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Chapter 1. Introduction: Model Fragmentation, Theoretical Indeterminacy, and the
Possibility of Integration

In 1976, Hilary Putnam opened his Presidential Address to the American Philosophical
Association with a striking claim: “Realism is an empirical theory [...explaining...] that scientific
theories tend to 'converge' in the sense that earlier theories are, very often, limiting cases of later
theories.” ' This introduced the Model-Theoretic Argument (MTA), which challenges the idea that
formal systems uniquely determine reference—the relation between terms in a language or
theory and what they denote, even in scientific contexts. Putnam linked realism to the
unification of disparate models into more general theories.

But nowadays, many philosophers of science would agree with Sandra Mitchell that ‘science is
disunified, and [...] this disunification [...] brings strength and stability’, > or that ‘integrative
pluralism’ better reflects practice through ‘an expanded epistemology ... embracing both
reductive and multilevel, context-dependent approaches’® Nancy Cartwright even contends
that ‘[natural] laws form a patchwork, not a pyramid. [...M]uch of nature may follow no law but
negotiation between domains. The dappled world is what comes naturally; regimented
behaviour results from good engineering’.? In physics, for instance, Historian-physicist Peter
Galison, notices that ‘forms of work, modes of demonstration, [and] ontological commitments
differ’ across its many traditions.® Physics practice divides into experiment, theory, and
instrumentation ‘matching Kuhn’s criteria for separate communities’®—and ‘even specialties
within physics cannot be considered homogeneous communities’.”

Mitchell also argues that scientific progress often depended on moving beyond the search for
‘universal, exceptionless laws, since much of what we now know about complex, contingent,
and evolved structures would otherwise be excluded’.® Biology illustrates this vividly. In the
Enlightenment, natural diversity was modeled by Linnaeus through a universal taxonomy. In the
nineteenth century this was refined by Darwinian evolution, Mendelian inheritance, Lamarckian
adaptability, and Humboldtian ecology—each capturing different aspects of life’s complexity.
Rather than unifying these accounts, these separations caused disagreements between
competing frameworks—like evolutionists vs creationists, or inheritable vs adaptable
accounts.® Today, subfields such as population genetics, developmental biology, ecology,
combinations (‘evo-devo’'?) and systems biology remain internally coherent yet structurally
divergent. As biologist Eva Neumann-Held argued: ‘Biology still needs to perform its integrative
descriptive function." Instead, a mosaic of partially overlapping scientific explanatory models
developed—each acting as a ‘sub-model’ giving a different account of Linnaeus’s all-
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encompassing taxonomic model: regional variances (Humboldt), adaptive capabilities
(Lamarck), evolutionary origins (Darwin), and inheritable traits (Mendel). These ‘submodels’ act
within the Linnaean order of biological diversity,’” and they are effective within their scope. They
are also difficult to reconcile with the others, even though they reference the same biological
domain—Linnaeus’s Kingdoms of Nature.

This fragmentation sharpens a problem identified by Putnam: how can reference remain
stable across divergent conceptual frameworks? If models differ in structure and interpretation
yet describe the same phenomena, what justifies saying they refer to the same “piece of THE
WORLD”."® Putnam’s MTA draws on the Lowenheim-Skolem theorems to show that even our best
theories can have multiple, non-isomorphic models satisfying the same axioms, allowing
meaning to shift across models.' For Putnam, scientists construct “symbolic representations of
their environment” shaped by practices, interests, and linguistic conventions.' Putnam found a
solution in internal realism, which holds that truth and reference are fixed within conceptual
frameworks. He opposed the metaphysical realist’s unique, theory-independent mapping from
language to THE WORLD. Critics, however, disputed this view for blurring truth and justification
and inviting relativism. Putnam himself later moved toward a pragmatic natural realism aligned
with scientific practice, stating that ‘there is no conflict between natural realism and
science’.’®" However, he never seemed to fully abandoned internal realism. %20

The core insight of MTA—the non-uniqueness of models—remains influential. Philosophers
continue to ask how best to account for the success of diverse formal models of a single
scientific theory, which, despite structural differences, yield accurate or useful descriptions of
the same phenomena.?' Some call for ‘a revised and expanded epistemology’ to understand
complex explanatory structures that, despite disparities, work remarkably well.??

Against this background, this thesis revisits Putnam’s concerns, seeking to reframe rather
than oppose them. It proposes Model Adaptation by Shared Satisfaction (MASS) as a new formal
framework for managing indeterminacy. MASS identifies sentences satisfied across structurally
divergent submodels—reference sentences—that serve as connective elements linking different
perspectives without requiring full unification (83.2.3, 84.1). Fragmentation is treated as multiple
vantage points rather than a flaw: unlike pluralists who take diversity to imply disunity, 2>24% the
world itself remains unified, even if our perspectives do not—and they can mutually enrich one
another. As Sandra Mitchell notes, modeling can bridge gaps between pragmatism, complexity,
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and theory across scientific disciplines.?®

MASS offers a model-theoretic alternative to both the metaphysical realist’s external
reference and the relativist implications of internal realism. Each scientific submodel s treated
as a partial realization of a broader, often underspecified theory. When a reference sentence ¢ is
satisfied in multiple submodels, it sighals a common structural component. This approach can,
in principle, link scientific submodels, accepting that indeterminacy is inherent to scientific
representation but demonstrating that it is formally manageable. MASS provides a meta-
theoretical strategy for this, employing model-theoretic tools augmented by graph- and sheaf-
theoretic methods to stabilize reference while preserving the specificity of submodels.

In this thesis, the development of (sub)models for biological diversity serves as a recurring
case study to illustrate how distinct frameworks can refer to overlapping domains without
reduction to a single theory. It will be shown that they can, in principle, be linked by recent
advances in molecular biology—although this would require a new ‘interactionist molecular
paradigm’.?’ The central question of this thesis is whether MASS can manage scientific model
fragmentation by preserving stable reference, and how shared elements across submodels can
connect formal viewpoints that capture specific aspects of a theory while maintaining their
distinctiveness. Chapter 2 offers a historical overview of (sub-)models of biological diversity.
Chapter 3 introduces model-theoretic concepts more formally, and focuses on the Lowenheim-
Skolem theorems and their implications for model indeterminacy. Chapter 4 develops MASS in
detail, and Chapter 5 how this contributes to unification. Chapter 6 discusses MASS in relation
to Putnam’s MTA, and applies it to (sub-)models of biological diversity—which are presented
next.
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Chapter 2. Biological Diversity as a Case Study in Model Fragmentation and Reintegration

Scientific fragmentation is vividly exemplified by theories of biology diversity. What began in the
Enlightenment as a systematic classification of nature, evolved into diverse models addressing
variation, inheritance, evolution, development, and adaptation from distinct perspectives. These
models share the empirical domain of all living organisms but differ in structure, scope, and
aims—often sharply enough to generate conflict. This raises the thesis’s central challenge:
relating divergent models without losing their explanatory values.

In the eighteenth century, Linnaeus’s Systema Naturae established one of the first formal
frameworks for organizing biological knowledge. Amid the age of exploration, Linnaeus classified
the increasing numbers of known organisms into nested hierarchies, treating species as fixed
natural kinds. Despite its theological roots, Linnaean taxonomy became a durable framework
that is still used. By the nineteenth century, ideas about this system fragmented. New models—
Humboldt’s environmental mappings, Lamarck’s organic adaptivity, Darwin’s evolution, and
Mendel’s inheritance—introduced differing assumptions and methods. Though all concerned
life’s diversity, these models diverged in explanatory structures and concepts.

The twentieth century sought to reconnect these strands, notably via the Modern Synthesis
merging Darwinian and Mendelian principles——although it did not integrate developmental or
ecological perspectives. Recent advances in epigenetics and systems biology have enriched but
also multiplied conceptual frameworks. The following sections trace these developments and
set the stage for applying MASS to submodels of biological diversity in §6.2.

2.1 Linnaean Taxonomy: A Model of Classification

Carolus Linnaeus (1707-1778) considered natural history to reflect a perfect Divine order, and
he began classifying plants into nested hierarchies based on shared traits.?® The species, as the
core unit, was a natural kind—fixed, bounded, identified by visible traits and reproductive
compatibility. Linnaeus transformed the diverse descriptive practices of his time—based on
appearance, use, and tradition—into a coherent system via a binomial nomenclature of genus
and species. His final Systema Naturae (1735-1758) organized life into Three Kingdoms of
Nature: Regnum Animale, Regnum Vegetabile and Regnum Lapideum.? Genera and species
referred to stable sets under shared morphological predicates, forming the basis for modern
botanical and zoological nomenclature. While broadly encompassing all life, the immutability of
species was soon challenged by emerging observations in nature.

2.2 Lamarckian ‘Life Force’: A Model of Developmental Adaptation

Jean-Baptiste de Lamarck (1744-1829) introduced the term biologie for the scientific study of
life, and moved beyond static morphology to consider development and adaptation. He
proposed that a vital organizing force (le pouvoir de la vie) drives organisms toward greater
complexity, while adaptation to environmental conditions (l'influence des circonstances)
shapes their specific traits. In Philosophie Zoologique (1809), Lamarck formulated two biological
laws:*® organs used frequently develop further while unused ones atrophy; and acquired traits
can be passed on to descendants. The giraffe’s neck elongation in response to taller trees
exemplified this. Lamarck’s ideas were influential, but they lacked mechanism and would later
be contested by Darwin’s evolutionism, which emphasizes group-based selection of random
traits rather than individual development of adaptive traits.

2.3 Humboldtian Environmentalism: A Model of Relational Variation
Alexander von Humboldt (1769-1859) world-wide voyages of discovery led him to re-envision

28 Linnaeus, Species Plantarum (1753-1759)
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natural history as a dynamic system shaped by environmental conditions. He portrayed
biological variation as ecologically modulated continuity rather than fixed taxonomic
categories.® Organisms formed parts of ecological gradients and geographic patterns—an
interconnected Naturgemalde.®* Humboldt stressed connectedness over identity, restructuring
Linnaean taxonomy into a relational framework based on altitude, latitude, humidity, and soil.
His model partially reorganized life by establishing environmental networks rather than replacing
taxonomy, and also lacked mechanisms for adaptation or persistence of ecological variations.

2.4 Darwinian Evolution: A Model of Historical Descent

Charles Darwin (1809-1882) followed Humboldt’s idea to understand nature by exploring it, but
his Voyage of the Beagle (1839) revealed different patterns. On the Origin of Species (1859)
described species as products of natural selection acting on random inherited variation. The
Linnaean tree became genealogical: species were evolutionary entities, not static. Darwin
acknowledged Lamarck’s and Humboldt’s insights that diversity is dynamic rather than static,
but he framed ‘survival of the fittest’ more mechanistically. However, this was still vaguely
represented by ‘trait transmission’ from organs to reproductive cells. The timescales involved
and the complexity of transitions between species remained difficult to reconcile.

2.5 Mendelian Genetics: A Model of Generational Hybridization

In 1865, Gregor Mendel (1822-1884), unknown to Darwin, published experiments on pea
plants.® His systematic results indicated particulate ‘factors’ (Anlagen—later genes) that were
predictably inherited as dominant, recessive, or incomplete.®* Mendel’s mechanistic, rigorous
model introduced generational hybridization via quantifiable, rule-based interpretations linking
‘factors’ to binary traits. His controlled experiments abstracted from natural complexity and
environment, clashing with Darwin’s gradual evolution, Lamarck’s individual adaptation, and
Humboldt’s ecological gradients. Mendel’s model did not affect Linnaean taxonomy, which
already identified hybrids.

By the early twentieth century, biology remained taxonomically Linnaean but fractured into
distinct partial models: Mendelian inheritance focused on discrete factors, Darwinian evolution
on chance and selection, Humboldtian ecology on environmental distribution. Lamarck seemed
largely forgotten. Though sharing the domain of life, these models differed structurally and
conceptually, often incommensurable, forming a disjointed patchwork rather than a pluralistic
synthesis.

2.6 The Modern Synthesis
From the 1920s-30s, statistician Ronald Fisher, biologist J.B.S. Haldane, and geneticist Sewall
Wright collectively rediscovered Mendel’s work and integrated it with Darwinian selection using
recent advances in population statistics. In 1942, this became the Modern Neo-Darwinian
Synthesis:*® evolution as changing gene frequencies over time. It preserved the strengths of
Darwin’s evolutionary and Mendel’s generational coherence, and reinterpreted Linnaeus’s
categories as gene clusters. Humboldt’s insights were partially absorbed as ecological
pressures. Lamarck’s laws were now rejected as incompatible and unsupported.

Molecular explanations of genetic transmission came in sight when Watson and Crick’s
multidisciplinary team elucidated the structure of DNA (1953). DNA genetics offered powerful
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tools for species classification, from morphology to gene patterns. Over time, this gave rise to
widespread genetic reclassifications.®*?” This still respects Linnaean hierarchical life model, but
does not explain short-term adaptability or resilience.*® Neo-Darwinism also struggles with the
fossil record’s lack of expected intermediate forms under gradual mutation and selection.

2.7 Beyond Genetics: Epigenetic and Regulatory Models of Development and Adaptation
Over the past fifty years, biology’s focus on molecular life mechanisms deepened, with genetics
becoming a biochemistry specialization. Around 2000, it was demonstrated that gene
expression can adapt and transmit to offspring without DNA changes.*® Epigenetic and
regulatory mechanisms revealed that inheritance, development, and adaptation are
interconnected, extending classical Mendelian genetics. Genes are now seen in regulatory
networks where adaptations arise from subtle chemical shifts in cells, rather than isolated
mutations.*>*' These findings enrich debates on processes driving evolutionary adaptations*?
and challenge traditional genetic inheritance.®

This historical development illustrates scientific fragmentation, where partial, structurally
distinct, and sometimes conflicting submodels represent overlapping features of a general
model. Model theory helps understand how models can fragment into submodels, and
theoretical possibilities and limitations for reconciliation. The next chapter introduces the
essentials of model theory—interpretation, satisfaction, cardinality—which provides the formal
structure for understanding model-theoretic indeterminacy and, ultimately, for developing the
framework of Model Adaptation by Shared Satisfaction (MASS) as a strategy for coherent
reintegration.
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Chapter 3 Insert 1—Model Theory*44546.47
Model theory formalizes the structural relationships between objects in a domain and the terms of a formal
language £L(Z), where the non-logical symbols of a signature Z are interpreted according to axioms and rules.

Basic Definitions*
A model-theoretic structure (a model M of £(Z)) consists of:

e Domain D: a non-empty set of objects over which variables range

e Signature Z: a set of non-logical symbols, specifying
o predicate symbols P; of arity mi
o function symbols F;jof arity n;
o constant symbols ¢,
e Language L(Z): the set of well-formed formulas generated from X using logical connectives and
quantifiers
e Subsignature L: a subset of Z containing only some of its non-logical symbols: 3'C X
The language £(Z') is then a sublanguage of £L(Z):—a ‘rudimentary language’*° tied to the
corresponding submodel M*
e Interpretation function I: assigns meanings to the non-logical symbols
e Theory T: asetof sentences Iin L(Z), closed under logical consequence
e Valid sentences (¢, Y, ...): satisfied in all models of L(Z) (ie M = ¢)
e Modelclass:MOD(T) ={M | M = T}.
Semantic assignments:
e |(Pi) € Dm:assigns a relation to each predicate
e I(Fj): D" — D assigns a function to each function symbol
o l(ck) € D assigns an element of the domain to each constant.

Embeddings and Submodels®

An embedding is an injective, structure-preserving map

h:M—->M

that preserves the interpretations of relations, functions, and constants.

In model theory, a partial sub-model is the special case where h is inclusion (D' € D), so that M' is fully
contained (‘nested’) in M.

In the MASS framework ( Insert 2, 84.6), | extend this to a broader concept of submodels M' which include:

e Partial sub-models: the signature remains the same (Z), but the domain is restricted (D' € D).

e Reducts: the domain remains the same, but the signature is reduced to a subsignature (L' € Z).
The submodel M' then interprets only the non-logical symbolsinL'.

e Hybrid submodels: combinations of components from different submodels.
A partialisomorphism is a structure-preserving map between overlapping fragments of models—
domain elements, predicates, constants, and variables—that preserves satisfaction of sentences
restricted to the shared structure.

Interpretation

In this thesis, the general framework assumes a ‘universal’ model M, of a theory Ty. Submodels M' (eg
Ma,sc.HH,..s,.4#) May be related by partial isomorphisms, ensuring that shared components are consistently
interpreted so that a reference sentence ¢ is preserved across them. Such partial isomorphisms must be
embeddable in My, even when other components differ. This includes reducts, where the domain is identical
but the active subsignature is smaller, and hybrid submodels that incorporate elements from models of
other theories, provided no logical contradictions arise.
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Chapter 3. Model Theory

3.1. Essentials of Model Theory

This section gives a brief overview of model theory, with technical details in Insert 1.5

In first-order logic, a theory Tis a set of sentences (IN in a formal language L. Truth is alwaysonly
relative to models: a sentence ¢ is true in a model M (written M & ¢) iff M satisfies ¢ under its
interpretation.®? A model comprises a domain D of objects together with an interpretation
function I that assigns: to each constant symbol an element of D, to each n-ary function symbol
an operation on D7 — D, and to each n-ary predicate symbol a subset of D"

A model satisfies T if all sentences in T hold. Even in a fixed language, many distinct models
of T arise by varying interpretations, so a sentence from I may be true in multiple models. This
core indeterminacy is closely tied to the model’s cardinality |[M|, determined by its domain D.
Domains may be finite, countably infinite (like N with cardinality 80), or uncountably infinite (like
R or larger—X 1,82 etc). Larger domains yield vastly more structurally distinct models.

These model-theoretic concepts also affect scientific modeling, especially in complex fields
like biological diversity. Biological diversity models split into sub-frameworks emphasizing
ecology, adaptation, selection, or inheritance. Each can be treated, for present purposes, as a
submodel of a broader (essentially Linnaean) ‘diversity model’: they share a basic commitment
to describing and explaining life’s diversity within Linnaeus’s systematic taxonomy, but differ
internally in how their interpretation functions assign meaning to the same non-logical
vocabulary. Domains vary from countable discrete traits and parental inheritance, to
uncountable continuous ecological gradients and entire populations.

The set of all models satisfying Tis M | M = T}. Asentence ¢ is true in M if it holds under M’s
interpretations. For example, ‘x has a long neck’ may be satisfied in Lamarck’s model (where the
predicate is interpreted as habitual stretching), in Darwin’s (as survival advantage), in Mendel’s
(as inherited trait), or in Humboldt’s (as ecological niche). Although ¢(x) refers to the same
observable characteristic, its satisfaction conditions differ across models—illustrating the
model-relativity of truth,

Philosophers have recognized the importance of model-building in understanding reality.
Some philosophers see it as a key method for understanding reality.®*** Timothy Williamson, for
instance, argues that model-building is an underappreciated method of doing philosophy,
especially in formal metaphysics.%® Others consider modeling as a structured cognitive and
epistemic way to theorize about reality.%® *” Many philosophers work on mathematical
frameworks for metaphysical explanation, proof and grounding.%® *® Some even attempt to
model the world itself as a metaphysical higher-order graphical structure.®® Putnam observed a
similar “striking connection” between foundational issues in science and mathematics.®' He
also noted that this flexibility challenges the idea of a single true model of THE WORLD: scientific
theories may be expressed by many valid but structurally different models, raising questions
about unity and reality. These issues are formalized by the Lowenheim-Skolem theorems from
which Putnam’s Model-Theoretic Argument is derived.
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3.2. Lowenheim-Skolem Theorems and Indeterminacies of Scientific Fragmentation
Scientific theories often give rise to multiple models that capture certain regularities in the
world. Each model selects a different domain and relies on different assumptions about the
same underlying reality. Hence, a single unified model is rarely determined. Putnam suggested
that realism could be understood as the hypothesis that science converges over time, with
earlier theories becoming limiting cases of broader, more accurate ones.®> However, the
Léwenheim-Skolem theorems point in a different direction ny first-order theory with an infinite
model has many models of different sizes and internal structure, showing that logical models
alone provide no indication that earlier theories become “limiting cases of later ones”. Applied
to science, this shows that even when different scientific models explain the same phenomena
equally well, they may still be structurally incompatible—especially when drawn from different
disciplines. Scientific development often results in a collection of specialized models difficult to
integrate.

3.2.1 The Lowenheim-Skolem Theorems and Their Structural Implications

As noted, in science itis common to construct general models from limited or sparse data—say,
a few measurements in biology or ecology. A simple curve may fit the data well, but infinitely
many alternative models—some more complex, or based on different assumptions—could also
match the observations. In this sense, the data alone underdetermines the model. The
Lowenheim-Skolem theorems reveal a similar phenomenon in logic: even a precisely
formulated first-order theory can have many models. These models differ not only in size but
also in their internal relational structure and domain composition. The logical form of a theory
constrains the relations between its terms, but it does not uniquely determine the domain or
structure of any model that satisfies it, because the axioms specify conditions compatible with
many different structures. The Downward and Upward Lowenheim-Skolem Theorems formalize
this:® any first-order theory with an infinite model will have a range of models—some smaller,
some larger, and many structurally distinct—each capable of satisfying the same sentences
from I, but doing so over different domains.

The Downward Lowenheim-Skolem Theorem states that if a first-order theory is expressed
using a countable language—that is, a language with only countably many non-logical symbols,
such as predicates, functions, and constants®—and this theory has an infinite model, then it
also has a model whose domain is countably infinite. This result holds even when a theory is
meant to describe an uncountably large domain, such as the real numbers or an entire
ecosystem. Smaller models can ‘encode’ portions of the original domain within a limited
structure, yet still satisfies all the theory’s axioms.

The Upward Lowenheim-Skolem Theorem shows that any infinite model has models of
arbitrarily large cardinality. These larger models can embed the original structure while
remaining elementarily equivalent: they satisfy the same first-order sentences, even if
instantiated differently. A natural illustration is the extension of Mendelian inheritance into the
Modern Synthesis. Mendel’s pea experiments form a countable model, studying fifteen to twenty
variants from two closely related genera, with three types of transmission across discrete
generations for about seven heritable traits. In nature, tens of thousands of potentially
hybridizable pea variants and roughly 30,000-40,000 genes give rise to an effectively
uncountable range of traits. Mendel’s model is thus elementarily embedded within a population-
based model (both submodels of biological diversity) that applies the same axioms to a vastly
expanded domain, of which Mendel’s greenhouse experiments examined only a tiny subset.

82 putnam (1977), 483
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In reality, the Modern Synthesis also included many structural modifications that go beyond
what the Lowenheim-Skolem Theorems require—such as multiple populations species, and
extinct lineages, additional traits (‘fitness’), new interpretation functions (‘survival’), and
statistical methods for allele frequencies and evolutionary dynamics. §6.2 will discuss how
MASS can deal with these contributions for ‘external theories’. However, if for illustration we
restrict population genetics to the original Mendelian rules applied across this larger domain, we
obtain a larger, elementarily equivalent model, exemplifying the Upward Léwenheim-Skolem
Theorem by showing how a single theory can support models of vastly different cardinality and
structure.

3.2.2 Structural Fragmentation and the Local Underdetermination of Scientific Models
The Lowenheim-Skolem theorems show that no first-order theory with an infinite model can
single out one canonical model fixing both the identity and structure of its objects. But
indeterminacy is not merely about size: models satisfying the same axioms can also diverge in
how they represent relations and operations. Hilary Putnam took this structural openness to be
central to his argument against metaphysical realism: if a theory is compatible with many
models that differ not only in domain size but also in internal relational structure, the idea of a
single theory-determined ‘external’ reference model collapses. Quine similarly warned that
cardinality indeterminacy should not be dismissed as a mere technical oddity. ®® For both, the
inability to fix a unique ‘intended’ model undermines the notion that theories straightforwardly
correspond to THE WORLD.

Clear counterparts to this form of cardinality indeterminacy are rare in the empirical
sciences, but in physics, some theorists recognize direct analogues. Lee Smolin, for example,
argued that spacetime itself may not be continuous, but instead could be modeled in radically
different yet empirically indistinguishable ways—discrete, continuous, or something in
between—without any single one being fixed as the correct structure by current theory or
evidence.® Scientists usually generate a plurality of domain-specific constructions reflecting
different disciplinary emphases, research traditions, methodological constraints, and
theoretical inputs. One model may focus on morphology, another on genetics, others on ecology
or phylogenetics. Each is internally coherent yet incomplete, and the differences between them
are structural, not merely informational: they diverge in how entities, relations, and reference
classes are defined and applied. For instance, one model might treat species as discrete units,
another as populations with variable traits, and a third might focus on ecological interactions
across those populations (see §6.2 for a formal application of MASS to submodels of biological
diversity).

This fragmentation is not simply a matter of pragmatic limitation. It follows from the model-
theoretic fact that a single first-order theory can support multiple, equally legitimate submodels
that are not mutually reducible. The underdetermination thus applies not only globally—across
the space of all full models MOD(T)—but also locally, in the construction of submodels adapted
to specific research perspectives. Philosophers of science have long recognized this. Patrick
Suppes, for example, developed a semantic view of theories that explicitly accommodates a
multiplicity of non-equivalent models.®” Clark Glymour similarly emphasized the context-
dependence of modeling practices.® Some of these ideas resonate in Kuhn. Although he did not

8 Putnam (1981), 41: ‘W.V.Quine has urged that that is what reference in fact is—indeterminate! [...] If the range of
values is infinite, any infinite range can be made to serve; this is the Skolem-Lowenheim theorem. The true sentences
stay true under all such changes.” Putnam cites Quine (1977), 176-196, 190-191

% Smolin (2021)

87 Suppes (1960), 163-85

88 Glymour (1980)
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directly engage directly with model theory or the fragmented structure of science, ® Kuhn later
described scientific paradigms as sets of ‘metaphysical interpretations of basic models’
embedded within disciplinary matrices.” This notion aligns with the idea that scientific
modeling across disciplines involves distinct structural commitments that can diverge even
when the overarching theory is shared. Kuhn’s concept of incommensurability—where different
scientific communities operate with mutually incompatible standards of evidence and
meaning—echoes the model-theoretic insight that structurally distinct models may all satisfy
the same theory yet resist straightforward translation into one another.

From this perspective, scientific paradigms can be understood as non-isomorphic local
models of a broader theoretical space. This allows Kuhn’s historical insights to be seen as
responses to structural features of formal representation, rather than purely sociological or
psychological phenomena. The deeper lesson from model theory is that such fragmentation is
not just possible but inevitable under the expressive limitations of first-order logic. The
Lowenheim-Skolem theorem shows that any theory represented within this framework admits
multiple non-equivalent models, none of which can be singled out as uniquely correct on logical
grounds alone. Moreover, there is no guarantee that a given local model is not itself part of a
larger model or that it could be straightforwardly extended to one.

In this light, model fragmentation should not be seen as a failure of scientific unity, but rather
as a formally grounded expectation. In science, the coherence—if attainable at all—must be
achieved not by positing a single privileged model but through processes of coordination,
adaptation, and partial integration among multiple models. While model theory offers tools for
understanding such relations, it does not supply ready-made theorems that resolve these
complex, cross-model interactions. This is the subject of Model Adaptation by Shared
Satisfaction (MASS), which aims to integrate submodels that are part of an encompassing
model, as explained in Chapter 4. Their interactions will be examined in Chapter 5, from the
perspective of graph-theoretic interconnections between models. Technically, these rely on
shared satisfaction of a formal reference sentence by partially isomorphic submodels—a
mechanism that also underlies Putnam’s model-theoretic argument, which will be revisited in
86.1.

3.2.3 Referential Indeterminacy and the Role of Interpretation

Putnam did not address theory-fragmentation directly, but he rejected the idea of a knowable
“God’s-eye point of view”. We only have situated perspectives shaped by specific purposes’'—
fragmenting any imagined total model into context-specific interpretations. Linnaeus’s
taxonomy was one such universal view, which was diversified into Darwin’s and Humboldt’s
expeditions, Mendel’s experiments, and other approaches. This raises the question: how do
individual sentences retain—or lose—reference across diverging interpretations? A single
reference sentence ¢ can link otherwise different models. For instance, ‘the African Wildcat
(Felis silvestris lybica) is the progenitor of the domestic cat’ may hold in a morphology-based
species model, an inheritance model, an evolutionary model, or an ecological model—each
with adjustments that interpret the claim in terms of phenotype, descent, population genetics,

8 Barnes (1974), 95; cited in Matthews (2022), 26: ‘Kuhn’s work reveals little sensitivity to the highly differentiated
structure of science and the [...] competition [...] between [...] ‘schools’ or specialities. It leaves us unprepared...]
that a combination of [...] specialties led to the elucidation of the structure of DNA and hence [...] a new basic model
for biological investigators.

70 Kuhn (1970), 182-187; cited in Matthews (2022), 13: Kuhn replaced ‘paradigm’ with ‘disciplinary matrix,” comprising
symbolic generalizations, metaphysical interpretations of models, shared values, and exemplars guiding puzzle-
solving.

7T Putnam (1981), 49-74: “Chapter 3 - Two Philosophical Perspectives,” 50. See also 3.2.3 (re footnote 74) for a
comment on Putnam’s consideration of indeterminacies as a problem of persons (‘speakers’ and ‘hearers’), and
footnote 74 for my motivation to adopt this terminology.
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or hybridization”?

Putnam’s central concern was the deeper indeterminacy of reference itself. He argued that
metaphysical realism cannot explain why “cat” refers to cats rather than to some systematically
permuted set (eg dogs).”® A formal satisfaction correspondence between words and sets of
things may capture regularities in collective speaker behaviour’*—yet without additional
constraints it fails to secure a unique mapping.’® Even in a unified theory Ty, truth is model-
relative: its full model M, satisfies all its sentences, but submodels may satisfy only a subset. A
true sentence in My may be false or irrelevant in one of the submodels, and vice versa when the
submodels omit essential fragments of M. Satisfaction in one submodel may suggest
plausibility but not truth in the theory, unless it holds across all submodels of My (as explained
and nuanced by the Compactness Theorem in the next subsection). As Michael Dummett notes,
“there may be no such thing as a conclusive verification,” so meaning must rest on grounds of
assertion that fall short of conclusiveness.”®

Like indeterminacy by cardinality or model fragmentation, referential instability is no mere
technical anomaly—it shapes how theories maintain coherence across diverse modelling
contexts. Later chapters develop a method for preserving shared reference despite model
fragmentation: Model Adaptation by Shared Satisfaction (MASS). Chapter 4 (§84.6) formalizes it;
Chapter 5 (85.2) operationalizes it. While most of this thesis addresses the scientific and
philosophical aspects of a model-theoretically effective and scientifically meaningful reference
sentence (84.1, Chapter 6), a simple formal example appears in Insert-2.

3.2.4 Compactness and the Constraints on Global Integration

The fragmentation of a universal model into submodels is not necessarily detrimental. As stated
earlier, some philosophers and scientists consider pluralism as fundamental to nature”” and
even essential for scientific progress.’® Many scientific theories—especially those addressing
complex empirical domains like biological diversity—are applied through multiple submodels,
each emphasizing different structural features (see Chapter 2). However, this fragmentation
leads to indeterminacy about how these submodels relate to a unified explanatory theory. The
Compactness Theorem offers a partial answer. It states that if every finite subset of a set I' of
first-order sentences is satisfiable (ie each finite subset has some model that makes all
sentences true), then the entire set I' is satisfiable.”®®"® In terms of fragmented modeling, if
each submodel represents a finite, internally consistent portion of a broader theory Ty, then
there exists at least one global model Myin which all these fragments coexist.®> However, this
guarantee is purely existential and non-constructive. Compactness does not require that this
recombined global model either mirrors the original structure or preserves the interpretive
integrity of its fragments. For example, consider local theories {Tys, Tho, THs} modeling
morphological, genetic and ecological aspects via partial models (Mu1, Mu2, Mus). Compactness

72 This illustrative example of has limited scientific and integrative value. See §84.1 and 6.2 for more discussion.

73 Putnam, Hilary, 22-48: “Chapter 2 - A Problem about Reference”

74 This thesis Is about scientific theory, but | will adopt the ‘Tarskian’ perspective of a ‘speaker’ and a ‘hearer’ who can
each have individual ‘partial sub-models of THE WORLD. | previously explored this speaker-hearer interaction in an
essay, hence the use of M s (‘speaker’) and My (‘hearer’) for presenting and receiving sub-models. | cannot argue here
how interpersonal communication is a case for MASS.

75 Putnam (1977), 483

76 Dummett (1978), xxxvii

77 Cartwright (1999), 1: Nature is a jumbled world, mostly governed by negotiation rather than strict laws.’

78 Galison (1997)

7 Hodges (1997), 124: “Theorem 5.1.1 (Compactness [...]):

Let T be a first order theory. If every finite subset of [sentences from '] T has a model then T has a model.”

8 Doets (1996), 51-55: “4.1 Compactness”

81 See Insert 1 for concepts and symbols.

82 Hodges (1997), 124
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ensures there is some model M satisfying all sentences, but this M might combine
morphological traits of one species with ecological or genetic features from others—producing
an abstract amalgam that is formally consistent but biologically unviable.

This non-constructiveness of Compactness reveals a key limitation: global coherence cannot
be assumed from local consistency alone. MASS addresses this by not demanding one fully
unified global model. Instead, it proposes an adaptive process that incrementally adjusts local
partial models—through minimal ‘push-through’ modifications of interpretation functions and
other elements (84.3)—preserving shared reference points at the level of key sentences ¢. Thus,
while Compactness guarantees the theoretical possibility of a global model, MASS
operationalizes this by ensuring local coherence through progressive, context-sensitive
adaptation. Rather than assembling a disjointed collection of fragments in a ‘bag of balls’, MASS
uses shared sentences as a kind of ‘glue’ to shape fragments into a coherent ‘sphere’ (as visually
illustrated in Figure 2, 85.2).8% Local successes in achieving shared satisfaction form the
practical foundation of theoretical coherence despite the multiplicity of models revealed by
Lowenheim-Skolem theorems.

Chapters 4 and 5 will develop this further, showing how tools such as the push-through of
shared structures, sheaf-theoretic amalgamation, and graph-theoretic mappings serve as
technical means to apply this ‘glue’. These methods secure points of shared reference and
supportive structures across partial models, while allowing each submodel to preserve its
essential structure. The next chapter will illustrate this ‘toolbox’ (schematized in Insert 4 and
outlined in 84.6), explaining how a reference sentence can be propagated stepwise through a
fragmented network of models with minimal adaptation.

8 For visual illustration see Figure 2, 85.2.
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Chapter 4. Towards an Internal Resolution of Indeterminacy by Model Fragmentation
—Shared Satisfaction of a Reference Sentence with Minimal Model Adaptation

The preceding chapters have shown that model-theoretic indeterminacy, as revealed by the
Léwenheim-Skolem theorems and tempered by Compactness, blocks the straightforward
construction of a single, fully unified model representing a complex scientific theory.
Compactness guarantees the existence of a global model My consistent with all finite fragments
(Mu1, My, ete), but offers no constructive method for achieving coherence across a fragmented
network of submodels.

This chapter introduces Model Adaptation by Shared Satisfaction (MASS), an iterative
framework for bridging fragmented models via a carefully chosen reference sentence ¢. Rather
than imposing rigid structural uniformity, MASS establishes common ground by ensuring that ¢
is satisfied across submodels through minimal, controlled adaptations. The method preserves
diversity in legitimate perspectives while providing a flexible coordination of interpretations. By
focusing on shared satisfaction rather than full unification, MASS offers a stepwise path to
internal theoretical coherence. The chapter begins with the features of a reference sentence
that enable effective sharing among partial models (84.1), before examining how such
sentences can bind them together (§4.2).

4.1 Reference Sentences and Their Function in MASS

The strategy begins with a reference sentence ¢: a nontrivial structural claim grounded in the
Unified Theoretical Framework (Ty). It captures a principle whose truth cannot be confined to
any single submodel without undermining the coherence and explanatory power of Ty. In this
sense, ¢ represents a core hypothesis of Ty, designed to unify coherent but not immediately
compatible submodels—such as those from distinct disciplines or rival frameworks—that
describe different aspects of reality.

As discussed in 83.2.3, the content of ¢ is critical to MASS. It must be neither trivial nor too
general, nor unduly complex. Full satisfiability across all submodels is neither expected nor
required; progress comes through iterative refinement of ¢ and the submodels. ¢ should not be
mistaken for a higher-order truth covering all phenomena at once. Because the classical model
theory used here is grounded in first-order logic, the expressive scope of model-theoretic
sentences remains limited. Attempting to force a universal claim into a fragmented network
risks imposing unrealistic structural demands. Nor should ¢ be an axiom of T, or a self-evident
feature of My already shared by every submodel. Models satisfying ¢ must not be mere
homomorphic copies of one another, as this would mask meaningful structural differences and
defeat the purpose of MASS to mediate between genuinely distinct submodels.

This approach accommodates a wide range of complexities in ¢ while remaining adaptable
and self-correcting. Later sections (84.4; Chapter 5) trace how shared satisfaction spreads
across submodels and where it encounters limits. To explain MASS, ¢ need only be challenging
enough to advance both scientific and philosophical insight, while the submodels must be
sufficiently distinct to make integration worthwhile. When referring to Ty as the ‘Unified
Theoretical Framework’ and ¢ as a ‘meaningful reference sentence, | aim to keep the same
deliberate vagueness—and constructive ambition—that Putnam used for his ‘ideal scientific
theory T;. 8 In Chapter 6, however, | return to a richer example from biological diversity than the
African Wildcat of §3.2.3.

8 putnam (1980), 473: ‘[A] possible formalization of present-day total science T, and a possible formalization of ideal
scientific theory Ts. T1 is epistemically ‘ideal’: [...] when God makes up T, He constructs [...] a limit of theories [...]
rational [for scientists] to accept, as more and more evidence accumulates, [...] relative to which T can be
quantitatively compared.’
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4.2 Fixation of Indeterminacy by Shared Satisfaction across Fragmented Models

Our reference sentence ¢ is assumed to capture a core aspect of Ty and thius is satisfied in
its full model M. However, this satisfaction can only be confirmed if ¢ is preserved—ie remains
true—across all submodels of My. When Ty is complex and My is fragmented, direct proof is
generally impossible due to indeterminacies from model fragmentation and cardinality.

The strategy is to fix satisfaction through the shared structure of ¢. If ¢ is true in My and
satisfied in one submodel, it should also be satisfiable in others, provided these submodels
overlap in the structural core component  expressed by ¢. If ¢ is universally satisfied, it cannot
be logically contradictory in any submodel or the full model of Ty, and no other true sentence ¢
in Ty is refuted by it. This does not mean that every submodel will be able to satisfy ¢ from the
outset. For one, ® must satisfy strict conditions within Ty and interact coherently with
overlapping submodels to ensure satisfaction can be maintained or restored. These constraints
help mitigate destabilizing consequences of the Lowenheim-Skolem theorems. In this thesis,
they are formalized using model-theoretic tools and graph-theoretic descriptions of the network
of submodels described in this Chapter and the next.

The remainder of this Chapter demonstrates how the functions and structures of
interconnected submodels are internally constrained by imposing a shared isomorphism central
to My, hence compatible with any submodel—though not necessarily entailed in each. @
expresses the supportive partial structure 1, enabling shared satisfaction with minimal
adaptation. This builds on model theory (83.1), but employs integrative tools like push-through
construction (84.3) and sheaf-amalgamation (84.4). Other advanced approaches are considered
(84.5) but found unsuitable for fragmentation-induced indeterminacy. In 84.6 these tools are
employed in Amasss, @ model-adaptation axiom schema of Model Adaptation by Shared
Satisfaction. Insert 2 (above 8§4.6) shows how their stepwise application leads to progressive
adaptation of partial models or refinement of ¢g—or their rejection as unsustainable. The
dynamics of these adaptations are analyzed in Chapter 5 via graph theory, showing how
increasing satisfaction across submodels generates a coherent network sharing ¢’s content and
structure. Chapter 6 discusses how far this reduces indeterminacy from model fragmentation,
illustrated with recent molecular (epi)genetic advances integrating distinct models of biological
diversity.

4.3 Push-Through Construction of Reference Sentence Structures

Scientific theories often cover various aspects of reality, described by different hypotheses
within the same framework. A hypothesis gains support when critically compared with others
under the same theory. In model-theoretic terms, this mirrors how sentences in submodels are
tested for consistency and satisfaction relative to other submodels.

Here, the reference sentence ¢ plays the role of a unifying hypothesis in our unified
theoretical framework Ty, even though Ty also accommodates other, more specific hypotheses
with their own submodels. If ¢ is true in Ty, it should be satisfiable in all submodels of M.
However, satisfaction is not guaranteed in submodels lacking the structural elements needed
for @ (see § 3.2.2 on model fragmentation). Thus, ¢ may be provable in some submodels but
unprovable in others, without entailing a contradiction.

The push-through construction addresses this by transferring the isomorphic core structure
of p—mt—from one submodel to another.®® In standard model theory, push-through may also
include a permutation function giving a one-to-one ‘translation’ between the mappings of
submodels, which can radically alter their referential interpretation. As we will discussin §6.1,
Putnam used this to enforce his model-theoretic argument for indeterminacy of reference. In the
present approach, however, the partialisomorphism mincludes only the elements necessary to

8 Button & Walsh (2018), 35-37: “2.1 Isomorphism and the Push-Through Construction.”
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satisfy the reference sentence ¢. Specifically, push-through constructs the shared elements of
two interconnected submodels of M,—a presenting model Ms (‘speaker’) and a receiving model
My (‘hearer’).® Satisfaction of ¢ can be achieved via different forms of i, and Tt may need to be
adapted as ¢ is passed to further receiving models My, My, My, M.

This reveals a key limitation of push-through: in its basic form, it does not modify ¢ or m—it
merely transfers the structure of winto a receiving model, provided no internal conflicts arise.
Full satisfaction across all shared submodels is possible only if the structure of Ms (on which it
is based) is already compatible with all others. This imposes an unrealistically high demand: ¢
would need to be flawless from the start, with m matching every submodel structurally.

A more flexible approach allows ¢ to be progressively refined through its interaction with
different submodels. Without such flexibility, only exceptionally well-formed ¢ could be
propagated without friction. Model theory offers several constructs to reduce this burden . The
rest of this chapter discuss model-theoretic approaches that support structured adaptation of
interconnected models—some readily applicable (§ 4.4), others more problematic (84.5). Ama—ss
(84.6) integrates these into a meta-theoretic axiom schema for stepwise model harmonization
and refinement of ¢p. Push-through corresponds to Step 3 (Insert 2), where a partial
isomorphism t between a presenting and a receiving model is established, ensuring that the
structural core of ¢ is preserved without disruption. The conditions described here—
compatibility of t, non-modification of ¢, and the role of an amalgamated carrier model built on
n (M 4)—are invoked in that step as discussed next.

4.4 Amalgamation and Other Constructs of Model Integration
4.4.1 Push-Through and Structural Reconciliation
Push-through extends the partial isomorphism mwfrom Ms to M x. Since is not a model and
therefore cannot on its own verify ¢’s satisfaction, it instead scaffolds the construction of an
amalgamated model M 4, which consolidates shared structure from Mg, M, and other
submodels.?” M 4integrates information from Ms, M, and subsequent ‘hearer submodels’,
preserving their common structure. A ¢ true in both Msand M ycan then be proved in M4,
because M incorporates the elements to t necessay to bridge submodels by aligning domains
and interpretation functions. Each time Msis pushed through to M s, M 4 helps preserve internal
consistency.

M. can also operate as a standalone model, integrating elements from receptive submodels.
By amalgamating structural elements that consistently accompany ¢’s satisfaction, M4
could develop into a submodel of M yin which ¢ is satisfied along with additional structurally
compatible sentences from Ty. In this way, M 4 represents a refinement or extension of the
original reference sentence ¢, corresponding to an improved version of ¢ (introduced as a core
hypothesis in 84.1), now able to unify a broader set of coherent—but previously incompatible—
submodels. The information gathered by M 4 is also useful when revising ¢ and m after push-
through failure, as discussed in 84.4.2.2. This may have several causes. In first-order logic,
satisfaction can be flexible, depending on the precision of interpretation functions and the
scope of reference. Related but distinct domain elements may be unevenly distributed across
submodels, and even when submodels agree on predicates, functions, and constants, their
interpretation functions—though derived from M ,—may map to subtly different subdomains.
Because i encodes only the minimal structure needed to satisfy ¢, it may eventually encounter
an obstructive submodel model M ,—a ‘fractured’ fragment of M y(now M#p) misaligned with it
enough to resist push-throughs. For instance, if mincludes a binary relation R(x,y) hecessary for
¢, but M#y contains only unary projections, it may reinterpret R(x,y) as two disjoint unary

8 See also footnotes 71 and 74 for explanation of S-(‘speaker’) and H—(‘hearer’) suffixes.
8 Hodges (1997), 134-141: “5.3-Elementary Amalgamation”
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predicates R,(x) and R,(y), thereby rejecting M /s binary structure. Such reinterpretation can be
locally favored to preserve internal constraints, making t appear as a foreign insertion that
threatens established interpretations and defies minimal adaptation.

Thus, satisfaction preservation across submodels is not guaranteed by common origin alone;
it also depends on structural compatibility and interpretive flexibility at the point of integration.
Resistance of a valid submodel of M yto integrating an equally valid isomorphic wof M yis a key
aspect of indeterminacy arising from deep fragmentation. Fragmentation can ‘shatter’ the
structural coherence needed to stabilize ¢’s satisfaction—not through absence of shared origin,
but through the difficulty of reconstructing shared structures across divergent interpretations.
The Compactness Theorem (83.2.3) implies that even if M ywere complete, pushing its full
structure through to all submodels would fail: fragmented substructures cannot interpret or
sustain the total structure from which they emerge.®

One possible response is to formulate a new reference sentence also true in M s—but this
disregards the reasons for m’s failure. Valuable information can be gained from ¢’s successful
transmissions through multiple submodels before encountering a disruptive fragment. While
ignoring M#yis possible when ¢ is still tentative, renewed push-through to another M yis more
likely to succeed if s problematic structural elements are refined. Although M 4 may reveal the
cause, it lacks a direct procedure for adjusting conflicting components—and repeated
incorporation of seemingly useful elements from receptive submodels risks structural
overaccumulation, burdening M 4 with features incidental to ¢’s satisfaction. This may hinder its
role in revising mwhen push-through faces genuine obstruction (§4.4.2.7). A higher-order
integrative mechanism therefore appears necessary—which is addressed in the next subsection
which also goes into M 4's amalgamating function (§4.4.2.2).

4.4.2 Sheaf-Theoretic Amalgamation

Some model-theoretic constructs address structural instability across models. Sheaf-theoretic
amalgamation is among the most integrative, with numerous applications in Al. 2° It builds on
the concrete amalgamated model M 4 by integrating ’s shared isomorphic elements into a
structured local space for each contributing submodel. As clarified in the next subsection
(Figure 1), these local spaces correspond to categorical dimensions representing structural
correspondences—domain types, function arities, and related features—weighted accordingly.
The ability to unify evidence from heterogeneous sources and across inquiry levels is
increasingly important in both pure and applied sciences.®® Hodges considers ‘the idea of
amalgamation... very powerful, and | have used it whenever | can.® The next two subsections
provide some technical detail, and foreshadow its relevance for MASS (discussed in §4.6).

4.4.2.1 Structural Amalgamation via Sheaf Theory

Sheaf-theoretic amalgamation preserves and coordinates essential model-theoretic features at
a higher level of abstraction. As shown in Figure 1, model-theoretic ‘sheaves’ integrate parallel
information from partial isomorphisms into a higher-order structure encoding the elements
shared across submodels.

8 Even with a complete scientific model, the Compactness Theorem (§3.2.3) shows that fragmentation—via
disciplinary boundaries, semantic drift, and representational limits—undermines the structural coherence required
for universal push-through. Hence, unifying all scientific knowledge into a single fully transmissible modelis
conceptually incoherent as well as impractical.

8 Schmid (2025)

% Fletcher (2019), 3170-3171

®' Hodges (1997), 124
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Figure 1: °2 Sheaf composition, illustrated for two push-through attempts with two shared structural categories
represented by red and blue arrows. The three boxes show stalks ¥(s), ¥(+), F(~) that correspond to M s, Mz, M'#,
respectively. Each stalk represents a local structured space populated by the shared isomorphic elements (m) of that
submodel—the same elements that M *sintegrates at the global level. These structured spaces can be described in
terms of categorical dimensions (see 84.6), with vector lengths indicating the relative weights assigned to the
corresponding categorical features.®® Functions F sy, and F 4=y (so-called ‘restriction maps’) transfer
compatible, weighted information between stalks. A parametric function @ governs how features are aligned and

‘glued’ into the unified fiber bundle .
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Sheaf theory systematically tracks local data on a topological base space of core model
elements (categories) and assembles them into global structures. Basically, the higher-order
sheaf function ‘F integrates the weighted categorical dimensions from the contributing
submodels into a unified fiber bundle, preserving relational structure between local
contributions. Ideally, a complete model M of a theory Ty could be represented by a single
sheaf—a fiber bundle with F amalgamating all partial isomorphic structures. However, the
Compactness Theorem implies that deep fragmentation can make such composition difficult:
some ‘broken’ stalks may lack categorical dimensions or contain incongruent ones that resist
incorporation into the global bundle. Sheaf-theoretic amalgamation retains higher-order
weighted information from successes and failures, helping diagnose integration breakdowns—
as will be discussed in the next sub-section.

4.4.2.2 Push-Through Failure and Structural Modification

If push-through fails because T is incompatible with a receiving submodel M #, this fractured
submodel M#y blocks further attempts to share our reference sentence ¢. Push-through can
continue with other submodels, or revisit M#yafter modifying m' and ¢'. Sheaf amalgamation
can help prevent repeated errors. The sheaf function F still attempts to glue the structure of
M# /s stalk into the higher-order amalgamated model M *,—which is built from all categorical
stalks of previously integrated submodels, not just t’s essentials. Thus, M *4 can reveal
incompatible elements of M#. If possible, M4 can be instantiated from M *,in a way that avoids
the obstruction. From M'y4, a novel reference sentence ¢' can be formulated with a refined
isomorphism m', still matching the earlier receptive models. M'4 now effectively serves as a
renewed presenting model M's—not for a naive retry, but based on multiple models already
sharing satisfaction of ¢. Viewed from the broader perspective of our Unified Theoretical
Framework, this corresponds to reformulating an improved hypothesis within Ty: still consistent

%2 Bodnar et al. (2022). This figure is based on neuronal networks, but it generalizes to model theory and highlights
relevance to Al and computer science.

% Hodges (1997), 137 gives an example elementary amalgamation of two structures with different vector spaces with
an overlapping substructure.
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with confirmed results but better fitted to avoid incompatibilities with other unchallenged
hypotheses.

Itis important to realize that push-through failure may also occur because the receiving
model is itself inconsistent with Ty. In other words, M#;may not be a valid—albeit fractured—
submodel of My, but an ‘alien’ submodel M*yfrom another theory T*, satisfying sentences that
are not satisfiable in M. In such cases, it would be better to reject M"yaltogether, rather than to
adapt ¢ to it. The sheaf here acts as a diagnhostic tool: by revealing structural misalighment
across submodels, it distinguishes between internal fragmentation within My and intrusion
from structural categories from M*4that are (yet) unknown to amalgamated model M 4. In both
cases, push-through fails because neither M#5nor M zcan identify matching domain elements.
Sheaf-theoretic amalgamation can indicate that M ;’s higher-order features make it structurally
alien to My if so, M /s stalk fails to fit not only m’s essentials, but also other structural properties
of the amalgamated fiber bundle.

The reliability of this indication requires a well-developed sheaf function, built from many
successful push-throughs. In early stages, it may be more efficient to bypass resistant models
and gather more information, deferring renewed integration until greater coherence exists.
Recurrent failures may reveal that some obstructive submodels, M* belong to a different theory
T*, when they have an incompatible higher-order sheaf structure X. Thus, failed push-through
with successful sheaf amalgamation often signals more structural fragmentation of submodels;
whereas failure of both indicates more fundamental incompatibilities—possibly belonging to
different full models from unrelated theories. In this way, the sheaf helps distinguish between
potentially compatible and incompatible submodels.

If a huge proportion of obstructive submodels appear to be alien to M, this suggests there is
a class of M",-submodels that systematically mimic M ybut remain structurally incompatible.
This can occur if T*is very similar to Ty, and perhaps competitive. This may warrant a systematic
comparison, which can lead to reconstruction of M. Apparently alien My -submodels can also
belong to M*ywith a higher cardinality than M .

When successful push-throughs accumulate, the global sheaf structure X increasingly
represents essential features of M. This will be revealed by a progressively consistent structure
of M*4. This in turn can supports refinement of mand ¢ when they fail in a submodel that can
still be sheaf-integrated, by reformulation of ¢' that avoids the cause of failure. Finally, within
first-order model theory, M *4 serves only as a structural guide for revising ¢' after ¢ fails. While
@' may still not be satisfied in all submodels, it must at least avoid incompatibility with any
model contributing to M *4. M *sitself cannot be pushed through, since it contains only higher-
order elements—types, categories, predicate arities—without specifying first-order connections
in a receiving model. Proof of satisfaction across submodels always requires a first-order
reference sentence ¢. Moreover, while M *4 may guide the reconstruction of a global model M 4,
it does so from a higher-order framework that lacks direct first-order completeness or
definability.®* Nonetheless, sheaf-theoretic amalgamation enriches the framework with
information about structures that satisfy ¢ and elements causing conflicts. If push-through fails,
M 74 constrains modification of Tt by enforcing shared structural conditions, reducing
indeterminacy in revising ¢'. However, the actual choice of a revised ¢' requires an additional
adaptation principle. This is the purpose of MASS, which uses M *4’s constraints to selects ¢’
that maximizes satisfaction across coherent of M ysubmodels. But before we develop this novel

% This reflects a tension between higher-order structures and first-order model theory: while M *4 organizes
relationships across models categorically, these do not necessarily correspond to a first-order model satisfying the
original theory. Key properties like compactness and definability may fail or be lost when moving from higher-order
frameworks to first-order structures.
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approach in 84.6, we might consider other established guiding tools for model optimization from
model theory, which is performed in the next subsection.

4.5 Other Model-Theoretic Approaches to Model Expansion and Interaction

Model theory is a vast and intricate field of mathematics. While it is not yet firmly established
within philosophy, it is increasingly applied in philosophical contexts.®® It is useful to briefly
consider some alternative model-theoretic strategies that bear on problems of fragmentation
and indeterminacy. One relevant concept is conservative extension, which can be viewed as
an application of the Upward Lowenheim-Skolem Theorem (§3.2.1). In simple terms, a
conservative extension shows that a theory T can be expanded into a richer theory T* by adding
new structural elements—such as additional predicates or constants—without altering any of
the original truths of T. In the context of model fragmentation, one might apply thisto a
submodel M sby incorporating interpretation functions, predicates, or constants from other
submodels like Mg, M's,.... However, as noted in the discussion of Compactness (§3.2.4), such
extensions cannot i unify the fragments into a coherent total model M 4. The result would be a
bag of dissociated submodels—analogous to a textbook on biological diversity with a collection
of separate articles on taxonomy, adaptability, ecology, evolution and genetics.

More sophisticated approaches have been developed within advanced model theory to
address interaction and coherence among models. Wilfrid Hodges discusses several such
frameworks in his Short History of Model Theory, included in Button and Walsh’s Philosophy and
Model Theory. For example, geometric model theory uses an integrative approach that
resembles sheaf-theoretic amalgamation (84.4.2.2)%—with the same problems of trying to
reconstruct a first-order model M yfrom a higher-order framework.*® Hodges also mentions other
approaches involving ‘atomic’, ‘compact’, and ‘saturated’ models, which show that local
consistency and structural overlap can, under suitable conditions, yield global or quasi-global
coherence across fragmented or expanding networks of models.® These frameworks offer
powerful mathematical tools, but they have not been applied to the philosophical
indeterminacies exposed by Putnam’s Model-Theoretic Argument. These difficulties are not
merely technical, but stem from deep structural features of model theory itself—especially
those highlighted by the Lowenheim-Skolem theorems. This essay develops theoretical tools to
address its most disruptive consequences while preserving the advantages of diverse
perspectives.

§4.6 introduces a meta-theoretic principle: the Axiom of Model Adaptation by Shared
Satisfaction (Ama—ss). This axiom schema supports the integration of divergent submodels by
requiring the successful ‘push-through’ of a reference sentence ¢ across submodels that are
sufficiently adaptable to satisfy it within a broader unified theory Ty, with minimal adaptations
when push-through fails. Chapter 5 introduces graph theory as a concrete yet accessible
mathematical framework to structure these interactions and visualize the dynamics of model
integration.

9% Button & Walsh (2018), vi.

% Hodges (1997), 59: “Let £ and L* be first-order languages with £ € L*, and let T and T* be theories in £ and L*
respectively. We say that T* is a conservative extension of Tif for every sentence ¢ in L, T* & ¢ iffT = ¢.”

%7 Hodges (2018) “18.8 — Geometric Model Theory.” in Button & Walsh (2018), 469-472.

Like sheaf-theoretic amalgamation, geometric model theory classifies structures in terms of their combinatorial
geometries and the groups and fields that are interpretable in the structures.

% See footnote 94

% Hodges (2018), “18.5 — Maps between Structures.” in Button & Walsh (2018), 455-460
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§4.6— Insert 2—Axiom Schema Anv,—ss (Model Adaptation by Shared Satisfaction)'
Let L' be a subsignature of theory Ty, and let £(L') be the formal language over L'":
-Ty: atheoryinlL', and MOD(Ty) the class of all models that satisfy every sentence in Ty
-My: a full model of Ty such that My E Ty, and let M' denote submodels of My '
(ie Ms, My, M'4..., with Ms € MOD(Ty))
-Ms = (Ds, L's, Is) be a presenting (‘speaking’) submodeland Ms = ¢ (wherelL's € L")
~My = (Dy, L'n, I4) be areceiving (‘hearing’) submodel, such that either My = por My ¥ ¢ (and L'y S L')
-¢ € L(L"): areference sentence such that Ms & ¢
- € L(L'"): any sentence satisfied in any submodel M'such that M' = ¢ for some M' € MOD(Ty)
Let My, My, My etc denote ‘minimally adapted’ variants of Mz suchthat M'w = ¢, M'y = ¢ etc
~M#y: a‘fractured’ submodel of My such that M#y ¥ ¢, but M#5 € MOD(Ty)
-M"x: an ‘alien’ (sub)model such that M » # ¢ and M*» &€ MOD(T,), whereas instead M*» € MOD(T);
M”u satisfies some alien sentence x (x € L(L') or x & £(L')), may satisfy some ¢ € L( L"),
butis structurally incompatible with M, and cannot be adapted to satisfy ¢.
1. (Re)Formulation of Reference Sentence ¢ (84.1)
Reference sentence ¢ (or its reformulation ¢’ etc following from step 6) is
-a non-trivial, non-axiomatic sentence from T, that expresses a core feature of Ty
-satisfied by My: My E ¢
-satisfied in presenting submodel Ms: Ms E ¢
-not in contradiction with any sentence ¢ in Ms: Vi € Ts
-nor with any other submodel My, My, M etc to which ¢ (or ¢') has been presented
2. Immediate Shared Satisfaction (Basic Transfer)
If two submodels Ms and My, of My both independently satisfy the same reference sentence ¢,
and there exists a partialisomorphism m: Ms — M, that preserves the structural components relevant to ¢,
suchthat Ms = ¢ and My E ¢:
—then ¢ is immediately and jointly satisfied in both models without need for modification,
—then My, alters into M’y without introducing additional ambiguity, ensuring that model revision preserves a
shared interpretational core within both M, and M 'y that is also contained in Ms,
—then push-through stability ensues in Step 3.
1-¢ is satisfied in both Ms and My without modification
2-Myis updated to M’y preserving shared interpretational structure
3-Push-through stability is recorded (Step 3).
This forms the base case of Ama—ss: ¢ is stable across distinct submodels just by virtue of shared structure.
No adaptation, reinterpretation, or extension is required.
—This immediate agreement serves as the starting point for progressive propagation of ¢
throughout the set of untested submodels M4 of My
—When ¢ cannot be satisfied in some new submodel M4, minimal model modification occurs in Step 4:

3. Push-Through Stability (Non-Disruptive Adaptation) (§4.3)

If a partial isomorphism m: Ms — My (or M, etc) preserves shared structure such that:
o MsEg¢andMy E ¢ (or My E ¢ etc)

—then ¢ is jointly satisfied in both models without any modification,

—otherwise, if My ¥ ¢ due to missing or conflicting components of i (ie My is a ‘fractured’ submodel M#g),
Step 4 is invoked for minimal model modification

— At this stage, the outcomes of successful push-throughs are recorded, preparing the framework for
potential adaptations. (The amalgamated model M4, which will track coherence across all adapted
submodels, is formally introduced in Step 4.)

4. Minimal Model Modification (Main Iterative Process)
If there exists a modified model My, = (D'y, L'y, I 1) such that:

o MuE® (ensuring shared satisfaction of reference sentences)
o VYETy, MyE Y (previously satisfied sentences in M, remain satisfied)

o A'w=XADy=< ALy (specifyingthe preferred partial order < of adaptations to My
to minimize structural impact)

o structural modifications remain in agreement with theory Ty (ensuring compatibility)

Let M,be an amalgamated model constructed from all previously successful push-throughs.Msensures that
M’ is adapted to preserve coherence across the set of previously ‘adapted’ submodels My, My, My etc.

00 See Insert 1 and 83.1 for model-theoretic concepts and symbols
9 Jbid. for submodels.
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—M 'y is chosen such that modifications to I, Dy and Ly, are minimal under 102

UMy \ M) = puly+uDy+uly, where ply < uDy <ply
—where p is a ‘cost function’, measuring the extent of structural changes in interpretation, domain, or
subsignature, and imposing the partial order of uly < pDy <pLyto minimize ply+uDy+uly

Thus, M, satisfies ¢ while minimizing distinctions from the original receiving model M4

(ie uis minimal), and all sentences  previously satisfied in M, remain satisfied.

—Step 2 is repeated for previously successfully adapted submodels M4 to ensure stable satisfaction of ¢.
5. Sheaf-Theoretic Amalgamation (Higher-Order Stabilization and Modification) (§4.4.2)

Let M *4 be a higher-order amalgamated model, created by combining higher-order structural elements
across submodels.

Let M *4 contain the structural elements necessary to represent the relationships captured by 1.

— then, M #4 stabilizes Model Adaptation by Shared Satisfaction, through safeguarding and refinement of
partialisomorphism of T that supports reference sentence ¢ across all models, by:

o continuous adaption of M *4 to the modifications of consecutive receiving submodels by sharing
of ¢ and 1t from Msto My, to the next M'»#(and soonto M"'p)

o ensuringthat each new adaptation in Step 2 or 3 aligns with the shared structural framework of
the theory Ty

o incase mfails due to major divergence in structure or cardinality,
M *4 can provide a reference for extracting a refined partial isomorphism 1t',
incorporating conflicts from the last failing model M#4.

o thisrefined ' can then be used to reformulate ¢' and continue the adaptation process.

6. Reference Sentence Reformulation (If Minimal Model Modification Fails: Back to Step 1)
If no M'mcan be constructed that satisfies the above conditions,
—then and only then is ¢ replaced by a modified sentence ¢' such that:

o ¢'is based in the refined partial isomorphism 1, derived from M4 and M *4
which are constructed by push-through stability and sheaf-theoretic amalgamation.

o m'isderived from the coordinated structures of M4 (first-order interpretations, Step 3, and M *4
(higher-order coherence, Step 5), incorporating information from obstructing submodel M#4.

o Formally, ' extends the maximal partialisomorphism of M4 by incorporating relational
constraints and coherence conditions introduced by M 74,
thereby facilitating the reformulation of ¢ into ¢'.

o My E @', ensuring that ¢' is satisfied in M 'y, while preserving satisfaction in Ms, maintaining
shared satisfaction of ¢' by all submodels previously satisfying ¢

o ¢@'also maintains the features of a meaningful reference sentence within Ty,
as described in Step 1

o ¢@'initiates a new cycleof shared satisfaction and minimal adaptation (Step 1),
re-entered into Ms M'y, M"'y etc.

102 A “‘cost function’ is not standard in model theory, but p and the partial order Al 'y < AD'v < AL’y formalize minimal
adaptations of submodels, inspired by Gardenfors’s ‘minimal change principle’ that revisions of epistemic states
should involve the smallest necessary change (Gardenfors, 1988, 9-14, 66-68, “3.5—O0n the Notion of Minimal
Change”). Gardenfors does not quantify ‘minimal change’, but in graph-theoretic modeling, p can be seen as a
‘distance’ controlling the likelihood of successful push-through (cf §5.3.1).
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Simple formal example illustrating shared satisfaction (without adaptation) by two distinct submodels
e Submodel Ms:
o DomainDs={1, 2}
o Interpretation Is:
= Pinterpreted as {1}
= cinterpreted as 1
e Submodel M:
o Domain Dy ={a, b}
o Interpretation Iy:
= Pinterpreted as {a, b}
= cinterpretedasb

Reference sentence ¢: P(c)
Partial isomorphism m: the minimal shared structure needed to satisfy ¢ = P(c), consisting of:
¢ The element interpreting the constantc (1in Ms, bin M)
¢ The predicate P holding for thatelement (1 € Pin Ms,b € Pin M)
* The preservation of this structure under push-through ensures ¢ is satisfied in both submodels.

Check satisfaction:

e InMs: @ = P(c) means P(1). @ is true in Ms, since 1 € P’
(ie belongs to the set of all elements of Ds that satisfy P under interpretation Is.)

e InMy: ¢ = P(c) means P(b). Since b € P, ¢ is true in M.
Interpretation:

o Although Msand M differ completely in domain and in extension of P,
the same reference sentence ¢ is satisfied in both submodels.

o ¢ thus acts as a bridging sentence that both submodels agree on,
providing a minimal point of shared satisfaction.

Shared Satisfaction by Minimal Adaptation (cf Awa—ss, §4.6, Insert 2)
e Same as above, but P in M, now interpreted as {a}: P" = {a}
o Reference sentence ¢ fails in My, since P(c) with c interpreted inlyas b ¢ P :
e Minimal Adaptation:
o Modify Iy minimally to I'y by expanding the interpretation of P: P = {a} — P'* = {a,b}
Now ¢ = P(c) is true in M, restoring shared satisfaction.

4.6 Ava_ss: Axiom of Model Adaptation by Shared Satisfaction'®

Sections 3.2.1-3.2.3 examined the Lowenheim-Skolem consequences for model cardinalities,
submodel variants, and satisfaction across models. A major source of indeterminacy is
fragmentation of a full model M, of Ty, whose subsets of sentences may be satisfied by many
distinct submodels. Sections 4.3-5 introduced first- and higher-order push-through techniques
to harmonize submodels by ensuring shared satisfaction of a reference sentence ¢. This formal
sentence represents a core structural principle of Ty, and preserving its substructure t across
submodels is central to Ty’s coherence. Model theory provides no rules to achieve this. | have
therefore formulated a meta-theoretical axiom schema. My contains many subsets of sentences
satisfied by different submodels, and a reference sentence ¢ may not hold in allof them. If ¢ is
true in My, it can be made true in all submodels capable of incorporating its structure. This is
done through progressive presentation of ¢ and minimal structural adjustments when
satisfaction fails. Each attempt—successful or failed—extends ¢’s reach and/or refines it. If the
process succeeds, ¢ unifies M/’s fragments, reducing fragmentation-induced indeterminacy.

A meaningful reference sentence ¢ may not be satisfied in all submodels—but if ¢ is true in My,

103 See Insert 2.
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it can be (made) true in all submodels capable of incorporating the necessary structure. This is
achieved through progressive presentation of ¢ to submodels and minimal structural
adjustments if satisfaction fails. Each attempt—successful or failed— increasing ¢’s reach or
refines it. If the process succeeds, ¢ unifies M /s fragments, reducing fragmentation-induced
indeterminacy.

Insert 2 formalizes Model Adaptation by Shared Satisfaction in a stepwise axiom schema
(Amasss). Amasss governs the progressive confirmation or refutation of the truth of ¢, by repeated
sharing across submodels of M ;. Amasss, along with the graph dynamics in Chapter 5, identifies
failures and guides systematic revisions. The goal is to minimally adapt submodels or refine ¢,
until all partial models can satisfy it without internal disruption.

Step 1 entails the formulation on the initial reference ¢, or its modified version ¢’ after Aya_ss.
As considered in §84.1 and §5.3.1, the speed and success of this process depend on strategies
for revision and iteration and the integrative force of ¢. More philosophical and scientific aspects
of ¢ will be discussed in Chapter 6.

Step 2 (Basic Transfer) occurs when ¢’s presenting model M sshares m with a receiving
submodel My, which satisfies ¢ without needing changes. My can then propagate ¢ to other
submodels M x.

Step 3 secures agreement between the models by push-through stability, which amalgamates
Msand M yinto M 4, preserving mand other shared structures. Each successful transfer
increases coherence. Push-through may also fail (§84.4.2.2). Ms = ¢ but My = ¢ if M ylacks or
contradicts parts of m—which makes it a ‘fractured’ submodel M#.

Step 4 introduces Minimal Model Modification of M# 5 using structural elements from mrecorded
in Step 3. To minimize structural disruption, modification proceeds in a preferred order,
reflecting increasing scope of impact within the model:

1. APy: reinterpretation—modifying interpretation functions while preserving domain and
subsignature—ie reassigning meanings to constants, predicates, or relations.

AD’y: domain expansion—adding individuals or types missing from M# .
3. AL’4: signature extension—introducing new symbols or structures needed to express ¢.

All changes must preserve sentences  previously satisfied in M#4. The goal is to revise M#ginto
a submodel My that satisfies ¢ and retains its original (. If some obstructing  resists after
revision, is M#y skipped.

Step 4 may fail if modifications disrupt prior truths in M# 4. Ay, AD’y, or AL’y can fail due to
incompatible assignments, missing types, or incompatible terms. Adaptation failure does not
imply ¢ is false, but that mand M#yare too distinct for shared satisfaction. This indicates deeper
fractures between M#yand MU, assuming ¢ accurately represents Ty.

Step 5 becomes active when Step 4 fails. This invokes the amalgamated structure M* 4
(84.4.2.1). Mt 4accumulates structural categories from all push-through attempts via Sheaf-
Theoretic Amalgamation. When minimal adaptation of M#gfails, M* 4 extracts a refined '
capturing the divergence. This structural information supports ¢’s reformulation into ¢' and a
renewed adaptation attempt. As explained in 84.4.2.2, M * 4’s higher-order function guides repair
and coherence. It can distinguish between fractured models (M#g) and alien ones (M *): M#ymay
be reconstructable; M* may be skipped as a probable part of another theory T*—although it
could be also revisited after each revision of ¢.

Step 6 concludes Ama—ss. When minimal adjustments fail, ¢ is refined into ¢' (or ¢'into ¢" etc)
using M *4 higher-order feedback. If even these refinements cause contradiction in some
models—eg due to conflicting y-sentences—then ¢ is abandoned as unsatisfiable within Ty.
This initiates an new repeated testing and revision of ¢'. Each cycle increases shared
satisfaction or eventually rules ¢ out as a ubiquitously shared reference sentence. While the
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Compactness Theorem (82.2.2) guarantees that global satisfaction is possible when all local
adaptations succeed, it offers no procedure for guiding those adaptations. Aua_ss fills this gap. It
governs how ¢ is repaired or withdrawn, and how M /s fragments are revised or bypassed.

This leads to an important conclusion. If (and only if) the collection of submodels fully captured
Mryand Amasss successfully integrated them, ¢ could in principle be formally established as true
throughout M . Compactness guarantees this theoretical possibility, while Aya—.ss shows how ¢
is progressively satisfied across submodels through minimal adaptation. In practice (as §883.2.2-
3 make clear) submodels cover only fragments of M 4. This limitation motivates viewing M yas a
dynamic network of partially aligned submodels, progressively integrated through adaptive
coherence. Chapter 5 develops this perspective by representing and analyzing the interactions
among submodels and the emergent structure of their incremental alignment.
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Chapter 5. Graph Theory and the Dynamics of Model Adaptation

5.1 Essentials of Graph Theory '*

Like model theory, graph theory plays an important role in both science and philosophy. Graph-
like systems have long supported logical and conceptual representation—most famously in
Frege’s Begriffsschrift (1879) '°® and Peirce’s existential graphs (1885)."% In contemporary
philosophy, graph theory often takes a formal mathematical form, yet as Daniel Parrochia argues
in Graphs, Orders, Infinites and Philosophy, mathematics itself is a primary source of
intelligibility.”®” Graph theory, he suggests, might even serve as a philosophical system: a
structural account of reality, or a theory that ultimately reveals why such a totalizing account
may fail. Others, like Nicholas Shackel, defend metaphysical graphical structuralism, suggesting
that the world itself may be modeled as a graph.’®® Graphs can represent not only formal but
also metaphysical structures.®

In this thesis, | adopt a more focused use of graph theory: to model how submodels of a
fragmented theoretical model My interact in response to the shared satisfaction of a
scientifically meaningful reference sentence ¢. Graph structures help trace how ¢ and its core
structure i propagate through a network of submodels, helping visualize and assess coherence
within the broader framework Ty. Formally, a graph G(V, E) is a structure of vertices (or nodes) V
connected by edges E, which represent relationships or interactions. Graphs are widely used to
model relational systems in disciplines ranging from linguistics and computer science to
theoretical physics.'°Here, | treat submodels as nodes, and their shared reference sentences
or structural overlaps as edges. This lets us treat model adaptation by shared satisfactionin a
graph-theoretic way.

Graphs can also be homogeneous or heterogeneous, depending on node type. Model
adaptation by shared satisfaction primarily relies on homogeneous isomorphisms: overlaps
between models that satisfy the same reference sentence. However, the submodels themselves
are heterogeneous, often acting as host graphs that embed isomorphic subgraphs or minors.
This higher-order structure is relevant for later discussion of hypergraphs and sheaf-theoretic
amalgamation in 85.3.2. Graph theory contains many additional technical tools—such as
clustering, centrality, and percolation theory—but | will focus only on those essential to
modeling adaptation dynamics in fragmented model systems.

104 Extracted from Wilson (2010), and Parrochia (2023), “1-Graphs”, 6-9, 11-20

95 Frege (1879): Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denken.
% Bellucci & Pietarinen 2019): Pierce, Charles Sanders - General Introduction to Logic of the Future:
Writings on Existential Graphs

97 Parrochia (2023), ix-xv, X

1% Shackel (2011)

%9 parrochia (2023), 171, 181: “Assume (again) that the structure of the world is a graph.”

"0 Ipid.
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5.2 Random Graph Evolution and the Erdés-Rényi Model'"-"12

Random network theory, developed by Paul Erdés and Alfréd Rényi'"® (and independently by
Gilbert4), offers a formal framework to analyze how connections between nodes emerge and
consolidate into large-scale structures. In 85.3, | will draw on this theory to model how the
Amasss-axiom (explained in 84.6) allows a single reference sentence ¢—true in our Unified
Theoretical Framework Tyand in a presenting ‘speaker’ model M s—to progressively establish a
coherent network of submodels of M that all satisfy ¢ and share its partialisomorphism m.

A key property in network evolution is the degree of a node—the number of edges it shares
with others. This metric profoundly shapes the global topology of the network, including how
components form, expand, and coalesce. The Erd6s—Rényi-Gilbert model captures this process
in its standard form G(n, p), where n is the number of nodes and p the probability that any given
pair is connected. While this model is formally probabilistic, it also approximates the dynamic
growth of a network as new links are established. At low p-values, the graph consists of
scattered small components. As p increases, these gradually merge into larger structures. Once
a critical threshold is crossed, one component outgrows the rest, forming a giant component
that spans a large part of the network. Figure 2 illustrates this consolidation in a 1000-node
graph near the critical edge probability.

Figure 2: Erd6s—-Rényi-Gilbert graph with 1000 vertices at the critical edge probability (k = 1)-see
explanation in §5.2.7°

Erd6s—-Rényi-dynamics describe how these networks evolve. Formally, the total number of
possible edges in a graph of n nodes is n-(n—1)/2. The parameter p defines the proportion of
these edges that are present. That is, p is the probability that any given pair of nodes is
connected; this is equivalent to the fraction of all possible edges that are realized."® For
example, p = 0.1 yields 49,950 edges in a 1000-node graph (out of 499,500 possible). The
average degree k of a node is given by k = p-(n-1). As p (and thus k) increases, disconnected
fragments begin to merge into larger components. The graph’s global structure is highly sensitive

" Barabasi (2018), 49-61

2 0h & Monge (2016), 9

"3 ErdGs & Rényi (1960)

14 Barabdsi (2018), 49

15 <https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model#/media/File:Critical_1000-
vertex_Erd%C5%91s%E2%80%93R%C3%A9nyi%E2%80%93Gilbert_graph.svg>

"¢ The concept of p is slighly confusing. Strictly speaking, ‘p’ stands for a probability, but it is also treated as a
proportion or density parameter reflecting the fraction connected vertices in the graph.
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to this process. When k passes 1 (ie when p = In(n)/n), the giant component mentioned earlier
appears. At this point, the largest connected component suddenly includes a substantial
fraction of all nodes. The proportion of nodes in this component, denoted p (rho), satisfies the
self-referential equation:

p=1-e"(-kp)
This defines the characteristic S-shaped transition curve shown in Figure 3, where p increases
non-linearly as k rises. The graph-model represents this as the ‘completion’ of the network."”
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Figure 3: Stabilization of Reference through Model Connectivity, where k increases by broader
‘sharing’ of ¢ across submodels.’®

Proportion of Models in Largest Connected Component

This connectivity transition—from fragmentation to integration—has clear implications for the
dynamics of MASS. The reference sentence ¢ plays a structural role analogous to the
probabilistic edge in the Erd6s—Rényi model: each instance of ¢ being satisfied across two
partial models, effectively creates a link in the interpretive network. As more such links are
established, previously disjoint submodel fragments become structurally integrated. This
process will be explored further in 85.3.""°

5.3 Graph Theory Applied to Model Adaptation by Shared Satisfaction
5.3.1 Model Adaptation in Random Graph Models

The progressive dissemination of a reference sentence ¢ across an increasing number of
submodels of M ycan be fruitfully analyzed using graph theory, which offers a mathematical
framework for studying the structure and evolution of interconnected systems. Here, the nodes
of the graph represent the submodels of the fragmented scientific model M 5, and the edges

"7 Barabasi (2018), 58: Image 3.6.a) Evolution of a Random Network.

118 Adapted from Erdés & Rényi (1960) and Introduction to Network/Graph Theory—slide 61
<https://www.cl.cam.ac.uk/teaching/1011/PrincComm/slides/graph_theory_1-11.pdf>

9 Phase transition in model coherence points to a certain ‘persuasive force’ of ¢. This has an interesting analogy with
Kuhn’s ‘paradigm shift’. Further consideration of this is beyond the scope of this thesis.
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represent connections formed by the shared satisfaction of ¢ and its supporting partial
isomorphic structure m.

The successful push-through of ¢ from a presenting submodel M sto a receiving submodel
Muyestablishes a new edge between these nodes, thereby increasing the proportion of
submodels M'y within M ythat satisfy ¢. This process can be represented as an Erd6s—-Rényi
random graph model, where each new push-through event increases the probability parameter
p of edge formation as illustrated in Figure 3. If ¢ and it can be pushed through completely—
without generating conflicts or contradictions in any submodel— ¢ will function as a dominant
or ‘giant’ scientific formula common to all submodels of M ;. The resulting network of
interconnected submodels strengthens coherence across the fragmented structure, and
widespread satisfaction of ¢ imposes strong constraints on interpretational flexibility arising
from model fragmentation.

However, Model Adaptation by Shared Satisfaction does not assume that ¢ can always be
pushed through without modification. The network’s growth will halt at certain submodels where
minimal adaptation of M »is insufficient to satisfy ¢. Ama_.ss dictates that these ‘obstructing’
submodels M#yare temporarily bypassed until the reference sentence ¢ and its partial
isomorphism 1t are revised to ¢' and ' (Step 6). Meanwhile, push-through continues with free
nodes, connecting additional unexposed submodels and also revisiting established branches of
the graph to verify persistent satisfaction. Through this iterative process, the connected subset
¢n={M'n S My grows and solidifies,'® whereas severely fractured submodels M*zand
structurally incompatible ‘alien’ submodels M "y remain disconnected.

Figure 3 suggests an idealized scenario where the connected subset ¢ r approaches
completeness, with proportion p near 100%. In practice, however, the value of p depends on
several interrelated factors.

First, it hinges on how well ¢ captures the core structure of the Unified Theoretical Framework Ty
as represented in M. If ¢ expresses a central and ubiquitously shared aspect of Ty preserved
across submodels, p may approach 1 However, if ¢ is too restrictive or context dependent (on
structural elements that are not pushed through), then ubiquitous satisfaction is unattainable
and p remains low.

Second, the degree of fragmentation in M yinfluences the number of obstructing submodels
M#y. These submodels initially resist adaptation despite minimal modifications and are
bypassed until ¢' and i’ are introduced. Each successful revision can increase p by ‘converting’
previous M#y-submodels to join & x.

Third, some alien submodels M ",y may be structurally incompatible with any viable revision of ¢,
limiting the maximal achievable p to less than 1. As argued in 84.4.2.2, this could occur when
M” i belongs to another theory T* In this case, the impact will be smaller the more T* differs
from Ty, since this will reduce the chance that their submodels are similar. Large proportions of
alien submodels, with a substantial impact on p, can also point to the existence of M+, with a
higher cardinality than M.

(Finally, the ideal situation shown in Figure 3 requires huge numbers of nodes. This important
prerequisite of Erd6s—Rényi models will be discussed in the next subsection §5.3.2.)

The process of revising ¢ and 1t in Step 6 of Ama—.ss can vary. Revision may occur after each
individual failure or after a batch of push-through attempts, depending on the chosen strategy.
This revision is informed by the results of two amalgamation steps: Step 2 (push-through
stability) and Step 5 (sheaf-theoretic amalgamation). The first aggregates information from local
push-through successes, progressively generalizing m. The second collects higher-order
structural information from both successes and failures. Patterns common to obstructing

201 etén={M'n S My | mis a partial isomorphism between Ms and M'#, and ¢ is satisfied in M'x via 1t}
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submodels M#;may reveal systematic causes of failure—for instance, distinguishing between
fractured and alien submodels—thus guiding the formulation of a refined ¢'.

The revision strategy and the modifications of ¢ and M yare essentially epistemic, but graph
theory offers mathematical tools to model the impact of different scenarios on the growth or
size of the subset M'y,that satisfy ¢. A key parameter is the Erd6s—Rényi probability p,'’
reflecting the likelihood that any two nodes (submodels) are connected by the partial
isomorphism 1. Although push-through is not probabilistic in the sense of randomly distributed
edges, modeling edge formation as governed by p offers a useful approximation of the evolving
connectivity within the ¢-satisfying subgraph & ». Another critical parameter is the cost function
u from Ama—ss (Step 4), which ensures minimal structural changes—such as interpretation shifts,
domain expansions, or syntactic differences—needed to accommodate ¢ in M 4. In graph-
theoretic terms, p can be interpreted as a measure of ‘distance’ between M yand its minimally
adapted variant M'y, influencing edge weights or thresholds: submodels requiring larger py are
less likely to form successful push-through connections, while smaller y corresponds to higher
likelihood of connectivity in & »."* For the formal specification of y and the ordering of
adaptations (Al ' < AD'y < AL'}), see Step 4 of Insert 2. Translating py into edge weights or
thresholds could model the probability of successful push-through more precisely.

Higher-order amalgamation results may correspond to analyses of more complex graph
structures, such as hypergraphs, representing the sheaf-model M+ (Step 5, §4.4.2.2) which
shares more structural elements than just m, or revealing clusters of obstructing submodels.
These advanced graph-theoretic approaches go beyond Erd8s—-Rényi theory, reflecting the
nuanced and dynamic nature of model adaptation by shared satisfaction.

In sum, graph theory provides an insightful framework for modeling how a reference sentence
propagates through a fragmented scientific model. The approach discussed so far reveals useful
aspects of the dynamics of adaptation, resistance, and coherence within M ,—but it also shows
that the process of submodel integration is actually quite complicated.

5.3.2 Model Adaptation in Dynamic Networks
While the Erdés—Rényi random graph model offers a useful first approximation, its assumptions
of structural symmetry and statistical uniformity—such as Poisson distributions assuming
random connectivity—are too restrictive to capture the complex, asymmetric and iterative
interactions underlying Model Adaptation by Shared Satisfaction. In reality, model adaptation
involves heterogeneous connection patterns and feedback-driven adjustments that also affect
the nodes (submodels) and edges (¢, T, M *4) themselves, and therefore produce a richer, more
coherent network with stronger and weaker subgraphs. In practice, therefore, push-through
interactions are unlikely to remain purely bidirectional or uniform. Once the connected subset
¢ «becomes dominant, a small number of highly connected ‘presenting’ submodels M s will
serve as hubs that can exert disproportionate influence over numerous receiving M ynodes.
Such heterogeneous connectivity patterns violate the Erd6s—Rényi assumptions, which rely on
large numbers of nodes and edges. Only densities of submodels of M ylike those in Figure 2 will
lead to approximation of ubiquitously shared satisfaction as shown in Figure 3. It is not
immediately apparent, however, how My could fragment into so many different Ms/ M-
submodels (although this becomes more realistic if we think of every scientist as a ‘speaker’ and
a‘hearer’, exchanging their own submodel versions).'*

For more limited or realistic scientific theories like biological diversity, alternative network
paradigms such as scale-free or small-world networks may better approximate adaptation

21 See footnote 116
22 See footnote 120
23 See footnotes 71 and 74

30



dynamics. These models account for heterogeneous degree distributions and clustered
connectivity, respectively, reflecting the presence of hubs and community structure. These more
complex networks typically impose greater constraints on the variability and freedom of
individual nodes and edges, resulting in richer dynamical behaviors. For example, if ¢ is widely
accepted, repeated sharing across model nodes with multiple connections can lead to the
emergence of a power-law degree distribution, where a few nodes have many connections while
most have few.'? This pattern contrasts with Erdés—Rényi’s uniform random degree
expectations. Persistent hubs connected to dissociated graphs within the set of partial models
of Mycan reveal alien M™ ysubmodels that compete with ¢. As discussed in the previous
section and 84.4.2.2, such competition may represent an unrecognized structural regularity
within the Unified Theoretical Framework Ty, caused by an alternative theory T" or a higher-
cardinality model Mt

Given the epistemic parallels of Ama—.ss dynamics, and the increasing prominence of graph
and network theory in different scientific areas as mentioned at the start of this Chapter,
dynamic network models can provide important tools for understanding the processes that
reduce indeterminacy in scientific theorizing. This Chapter used a basic Erd6s—Rényi model to
show the principles of submodel integration, but graph theory in general supports the broader
aim of this thesis: to outline a theoretical framework that systematically reduces the
indeterminacies of theories, models, and reference structures by anchoring truth in coherence
and relational constraints within model structures, rather than isolated satisfiability or external
reference. Graph theory thus contributes not only structural support for model coherence but
also a concrete mathematical pathway for mitigating the radical indeterminacy associated with
model-theoretic interpretation—central to Putnam’s argument. In Chapter 6, | will explore how
these model- and graph-theoretic concepts relate to Putnam’s own considerations of
indeterminacy in science, and with some practical consequences of this.

124 Oh & Monge (2016), 10: Fig.7
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Chapter 6. Discussion and Integration

This final chapter brings together the formal framework of Model Adaptation by Shared
Satisfaction (MASS) with philosophical and scientific issues related to indeterminacy in
scientific theorizing. | will begin by situating MASS in relation to Putnam’s Model-Theoretic
Argument, focusing specifically on his challenges of scientific theory and reference. | will then
apply the MASS framework to biological diversity, illustrating how scientific advances could
provide the basis for formulating a realistic reference sentence that can be satisfied by diverse
scientific models of related phenomena. The aim is to demonstrate how MASS offers a rigorous
pragmatic response to longstanding philosophical problems of indeterminacy that are directly
relevant for scientific progress.

6.1 Putnam’s Model-Theoretic Argument and the Challenge of Model Fragmentation

Hilary Putnam’s Model-Theoretic Argument (MTA) remains one of the most influential critiques of
metaphysical realism in the philosophy of science. Drawing on the Léwenheim-Skolem
theorems, Putnam showed that even rigorously formalized scientific theories admit multiple,
inequivalent models that satisfy the same axioms. While any single model can be used
effectively for explanations or predictions, the theory itself does not determine a unique model.
Putnam opposed the thesis of metaphysical realism that the objects, properties, and relations in
the world exist independently of our thoughts or perceptions about them.'®® His argument
undermines a central metaphysical realist assumption: that there is a single, theory-
independent mapping between language and the external world. Since a first-order theory
permits many models, no unique structure in THE WORLD is determined solely by a theory, and
reference is therefore not fixed by the theory alone.

Internal realism emerged as a response to this indeterminacy. '* Rejecting the metaphysical
realist’s “God’s-eye view,” Putnam argued that reference is determined not by correspondence
with an external reality, but by use within a conceptual, cognitive-linguistic framework.'?” “The
world does not pick models or interpret languages. We interpret our languages or nothing
does.”'?®Objects, signs, and meanings are internal to this scheme of description; reference
becomes meaningful only within it.'* This position has been criticized for blurring the line
between truth and justification, and for inviting cognitive subjectivity and relativism, by Lewis,
Devitt,”® Van Fraassen.' and others.'® Putnam’s responses evolved over time, prompting
some commentators to remark that writing about his philosophy “is like trying to capture the
wind with a fishing-net”.13413%

Ultimately, Putnam adopted natural realism,

130

136 as a form of realism intended to avoid conflict

25 Khlentzos (2025), 2-8: “1-What is Metaphysical Realism?”

26 putnam (1981), 50

27 |pid. (footnote 25)

28 putnam (1980), 482

29 putnam (1981), 50

130 | ewis (1984)

131 Devitt (1983)

82Van Fraassen (1997)

133 putnam's Internal Realism and Model-Theoretical Argument (1977-1990), PhilPapers, accessed August 10. 2025,
<https://philpapers.org/browse/internal-realism>

34 passmore (1985), 92

135 Szubka (2024)

136 Button (2013), 82-95, 82: ‘[N]atural realism, [w]as announced most fully in ‘Sense, Nonsense, and the Senses’
(1994) and The Threefold Cord (1999).
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with science.’” 38 |ts exact meaning has been debated: Michael Dummett for instance
confessed that “to divine what it is defeats me,”'*® and Tim Button devotes an article and a
chapter to it—"*""*'concluding on model-theoretic grounds that natural realism has yet to offer
persuasive arguments against skepticism. In broad terms, natural realism is a pragmatic
position consistent with how most scientists work: they construct accounts and models of the
world that reflect different aims and perspectives, while presupposing that there is a world
about which verifiable things can be said. Few claim to make unique, exhaustive mappings of
reality, and fewer still see that as problematic.

Yet, as | have argued, the MTA’s core insight—the non-uniqueness of models—remains
significant, particularly in light of the growing fragmentation of scientific practice. As theories
develop, they often diverge into specialised submodels tailored to distinct domains, methods,
and explanatory aims. This fragmentation is not merely disciplinary; it reflects deep structural
differences in how models represent reality. Even within a single field, such as physics or
biology, competing frameworks may coexist without formal integration. The mosaic-like nature
of contemporary science raises a pressing question: how can reference remain stable across
structurally incompatible models?

Cartwright’s image of a ‘dappled’ world'*? captures how perceived inherent fragmentation
can obstruct the transfer of advances from one domain to another. Putnam acknowledged a
related tension in Models and Reality (1980), where he presents a thought experiment involving
an ‘ideal scientific theory’ T,—a theoretical endpoint or rational limit of scientific progress'**—
contrasted with our current, partial theory T. Putnam conceived of T; as ‘a limit of theories’ that it
would be rational for scientists to accept, even if never fully realised—what Lewis called
‘futuristic’'**—but concrete enough to guide progress as a regulative ideal.’*®*By contrast, T
reflects our fallible, incomplete knowledge. The distinction parallels scientific fragmentation: T,
gestures toward a unified framework—illustrated, perhaps naively, by Linnaeus’ taxonomy of five
kingdoms as a divinely ordered system of life—while T represents a submodel, such as evolution
by ‘survival of the fittest’.

Model Adaptation by Shared Satisfaction (MASS) builds on this distinction, reframingitin
model-theoretic terms. MASS could extend Putnam’s original position of internal realism—for
which model theory offers more support than he may have recognized'**—Dby clarifying how
reference can be coordinated across heterogeneous model spaces. However, rather than
adopting Putnam’s concept of T, as a transcendent endpoint, MASS considers a Unified
Theoretical Framework (Ty) to constitute a pragmatic coordination point for consensus. Ty is not
a metaphysical ideal but is specified within MASS by reference to sentences jointly satisfied
across submodels. The accompanying Ama—ss axiom schema functions both as a regulative
guide and as a formal mechanism for reconciling divergent models. If the MTA suggests that
reference is unstable across models, MASS uses this schema to connect them through shared
satisfaction of a scientifically relevant reference sentence (bridging hypothesis), enabling partial

87 Putnam (1994), 465: ‘[T]here is no conflict between natural realism and science, [nor] between a suitably
commonsensical realism about our conceptual powers and science’.

138 Hildebrand (2000), 109-132

3% Dummett (2005), in Auxier & Hahn (2007), 168-184: “Reply to Hilary Putnam,” 182

140 Button (2016)

41 Button (2013), 82-95: “Chapter 10-Natural Realism,” 95: ‘The natural realist [rightly] aim[s] for a position according
to which Cartesian angst does not arise, but she has not given us one’

142 Cartwright (1999)

43 putnam (1980), 473

1441 ewis (1984), 230-231

145 Putnam (1980), 473—see footnote 84

146 Button & Walsh (2018), 46; ‘Internalism about model theory reveals a new understanding of Putnam’s internal
realism.
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models to adapt, aligh, and cohere without requiring full unification. In this way, MASS preserves
the pluralism of scientific practice while offering a framework for conceptual coordination.

In Philosophy and Model Theory, Button and Walsh note that Putham—perhaps implicitly—
relies on the push-through construction to challenge metaphysical realism.” As discussed in
§84.3, model theory supports permutation functions that translate elements across models
during push-through. Putnam’s argument is that metaphysical (external) realism cannot explain
why our terms like “cat” to refer to actual cats, rather than arbitrarily permuted interpretations
(for instance, naming them ‘dogs’, see §3.2.3). 8 Since permutation is a one-to-one bidirectional
function, model theory places no internal constraints on it. Therefore, as Button and Walsh
observe, indeterminacy ‘generalises rapidly’ under consecutive permutations.™® Importantly,
however, push-through in MASS is structure-preserving, in clear contrast with Putnam’s original
use of push-through arguments. In Ama_.ss, push-through from a submodel Msto another My
preserves structural alighment, thereby maintaining satisfaction across the network of
fragmented models within M . Putnam’s permutational push-through, however, alters the
interpretation function over the domain, disrupting shared satisfaction and leading to
indeterminacy. While minimal modifications to the interpretation function, domain, and
language—denoted Al', < AD'y < ALy in Step 4 of Ama_ss (Insert 2)—also involve reinterpretation,
these are tightly constrained by the ongoing requirement that the reference sentence ¢ remains
satisfied after alignment of all submodels. This preservation of satisfaction ensures that
reference does not collapse into indeterminacy by permutation but remains coherently
regulated across fragmented and adapted models.

Putnam’s own framework—though not explicitly mentioning indeterminacy by model
fragmentation or potential responses to it—anticipates aspects of this approach. His
recognition that “there has to be a determinate relation of reference between termsin L and
pieces (or sets of pieces) of THE WORLD”® suggests a model-theoretic awareness of
fragmentation. In MASS terms, L corresponds to the vocabulary of a theory T; (like Ty), ‘pieces’
represent partial submodels, and ‘reference’ reflects the dynamic relations among them. While
Putham emphasized epistemic ideals, MASS translates these into structural mechanisms for
model adaptation. The conceptual overlap between his thought experiment and MASS also
suggests that MASS could address skeptical concerns arising from the MTA’s conclusion—that
we can never be certain which reference best represents the world. If T, resembles Ty in its
harmonizing role, while T reflects the situated nature of scientific models, MASS extends this by
formalizing the conditions under which partial models can share satisfaction, thus enabling
reference to persist across fragmentation.

As argued in 84.6, compactness shows that in principle MASS could procedurally establish ¢
as a true sentence of a general model M ; of Putnam’s T,, by demonstrating ubiquitous
satisfaction in the complete set of fragmented submodels retaining M ;’s structure. Rather than
treating indeterminacy as a failure of reference which can basically be ignored in practice, MASS
regards it as an essential feature of scientific representation that allows both for specialization
and adaptive coordination. To illustrate how MASS operates in practice, the following section
returns to the case of biological diversity presented in Chapter 2, where longstanding
fragmentation among models is now gradually yielding to systemic integration.

6.2 Towards Shared Satisfaction of Models of Biological Diversity
MASS addresses the fragmentation of a general model of a Universal Theoretical Framework Ty,
and | will now apply this to the historical development of biological diversity outlined in Chapter

47 Button & Walsh (2018), 39-44: “2.3 Putnam’s use of Push-Through”
48 putnam (1980), 482
49 Button & Walsh (2018), 40
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2. So far, | left Ty deliberately vague to follow Putnam’s ideal, divine scientific theory T;."*° Button
characterizes T; as ‘our best all-things-considered theory—an amalgam of physics, semantics,
politics, poetry, and everything else—allow[ing] us to represent a physically possible world. **'
This breadth also explains the inevitable fragmentation of T,’s general model M ; in science.
Putnam presents T, as a theory that would be rational for scientists to accept, but most act as if
‘nature is a jumbled WORLD’ and scientific practice a ‘trading zone’ for ‘experiments, theories,
and instruments’. 1*2'%* Model theory suggests that if the WORLD is unified and modellable—as
many philosophers and scientists hold'**—it is possible in principle to formulate true
statements about it. Yet on such a scale, a unifying REFERENCE SENTENCE @ could be satisfied only
by the full model M ;, and its truth in T; would have to be known in advance.

Formulating a flawless ® would require a God’s-eye view if ® is to be epistemically richer
than an axiom or other trivial truth (see 8§84.1). Without access to M ;, scientists approximate it by
assembling submodels and testing candidate ® for shared satisfaction. This thesis developed a
formal strategy for this—Model Adaptation by Shared Satisfaction—not to fully construct M ;, but
to combine specialized models into a coherent network that incrementally converges toward it.
The historical development of models of biological diversity, reviewed in Chapter 2, illustrates
how such an approach could work in practice.

Linnaeus developed his divine taxonomic order of nature in the Enlightenment. In line with
Putnham, it can be viewed as a bold attempt to formulate a model M ;for an ideal theory T, of
biological diversity. Were Linnaeus’s taxonomy to remain fully accurate, this would suggest that
itimplicitly already contained, implicitly, the mechanistic structural elements determining its
categorical order—elements only revealed by subsequent research. This scenario is unlikely,
considering recent genetic revisions of species relationships. % Nonetheless, a full model
need not satisfy every sentence of a theory, allowing M ;to represent a partial orincomplete
realization of T,.

In the eighteenth century, Linnaeus’s ‘best all-things-considered theory’'*” was increasingly
fragmented into specialized submodels of Lamarck’s adaptation, Von Humboldt’s ecology,
Mendel’s genes and Darwin’s evolution. Each submodel captured essential but distinct aspects
of life’s diversity, with different emphases but largely the same domains (Linnaeus’s Kingdoms of
Life)."® Each model had its own followers in science and society, and their interactions ranged
from admired inspiration to outright denunciation.’®

Beginning in the 1920s and 1930s, a group of scientists began to reconcile these fragmented
models. Mendel’s systemic pea experiments—largely ignored in his lifetime—were rediscovered
by scientists like statistician Ronald Fisher, biologist J.B.S. Haldane, and geneticist Sewall
Wright. They merged Mendelian genetics with Darwinian selection mainly using newly developed
tools of population statistics. In 1942, the result was dubbed the Modern Neo-

Darwinian Synthesis:'® a unified framework in which evolution was understood as changes in
gene frequencies over time. This synthesis preserved the strengths of some submodels, while
clarifying what each model could explain (or not). Mendelian genes explained how variation

50 pytnam (1980), 473—see footnote 84

51 Button (2013), 131

52 putnam (1980), 473—see footnote 84

153 Galison (1997) 781-797: “Chapter 9: The Trading Zone”, 797

54 Frigg & Nguyen (2020); Morrison (2015)

155 Wiley & Lieberman(2011)

156 Hedges & Kumar (2009)

57 Button (2013), 131

58 | innaeus’s ‘Three Kingdoms’—Regnum Animale, Vegetabile and Lapideum—are expandable with Regnum Climatis
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59 Wulf (2017) for instance describes how biologists responded to Von Humboldt, throughout the 19" and early 20" centuries.
180 Huxley, Julian S., Evolution: The Modern Synthesis (London: Allen & Unwin, 1942-1974)
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arose and persisted; Darwinian selection explained how it shaped populations. Linnaean
species were now seen as clusters within gene pools. Humboldtian insights were partly
absorbed into ecology and evolutionary biology as constraints and pressures acting on
populations. Lamarck’s laws were largely rejected as being theoretically incompatible and
empirically unsupported.

From a model-theoretic perspective, the ‘bridging sentences’ of the Modern Neo-Darwinian
Synthesis largely relied on recent statistical advances—especially Fisher’s pioneering work
combining biometrical factors (reproduction, fitness, survival) with genetics. These statistical
tools act like logical instruments: formal, model-independent frameworks, providing structural
rules and scaffolding that supporting integration across diverse biological models.'®" While
enabling structural coherence, they do not by themselves supply explanatory content. To
achieve shared satisfaction across heterogeneous models of biological diversity, a reference
sentence must incorporate not only these statistical frameworks but also appropriate
interpretation functions and domain elements within an amalgamated model.

In addition, the Modern Synthesis also introduced several structural modifications: the
domain was expanded to include whole populations containing multiple species and extinct
lineages (AD); interpretation functions were extended to track allele frequencies, genotype
distributions, and fitness effects (Al); and auxiliary relations and operations were added to
model variation, natural selection, gene flow, and genetic drift (AL). For these modifications, the
Modern Synthesis drew on external well-established scientific frameworks, but without
disturbing the original Linnaean structure.

In MASS, these theories T* and their (sub)models M are classified as ‘alien’ because they
satisfy sentences y incompatible with T, (Insert 2). Nevertheless, they may also contain
compatible y-sentences satisfying M#, and partial isomorphisms m with the supportive
structure of ®. Persistent {/-sentences can enrich M¢s submodels structurally—through
amalgamation of domain elements, interpretation functions, and auxiliary relations—without
introducing new axioms or altering T,. For example, population genetics (Fisher, Haldane,
Wright) introduced allele frequency dynamics, genotype distributions, and fitness effects;
quantitative genetics contributed statistical methods for trait variation; and phylogenetic theory
provided relational scaffolding for species divergence. Each of these modifications preserves
the satisfaction of Mendelian axioms while allowing the same reference sentence @ to hold
across heterogeneous submodels—eg a classical pea inheritance model, a population genetics
account of finch beak variation, or a phylogenetic account of extinct lineages. By combining
domain expansion, enriched interpretation, and relational scaffolding, the amalgamated model
coherence across submodel. MASS formalizes how external (‘alien’) theories contribute
compatible sentences that guide the adaptation of submodels. Through push-through and
sheaf-theoretic amalgamation (84.4.2.1-2), these sentences enrich ® and M/’s submodels,
coordinating structural integration across diverse accounts of biological diversity while
remaining within Linnaeus’s overall model.

New interpretations, expanded domains, and statistical innovations facilitated integration of
Mendel’s inheritable genes into Darwin’s evolutionary lineages. However, the hypothetical
‘reference sentence’ of Modern Synthesis did not yet contain the components needed for
satisfaction in submodels of development, adaptability, or ecology. This required new biological
elements and mechanisms to interpret their interactions. As described in §2.7, this was
provided by new insights into the molecular foundations of life. The discovery of DNA in 1953
(which as Galison pointed out was attributed to Watson and Crick, but actually required a
‘coordination of action and belief’ among scientist with widely different expertise)'®? expanded

181 Frigg (2022), 364-365
62 Galison (1997) 828-840: “9.8-The Coordination of Action and Belief”,
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the domain of biological models with new molecular elements—terms like ‘allele, ‘gene, and
‘sequence’ became constants or predicates within Mendelian and Darwinian submodels but
remained disconnected from developmental and ecological mechanisms emphasized in
Lamarckian and Humboldtian accounts. This ontological expansion deepened divergence
among submodels.

Over subsequent decades, DNA’s role was reconceived as part of a dynamic regulatory
system (82.7) involving gene regulation, RNA expression, and epigenetic modification. These
mechanisms revealed that the boundary between inherited and acquired traits is more
permeable than previously thought—a phenomenon sometimes called ‘Lamarck’s revenge.
Epigenetic changes can influence development and traits such as sex, while RNA regulation
adds flexibility in gene expression. Together, these mechanisms link inheritance, development,
and ecological responsiveness, supporting a scientific bridging hypothesis—a shareable
reference sentence ® —illustrated simply:

Distinguishing traits across species develop through regulatory molecular-genetic and
epigenetic mechanisms integrating inheritance, individual development and adaptability,
and environmental adaptivity.

® encodes a shared structure m, although initially only some submodels—at least Msand M ;—
satisfy it. Other submodels require adaptation under Awa_s. Broader satisfaction arises only in
the amalgamated model M 4 (84.4.1). M 4integrates mechanistic components across
submodels, so that @ can be progressively accommodated through push-through and
adaptation (Steps 3 and 4 of Amass). In this process, molecular-biological constituents are added
as domain elements, while cellular and biochemical mechanisms from related theories T* enter
as interpretation functions. One striking example is the chemistry of synthetic nucleic acids
(“XNA’), an ‘alien’ theory that nonetheless helps integrate biological submodels: XNA can
generate RNA and DNA resistant to biodegradation, enabling new therapeutics (like SARS-
Cov19-vaccines) and clarifying which structural features of nucleic acids are essential for
heredity. Other chemical, statistical, and mathematical models likewise support integration by
providing complementary mechanisms and formal tools.

When push-through fails, sheaf-theoretic amalgamation provides a higher-order structural
guide model M 7,4 (884.4.2.1-2). Rather than altering ®, M *4 generates a unified structural
space—via sheaf composition of stalks F(s), F(x), F(+),...(Figure 1)—in which overlapping
elements (partial isomorphisms 1) from different submodels are consistently aligned. This
alignment restricts the range of admissible reinterpretations of ®: successive refinements of @',
@",... must preserve shared structures while integrating distinct structural components (eg
genetic and ecological factors). Graph-theoretic analysis in MASS then tracks how ® reshapes
the evolving network. Minimal modification (Step 4) enforces these constraints in adapting
submodels by aligning constants and relations across Mendelian inheritance, Lamarckian
adaptation, Darwinian selection, and Humboldtian equilibria. In this way, ® can evolve into a
broadly shareable form that incorporates regulation, inheritance, selection, and environmental
interaction, enabling MASS to provide a philosophical framework for reconciling fragmented
biological models—including a unified perspective on Linnaean taxonomy and diversity.

Undoubtedly, many other scientific areas have also led to—or would allow for—systemic
integration. Neuroscience, climate, economy can all provide compelling cases. The work for this
needs to be done by scientists willing to collaborate and think outside their own narrow
interests. At present, scientists are still more motivated by differentiation than integration. Many
philosophers are natural realists because this alighs with science—which also specifically
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motivated Putnam.®® But some may also feel the philosophical and theoretical need, with David
Lewis, to defuse ‘the bomb [Putnam has devised] that threatens to devastate the realist
philosophy we know and love’. '%* As long as we need models to understand THE WORLD, we will
be faced with the indeterminacies that are inherent to model theory. Scientific models are
inevitably partial and intertwined, leaving parts of reality open-ended. MASS helps integrate
these fragments into coherent networks, offering resilience against the indeterminacy inherent
in our understanding of the world.

63 Putnam (1994) “Dewey Lecture |, 465—see footnote 137
164 | ewis (1984), 221
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