion that 
threatens established interpretations and defies minimal adaptation. 
  Thus, satisfaction preservation across submodels is not guaranteed by common origin alone; 
it also depends on structural compatibility and interpretive flexibility at the point of integration. 
Resistance of a valid submodel of MU to integrating an equally valid isomorphic π of MU is a key 
aspect of indeterminacy arising from deep fragmentation. Fragmentation can ‘shatter’ the 
structural coherence needed to stabilize φ’s satisfaction—not through absence of shared origin, 
but through the difficulty of reconstructing shared structures across divergent interpretations. 
The Compactness Theorem (§3.2.3) implies that even if MU were complete, pushing its full 
structure through to all submodels would fail: fragmented substructures cannot interpret or 
sustain the total structure from which they emerge.88 
  One possible response is to formulate a new reference sentence also true in MS—but this 
disregards the reasons for π’s failure. Valuable information can be gained from φ’s successful 
transmissions through multiple submodels before encountering a disruptive fragment. While 
ignoring M#H is possible when φ is still tentative, renewed push-through to another MH is more 
likely to succeed if π’s problematic structural elements are refined. Although MA may reveal the 
cause, it lacks a direct procedure for adjusting conflicting components—and repeated 
incorporation of seemingly useful elements from receptive submodels risks structural 
overaccumulation, burdening MA with features incidental to φ’s satisfaction. This may hinder its 
role in revising π when push-through faces genuine obstruction (§4.4.2.1). A higher-order 
integrative mechanism therefore appears necessary—which is addressed in the next subsection 
which also goes into MA‘s amalgamating function (§4.4.2.2). 

4.4.2 Sheaf-Theoretic Amalgamation 
Some model-theoretic constructs address structural instability across models. Sheaf-theoretic 
amalgamation is among the most integrative, with numerous applications in AI. 89  It builds on 
the concrete amalgamated model MA by integrating π’s shared isomorphic elements into a 
structured local space for each contributing submodel. As clarified in the next subsection 
(Figure-1), these local spaces correspond to categorical dimensions representing structural 
correspondences—domain types, function arities, and related features—weighted accordingly. 
The ability to unify evidence from heterogeneous sources and across inquiry levels is 
increasingly important in both pure and applied sciences.90 Hodges considers ‘the idea of 
amalgamation… very powerful, and I have used it whenever I can.’91 The next two subsections 
provide some technical detail, and foreshadow its relevance for MASS (discussed in §4.6). 

4.4.2.1 Structural Amalgamation via Sheaf Theory 
Sheaf-theoretic amalgamation preserves and coordinates essential model-theoretic features at 
a higher level of abstraction. As shown in Figure-1, model-theoretic ‘sheaves’ integrate parallel 
information from partial isomorphisms into a higher-order structure encoding the elements 
shared across submodels. 

  

 
88 Even with a complete scientific model, the Compactness Theorem (§3.2.3) shows that fragmentation—via 
disciplinary boundaries, semantic drift, and representational limits—undermines the structural coherence required 
for universal push-through. Hence, unifying all scientific knowledge into a single fully transmissible model is 
conceptually incoherent as well as impractical. 
89 Schmid (2025) 
90 Fletcher (2019), 3170-3171 
91  Hodges (1997), 124 
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Figure 1: 92 Sheaf composition, illustrated for two push-through attempts with two shared structural categories 
represented by red and blue arrows. The three boxes show stalks F(S), F(H), F(H’) that correspond to MS, MH, M′H, 
respectively. Each stalk represents a local structured space populated by the shared isomorphic elements (π) of that 
submodel—the same elements that M+A integrates at the global level. These structured spaces can be described in 
terms of categorical dimensions (see §4.6), with vector lengths indicating the relative weights assigned to the 
corresponding categorical features.93 Functions F (T)S⊴H  and F (T)H⊴H’ (so-called ‘restriction maps’) transfer 
compatible, weighted information between stalks. A parametric function Φ governs how features are aligned and 
‘glued’ into the unified fiber bundle χ. 

Sheaf theory systematically tracks local data on a topological base space of core model 
elements (categories) and assembles them into global structures. Basically, the higher-order 
sheaf function F  integrates the weighted categorical dimensions from the contributing 
submodels into a unified fiber bundle, preserving relational structure between local 
contributions. Ideally, a complete model MU  of a theory TU  could be represented by a single 
sheaf—a fiber bundle with F  amalgamating all partial isomorphic structures. However, the 
Compactness Theorem implies that deep fragmentation can make such composition difficult: 
some ‘broken’ stalks may lack categorical dimensions or contain incongruent ones that resist 
incorporation into the global bundle. Sheaf-theoretic amalgamation retains higher-order 
weighted information from successes and failures, helping diagnose integration breakdowns—
as will be discussed in the next sub-section. 

4.4.2.2 Push-Through Failure and Structural Modification 
If push-through fails because π is incompatible with a receiving submodel M′H, this fractured 
submodel M#H  blocks further attempts to share our reference sentence φ. Push-through can 
continue with other submodels, or revisit M#H after modifying π′ and φ′. Sheaf amalgamation 
can help prevent repeated errors. The sheaf function F  still attempts to glue the structure of 
M#H’s stalk into the higher-order amalgamated model M+A—which is built from all categorical 
stalks of previously integrated submodels, not just π’s essentials. Thus, M+A can reveal 
incompatible elements of M#H. If possible, M′

A can be instantiated from M+A in a way that avoids 
the obstruction. From M′

A, a novel reference sentence φ′ can be formulated with a refined 
isomorphism π′, still matching the earlier receptive models. M′

A now effectively serves as a 
renewed presenting model M’S—not for a naive retry, but based on multiple models already 
sharing satisfaction of φ. Viewed from the broader perspective of our Unified Theoretical 
Framework, this corresponds to reformulating an improved hypothesis within TU: still consistent 

 
92 Bodnar et al. (2022). This figure is based on neuronal networks, but it generalizes to model theory and highlights 
relevance to AI and computer science. 
93 Hodges (1997), 137 gives an example elementary amalgamation of two structures with different vector spaces with 
an overlapping substructure.  
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with confirmed results but better fitted to avoid incompatibilities with other unchallenged 
hypotheses. 
  It is important to realize that push-through failure may also occur because the receiving 
model is itself inconsistent with TU. In other words, M#H may not be a valid—albeit fractured— 
submodel of MU, but an ‘alien’ submodel M*

H from another theory T* , satisfying sentences that 
are not satisfiable in MU. In such cases, it would be better to reject M*

H altogether, rather than to 
adapt φ to it. The sheaf here acts as a diagnostic tool: by revealing structural misalignment 
across submodels, it distinguishes between internal fragmentation within MU  and intrusion 
from structural categories from M*

H that are (yet) unknown to amalgamated model M′
A. In both 

cases, push-through fails because neither M#H nor MH can identify matching domain elements. 
Sheaf-theoretic amalgamation can indicate that MH’s higher-order features make it structurally 
alien to MU: if so, MH’s stalk fails to fit not only π’s essentials, but also other structural properties 
of the amalgamated fiber bundle.  
  The reliability of this indication requires a well-developed sheaf function, built from many 
successful push-throughs. In early stages, it may be more efficient to bypass resistant models 
and gather more information, deferring renewed integration until greater coherence exists. 
Recurrent failures may reveal that some obstructive submodels, M*, belong to a different theory 
T*, when they have an incompatible higher-order sheaf structure X. Thus, failed push-through 
with successful sheaf amalgamation often signals more structural fragmentation of submodels; 
whereas failure of both indicates more fundamental incompatibilities—possibly belonging to 
different full models from unrelated theories. In this way, the sheaf helps distinguish between 
potentially compatible and incompatible submodels. 
  If a huge proportion of obstructive submodels appear to be alien to MU, this suggests there is 
a class of M*

H -submodels that systematically mimic MH but remain structurally incompatible. 
This can occur if T* is very similar to TU, and perhaps competitive. This may warrant a systematic 
comparison, which can lead to reconstruction of MU. Apparently alien M*

H -submodels can also 
belong to M+U with a higher cardinality than MU. 
  When successful push-throughs accumulate, the global sheaf structure X  increasingly 
represents essential features of MU . This will be revealed by a progressively consistent structure 
of M+A. This in turn can supports refinement of π and φ when they fail in a submodel that can 
still be sheaf-integrated, by reformulation of φ′ that avoids the cause of failure. Finally, within 
first-order model theory, M+A serves only as a structural guide for revising φ′ after φ fails. While 
φ′ may still not be satisfied in all submodels, it must at least avoid incompatibility with any 
model contributing to M+A. M+A itself cannot be pushed through, since it contains only higher-
order elements—types, categories, predicate arities—without specifying first-order connections 
in a receiving model. Proof of satisfaction across submodels always requires a first-order 
reference sentence φ. Moreover, while M+A may guide the reconstruction of a global model MU, 
it does so from a higher-order framework that lacks direct first-order completeness or 
definability.94 Nonetheless, sheaf-theoretic amalgamation enriches the framework with 
information about structures that satisfy φ and elements causing conflicts. If push-through fails, 
M+A constrains modification of π′ by enforcing shared structural conditions, reducing 
indeterminacy in revising φ′. However, the actual choice of a revised φ′ requires an additional 
adaptation principle. This is the purpose of MASS, which uses M+A’s constraints to selects φ′ 
that maximizes satisfaction across coherent of MU submodels. But before we develop this novel 

 
94 This reflects a tension between higher-order structures and first-order model theory: while M+A organizes 
relationships across models categorically, these do not necessarily correspond to a first-order model satisfying the 
original theory. Key properties like compactness and definability may fail or be lost when moving from higher-order 
frameworks to first-order structures. 
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approach in §4.6, we might consider other established guiding tools for model optimization from 
model theory, which is performed in the next subsection.  

4.5 Other Model-Theoretic Approaches to Model Expansion and Interaction 
Model theory is a vast and intricate field of mathematics. While it is not yet firmly established 
within philosophy, it is increasingly applied in philosophical contexts.95 It is useful to briefly 
consider some alternative model-theoretic strategies that bear on problems of fragmentation 
and indeterminacy. One relevant concept is conservative extension,96 which can be viewed as 
an application of the Upward Löwenheim–Skolem Theorem (§3.2.1). In simple terms, a 
conservative extension shows that a theory T can be expanded into a richer theory T∗ by adding 
new structural elements—such as additional predicates or constants—without altering any of 
the original truths of T. In the context of model fragmentation, one might apply this to a 
submodel MS by incorporating interpretation functions, predicates, or constants from other 
submodels like MH,-M′H,…. However, as noted in the discussion of Compactness (§3.2.4), such 
extensions cannot i unify the fragments into a coherent total model MU. The result would be a 
bag of dissociated submodels—analogous to a textbook on biological diversity with a collection 
of separate articles on taxonomy, adaptability, ecology, evolution and genetics. 
  More sophisticated approaches have been developed within advanced model theory to 
address interaction and coherence among models. Wilfrid Hodges discusses several such 
frameworks in his Short History of Model Theory, included in Button and Walsh’s Philosophy and 
Model Theory. For example, geometric model theory uses an integrative approach that 
resembles sheaf-theoretic amalgamation (§4.4.2.2)97—with the same problems of trying to 
reconstruct a first-order model MU from a higher-order framework.98 Hodges also mentions other 
approaches involving ‘atomic’, ‘compact’, and ‘saturated’ models, which show that local 
consistency and structural overlap can, under suitable conditions, yield global or quasi-global 
coherence across fragmented or expanding networks of models.99 These frameworks offer 
powerful mathematical tools, but they have not been applied to the philosophical 
indeterminacies exposed by Putnam’s Model-Theoretic Argument. These difficulties are not 
merely technical, but stem from deep structural features of model theory itself—especially 
those highlighted by the Löwenheim–Skolem theorems. This essay develops theoretical tools to 
address its most disruptive consequences while preserving the advantages of diverse 
perspectives.  
  §4.6 introduces a meta-theoretic principle: the Axiom of Model Adaptation by Shared 
Satisfaction (ΑMA→SS). This axiom schema supports the integration of divergent submodels by 
requiring the successful ‘push-through’ of a reference sentence φ across submodels that are 
sufficiently adaptable to satisfy it within a broader unified theory TU, with minimal adaptations 
when push-through fails. Chapter 5 introduces graph theory as a concrete yet accessible 
mathematical framework to structure these interactions and visualize the dynamics of model 
integration.  

  

 
95 Button & Walsh (2018), vi.  
96 Hodges (1997), 59: “Let 𝓛𝓛 and 𝓛𝓛* be first-order languages with 𝓛𝓛_⊆_𝓛𝓛*, and let T and T* be theories in 𝓛𝓛 and 𝓛𝓛* 
respectively. We say that T* is a conservative extension of T if for every sentence φ in 𝓛𝓛, T*_⊨_φ iff T_⊨_φ.” 
97 Hodges (2018) “18.8 – Geometric Model Theory.” in Button & Walsh (2018), 469-472.  
Like sheaf-theoretic amalgamation, geometric model theory classifies structures in terms of their combinatorial 
geometries and the groups and fields that are interpretable in the structures.  
98 See footnote 94 
99 Hodges (2018), “18.5 – Maps between Structures.” in Button & Walsh (2018), 455-460 
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100 See Insert-1 and §3.1 for model-theoretic concepts and symbols 
101 Ibid. for submodels. 

§4.6— Insert-2—Axiom Schema ΑMA→SS (Model Adaptation by Shared Satisfaction)100  
Let  L′ be a subsignature of theory TU, and let 𝓛𝓛(L′) be the formal language over L′: 
      -TU:   a theory in L′, and MOD(TU) the class of all models that satisfy every sentence in TU 
      -MU: a full model of TU such that MU_⊨_TU, and let M′ denote submodels of MU

 101 

            (ie MS, MH, M′H…, with MS_∈_MOD(TU))  
      -MS_=_(DS, L′S, IS) be a presenting (‘speaking’) submodel and MS_⊨_φ  (where L′S_⊆_L′) 
     -MH_=_(DH, L′H, IH) be a receiving (‘hearing’) submodel, such that either MH_⊨_φ or MH_⊭_φ (and L′H_⊆_L′) 
      -φ_∈_𝓛𝓛(L′):  a reference sentence such that MS_⊨_φ  
      -ψ_∈_𝓛𝓛(L′): any sentence satisfied in any submodel_M′ such that M′_⊨_ψ for some M′_∈_MOD(TU) 
Let M′

H,_M′′
H,_M′…′

H  etc  denote ‘minimally adapted’ variants of MH  such that M′H_⊨_φ, M′′H_⊨_φ etc 
     -M#H_: a ‘fractured’ submodel of MU  such that M#H  ⊭ φ, but M#H_∈_MOD(TU) 
      -M*H_: an ‘alien’ (sub)model such that M*H_⊭_φ and M*H_∉_MOD(TU), whereas instead M*H_∈_MOD(T*);  
        M*H_ satisfies some alien sentence χ (χ ∈ 𝓛𝓛(L′) or χ ∉ 𝓛𝓛(L′)), may satisfy some ψ ∈ 𝓛𝓛( L′),  
        but is structurally incompatible with  MU and cannot be adapted to satisfy φ.  
1. (Re)Formulation of Reference Sentence φ (§4.1) 
Reference sentence φ (or its reformulation φ′ etc following from step 6) is  
      -a non-trivial, non-axiomatic sentence from TU that expresses a core feature of TU  
      -satisfied by MU:_MU_⊨_φ  
      -satisfied in presenting submodel MS:_MS_⊨_φ 
      -not in contradiction with any sentence ψ in MS:_∀ψ_∈_TS 
      -nor with any other submodel M′

H,_M′′
H,_M′…′

H_etc to which φ (or φ′_) has been presented 
2. Immediate Shared Satisfaction (Basic Transfer) 
If two submodels MS and MH, of MU both independently satisfy the same reference sentence φ,  
and there exists a partial isomorphism π:_MS_→_MH that preserves the structural components relevant to φ, 
such that MS_⊨_φ  and  MH_⊨_φ: 
—then φ is immediately and jointly satisfied in both models without need for modification, 
—then MH alters into M′

H without introducing additional ambiguity, ensuring that model revision preserves a 
shared interpretational core within both MH and M′

H that is also contained in MS, 
—then push-through stability ensues in Step 3. 
1-φ is satisfied in both  MS and MH without modification 
2-MH is updated to  M′

H preserving shared interpretational structure 
3-Push-through stability is recorded (Step 3). 
This forms the base case of  ΑMA→SS: φ is stable across distinct submodels just by virtue of shared structure. 
No adaptation, reinterpretation, or extension is required. 
—This immediate agreement serves as the starting point for progressive propagation of φ  
throughout the set of untested submodels MH of MU 

—When φ cannot be satisfied in some new submodel MH , minimal model modification occurs in Step 4: 
3.  Push-Through Stability (Non-Disruptive Adaptation) (§4.3) 
If a partial isomorphism π:_MS_→_MH (or M′

H etc) preserves shared structure such that:  
o MS_⊨_φ and MH_⊨_φ (or  M′

H_⊨_φ etc) 
—then φ is jointly satisfied in both models without any modification, 
—otherwise, if MH_⊭_φ due to missing or conflicting components of π (ie MH is a ‘fractured’ submodel M#H), 
Step 4 is invoked for minimal model modification 
— At this stage, the outcomes of successful push-throughs are recorded, preparing the framework for 
potential adaptations. (The amalgamated model MA, which will track coherence across all adapted 
submodels, is formally introduced in Step 4.) 
4. Minimal Model Modification (Main Iterative Process) 
If there exists a modified model  M′

H_=_(D′
H,_L′

H,_I_′H)  such that: 
o M′

H_⊨_φ                 (ensuring shared satisfaction of reference sentences) 
o ∀ψ_∈_TH,  M′

H_⊨_ψ  (previously satisfied sentences in MH remain satisfied) 
o ΔI_′H_⪯_ΔD′

H_⪯_ΔL′
H   (specifying the preferred partial order_⪯ of adaptations to MH 

to minimize structural impact) 
o structural modifications remain in agreement with theory TU  (ensuring compatibility) 

Let MA be an amalgamated model constructed from all previously successful push-throughs.MA ensures that  
M′

H is adapted to preserve coherence across the set of previously ‘adapted’ submodels M′
H,_M′

H,_ M′…′
H _etc. 
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102 A ‘cost function’ is not standard in model theory, but μ and the partial order ΔI_′H_⪯_ΔD′H_⪯_ΔL′H formalize minimal 
adaptations of submodels, inspired by Gärdenfors’s ‘minimal change principle’ that revisions of epistemic states 
should involve the smallest necessary change (Gärdenfors, 1988, 9–14, 66–68, “3.5—On the Notion of Minimal 
Change”). Gärdenfors does not quantify ‘minimal change’, but in graph-theoretic modeling, μ can be seen as a 
‘distance’ controlling the likelihood of successful push-through (cf §5.3.1). 

—M′
H is chosen such that modifications to IH, DH and LH are minimal under μ:102  

          μ(MH_\_M′
H)_=_μIH+μDH+μLH, where μIH_⪯_μDH_⪯μLH 

—where μ is a ‘cost function’, measuring the extent of structural changes in interpretation, domain, or 
subsignature, and imposing the partial order of μIH_⪯_μDH_⪯μLH to minimize μIH+μDH+μLH 
Thus, M′

H satisfies φ while minimizing distinctions from the original receiving model MH  
(ie μ is minimal), and all sentences ψ previously satisfied in MH remain satisfied. 
—Step 2 is repeated for previously successfully adapted submodels M′…′

H  to ensure stable satisfaction of φ. 
5.  Sheaf-Theoretic Amalgamation (Higher-Order Stabilization and Modification) (§4.4.2)  
Let M+A  be a higher-order amalgamated model, created by combining  higher-order structural elements 
across submodels. 
Let M+A  contain the structural elements necessary to represent the relationships captured by π. 
— then, M+A  stabilizes Model Adaptation by Shared Satisfaction, through safeguarding and refinement of 
partial isomorphism of π that supports reference sentence φ across all models, by: 

o continuous adaption of M+A  to the modifications of consecutive receiving submodels by sharing 
of φ and π from MS to MH , to the next M′H (and so on to M′…′H) 

o ensuring that each new adaptation in Step 2 or 3 aligns with the shared structural framework of 
the theory TU 

o in case π fails due to major divergence in structure or cardinality,  
M+A  can provide a reference for extracting a refined partial isomorphism π′,  
incorporating conflicts from the last failing model  M#H .  

o this refined π′ can then be used to reformulate ϕ′ and continue the adaptation process.  
6.  Reference Sentence Reformulation (If Minimal Model Modification Fails: Back to Step 1) 
If no M′H can be constructed that satisfies the above conditions,  
—then and only then is φ replaced by a modified sentence φ′ such that: 

o φ′ is based in the refined partial isomorphism π′, derived from MA  and M+A   
which are constructed by push-through stability and sheaf-theoretic amalgamation. 

o π′ is derived from the coordinated structures of MA (first-order interpretations, Step 3, and M+A  
(higher-order coherence, Step 5), incorporating information from obstructing submodel M#H . 

o Formally,  π′ extends the maximal partial isomorphism of  MA  by incorporating relational 
constraints and coherence conditions introduced by M+A,  
thereby facilitating the reformulation of ϕ into ϕ′. 

o MH_⊨_φ′, ensuring that φ′ is satisfied in M′
H while preserving satisfaction in MS, maintaining 

shared satisfaction of φ′ by all submodels previously satisfying φ  
o φ′ also maintains the features of a meaningful reference sentence within TU,  

as described in Step 1 
o φ′ initiates a new cycleof shared satisfaction and minimal adaptation (Step 1), 

re-entered into MS,_M′H,_M′…′H_etc. 
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4.6 ΑMA→SS: Axiom of Model Adaptation by Shared Satisfaction103 
Sections 3.2.1–3.2.3 examined the Löwenheim-Skolem consequences for model cardinalities, 
submodel variants, and satisfaction across models. A major source of indeterminacy is 
fragmentation of a full model MU of TU, whose subsets of sentences may be satisfied by many 
distinct submodels. Sections 4.3–5 introduced first- and higher-order push-through techniques 
to harmonize submodels by ensuring shared satisfaction of a reference sentence φ. This formal 
sentence represents a core structural principle of TU, and preserving its substructure π across 
submodels is central to TU’s coherence. Model theory provides no rules to achieve this. I have 
therefore formulated a meta-theoretical axiom schema. MU contains many subsets of sentences 
satisfied by different submodels, and a reference sentence φ may not hold in all of them. If φ is 
true in MU, it can be made true in all submodels capable of incorporating its structure. This is 
done through progressive presentation of φ and minimal structural adjustments when 
satisfaction fails. Each attempt—successful or failed—extends φ’s reach and/or refines it. If the 
process succeeds, φ unifies MU’s fragments, reducing fragmentation-induced indeterminacy.  
A meaningful reference sentence φ may not be satisfied in all submodels—but if φ is true in MU, 

 
103 See Insert-2. 

Simple formal example illustrating shared satisfaction (without adaptation) by two distinct submodels 
Language signature Σ_ (L H…S…): one unary predicate P and one constant c. 

• Submodel MS: 
o Domain DS = {1, 2} 
o Interpretation IS : 

 P interpreted as {1} 
 c interpreted as 1 

• Submodel MH: 
o Domain DH = {a, b} 
o Interpretation IH : 

 P interpreted as {a, b} 
 c interpreted as b 

Reference sentence φ: P(c) 
Partial isomorphism π: the minimal shared structure needed to satisfy φ_=_P(c), consisting of: 
 • The element interpreting the constant c (1 in  MS , b in  MH) 
 • The predicate P holding for that element (1_∈_P in MS , b_∈_P in MH) 
 • The preservation of this structure under push-through ensures φ is satisfied in both submodels. 
Check satisfaction: 

• In MS:_φ_=_P(c) means P(1). Φ is true in MS, since 1_∈_PIs  
(ie belongs to the set of all elements of DS  that satisfy P under interpretation IS.) 

• In MH:_φ_=_P(c) means P(b). Since b_∈_PIH, φ is true in MH. 
Interpretation: 

o Although MS and MH differ completely in domain and in extension of P,  
the same reference sentence φ is satisfied in both submodels. 

o φ thus acts as a bridging sentence that both submodels agree on,  
providing a minimal point of shared satisfaction. 

 
Shared Satisfaction by Minimal Adaptation (cf  ΑMA→SS, §4.6, Insert-2) 

• Same as above, but P in MH now interpreted as {a}: PIH_=_{a} 
o    Reference sentence φ fails in MH, since P(c) with c interpreted in IH as b_∉_PIH :  

• Minimal Adaptation: 
o    Modify IH  minimally to I'H by expanding the interpretation of P:_PIH_=_{a}_→_PI'H_=_{a,b} 

   Now φ_=_P(c) is true in M′H , restoring shared satisfaction. 
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it can be (made) true in all submodels capable of incorporating the necessary structure. This is 
achieved through progressive presentation of φ to submodels and minimal structural 
adjustments if satisfaction fails. Each attempt—successful or failed— increasing φ’s reach or 
refines it. If the process succeeds, φ unifies MU’s fragments, reducing fragmentation-induced 
indeterminacy. 
  Insert-2 formalizes Model Adaptation by Shared Satisfaction in a stepwise axiom schema 
(ΑMA→SS).  ΑMA→SS governs the progressive confirmation or refutation of the truth of φ, by repeated 
sharing across submodels of MU. ΑMA→SS, along with the graph dynamics in Chapter 5, identifies 
failures and guides systematic revisions. The goal is to minimally adapt submodels or refine φ, 
until all partial models can satisfy it without internal disruption. 
Step 1 entails the formulation on the initial reference φ, or its modified version φ’ after ΑMA→SS.  
As considered in §4.1 and §5.3.1, the speed and success of this process depend on strategies 
for revision and iteration and the integrative force of φ. More philosophical and scientific aspects 
of φ will be discussed in Chapter 6. 
Step 2 (Basic Transfer) occurs when φ’s presenting model MS shares π with a receiving 
submodel MH, which satisfies φ without needing changes. MH can then propagate φ to other 
submodels M′H.  
Step 3 secures agreement between the models by push-through stability, which amalgamates 
MS and MH into MA, preserving π and other shared structures. Each successful transfer 
increases coherence. Push-through may also fail (§4.4.2.2). MS_⊨_φ but MH_⊨_¬φ if MH lacks or 
contradicts parts of π – which makes it a ‘fractured’ submodel M#H.  
Step 4 introduces Minimal Model Modification of M#H using structural elements from π recorded 
in Step 3. To minimize structural disruption, modification proceeds in a preferred order, 
reflecting increasing scope of impact within the model: 

1. ΔI’H: reinterpretation—modifying interpretation functions while preserving domain and 
subsignature—ie reassigning meanings to constants, predicates, or relations. 

2. ΔD’H: domain expansion—adding individuals or types missing from M#H. 
3. ΔL’H: signature extension—introducing new symbols or structures needed to express φ. 

All changes must preserve sentences ψ previously satisfied in M#H. The goal is to revise M#H into 
a submodel M′H  that satisfies φ and retains its original ψ. If some obstructing ψ resists after 
revision, is M#H skipped.  
Step 4 may fail if modifications disrupt prior truths in M#H. ΔI’H, ΔD’H, or ΔL’H can fail due to 
incompatible assignments, missing types, or incompatible terms. Adaptation failure does not 
imply φ is false, but that π and M#H are too distinct for shared satisfaction. This indicates deeper 
fractures between M#H and MU, assuming φ accurately represents TU. 
Step 5 becomes active when Step 4 fails. This invokes the amalgamated structure M+A 
(§4.4.2.1). M+A accumulates structural categories from all push-through attempts via Sheaf-
Theoretic Amalgamation. When minimal adaptation of M#H fails, M+A extracts a refined π′ 
capturing the divergence. This structural information supports φ’s reformulation into φ′ and a 
renewed adaptation attempt. As explained in §4.4.2.2, M+A’s higher-order function guides repair 
and coherence. It can distinguish between fractured models (M#H) and alien ones (M*): M#H may 
be reconstructable; M* may be skipped as a probable part of another theory T*—although it 
could be also revisited after each revision of φ. 
Step 6 concludes ΑMA→SS. When minimal adjustments fail, φ is refined into φ′ (or φ′ into φ′′ etc) 
using M+A higher-order feedback. If even these refinements cause contradiction in some 
models—eg due to conflicting ψ-sentences—then φ is abandoned as unsatisfiable within TU. 
This initiates an new repeated testing and revision of φ′. Each cycle increases shared 
satisfaction or eventually rules φ out as a ubiquitously shared reference sentence. While the 
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Compactness Theorem (§2.2.2) guarantees that global satisfaction is possible when all local 
adaptations succeed, it offers no procedure for guiding those adaptations. ΑMA→SS fills this gap. It 
governs how φ is repaired or withdrawn, and how MU’s fragments are revised or bypassed.  
 
This leads to an important conclusion. If (and only if) the collection of submodels fully captured 
MU and ΑMA→SS successfully integrated them, φ could in principle be formally established as true 
throughout MU. Compactness guarantees this theoretical possibility, while ΑMA→SS shows how φ 
is progressively satisfied across submodels through minimal adaptation. In practice (as §§3.2.2-
3 make clear) submodels cover only fragments of MU. This limitation motivates viewing MU as a 
dynamic network of partially aligned submodels, progressively integrated through adaptive 
coherence. Chapter 5 develops this perspective by representing and analyzing the interactions 
among submodels and the emergent structure of their incremental alignment.  
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Chapter 5. Graph Theory and the Dynamics of Model Adaptation 
5.1 Essentials of Graph Theory 104 
Like model theory, graph theory plays an important role in both science and philosophy. Graph-
like systems have long supported logical and conceptual representation—most famously in 
Frege’s Begriffsschrift (1879) 105 and Peirce’s existential graphs (1885).106 In contemporary 
philosophy, graph theory often takes a formal mathematical form, yet as Daniel Parrochia argues 
in Graphs, Orders, Infinites and Philosophy, mathematics itself is a primary source of 
intelligibility.107 Graph theory, he suggests, might even serve as a philosophical system: a 
structural account of reality, or a theory that ultimately reveals why such a totalizing account 
may fail. Others, like Nicholas Shackel, defend metaphysical graphical structuralism, suggesting 
that the world itself may be modeled as a graph.108 Graphs can represent not only formal but 
also metaphysical structures.109  
 In this thesis, I adopt a more focused use of graph theory: to model how submodels of a 
fragmented theoretical model MU  interact in response to the shared satisfaction of a 
scientifically meaningful reference sentence φ. Graph structures help trace how φ and its core 
structure π propagate through a network of submodels, helping visualize and assess coherence 
within the broader framework TU. Formally, a graph G(V, E) is a structure of vertices (or nodes) V 
connected by edges E, which represent relationships or interactions. Graphs are widely used to 
model relational systems in disciplines ranging from linguistics and computer science to 
theoretical physics.110 Here, I treat submodels as nodes, and their shared reference sentences 
or structural overlaps as edges. This lets us treat model adaptation by shared satisfaction in a 
graph-theoretic way. 
  Graphs can also be homogeneous or heterogeneous, depending on node type. Model 
adaptation by shared satisfaction primarily relies on homogeneous isomorphisms: overlaps 
between models that satisfy the same reference sentence. However, the submodels themselves 
are heterogeneous, often acting as host graphs that embed isomorphic subgraphs or minors. 
This higher-order structure is relevant for later discussion of hypergraphs and sheaf-theoretic 
amalgamation in §5.3.2. Graph theory contains many additional technical tools—such as 
clustering, centrality, and percolation theory—but I will focus only on those essential to 
modeling adaptation dynamics in fragmented model systems. 
 

 
104 Extracted from Wilson (2010), and Parrochia (2023), “1-Graphs”, 6-9, 11-20  
105 Frege (1879): Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denken. 
106 Bellucci & Pietarinen 2019): Pierce, Charles Sanders - General Introduction to Logic of the Future:  
Writings on Existential Graphs 
107 Parrochia (2023), ix-xv, x  
108 Shackel (2011) 
109 Parrochia (2023), 171, 181: “Assume (again) that the structure of the world is a graph.” 
110 Ibid. 
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5.2 Random Graph Evolution and the Erdős–Rényi Model111-112 
Random network theory, developed by Paul Erdős and Alfréd Rényi113 (and independently by 
Gilbert114) , offers a formal framework to analyze how connections between nodes emerge and 
consolidate into large-scale structures. In §5.3, I will draw on this theory to model how the 
ΑMA→SS-axiom (explained in §4.6) allows a single reference sentence φ—true in our Unified 
Theoretical Framework TU and in a presenting ‘speaker’ model MS—to progressively establish a 
coherent network of submodels of MU  that all satisfy φ and share its partial isomorphism π. 
 A key property in network evolution is the degree of a node—the number of edges it shares 
with others. This metric profoundly shapes the global topology of the network, including how 
components form, expand, and coalesce. The Erdős–Rényi–Gilbert model captures this process 
in its standard form G(n, p), where n is the number of nodes and p the probability that any given 
pair is connected. While this model is formally probabilistic, it also approximates the dynamic 
growth of a network as new links are established. At low p-values, the graph consists of 
scattered small components. As p increases, these gradually merge into larger structures. Once 
a critical threshold is crossed, one component outgrows the rest, forming a giant component 
that spans a large part of the network. Figure 2 illustrates this consolidation in a 1000-node 
graph near the critical edge probability. 

 
Figure 2: Erdős–Rényi–Gilbert graph with 1000 vertices at the critical edge probability  (k_=_1) – see 
explanation in §5.2.115  

  Erdős–Rényi-dynamics describe how these networks evolve. Formally, the total number of 
possible edges in a graph of n nodes is n·(n−1)/2. The parameter p defines the proportion of 
these edges that are present. That is, p is the probability that any given pair of nodes is 
connected; this is equivalent to the fraction of all possible edges that are realized.116 For 
example, p = 0.1 yields 49,950 edges in a 1000-node graph (out of 499,500 possible). The 
average degree k of a node is given by k = p·(n-1). As p (and thus k) increases, disconnected 
fragments begin to merge into larger components. The graph’s global structure is highly sensitive 

 
111 Barabási (2018), 49-61 
112 Oh & Monge (2016), 9 
113 Erdős & Rényi (1960) 
114 Barabási (2018), 49 
115 <https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model#/media/File:Critical_1000-
vertex_Erd%C5%91s%E2%80%93R%C3%A9nyi%E2%80%93Gilbert_graph.svg> 
116 The concept of p is slighly confusing.  Strictly speaking, ‘p’ stands for a probability, but it is also treated as a 
proportion or density parameter reflecting the fraction connected vertices in the graph. 
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to this process. When k passes 1 (ie when p ≈ ln(n)/n), the giant component mentioned earlier 
appears. At this point, the largest connected component suddenly includes a substantial 
fraction of all nodes. The proportion of nodes in this component, denoted ρ (rho), satisfies the 
self-referential equation: 
    ρ = 1 − e^(−k·ρ) 
This defines the characteristic S-shaped transition curve shown in Figure 3, where ρ increases 
non-linearly as k rises. The graph-model represents this as the ‘completion’ of the network.117 
   

Figure 3: Stabilization of Reference through Model Connectivity, where k increases by broader 
‘sharing’ of φ across submodels.118  

This connectivity transition—from fragmentation to integration—has clear implications for the 
dynamics of MASS. The reference sentence φ plays a structural role analogous to the 
probabilistic edge in the Erdős–Rényi model: each instance of φ being satisfied across two 
partial models, effectively creates a link in the interpretive network. As more such links are 
established, previously disjoint submodel fragments become structurally integrated. This 
process will be explored further in §5.3.119 
 
5.3 Graph Theory Applied to Model Adaptation by Shared Satisfaction 
5.3.1 Model Adaptation in Random Graph Models 

The progressive dissemination of a reference sentence φ across an increasing number of 
submodels of MU can be fruitfully analyzed using graph theory, which offers a mathematical 
framework for studying the structure and evolution of interconnected systems. Here, the nodes 
of the graph represent the submodels of the fragmented scientific model MU, and the edges 

 
117 Barabási (2018), 58: Image 3.6.a) Evolution of a Random Network. 
118 Adapted from Erdős & Rényi (1960) and Introduction to Network/Graph Theory—slide 61 
<https://www.cl.cam.ac.uk/teaching/1011/PrincComm/slides/graph_theory_1-11.pdf> 
119 Phase transition in model coherence points to a certain ‘persuasive force’ of φ. This has an interesting analogy with 
Kuhn’s ‘paradigm shift’. Further consideration of this is beyond the scope of this thesis.  
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represent connections formed by the shared satisfaction of φ and its supporting partial 
isomorphic structure π. 
  The successful push-through of φ from a presenting submodel MS to a receiving submodel 
MH establishes a new edge between these nodes, thereby increasing the proportion of 
submodels M′H within MU that satisfy φ. This process can be represented as an Erdős–Rényi 
random graph model, where each new push-through event increases the probability parameter 
p of edge formation as illustrated in Figure 3. If φ and π can be pushed through completely—
without generating conflicts or contradictions in any submodel— φ will function as a dominant 
or ‘giant’ scientific formula common to all submodels of MU. The resulting network of 
interconnected submodels strengthens coherence across the fragmented structure, and 
widespread satisfaction of φ imposes strong constraints on interpretational flexibility arising 
from model fragmentation. 
  However, Model Adaptation by Shared Satisfaction does not assume that φ can always be 
pushed through without modification. The network’s growth will halt at certain submodels where 
minimal adaptation of MH is insufficient to satisfy φ. ΑMA→SS dictates that these ‘obstructing’ 
submodels M#H are temporarily bypassed until the reference sentence φ and its partial 
isomorphism π are revised to φ′ and π′ (Step 6). Meanwhile, push-through continues with free 
nodes, connecting additional unexposed submodels and also revisiting established branches of 
the graph to verify persistent satisfaction. Through this iterative process, the connected subset 
C π_=_{M′H  ⊆ MU} grows and solidifies,120 whereas severely fractured submodels M#H and 
structurally incompatible ‘alien’ submodels M*H remain disconnected. 
  Figure 3 suggests an idealized scenario where the connected subset C π approaches 
completeness, with proportion ρ near 100%. In practice, however, the value of ρ depends on 
several interrelated factors.  
First, it hinges on how well φ captures the core structure of the Unified Theoretical Framework TU 
as represented in MU. If φ expresses a central and ubiquitously shared aspect of TU preserved 
across submodels, ρ may approach 1 However, if φ is too restrictive or context dependent (on 
structural elements that are not pushed through), then ubiquitous satisfaction is unattainable 
and ρ remains low. 
Second, the degree of fragmentation in MU influences the number of obstructing submodels 
M#H. These submodels initially resist adaptation despite minimal modifications and are 
bypassed until φ′ and π′ are introduced. Each successful revision can increase ρ by ‘converting’ 
previous M#H -submodels to join C π. 
Third, some alien submodels M*H may be structurally incompatible with any viable revision of φ, 
limiting the maximal achievable ρ to less than 1. As argued in §4.4.2.2, this could occur when 
M*H  belongs to another theory T*. In this case, the impact will be smaller the more T* differs 
from TU, since this will reduce the chance that their submodels are similar. Large proportions of 
alien submodels, with a substantial impact on ρ, can also point to the existence of M+U with a 
higher cardinality than MU. 
(Finally, the ideal situation shown in Figure 3 requires huge numbers of nodes. This important 
prerequisite of Erdős–Rényi models will be discussed in the next subsection §5.3.2.) 

The process of revising φ and π in Step 6 of ΑMA→SS can vary. Revision may occur after each 
individual failure or after a batch of push-through attempts, depending on the chosen strategy. 
This revision is informed by the results of two amalgamation steps: Step 2 (push-through 
stability) and Step 5 (sheaf-theoretic amalgamation). The first aggregates information from local 
push-through successes, progressively generalizing π. The second collects higher-order 
structural information from both successes and failures. Patterns common to obstructing 

 
120 Let C π_=_{M′H_⊆_MU_∣_π is a partial isomorphism between MS  and M′H , and φ is satisfied in M′H  via π} 
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submodels M#H may reveal systematic causes of failure—for instance, distinguishing between 
fractured and alien submodels—thus guiding the formulation of a refined φ′. 
  The revision strategy and the modifications of φ and MH are essentially epistemic, but graph 
theory offers mathematical tools to model the impact of different scenarios on the growth or 
size of the subset M′H that satisfy φ. A key parameter is the Erdős–Rényi probability p,121 
reflecting the likelihood that any two nodes (submodels) are connected by the partial 
isomorphism π. Although push-through is not probabilistic in the sense of randomly distributed 
edges, modeling edge formation as governed by p offers a useful approximation of the evolving 
connectivity within the φ-satisfying subgraph C π. Another critical parameter is the cost function 
μ from ΑMA→SS (Step 4), which ensures minimal structural changes—such as interpretation shifts, 
domain expansions, or syntactic differences—needed to accommodate φ in MH. In graph-
theoretic terms, μ can be interpreted as a measure of ‘distance’ between MH and its minimally 
adapted variant M′H, influencing edge weights or thresholds: submodels requiring larger μ are 
less likely to form successful push-through connections, while smaller μ corresponds to higher 
likelihood of connectivity in C π.122 For the formal specification of μ and the ordering of 
adaptations (ΔI_′H_⪯_ΔD′

H_⪯_ΔL′
H), see Step 4 of Insert-2. Translating μ into edge weights or 

thresholds could model the probability of successful push-through more precisely. 
  Higher-order amalgamation results may correspond to analyses of more complex graph 
structures, such as hypergraphs, representing the sheaf-model M+A (Step 5, §4.4.2.2) which 
shares more structural elements than just π, or revealing clusters of obstructing submodels. 
These advanced graph-theoretic approaches go beyond Erdős–Rényi theory, reflecting the 
nuanced and dynamic nature of model adaptation by shared satisfaction. 

In sum, graph theory provides an insightful framework for modeling how a reference sentence 
propagates through a fragmented scientific model. The approach discussed so far reveals useful 
aspects of the dynamics of adaptation, resistance, and coherence within MU—but it also shows 
that the process of submodel integration is actually quite complicated. 

5.3.2 Model Adaptation in Dynamic Networks 
While the Erdős–Rényi random graph model offers a useful first approximation, its assumptions 
of structural symmetry and statistical uniformity—such as Poisson distributions assuming 
random connectivity—are too restrictive to capture the complex, asymmetric and iterative 
interactions underlying Model Adaptation by Shared Satisfaction. In reality, model adaptation 
involves heterogeneous connection patterns and feedback-driven adjustments that also affect 
the nodes (submodels) and edges (φ, π, M+A) themselves, and therefore produce a richer, more 
coherent network with stronger and weaker subgraphs. In practice, therefore, push-through 
interactions are unlikely to remain purely bidirectional or uniform. Once the connected subset  
C π becomes dominant, a small number of highly connected ‘presenting’ submodels MS  will 
serve as hubs that can exert disproportionate influence over numerous receiving MH nodes. 
Such heterogeneous connectivity patterns violate the Erdős–Rényi assumptions, which rely on 
large numbers of nodes and edges. Only densities of submodels of MU like those in Figure 2 will 
lead to approximation of ubiquitously shared satisfaction as shown in Figure 3. It is not 
immediately apparent, however, how MU could fragment into so many different MS /MH -
submodels (although this becomes more realistic if we think of every scientist as a ‘speaker’ and 
a ‘hearer’, exchanging their own submodel versions).123  
  For more limited or realistic scientific theories like biological diversity, alternative network 
paradigms such as scale-free or small-world networks may better approximate adaptation 

 
121 See footnote 116 
122 See footnote 120 
123 See footnotes 71 and 74 
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dynamics. These models account for heterogeneous degree distributions and clustered 
connectivity, respectively, reflecting the presence of hubs and community structure. These more 
complex networks typically impose greater constraints on the variability and freedom of 
individual nodes and edges, resulting in richer dynamical behaviors. For example, if φ is widely 
accepted, repeated sharing across model nodes with multiple connections can lead to the 
emergence of a power-law degree distribution, where a few nodes have many connections while 
most have few.124 This pattern contrasts with Erdős–Rényi’s uniform random degree 
expectations. Persistent hubs connected to dissociated graphs within the set of partial models 
of MU can reveal alien M*H submodels that compete with φ. As discussed in the previous 
section and §4.4.2.2, such competition may represent an unrecognized structural regularity 
within the Unified Theoretical Framework TU, caused by an alternative theory T*U or a higher-
cardinality model M+U. 
  Given the epistemic parallels of ΑMA→SS dynamics, and the increasing prominence of graph 
and network theory in different scientific areas as mentioned at the start of this Chapter, 
dynamic network models can provide important tools for understanding the processes that 
reduce indeterminacy in scientific theorizing. This Chapter used a basic Erdős–Rényi model to 
show the principles of submodel integration, but graph theory in general supports the broader 
aim of this thesis: to outline a theoretical framework that systematically reduces the 
indeterminacies of theories, models, and reference structures by anchoring truth in coherence 
and relational constraints within model structures, rather than isolated satisfiability or external 
reference. Graph theory thus contributes not only structural support for model coherence but 
also a concrete mathematical pathway for mitigating the radical indeterminacy associated with 
model-theoretic interpretation—central to Putnam’s argument. In Chapter 6, I will explore how 
these model- and graph-theoretic concepts relate to Putnam’s own considerations of 
indeterminacy in science, and with some practical consequences of this. 

  

 
124 Oh & Monge (2016), 10: Fig.7 



32 
 

Chapter 6. Discussion and Integration 

This final chapter brings together the formal framework of Model Adaptation by Shared 
Satisfaction (MASS) with philosophical and scientific issues related to indeterminacy in 
scientific theorizing. I will begin by situating MASS in relation to Putnam’s Model-Theoretic 
Argument, focusing specifically on his challenges of scientific theory and reference. I will then 
apply the MASS framework to biological diversity, illustrating how scientific advances could 
provide the basis for formulating a realistic reference sentence that can be satisfied by diverse 
scientific models of related phenomena. The aim is to demonstrate how MASS offers a rigorous 
pragmatic response to longstanding philosophical problems of indeterminacy that are directly 
relevant for scientific progress. 

6.1 Putnam’s Model-Theoretic Argument and the Challenge of Model Fragmentation 

Hilary Putnam’s Model-Theoretic Argument (MTA) remains one of the most influential critiques of 
metaphysical realism in the philosophy of science. Drawing on the Löwenheim–Skolem 
theorems, Putnam showed that even rigorously formalized scientific theories admit multiple, 
inequivalent models that satisfy the same axioms. While any single model can be used 
effectively for explanations or predictions, the theory itself does not determine a unique model. 
Putnam opposed the thesis of metaphysical realism that the objects, properties, and relations in 
the world exist independently of our thoughts or perceptions about them.125 His argument 
undermines a central metaphysical realist assumption: that there is a single, theory-
independent mapping between language and the external world. Since a first-order theory 
permits many models, no unique structure in THE WORLD is determined solely by a theory, and 
reference is therefore not fixed by the theory alone.  
  Internal realism emerged as a response to this indeterminacy. 126 Rejecting the metaphysical 
realist’s “God’s-eye view,” Putnam argued that reference is determined not by correspondence 
with an external reality, but by use within a conceptual, cognitive-linguistic framework.127 “The 
world does not pick models or interpret languages. We interpret our languages or nothing 
does.”128 Objects, signs, and meanings are internal to this scheme of description; reference 
becomes meaningful only within it.129 This position has been criticized for blurring the line 
between truth and justification, and for inviting cognitive subjectivity and relativism, by Lewis,130 
Devitt,131 Van Fraassen.132 and others.133 Putnam’s responses evolved over time, prompting 
some commentators to remark that writing about his philosophy “is like trying to capture the 
wind with a fishing-net”.134,135 
  Ultimately, Putnam adopted natural realism,136 as a form of realism intended to avoid conflict 

 
125 Khlentzos (2025), 2-8: “1-What is Metaphysical Realism?” 
126 Putnam (1981), 50 
127 Ibid. (footnote 25) 
128 Putnam (1980), 482 
129 Putnam (1981), 50 
130 Lewis (1984) 
131 Devitt (1983) 
132 Van Fraassen (1997) 
133 Putnam's Internal Realism and Model-Theoretical Argument (1977-1990), PhilPapers, accessed August 10. 2025,  
<https://philpapers.org/browse/internal-realism> 
134 Passmore (1985), 92 
135 Szubka (2024) 
136 Button (2013), 82-95, 82: ‘[N]atural realism, [w]as announced most fully in ‘Sense, Nonsense, and the Senses’ 
(1994) and The Threefold Cord (1999).’ 
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with science.137, 138 Its exact meaning has been debated: Michael Dummett for instance 
confessed that “to divine what it is defeats me,”139 and Tim Button devotes an article and a 
chapter to it—140-141concluding on model-theoretic grounds that natural realism has yet to offer 
persuasive arguments against skepticism. In broad terms, natural realism is a pragmatic 
position consistent with how most scientists work: they construct accounts and models of the 
world that reflect different aims and perspectives, while presupposing that there is a world 
about which verifiable things can be said. Few claim to make unique, exhaustive mappings of 
reality, and fewer still see that as problematic. 
  Yet, as I have argued, the MTA’s core insight—the non-uniqueness of models—remains 
significant, particularly in light of the growing fragmentation of scientific practice. As theories 
develop, they often diverge into specialised submodels tailored to distinct domains, methods, 
and explanatory aims. This fragmentation is not merely disciplinary; it reflects deep structural 
differences in how models represent reality. Even within a single field, such as physics or 
biology, competing frameworks may coexist without formal integration. The mosaic-like nature 
of contemporary science raises a pressing question: how can reference remain stable across 
structurally incompatible models? 
  Cartwright’s image of a ‘dappled’ world142 captures how perceived inherent fragmentation 
can obstruct the transfer of advances from one domain to another. Putnam acknowledged a 
related tension in Models and Reality (1980), where he presents a thought experiment involving 
an ‘ideal scientific theory’ T₁—a theoretical endpoint or rational limit of scientific progress143—
contrasted with our current, partial theory T. Putnam conceived of T₁ as ‘a limit of theories’ that it 
would be rational for scientists to accept, even if never fully realised—what Lewis called 
‘futuristic’144—but concrete enough to guide progress as a regulative ideal.145 By contrast, T 
reflects our fallible, incomplete knowledge. The distinction parallels scientific fragmentation: T₁ 
gestures toward a unified framework—illustrated, perhaps naively, by Linnaeus’ taxonomy of five 
kingdoms as a divinely ordered system of life—while T represents a submodel, such as evolution 
by ‘survival of the fittest’. 
  Model Adaptation by Shared Satisfaction (MASS) builds on this distinction, reframing it in 
model-theoretic terms. MASS could extend Putnam’s original position of internal realism—for 
which model theory offers more support than he may have recognized146—by clarifying how 
reference can be coordinated across heterogeneous model spaces. However, rather than 
adopting Putnam’s concept of T₁ as a transcendent endpoint, MASS considers a Unified 
Theoretical Framework (TU) to constitute a pragmatic coordination point for consensus. TU is not 
a metaphysical ideal but is specified within MASS by reference to sentences jointly satisfied 
across submodels. The accompanying ΑMA→SS axiom schema functions both as a regulative 
guide and as a formal mechanism for reconciling divergent models. If the MTA suggests that 
reference is unstable across models, MASS uses this schema to connect them through shared 
satisfaction of a scientifically relevant reference sentence (bridging hypothesis), enabling partial 

 
137 Putnam (1994), 465: ‘[T]here is no conflict between natural realism and science, [nor] between a suitably 
commonsensical realism about our conceptual powers and science’. 
138 Hildebrand (2000), 109-132 
139 Dummett (2005), in Auxier & Hahn (2007), 168–184: “Reply to Hilary Putnam,” 182 
140 Button (2016) 
141 Button (2013), 82-95: “Chapter 10–Natural Realism,” 95: ‘The natural realist [rightly] aim[s] for a position according 
to which Cartesian angst does not arise, but she has not given us one.’ 
142 Cartwright (1999) 
143 Putnam (1980), 473 
144 Lewis (1984), 230-231 
145 Putnam (1980), 473—see footnote 84 
146 Button & Walsh (2018), 46; ‘Internalism about model theory reveals a new understanding of Putnam’s internal 
realism.’ 
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models to adapt, align, and cohere without requiring full unification. In this way, MASS preserves 
the pluralism of scientific practice while offering a framework for conceptual coordination. 
  In Philosophy and Model Theory, Button and Walsh note that Putnam—perhaps implicitly—
relies on the push-through construction to challenge metaphysical realism.147 As discussed in 
§4.3, model theory supports permutation functions that translate elements across models 
during push-through. Putnam’s argument is that metaphysical (external) realism cannot explain 
why our terms like “cat” to refer to actual cats, rather than arbitrarily permuted interpretations 
(for instance, naming them ‘dogs’, see §3.2.3). 148 Since permutation is a one-to-one bidirectional 
function, model theory places no internal constraints on it. Therefore, as Button and Walsh 
observe, indeterminacy ‘generalises rapidly’ under consecutive  permutations.149 Importantly, 
however, push-through in MASS is structure-preserving, in clear contrast with Putnam’s original 
use of push-through arguments. In ΑMA→SS, push-through from a submodel MS to another MH 
preserves structural alignment, thereby maintaining satisfaction across the network of 
fragmented models within MU. Putnam’s permutational push-through, however, alters the 
interpretation function over the domain, disrupting shared satisfaction and leading to 
indeterminacy. While minimal modifications to the interpretation function, domain, and 
language—denoted ΔI′H ⪯ ΔD′

H ⪯ ΔL′
H  in Step 4 of ΑMA→SS (Insert-2)—also involve reinterpretation, 

these are tightly constrained by the ongoing requirement that the reference sentence φ remains 
satisfied after alignment of all submodels. This preservation of satisfaction ensures that 
reference does not collapse into indeterminacy by permutation but remains coherently 
regulated across fragmented and adapted models. 
  Putnam’s own framework—though not explicitly mentioning indeterminacy by model 
fragmentation or potential responses to it—anticipates aspects of this approach. His 
recognition that “there has to be a determinate relation of reference between terms in L and 
pieces (or sets of pieces) of THE WORLD”⁶ suggests a model-theoretic awareness of 
fragmentation. In MASS terms, L corresponds to the vocabulary of a theory T1 (like TU), ‘pieces’ 
represent partial submodels, and ‘reference’ reflects the dynamic relations among them. While 
Putnam emphasized epistemic ideals, MASS translates these into structural mechanisms for 
model adaptation. The conceptual overlap between his thought experiment and MASS also 
suggests that MASS could address skeptical concerns arising from the MTA’s conclusion—that 
we can never be certain which reference best represents the world. If T₁ resembles TU in its 
harmonizing role, while T reflects the situated nature of scientific models, MASS extends this by 
formalizing the conditions under which partial models can share satisfaction, thus enabling 
reference to persist across fragmentation. 
  As argued in §4.6, compactness shows that in principle MASS could procedurally establish φ 
as a true sentence of a general model M1 of Putnam’s T₁, by demonstrating ubiquitous 
satisfaction in the complete set of fragmented submodels retaining M1’s structure. Rather than 
treating indeterminacy as a failure of reference which can basically be ignored in practice, MASS 
regards it as an essential feature of scientific representation that allows both for specialization 
and adaptive coordination. To illustrate how MASS operates in practice, the following section 
returns to the case of biological diversity presented in Chapter 2, where longstanding 
fragmentation among models is now gradually yielding to systemic integration. 

6.2 Towards Shared Satisfaction of Models of Biological Diversity 
MASS addresses the fragmentation of a general model of a Universal Theoretical Framework TU, 
and I will now apply this to the historical development of biological diversity outlined in Chapter 

 
147 Button & Walsh (2018), 39-44: “2.3 Putnam’s use of Push-Through” 
148 Putnam (1980), 482 
149 Button & Walsh (2018), 40 
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2. So far, I left TU deliberately vague to follow Putnam’s ideal, divine scientific theory T1.150 Button 
characterizes T1 as ‘our best all-things-considered theory—an amalgam of physics, semantics, 
politics, poetry, and everything else—allow[ing] us to represent a physically possible world.’ 151 
This breadth also explains the inevitable fragmentation of T1’s general model M1 in science. 
Putnam presents T1 as a theory that would be rational for scientists to accept, but most act as if 
‘nature is a jumbled WORLD’ and scientific practice a ‘trading zone’ for ‘experiments, theories, 
and instruments’. 152,153 Model theory suggests that if the WORLD is unified and modellable—as 
many philosophers and scientists hold154—it is possible in principle to formulate true 
statements about it. Yet on such a scale, a unifying REFERENCE SENTENCE Φ could be satisfied only 
by the full model M1, and its truth in T1 would have to be known in advance. 
  Formulating a flawless Φ would require a God’s-eye view if Φ is to be epistemically richer 
than an axiom or other trivial truth (see §4.1). Without access to M1, scientists approximate it by 
assembling submodels and testing candidate Φ for shared satisfaction. This thesis developed a 
formal strategy for this—Model Adaptation by Shared Satisfaction—not to fully construct M1, but 
to combine specialized models into a coherent network that incrementally converges toward it. 
The historical development of models of biological diversity, reviewed in Chapter 2, illustrates 
how such an approach could work in practice.  
  Linnaeus developed his divine taxonomic order of nature in the Enlightenment. In line with 
Putnam, it can be viewed as a bold attempt to formulate a model M1 for an ideal theory T1 of 
biological diversity. Were Linnaeus’s taxonomy to remain fully accurate, this would suggest that 
it implicitly already contained, implicitly, the mechanistic structural elements determining its 
categorical order—elements only revealed by subsequent research. This scenario is unlikely, 
considering recent genetic revisions of species relationships.155,156 Nonetheless, a full model 
need not satisfy every sentence of a theory, allowing M1 to represent a partial or incomplete 
realization of T1 . 
  In the eighteenth century, Linnaeus’s ‘best all-things-considered theory’157 was increasingly 
fragmented into specialized submodels of Lamarck’s adaptation, Von Humboldt’s ecology, 
Mendel’s genes and Darwin’s evolution. Each submodel captured essential but distinct aspects 
of life’s diversity, with different emphases but largely the same domains (Linnaeus’s Kingdoms of 
Life).158 Each model had its own followers in science and society, and their interactions ranged 
from admired inspiration to outright denunciation.159 
  Beginning in the 1920s and 1930s, a group of scientists began to reconcile these fragmented 
models. Mendel’s systemic pea experiments—largely ignored in his lifetime—were rediscovered 
by scientists like statistician Ronald Fisher, biologist J.B.S. Haldane, and geneticist Sewall 
Wright. They merged Mendelian genetics with Darwinian selection mainly using newly developed 
tools of population statistics. In 1942, the result was dubbed the Modern Neo-
Darwinian Synthesis:160 a unified framework in which evolution was understood as changes in 
gene frequencies over time. This synthesis preserved the strengths of some submodels, while 
clarifying what each model could explain (or not). Mendelian genes explained how variation 

 
150 Putnam (1980), 473—see footnote 84 
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arose and persisted; Darwinian selection explained how it shaped populations. Linnaean 
species were now seen as clusters within gene pools. Humboldtian insights were partly 
absorbed into ecology and evolutionary biology as constraints and pressures acting on 
populations. Lamarck’s laws were largely rejected as being theoretically incompatible and 
empirically unsupported. 
  From a model-theoretic perspective, the ‘bridging sentences’ of the Modern Neo-Darwinian 
Synthesis largely relied on recent statistical advances—especially Fisher’s pioneering work 
combining biometrical factors (reproduction, fitness, survival) with genetics. These statistical 
tools act like logical instruments: formal, model-independent frameworks, providing structural 
rules and scaffolding that supporting integration across diverse biological models.161 While 
enabling structural coherence, they do not by themselves supply explanatory content. To 
achieve shared satisfaction across heterogeneous models of biological diversity, a reference 
sentence must incorporate not only these statistical frameworks but also appropriate 
interpretation functions and domain elements within an amalgamated model.  
  In addition, the Modern Synthesis also introduced several structural modifications: the 
domain was expanded to include whole populations containing multiple species and extinct 
lineages (ΔD); interpretation functions were extended to track allele frequencies, genotype 
distributions, and fitness effects (ΔI); and auxiliary relations and operations were added to 
model variation, natural selection, gene flow, and genetic drift (ΔL). For these modifications, the 
Modern Synthesis drew on external well-established scientific frameworks, but without 
disturbing the original Linnaean structure.  
  In MASS, these theories T* and their (sub)models M*H are classified as ‘alien’ because they 
satisfy sentences χ incompatible with TU (Insert-2). Nevertheless, they may also contain 
compatible ψ-sentences satisfying MH, and partial isomorphisms π with the supportive 
structure of Φ. Persistent ψ-sentences can enrich MU’s submodels structurally—through 
amalgamation of domain elements, interpretation functions, and auxiliary relations—without 
introducing new axioms or altering TU. For example, population genetics (Fisher, Haldane, 
Wright) introduced allele frequency dynamics, genotype distributions, and fitness effects; 
quantitative genetics contributed statistical methods for trait variation; and phylogenetic theory 
provided relational scaffolding for species divergence. Each of these modifications preserves 
the satisfaction of Mendelian axioms while allowing the same reference sentence Φ to hold 
across heterogeneous submodels—eg a classical pea inheritance model, a population genetics 
account of finch beak variation, or a phylogenetic account of extinct lineages. By combining 
domain expansion, enriched interpretation, and relational scaffolding, the amalgamated model 
coherence across submodel. MASS formalizes how external (‘alien’) theories contribute 
compatible sentences that guide the adaptation of submodels. Through push-through and 
sheaf-theoretic amalgamation (§4.4.2.1–2), these sentences enrich Φ and MU’s submodels, 
coordinating structural integration across diverse accounts of biological diversity while 
remaining within Linnaeus’s overall model. 
  New interpretations, expanded domains, and statistical innovations facilitated integration of 
Mendel’s inheritable genes into Darwin’s evolutionary lineages. However, the hypothetical 
‘reference sentence’ of Modern Synthesis did not yet contain the components needed for 
satisfaction in submodels of development, adaptability, or ecology. This required new biological 
elements and mechanisms to interpret their interactions. As described in §2.7, this was 
provided by new insights into the molecular foundations of life. The discovery of DNA in 1953 
(which as Galison pointed out was attributed to Watson and Crick, but actually required a 
‘coordination of action and belief’ among scientist with widely different expertise)162 expanded 
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the domain of biological models with new molecular elements—terms like ‘allele,’ ‘gene,’ and 
‘sequence’ became constants or predicates within Mendelian and Darwinian submodels but 
remained disconnected from developmental and ecological mechanisms emphasized in 
Lamarckian and Humboldtian accounts. This ontological expansion deepened divergence 
among submodels.  
  Over subsequent decades, DNA’s role was reconceived as part of a dynamic regulatory 
system (§2.7) involving gene regulation, RNA expression, and epigenetic modification. These 
mechanisms revealed that the boundary between inherited and acquired traits is more 
permeable than previously thought—a phenomenon sometimes called ‘Lamarck’s revenge.’ 
Epigenetic changes can influence development and traits such as sex, while RNA regulation 
adds flexibility in gene expression. Together, these mechanisms link inheritance, development, 
and ecological responsiveness, supporting a scientific bridging hypothesis—a shareable 
reference sentence Φ —illustrated simply: 

  Distinguishing traits across species develop through regulatory molecular-genetic and 
   epigenetic mechanisms integrating inheritance, individual development and adaptability,  
   and environmental adaptivity. 

Φ encodes a shared structure π, although initially only some submodels—at least MS and MH—
satisfy it. Other submodels require adaptation under ΑMA→S. Broader satisfaction arises only in 
the amalgamated model MA (§4.4.1). MA integrates mechanistic components across 
submodels, so that Φ can be progressively accommodated through push-through and 
adaptation (Steps 3 and 4 of ΑMA→S). In this process, molecular-biological constituents are added 
as domain elements, while cellular and biochemical mechanisms from related theories T* enter 
as interpretation functions. One striking example is the chemistry of synthetic nucleic acids 
(‘XNA’), an ‘alien’ theory that nonetheless helps integrate biological submodels: XNA can 
generate RNA and DNA resistant to biodegradation, enabling new therapeutics (like SARS-
Cov19-vaccines) and clarifying which structural features of nucleic acids are essential for 
heredity. Other chemical, statistical, and mathematical models likewise support integration by 
providing complementary mechanisms and formal tools.  
  When push-through fails, sheaf-theoretic amalgamation provides a higher-order structural 
guide model M+A (§§4.4.2.1–2). Rather than altering Φ, M+A generates a unified structural 
space—via sheaf composition of stalks F(S), F(H), F(H’),…(Figure-1)—in which overlapping 
elements (partial isomorphisms π) from different submodels are consistently aligned. This 
alignment restricts the range of admissible reinterpretations of Φ: successive refinements of Φ′,- 
Φ′′,… must preserve shared structures while integrating distinct structural components (eg 
genetic and ecological factors). Graph-theoretic analysis in MASS then tracks how Φ reshapes 
the evolving network. Minimal modification (Step 4) enforces these constraints in adapting 
submodels by aligning constants and relations across Mendelian inheritance, Lamarckian 
adaptation, Darwinian selection, and Humboldtian equilibria. In this way, Φ can evolve into a 
broadly shareable form that incorporates regulation, inheritance, selection, and environmental 
interaction, enabling MASS to provide a philosophical framework for reconciling fragmented 
biological models—including a unified perspective on Linnaean taxonomy and diversity. 

Undoubtedly, many other scientific areas have also led to—or would allow for—systemic 
integration. Neuroscience, climate, economy can all provide compelling cases. The work for this 
needs to be done by scientists willing to collaborate and think outside their own narrow 
interests. At present, scientists are still more motivated by differentiation than integration. Many 
philosophers are natural realists because this aligns with science—which also specifically 
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motivated Putnam.163 But some may also feel the philosophical and theoretical need, with David 
Lewis, to defuse ‘the bomb [Putnam has devised] that threatens to devastate the realist 
philosophy we know and love’. 164 As long as we need models to understand THE WORLD, we will 
be faced with the indeterminacies that are inherent to model theory. Scientific models are 
inevitably partial and intertwined, leaving parts of reality open-ended. MASS helps integrate 
these fragments into coherent networks, offering resilience against the indeterminacy inherent 
in our understanding of the world. 

  

 
163 Putnam (1994) “Dewey Lecture I, 465—see footnote 137 
164 Lewis (1984), 221 
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