
The High School Clustering Problem
Ruijters, Anne

Citation
Ruijters, A. (2025). The High School Clustering Problem.

Version: Not Applicable (or Unknown)
License: License to inclusion and publication of a Bachelor or Master Thesis, 2023
Downloaded from: https://hdl.handle.net/1887/4282431

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/4282431

A.M.I. Ruijters

The High School Clustering Problem

Master Thesis

12 February 2025

Thesis supervisors:
dr. O. Kanavetas
N.J van der Kooy, MSc

Leiden University
Mathematical Institute

Contents

1 Introduction 6

2 High School Scheduling Problem 8
2.1 Problem description . 8

3 The Clustering Problem 9
3.1 Definitions . 9
3.2 Problem description . 9

3.2.1 Hard Constraints . 10
3.2.2 Soft Constraints . 11

3.3 Problem definition . 11
3.3.1 Objective function . 12

4 Existing Heuristics for Solving the Clustering Problem 13
4.1 Branch and Bound Method . 13
4.2 Simple Backtracking Algorithm 18

5 The Clustering Problem at Zermelo 20
5.1 Problem definition . 20

5.1.1 Soft constraints . 20
5.1.2 Hard constraints . 22

5.2 Penalty function . 23
5.3 Objective function . 24
5.4 Penalty-functions of three soft constraints 25

5.4.1 Cluster scheme-length . 25
5.4.2 Freedom . 25
5.4.3 Classifications . 26

5.5 Backtracking Algorithm . 26

6 Improving Cluster schemes with Hill Climbing 27
6.1 Single Movement . 27

6.1.1 Description . 27
6.1.2 Pseudocode . 28

6.2 Single Shift . 31
6.2.1 Pseudocode . 31

7 Results of Hill Climbing Methods 36

8 Discussion 39

9 Symbols & Notation 41

References 42

3

Abstract

The High School Scheduling Problem (HSSP) is an optimization problem. Each
lesson of subject groups must be assigned to a time slot in a schedule. Students
and teachers attending these groups cannot be scheduled in the same timeslot
twice. Our first step is clustering the subject groups which can be placed in
the same timeslot. This thesis examines an existing branch and bound, and a
backtracking method to solve the clustering problem. Moreover, it studies two
new techniques to improve the algorithm. Both of these new approaches are
based on hill climbing algorithms. Finally, these new techniques are tested on
a real-life problem. This thesis finds that combining the old technique with hill
climbing algorithms has a positive effect on creating an optimal cluster scheme.

5

1 Introduction

Most people in the Netherlands remember their high school schedules affecting
their lives. The impact of schedules on teachers is equally important. Further-
more, schools cannot be overstated given the shortage of teachers.

Given that, in the Netherlands, a school is attended by approximately 650 stu-
dents and has around 75 employees, creating schedules for high schools is not an
easy task(Ministerie van Onderwijs, Cultuur, en Wetenschap, n.d.), (Onderwijs,
n.d.), (Rijksoverheid, n.d.). A schedule is necessary for both students and teach-
ers. In the past, this was done by hand, and the schedules were handed out on
paper. Many schools have requirements such as customized schedules, extra
optional subjects, and the amount of free periods. Furthermore, there is a high
teacher shortage in The Netherlands (Ministerie van Onderwijs, 2023). Lastly,
in the Netherlands many teachers work part-time, making it even more com-
plex. These aspects make scheduling highly complex and very time consuming.

Creating a schedule by hand will probably not lead to the best one possible,
especially if we keep additional requirements of the school and teachers in mind.
A suboptimal schedule could have a negative effect on teacher satisfaction. This
could increase the teacher shortage problem.

A company that helps high schools optimize their schedules is Zermelo. They
provide both software and training. To stay ahead of their competitors, they
must continue improving the speed and quality of their algorithms. The goal of
this thesis is to optimize and improve the quality of the cluster scheme.

The High School Scheduling Problem (HSSP) was first addressed by Carter
and Laporte (1992), where they focused on classroom assignment (Carter &
Tovey, 1992). In 1996, Carter and Laporte elaborated on the timetabling of
subjects (Carter, Laporte, & Lee, 1996). They published a paper stating the
HSSP is NP-hard or NP-complete, depending on the constraints of the problem
and described some algorithms that have been applied to this problem (Carter
& Laporte, 1998).

It is beneficial to find subject groups that can be taught at the same time
to reduce the search space of possible schedules, due to the complexity of the
problem and the various possible outcome. Those groups are placed on the same
line in a so-called cluster scheme. This process is called clustering, and the as-
sociated optimization problem is named the clustering problem. Van Kesteren
(1999) introduced a backtracking algorithm to make it more efficient to create
and optimize clusters (van Kesteren, 1999).

In the backtracking algorithm, random permutations are used. This could lead
to missing solutions in the neighborhood. The following question arises:

6

Is a hill climbing algorithm more efficient than backtracking to optimize a clus-
ter scheme?

The aim of this thesis is to figure out if a form of hill climbing is such an
algorithm. This is a local search algorithm. When a better solution is found,
it is immediately accepted. The algorithm tries to optimize the new solution
by changing this new solution until a better one is found within a neighborhood.

To reach this goal, first, we will describe the High School Scheduling Problem
in more detail in section 2. Then, in section 3, we define the general clustering
problem itself. In section 4 we will elaborate on two methods for optimization.
In section 5, we will describe the clustering problem as we will be studying in
this thesis, and specify the considered constraints. This model is similar to the
one used at Zermelo. The potential improvements of the algorithm are described
in section 6. Eventually, in section 7 and 8, we will present the results and the
conclusion.

7

2 High School Scheduling Problem

In this section, the High School Scheduling Problem is described. Since this
problem is NP-hard, a method like clustering is used to make it easier to find
an acceptable schedule (van der Kooy, 2017).

2.1 Problem description

In the High School Scheduling Problem (HSSP) we are given the number of
lessons, which consists of a number of students and a teacher who instructs
education in a certain subject. Every lesson has to fit into a schedule, which
consists of timeslots. There are usually multiple timeslots a day. In Dutch high
schools it usually concerns 8 or 9 timeslots per day, 5 days a week.

We want the lessons to fit in the schedule “as good as possible”. This is evaluated
by using different constraints imposed upon the schedule. The constraints are
divided into hard and soft constraints. A hard constraint could be no students
have more than one lesson at the same time, and a soft constraint that a stu-
dent cannot have more than seven lessons at the same day. The hard constraints
needs to be satisfied. Moreover, for every unmet soft constraint, a penalty is
imposed. We call a schedule a ”better” schedule when it has a lower overall
penalty. The constraints are known beforehand and can differ from school to
school due to different preferences.

A teacher and students are fixed to a lesson, so it is only possible to rear-
range the lesson, and not the teachers or students. Classrooms are assumed to
be assigned after the optimization of the lesson schedule. Moreover, it is as-
sumed that an initial schedule is known where all hard constraints are satisfied.
Therefore, there is always a solution for the HSSP problem. Various research
has been done on this problem which has resulted in suitable algorithms to
tackle this problem (van der Kooy, 2017).

In Dutch schools, students of higher grades follow elective courses and thus
have highly individual schedules. Therefore compact schedules, timetables with-
out free periods, are not feasible for these grades. These are timetables which
do not contain any free periods. Moreover, most teachers work part-time which
make the dutch HSSP even more complex (G. Post, Ahmadi, & Geertsema,
2010).

Various research has been done on the scheduling problem for Dutch high school.
The goal is to make an “as good as possible” schedule. In other words, the ob-
jective is to minimize the total penalty. In the paper of Van der Kooy this is
defined as a problem where the penalty implied by the soft constraint is mini-
mized where none of the hard constraints can be violated and all lessons need to
be scheduled. Numerous algorithms and their performances are provided. Note
that the problem is an NP-hard problem (van der Kooy, 2017).

8

3 The Clustering Problem

In the higher grades, students at Dutch high schools have, besides compulsory
courses, elective courses. To make the scheduling less complex, we want to know
which lessons can be taught at the same time. This process is called clustering.
This is done prior to the scheduling. In this phase, it is allowed to switch
students from groups; they are not fixed to a lesson (G. F. Post & Ruizenaar,
2004).

3.1 Definitions

Students in high er grades (in Dutch “bovenbouw”), choose a curriculum that
consists of compulsory and optional subjects. The required courses will not be
considered for the clustering. We assume that the curriculum choices are known
beforehand. Each subject can consist of one or more groups depending on the
number of students attending this subject.

During the clustering process we try to find groups which can be scheduled
on the same timeslots. Such subject groups can then be placed on the same
clusterline. All clusterlines combined form the cluster schemes (L) for every
grade. Each student and teacher on one clusterline has to be able to attend the
lessons of their subject group, so their availability has to be taken into account.

Each clusterline contains several subject groups. Within a clusterline, the group
that contains the most lessons determines the clusterline-length. For example,
when geography, with 3 lessons a week, and history, with 2 lessons a week, are
on the same clusterline, this line has length 3. The cluster scheme-length is the
total length of all clusterlines (G. F. Post & Ruizenaar, 2004).

3.2 Problem description

When clustering, we take into account on which days the teachers are available.
Moreover, we assume that we have a weekly schedule, which means that for
instance every Monday we have the same scheme. In practice, this can vary
due to, for example, a testweek. However, in general a school’s main goal is to
schedule the regular lessons.

As described before, in high grades, students in Dutch high schools have elective
courses. They can choose from 4 different profiles in which these electives are
contained. The problem is that scheduling all these courses can become very
complex and many free periods can occur which is not desirable.

Most schools in the Netherlands have around 600 students and approximately
2000 lessons to schedule which leads to roughly 1.3 · 103204 variations 1. When

1When a school needs to plan the 2000 lessons in 40 timeslots, this naively leads to 402000 =
1.3 · 103204 possible ways to schedule these lessons.

9

a school has 7 sections, like 4VWO or 5HAVO, where the subject groups are
clustered, this will lead to roughly 3.1 ·101938 possible ways 2 Therefore, making
a cluster scheme makes scheduling less of a complex problem.

To address this problem it is assumed that the following is known:

• The choice of subjects for each student;

• The number of weekly lessons of each subject;

• The number of groups of each subject.

The number of groups depends on the number of students attending the subject.
The maximum number of students attending a group is set prior to clustering
by the school management. When there are more students attending the course,
the group will be divided in one or more groups. When the group is too small,
the board can decide to remove the group, or to merge it with a small group
of another grade with the same subject. Then, the clusterlines of these groups
will be merged, which can make the timetabling harder. Moreover, we assume
an initial cluster scheme is provided where all hard constraints are satisfied.
Since the clustering is done prior to the scheduling, we moreover assume that
no lessons are scheduled yet (G. F. Post & Ruizenaar, 2004).

3.2.1 Hard Constraints

In a cluster scheme, it is required that all subject groups are clustered. How-
ever, there could be other demands, which are hard constraints. When such a
constraint is not satisfied, the cluster scheme becomes invalid. There are no
general hard constraints, but these are some examples:

• A maximum length of the cluster scheme. Due to the maximum teaching-
hours in a week, there could be a maximum number of schedule-positions
taken by the cluster scheme. When a school has 40 regular time slots per
week, for instance, it is desired the cluster scheme-length is at most 40.

• There can be at most one group of a subject on a clusterline. For example,
when group 2 of Dutch is on line 1, then group 3 of Dutch cannot be placed
on this line.

2Suppose we have 7 sections for which we can cluster. Each section has a cluster scheme
with 10 clusterlines with average clusterline-length 3. This leads to approximately 407·10·3 =
2.7·336 possible ways to schedule the lessons. Assuming that roughly 1000 of the lessons are not
clustered, the total amount of ways the lessons can be scheduled are 407·10·3 ·401000 = 3.1·1938.

10

3.2.2 Soft Constraints

In research on clustering, there are no general constraints. However, there are
examples of commonly occurring constraints which are not always used as hard,
but as soft constraints. These are used when it is not desirable to have a certain
characteristic, but it does not make the cluster scheme invalid. Some examples
of soft constraints are:

• Collisions of teachers and students. When a student, or teacher, appears
more than once on one clusterline, we call it a collision. This can also be
considered as an hard constraint. For example when the school board does
not want a student to make a decision between on which of two subjects
to participate.

• The balance of the subject groups. For example, there are 60 students
registered for the subject history. When there are 2 available groups, a
classification of 30 students per group is desired.

• The maximum length of the cluster scheme could also be, instead of a
hard constraint, a soft constraint where it is penalised when the cluster
scheme-length is larger than a certain predefined number.

3.3 Problem definition

The main goal is to minimize the length of all cluster schemes, since this will
lead to more possibilities to schedule the clusters; there is more freedom. Since
it is our goal and not a hard constraint that it has to be a certain length, this
goal is considered as a soft constraint.

Another goal is to balance the amount of students in each group. For example,
group 1 of biology has 29 students and 11 students attend group 2 of biology.
The goal is to get two groups of around 20 students which is the best balance.
It has to be taken into account that there is a maximum size of a group which
cannot be exceeded (G. F. Post & Ruizenaar, 2004).

For each grade the problem can be formulated mathematically. Here j is used
for the subject, i for the clusterlines, and k for the student in this grade. A
decision is made to set a subject on a clusterline, which is denoted by

xij =

{
1 if a group of subject j is in clusterline i,
0 otherwise,

and

yijk =

{
1 if student k takes subject j which is in clusterline i,
0 otherwise.

11

Moreover, the following notation is used:

Lj the number of lessons of one group of subject j,
Gj amount of groups of subject j,

Sjk

{
1 if student k chooses subject j,
0 otherwise,

Aj average amount of students in a group of subject j.

3.3.1 Objective function

The objectives are to minimize the total cluster scheme-length, the variations in
group sizes and the amount of non-fitting students. Mathematically this means
we try to solve

Given α, β, γ, Lj , Aj , Sjk, Gj

Min α
∑

i maxj(Ljxij)

+β
∑

i,j xij (
∑

k yijk −Aj)
2

+γ
∑

j,k (Sjk −
∑

i xijyijk)

s.t.
∑

i xij = Gj ∀j.

The only constraint is that all subject groups need to be placed in the cluster
scheme. This minimization problem is, apart from the non-linear term in the
objective function, an integer linear program. The constants α, and β and γ are
chosen by importance of the corresponding objective. However, since minimizing
the total clusterlength is the main goal, α is chosen much greater than β and
γ so that α >> β, γ > 0 holds. The maximum group size is not considered in
the constraints, as this is taken into account in the term

∑
i,j xij(

∑
yijk−Aj)

2

(G. F. Post & Ruizenaar, 2004).

12

4 Existing Heuristics for Solving the Clustering
Problem

There are an exploding number of possible ways to cluster a school section.
Since going through all the possible outcomes is time-consuming, this section
provides two existing heuristic algorithms for the minimization problem of sub-
section 3.3.1. First, the branch and bound method of G.F. Post & Ruizenaar is
described and a pseudocode is provided. Second, we highlight the most impor-
tant aspects of the backtracking algorithm by van Kesteren.

4.1 Branch and Bound Method

One of the attempts to solve an exploding number of possibilities for minimiza-
tion problems is the branch and bound method, which works by eliminating
symmetric lines and ordering subjects and groups to create fewer possible out-
comes. For simplicity, the algorithm is used on a slightly more specific mini-
mization problem than described above. The amount of non-fitting students is
not minimized, but has become a hard constraint. Therefore, we apply γ = 0
and a hard constraint is added to limit the maximum cluster scheme-length M .
The approach used here is analogous to (G. F. Post & Ruizenaar, 2004).

Min α
∑

i maxj(Ljxij) + β
∑

i,j xij(
∑

yijk −Aj)
2∑

maxj(Ljxij) ≤M,∑
i xij = Gj ∀j,∑
i yijk = Sjk ∀j, k,

yijk ≤ xij ∀i, j, k.

A branch and bound method is used to solve this optimization problem. The
basic concept is to start with the first group of subject j and find the (next)
possible clusterline for this group. When a possible line is found, we try the next
group of the subject until all its groups are placed. Then we try to assign all the
students to the groups. When this is impossible, we try to assign the last group
to another line and try again. The process iterates through the subject groups
until an assignment is successfully made. Like this, all groups of subjects are
placed on the clusterlines and their students are assigned. With this technique,
we can find many solutions for the problem. However, this algorithm has a bad
performance, since it goes through all possible group arrangements. To avoid
this, we will make use of the symmetry, compactness and order of students and
subjects. The pseudocode is given in algorithms 1, 2 and 3.

Firstly, we classify the subject groups of the most complicated student k into
separate clusterlines. The most complicated student is the one who chose the
most subjects with the maximum amount of groups and thus provides maxi-
mum information for the clustering process. We call a subject with n groups a
“n-grouper”. For example, when the maximum number of groups per subject is
three, the student with the most 3-groupers is placed first. This means its groups

13

are fixed to the first clusterlines and the student is assigned to these clusterlines.

Next, we begin placing groups on the clusterlines. This time the order, in con-
trast to the basic heuristic, is nonrandom. We start by assigning the 1-groupers.
When we start placing a second 1-grouper, we only need to check if they have a
student in common instead of assigning all the students. If this is the case, the
1-groupers should be placed on separate lines. Then, the 2-groupers are placed
with a similar technique. If a 2-grouper includes a student already assigned to
two 1-groupers, it must be placed on a different line.

Additionally, we check if assigning a subject group to a specific line could lead
to an invalid solution before we assign students to groups. This is done by cal-
culating the maximum number of students that could be applied to a group of
subject j in line i, denoted by Sij .
First of all, it should be at least the minimum group size mj . Recall that Aj

is the average number of students and Gj is the number of groups of subject j.
The total number of students who follow subject j is thus GjAj . Subtracting
the maximum we could have per group of j (denoted by Mj), we get

mj = GjAj −GjMj +Mj = GjAj − (Gj − 1)Mj .

Thus, we need Sij ≥ GjAj − (Gj − 1)Mj . If this is not the case, we go to the
next line without trying to assign the students.
Logically, the cluster scheme should contain enough possibilities to place all the
students with that subject into a group. Therefore we need∑

i

Sij = GjAj ∀j.

When this is not the case, we do not even try to place the subject in the
scheme and return to the previous subject to rearrange its position (G. F. Post
& Ruizenaar, 2004).

Once all groups of a subject are assigned to a clusterline, we allocate the stu-
dents to the groups. We begin with a random order of the students. Each time
a student cannot be assigned, they are prioritized by moving them up in the
order. In this way, it is faster and clearer whether we are able to place the
“troublemakers” in one of the groups. During this process, we ensure that the
group size does not exceed the predetermined maximum number of students
(G. F. Post & Ruizenaar, 2004).

In the basic heuristic, there is no limit in the number of lines we can use for
the solution. Since we want to minimize the cluster scheme-length, which is the
sum of the clusterline-lengths Mi, it is beneficial to have a minimum number of
lines. Let the minimum number of non-empty lines be I∗, and Nk the number
of subjects chosen by student k. Since student k needs to be able to attend all
his lessons, the subjects are placed on different lines. Therefore, we have

I∗ ≥ Nk.

14

Recall that the total cluster scheme-length can be at most M . We have∑
max

j
(Ljxij) ≤M.

Suppose l = minj Lj . Student k chose Nk subjects with in total Lk number of
lessons. Since student k needs to be able to attend his lessons, these lessons are
all placed on different clusterline. Therefore, each clusterline has a length of at
least this subject’s number of lessons. We have

Nk∑
i

Mi ≥ Lk.

The total length can be at most M . This gives

M ≥
Nk∑
1

Mi ≥ Lk.

Note that Mi ≥ I∗l and
∑Nk

i ≥ Nkl hold, since the clusterline-length is at least
equal to l. Combining this, we get

∑
i

Mi −
Nk∑
i

Mi ≥ (I∗ −Nk)l

⇒
∑
i

Mi ≥
Nk∑
i

Mi + (I∗ −Nk)l.

Recall that
∑Nk

i Mi ≥ Lk. Therefore, the following holds

M ≥
∑
i

Mi ≥ Lk + (I∗ −Nk)l.

Since we have no interest in empty clusterlines, we take in mind that we need
the following number of clusterlines:

I∗ = min
k

(M − Lk)/l +Nk.

Therefore, every time a group is placed on the next possible line, it is checked
if the number of lines does not exceed I∗.

This already limits the number of possible solutions, but it is possible to re-
duce them further. The basic heuristic makes it possible to have the same
subjects together on one line but on other clusterlines. For example, when a so-
lution is a cluster scheme with j = 1, 2 on line 1, and j = 3, 4 on line 2, another
solution is j = 3, 4 on line 1 and j = 1, 2 on line 2. In practice, this is the same
outcome and we would like to remove this. Therefore, we make sure to use the

15

compactness of the cluster scheme. A group can only be placed on the ith line
when lines 1 until i−1 are nonempty. Moreover, we can use the interchangeabil-
ity of the groups. When a group is placed on line i, the next group will not be
placed on lines i−1, i−2, ... These two techniques remove most of the symmetry.

Finally, when the outcome is a valid solution, we want to minimize the cost
of the cluster scheme. Since the second part of the minimization problem pun-
ishes unbalanced groups, we want to equalize them as much as possible. A
greedy heuristic is used to balance them.

Firstly, as shown in algorithm 3, we find the line i and subject j of which
Sij − Aij is minimal and negative. In other words, we try to find the subject
group with the biggest gap between the average and the possible number of
students. This has the greatest impact on the cost and therefore we assign
them as much as possible to this group. When finished, the group is not consid-
ered again. We repeat this until there is no i and j for which Sij−Aij < 0 holds.

Secondly, we consider all the remaining groups, this time in order of the biggest
gap between

∑
k yijk, the number of students attending the subject j on line

i, and Aj . Again, we start with the highest difference and assign all possible.
Continue this with all other subjects until all are finished or above average.

We can easily check the impact of these efficiency methods by considering an ex-
ample. Suppose we have an instance with 100 students, each student attending
6 optional subjects. They can choose from 17 subjects, of which 10 subjects have
only one group, 6 consist of 2 groups, and 1 subject has 3 groups. Pessimisticly,
we need as many lines as there are subject groups, so 10 · 1 + 6 · 2 + 1 · 3 = 25
lines. The number of possible group arrangements with 25 lines will be

2510 ·
(
25
2

)6

·
(
25
3

)
≈ 1.6 · 1032.

Consider the scenario where I∗ = 8 and the most complicated student attends
six 3-groupers. By applying the techniques described above, we get approxi-
mately 6.8 · 1011 possible outcomes. Optimistically, a solution is found every
millisecond. This would indicate that running the algorithm still takes 22 years.
We do note, however, that this algorithm is significantly faster in classifying the
students to the subject groups.

16

Algorithm 1 Branch and Bound Method

// Precondition: mostcomplicatedstudent is the student who chose most sub-
jects with the maximum number of groups.
// We begins with the groups of the 1-groupers, then of the 2-groupers, etc.
assign 1 group of each of most complicated student’s subject to different clus-
terlines
assign the most complicated student to the placed groups
active group := first group
while first group is not tried in all lines do

PlaceGroup(active group)
end while
Balance(cluster scheme)

Algorithm 2 Pseudocode of PlaceGroup

function PlaceGroup(active group)
Find next possible line for the active group
if (next clusterline is clusterline-number I∗ + 1

or current line is empty) then
active group := previous group

else
if ([active group is 1-grouper and active group shares a student with

placed 1-groupers]
or [active group is 2-grouper and shares a student with placed 1-groupers]
or [the clusterline-number is lower than that of a group of the same subject]
or [the maximum assignable students is lower than the minimum group])
then

≪ do nothing ≫
else

if group is last group of subject then
if maximum assignable students for placed groups is more than

students in this subject then
Try to assign students in subject
if all assignments are possible then

active group := next group
else

Move the error causing student one place up in the order
end if

else
≪ do noting ≫

end if
else

active group := next group
end if

end if
end if

end function

17

Algorithm 3 Pseudocode of Balance

function Balance(cluster scheme)
while Sij −Aij < 0 for a (i, j) do

Find (i, j) for which Sij −Aij is minimal
Assign as many students as possible to this subject group
Remove subject group from list

end while
while

∑
k yijk < Aj for a (i, j) do

Find (i, j) for which
∑

k yijk −Aj is minimal.
Assign as many students as possible to this subject group
Remove subject group from list

end while
end function

4.2 Simple Backtracking Algorithm

The assignment of students to subject groups can be done with a simple back-
tracking algorithm. We need all possible assignments and partial assignment in
order to make an “as good as possible” cluster scheme. These partial assign-
ments depend on the order of placement for which a certain permutation Π of
the subjects is used. For the assignment algorithm we assume we can make use
of the following functions, with student t and his set of chosen subjects P,

• FirstSubject(t), which returns the first element in P,

• LastSubject(t), which return the last element in P,

• NextSubject(s, t), which returns the element following subject s in P,

• PreviousSubject(s, t), which returns the element before subject s in P.

The elements in the set P are ordered according to the permutation Π. If the
subject does not exist, for example subject s is the last subject and the func-
tion NextSubject(s, t) is used, a dummy subject s′ is returned. The boolean
IsSubject(s) will return false for the dummy subject and true for all other
subjects.

Anonther function used is NextOpenclusterline(f, s) which returns the next clus-
terline which is not occupied by another group of the subject. It depends on
the subject and on an assignment function f. The algorithm for the assignment
is a simple recursive backtracking function.

First of all, the next assignment up to s needs to be found for student t.
We assume that it is known that the chosen subjects by student t, the par-
tial assignment function f, and the next assignment function up to s or up to
PreviousSubject(s, t). We begin with checking if the subject s is indeed a sub-
ject. If this is not the case there is no success, otherwise we check if we can place

18

the subject group on the next clusterline with NextOpenCluster(f, s). If there
is, there is success, otherwise we check if we can find the next assignment for
the previous success, and then check again if we can find a free clusterline for
subject S. This is repeated until a clusterline is found, or all previous subject
are checked.

This is used to find the first complete assignment, so a cluster scheme with
all subjects of student t. We begin with f(s) = 0 for all subjects s, define s as
the first subject of t, and set success as true. While s is still a subject, success
is true, and we search for the next assignment up to s, and set s as the next
subject of student t.

Finally, we can search for the next complete assignment, knowing that f is
a complete assignment function for t. We then just search for the next assign-
ment up to the last subject of t using this f.

The order of the students is dependent on the number of possible assignments
they have. When a student has the least possible assingment, he is considered
the “hardest”, since his flexibility is low. The backtracking described above is
therefore done in order beginning with the student with the least assignments.
When a student has multiple valid assignments, the assignment with the lowest
increase of the objective function is chosen (van Kesteren, 1999).

19

5 The Clustering Problem at Zermelo

In this section, we elaborate on how the clustering problem is handled at Zer-
melo. This company is specialized in creating software to make schedules for
Dutch high schools. To stay ahead of their competitors, they aim to improve
and optimize the process of making an sufficient cluster scheme. At this com-
pany they use so called penalties to determine whether or not the cluster scheme
is good enough. Therefore, first, we will define the penalty function on which
the quality of the cluster scheme is based. Next, the backtracking algorithm
they use is explained.

5.1 Problem definition

To determine the quality of a cluster scheme, a penalty function is defined. In
this subsection, we mention which soft and hard constraints are considered.

5.1.1 Soft constraints

In section 3.2 we mentioned that a cluster scheme can have hard and soft con-
straints. When a soft constraint is not satisfied, the cluster scheme stays valid.
However, it is still desired that such a constraint is met. Therefore, a penalty
is given for each violated soft constraint. The height of the penalty depends
on the importance of this constraint. The following are four categories of soft
constraints used in the software of Zermelo.

1. Cluster scheme

• Cluster scheme-length
There is a maximum length of the whole cluster scheme. It is undesir-
able to have a cluster scheme-length greater than the total timeslots
per week. Additionally, fewer timeslots in the cluster scheme allows
for more scheduling flexibility for subject groups.

• Cluster-space
Even if the cluster scheme-length is shorter than the total timeslots
per week, scheduling all subject groups might still be impossible. For
instance, due to the availability of the teachers, the two-hour subjects
mathematics and geography can only be taught on different days.
This means that although the subject groups have no students in
common, they cannot take place at the same time. Therefore, this
line needs four schedule-positions instead of two. Moreover, this can
cause free periodss for the students in these classes; When geography
is given, the students of mathematics have no class to attend and
vice versa.
Thus, a penalty is given in case the cluster scheme has to be be
scheduled on more timeslots than the cluster scheme-length.

• Non-groupable Students
In Dutch high schools, students have the choice to take an extra

20

subject. It is beneficial for these students to be able to attend the
lessons of this subject, but not required. When it is not possible to
classify such a student, a penalty is given.

• Main Groups
Some lessons are assigned to a main group, which contain exactly the
same students. Most of these groups are assigned as a main group
beforehand. However, it can turn out that a subject group could
contain exactly the same group of students as the main group. This
makes scheduling more flexible, because it can take place at the same
time as another main group. This has a positive effect on each lesson,
so a negative penalty is counted per lesson of such a subject group.

2. Clusterlines

• Missing students
If a student is not present in a clusterline, they will not have a lesson
simultaneously with the other subject groups of this line. This may
result in free periods in between lessons, which, while tolerated in
Dutch high schools, is not ideal. That is why there is a penalty for
each student not present on a clusterline. However, this is not done
for the line which has the most absent students; these classes could
be placed on the first or last hours of the day.

• Freedom
The cluster scheme can be positioned in several ways. Due to the
availability of teachers, most subject groups are not available on all
timeslots. Groups are placed on one clusterline in order to be sched-
uled simultaneously. This is only possible if their combined availabil-
ity matches the maximum lessons of a subject group placed on this
line. The freedom-constraint gives a penalty when the availability is
lower than the maximum lessons.

• Dayroom
Like the freedom, this constraint is related to the availability of the
subject groups on a clusterline. Most high schools prefer to have one
lesson of a subject group per day, except for two consecutive hours.
When it is not possible to place the lessons of the subject groups on
different days, a penalty is given for each day it lacks.

• Overflow
It is possible that some groups are already scheduled. When this is
the case, there is a chance that there are more scheduled timeslots
than the clusterslength. This is called an overflow. This could happen
when not all teachers on one clusterline have the same availability
during a week.

• Ceilings
It is an option to set a maximum clusterline-length. Clusterline 1,
for example, has a maximum length of 3. This could be done to force

21

a solution where the one-hour groups are placed on the same line.
When this constraint is not met, a penalty will be given.

• Educational
A board or teacher of a high school can prefer in which way their
classes are scheduled. For example, biology has to be given in one
block of two consecutive lessons and two separate lesson, all on differ-
ent days. On a clusterline there can be several groups with different
preferable schedules, which results in a penalty. These constraints
are called educational.

3. Groups

• Classifications
For classifications, constraints commonly used are limits of the group
size and limiting the variation between group sizes of the same sub-
ject.

4. Students

• Student classifications
These are constraints to do with how students are classified in groups.
For example, a teacher does not want to teach a certain student, or
two student cannot be placed in the same group.

In section 5.4, we will describe mathematically the penalties of the categories
Cluster scheme-length, Freedom, and Classifications.

5.1.2 Hard constraints

In addition to soft constraints, there are also hard constraints. When such a
constraints is violated, the cluster scheme becomes invalid. Before these con-
straints can be defined, we need to introduce some variables.

Notation 1. Given are the definitions of the variables

S the set of students,

Sjk

{
1 if student k chooses subject j,
0 otherwise,

T the set of all timeslots,
V the set of subjects,
Lj the number of lessons of one group of subject j
G the set of groups. This tuple is comprised of a class, teacher and a subject.

this set is denoted by {(S, v, t)|S ⊆ S, v ∈ V, t ∈ T}}
Gj we have Gj := {g ∈ G|g is a group of subject j} ⊆ G.

we denote |Gj | for the number of groups of subject j,
Aj average amount of students in a group of subject j,
Mj maximum amount of students in a group of subject j,
Z the set of clusterlines.

22

Moreover, the decision variables are

xij =

{
1 if a group of subject j is in clusterline i,
0 otherwise,

yijk =

{
1 if student k takes subject j which is in clusterline i,
0 otherwise,

and

wijt =

{
1 if teacher t teaches subject group j which is in clusterline i,
0 otherwise.

In the software used by Zermelo, there is one hard constraint in the cluster
scheme: collisions. When a student or teacher is appointed to a specific clus-
terline more than once, the scheme becomes invalid.

Since a student cannot attend subject groups which are classified on the same
line i, the hard constraint is ∑

j

yijk ≤ 1 ∀i, k.

A teacher could teach different subjects, which can result in being classified in
a clusterline more than once. Since a teacher cannot teach two classes at the
same time, the other hard constraint is∑

j

wijt ≤ 1 ∀i, t.

Moreover, each student needs to be classified in their chosen subjects. We have∑
i

yijk = Sjk ∀j, k.

Lastly, to ensure for each subject that the predefined number of groups is placed,
we require ∑

i

xij = Gj ∀j.

When these constraints are violated the cluster scheme becomes invalid.

5.2 Penalty function

Not only the total clusterlength and the variation of the group sizes are mini-
mized, but it takes into account all the constraints of the categories described in
section 5.1.1. To consider all of them, a penalty function is formulated, starting
with the definition of a cluster scheme.

23

Definition 1. A cluster scheme is a function

cs : G→ Z,

such that groups of the same subject v are placed on different clusterlines. We
denote a cluster scheme by L.

A cluster scheme is considered “good” when it has a low overall penalty.

Notation 2. C is the set of all possible soft constraints.

Definition 2. Let Φ : P(G × Z) × P(C) → R≥0 be the penalty function of a
cluster scheme L ∈ P(G × Z) subject to soft constraints C ⊆ C(van der Kooy,
2017).

Below, several subsets of C are described. When constraints from such a
subset are violated they create a penalty in the corresponding category as de-
scribed in section 5.1.1.

1. CCS(L), with L the whole cluster scheme. These penalties are all part of
the cluster scheme-length category.

2. CCL(z), with z ∈ Z a clusterline. Each penalty given for a constraint of
the clusterlines category is based on the classification of the clusterlines.

3. CG(g), with g ∈ G a subject group. These constraints belong to the
Groups category and apply on the classification of these groups.

4. CS(s), with s ∈ S a student. Each penalty in the Student-classifications
category is based on in which group he is classified.

The sum of these penalties is the total penalty of the cluster scheme. In
other words, we have

Φ(L, C) = Φ(L, CCS(L)) + Φ(L, CCL(z)) + Φ(L, CG(g)) + Φ(L, CS(s)).

This is indeed equal to the total penalty, since all the constraints are tied to
only one single evaluator in a single category.

5.3 Objective function

The penalty as described above, and the hard penalties described in section
result in the following minimization problem

Given Gj , Sjk,
Minimize Φ(L, C)
S.t.

∑
j yijk ≤ 1 ∀i, k,∑
j wijt ≤ 1 ∀i, t,∑
i,j yijk =

∑
j Sjk ∀k,∑

i xij = |Gj |, ∀j.

24

5.4 Penalty-functions of three soft constraints

In this subsection, we elaborate on three constraints and denote them mathe-
matically. This will be done for the constraints of the cluster scheme-length,
Freedom, and Classifications. We will focus on these constraints, since these
three are all of high importance for a cluster scheme. First of all, a low length
of the cluster scheme makes sure there are more possible ways to schedule the
subject groups. Besides, the availability of groups of the same line should match
to make sure they can be scheduled simultaneously. At last, classifications are
of importance to guarantee a high quality of education and satisfy the teachers.

5.4.1 Cluster scheme-length

The cluster scheme-length is the total timeslots needed to schedule the subject
groups of the cluster scheme. The length of one line is the maximum amount
of lessons of a group on that clusterline, written as maxj Ljxij . Therefore, the
penalty for the length is

Clength = α ·
∑
i

max
j

(Ljxij),

where α ≥ 0 is the weight of the penalty. Since the most important goal is
to have an as low as possible cluster scheme-length, this weight is much higher
than that of the other constraints.

5.4.2 Freedom

Given is the availability of the subject groups. This can be different for each
group, since teachers can have different preferences for their days and times off.
This is known beforehand, and denoted by

Υgt =

{
1 if subject group g can be taught on timeslot t,
0 otherwise.

with g ∈ G and t ∈ T.

When a cluster scheme is made, we want to schedule the groups of a line simul-
taneously. Thus, the availability of these groups needs to be known. We denote
this as

υgti =

1 if subject group g is not present on line i,
or Υgt = 1,

0 otherwise.

The question is, if the availability of the clusterlines is equal to or more than
the timeslots needed. For each clusterline, we have the penalty

Cfreedom = β ·max

{
0,max

i
(Lixij −

∑
t

∏
g

υgti)

}
,

where the height of weight β should reflect that this is an important constraint
and should not easily be violated.

25

5.4.3 Classifications

Classrooms have a maximum capacity which needs to be kept in mind during
the clustering process; there cannot be more students classified to a group than
this maximum. When this is violated, a penalty is given. Moreover, teachers
prefer regular size classes, and will probably not like it if they have to teach a
class with 30 people, and another teacher has a class of only five students. The
penalty for these classifications is therefore the difference with the average group
size and the students currently classified. Given is Mj , the maximum capacity,
and Aj , the average class-size of subject j. For the whole cluster scheme, we
have

Cclassifications =
∑
i,j

γ1xi,j

(∑
k

yijk −Aj

)2

+ γ2

(
max{0,

∑
k

yijk −Mj}

)2

,

where γ1 and γ2 are the penalty weights. It depends on the school how important
these classifications are, and thus how high these weights are.

5.5 Backtracking Algorithm

Since the clustering problem is NP-complete, we need a heuristic algorithm.
Examples are (meta)heuristics like a greedy algorithm, hill climbing, simulated
annealing, tabusearch and backtracking. At Zermelo they decided to use a back-
tracking algorithm.

At every step, the groups of a certain subject are placed in the cluster scheme.
When all possible classifications result in overlapping students, backtracking is
used and the previous step is revised accordingly. When another placement is
possible, we proceed to the next step. Otherwise, we go another step back.
This process is pursued until all subject groups are assigned to a clusterline and
the cluster scheme is valid. A permutation is used for the order of placing the
subjects, where the variables with the least number of possibilities are placed
first.

After a predefined amount of time, the solution is stored and the process starts
over with a blank cluster scheme and with a random permutation. Every time
a valid scheme is made, the penalty is compared with the lowest penalty so far.
If the penalty is improved, the related cluster scheme is stored. This process is
done until the customer decides to stop the optimization. This could be after an
hour without much progression or when the penalty and cluster scheme-length
have satisfactory values.

26

6 Improving Cluster schemes with Hill Climb-
ing

For the clustering problem, a heuristic algorithm is needed. The idea rises to use
another heuristic than backtracking. In this section, two hill climbing heuristics,
single movement and single shift, are explained. Moreover, a pseudocode is
provided.

6.1 Single Movement

In this subsection, we will first describe the algorithm of the single movement,
then describe some functions used, and finally provide and elaborate on the code
used.

6.1.1 Description

In the section, we present an algorithm to search for small changes of the cluster
scheme to improve the penalty induced by the cluster scheme. This is done by
moving subject groups to empty spots in the cluster scheme. In other words,
the group can be placed on another clusterline if there is no other group of that
subject on that position.

In this new scheme, it could happen that a student is present on a line twice.
Therefore, the students are reclassified to their chosen subjects. Then, it is
checked if the cluster scheme is valid. This is the case when all students can be
classified to their chosen subjects, all groups are placed, and when students and
teachers are not placed on a line more than once.

Finally, the new penalty is calculated. If this is the lowest so far, this scheme is
seen as the new cluster scheme. This means that everytime a change is made,
there is an improvement.

We suppose that we can use the following functions

• GetElapsedTime(), returning the time since the algorithm has been called,

• GetPenalty(cs), returning the penalty of the cluster scheme cs. This is the
sum of all the penalties given for the soft constraints that are not satisfied
in this cluster scheme,

• Getclusterline(v, g), returning the clusterline on which the group g of sub-
ject v is placed,

• EmptyLine(z, v), which returns true when there is no group of subject v
present on line z,

• MoveToLine(z, g), moving group g to line z,

27

• SortRandom(l), returning the list l sorted randomly,

• SortBetter(l), sort the list l with highest improvement first,

• CorrectlyClassifiedStudents(cs), returning false when there is a student,
or teacher, who is not correctly classified. For example, the student, or
teacher, is present in a clusterline more than once, or is not classified in
all his chosen subjects,

• CreateBackup(cs), stores the current cluster scheme cs.

• RestoreBackup(), which replaces the cluster scheme with the back-up
made with the function CreateBackup(cs).

6.1.2 Pseudocode

The algorithm of Single Movement is divided into two main functions: Movesub-
ject groups(maxtime) and FindMovingsubject group(success). In the latter
function, potential moves are listed. The move with the best improvement is
executed. The former function checks whether this penalty is an improvement
and whether the maximum time is not exceeded. Finally, there is a small check
function FindValidMoves in which moves are validated.

In algorithm 4, we start with a significant penalty to make sure the first valid
cluster scheme is the best until now. To find such a valid solution, we use the
function FindMovingsubject group, given in algorithm 5. First, we start creating
a backup to make sure we can go back to the original cluster scheme if no valid
solution is found. Then, we start at the first subject and its first group and
check on which line it is now. The first clusterline is checked to see whether it
is the same as the subject group’s line. If not, we check if it is an empty spot
for the subject group. This means that no other subject group is placed here.
When this is the case, we could shift this subject group. We try this for every
subject group and check all the clusterlines if the group could be moved there.
Each of these possible shifts is placed in the list movingCandidates.

When all subject groups are checked, the list of candidates is sorted randomly
and the first candidate-shift is executed. We need to check if this results in a
valid cluster scheme with the function given in algorithm 6. Here, the subject
group is placed on the new line and checked if the cluster scheme is valid. If not,
the students are reclassified. Again, it is checked if this results in a valid scheme.
When this is the case, we check whether or not this move results in an improved
solution by checking the new overall penalty. In case an improvement is found,
the move is added to the successful moves list such that it can be executed at
the end of this algorithm. We execute this for the first predetermined number of
candidates. In the end, we execute the best successful shift and return success
is set to true to the function Movesubject groups. When a success is found,
the best penalty found so far is updated and we try it again. The algorithm

28

stops looking for new successful shifts if no improvement is found or when the
predetermined time elapses.

Algorithm 4 Pseudocode of Move subject groups

function Movesubject groups(maxtime)
// Precondition: maxtime is the maximum runtime after which the
// algorithm stops searching for a lower penalty. The cluster scheme is de-
noted by cs.
// Ensure that there are no incorrectly classified students.
success ← false
bestTillNow ← 1.000.000.000.000
stop ← false
while not stop do

Findmovingsubject group(success)
if success then

quality ← GetPenalty(cs)
if quality < bestTillNow then

bestTillNow = quality
end if

else
stop← true

end if
t← GetElapsedT ime()
if t > maxtime then

stop← true
end if

end while

29

Algorithm 5 Pseudocode of Find Moving subject group

function Findmovingsubject group(success)
// Precondition: the number of subjects ns,
and the number of clusterlines nl are known beforehand.
//Precondition: width is the predetermined number of random shifts to try
// The function determines which movement of which subject group results
in
// the best improvement of the cluster scheme.
success ← false
orignalPenalty ← GetPenalty(cs)
CreateBackup(cs)
for v = 1 to ns do

for g = 1 to NumberOfGroupsOf(ns) do
currentLine ← Getclusterline(v, g)
for c = 1 to nl do

if currentLine is not candidateLine c then
if EmptyLine(c, v) then

add ((v, g), c) to list movingCandidates
end if

end if
end for

end for
end for
SortRandom(movingCandidates)
for count = 1 to width do

if FindValidMoves((v, g), c) is true then
penaltyAfterMove ← GetPenalty(cs)
improvement← originalPenalty − penaltyAfterMove
if improvement > 0 then

add ((v, g), c, improvement) to list succesfulmoves
end if

end if
RestoreBackup()
count++

end for
SortBetter(succesfulmoves)
if size of succesfulmoves > 0 then

((bestsubject, bestgroup), bestline)← first element of succesfulmoves
FindValidMoves((bestsubject, bestgroup), bestline))
success← true

end if
return success

30

Algorithm 6 Pseudocode of Find Valid Moves

function FindValidMoves(group, candidatLine)
// This function checks if moving subject group group to the candidateline
results in a valid cluster scheme.
CreateBackup(cs)
MoveToLine(candidatLine, group)
if Not CorrectlyClassifiedStudents(cs) then

ReClassify(cs)
end if
if Not CorrectlyClassifiedStudents(cs) then

▷ If it is still not valid after reclassification
RestoreBackup()
return false

else
return true

end if

6.2 Single Shift

Another way to optimize the cluster scheme is to switch two groups of the same
subject with each other. In case most students match, this could cause a new,
valid scheme.
Due to the performance of the algorithm, only a limited amount of movements
is checked for a valid classification. In case they are valid, the penalty is calcu-
lated. Eventually, the best improvement is executed.

Besides the assumed known functions described in section 6.1.1, there are two
extra functions used to find improvements of changing two groups of clusterline.

• AlreadyInvestigated((v, g), (i, j)), returning true if the change of (i, j) with
(v, g) is already tried,

• ReClassify(cs), classifying the students to their chosen subject in the new
cluster scheme.

6.2.1 Pseudocode

Since reclassifying the subject is time-consuming, algorithm 8 randomly selects
a predefined number of shifts. These selected shifts are tested in algorithm 9.
Algorithms 8 and 9 are used in algorithm 7 which checks for improvements and
ensures the maximum time is not exceeded.

To ensure the first valid cluster scheme is accepted as the “best till now”, we
set the initial penalty to -1. In algorithm 7, when a valid scheme is found,
we check whether we have a valid scheme test (meaning the penalty is minus

31

1), and whether the quality of the new cluster scheme surpasses the previously
found solution. Algorithm 8 is used to determine whether a successful shift can
be found. As stated in the pseudocode of algorithm 6, we first select the first
subject and its first group and request their clusterline number. Then, we go
through all subject groups and check whether these are placed on the same line.
In case a subject group is on another clusterline, we add this group to the mov-
ingCandidates list, together with the original group. This process is repeated
for all subject groups.

Again, the list is sorted randomly and the first move is tried. We cannot test
every possible move, as this would be too time-consuming. We first check if this
shift has already been investigated. Then, we check if the change is valid with
algorithm 9. A backup is created to go back to the original cluster scheme. Line
1 belongs to group 1, line 2 to group 2. To shift them, we let group 1 move to
line 2, and group 2 to line 1. When this is not a valid cluster scheme, we first
try to reclassify the students over the groups. If it remains invalid, we restore
the backup and report that no valid change was found. In that case, we test
the next moving candidates. If a valid change is found, we keep this new cluster
scheme. Initially, we can choose how many changes we want to test. When this
is more than one, we execute the process again until this number of valid new
cluster schemes is met.

Finally, we execute the best move found and return success to algorithm 7.
The loop starts again to find a new successful cluster scheme. The process stops
if no further successful shifts are found or when the predetermined time elapses.

32

Algorithm 7 Pseudocode of Make Singular Shiftings

function MakeSingularShiftings(maxtime)
// Precondition: maxtime is the maximum runtime after which the
// algorithm stops searching for a lower penalty.
// Ensure that there are no incorrectly classified students.
besteTillNow ← −1
success ← false
stop ← false
while not stop do

FindShiftings(success)
if success then

quality ← GetPenalty(cs)
if bestTillNow < 0 or quality < bestTillNow then

bestTillNow ← quality
end if

else
stoppen ← true

end if
t← GetElapsedT ime()
if t > maxtime then

stoppen ← true
end if

end while

33

Algorithm 8 Pseudocode of Find Shiftings

function FindShiftings(success);
//Precondition: width is the predetermined number of random shifts to try
//Function determines which shift results in (the most) improvement
success ← false
orignalPenalty ← GetPenalty(cs)
for v = 1 to ns do

for g = 1 to NumberOfGroupsOf(ns) do
b ← Getclusterline(v, g) ▷ current line
for i = 1 to ns do

for j = 1 to NumberOfGroupsOf(ns) do
c ← Getclusterline(i, j)
if b is not equal to c then

add ((v, g), (i, j)) to list movingCandidates
end if

end for
end for

end for
end for
SortRandom(movingCandidates);
for count = 1 to width do

if AlreadyInvestigated((v, g), (i, j)) then
width ++ ▷ Do not want to check same shift twice

else
if FindValidChanges(original,candidate) is true then

penaltyAfterShift ← GetPenalty(cs)
improvement← originalPenalty− penaltyAfterShift
if improvement > 0 then

add ((v, g), (i, j), improvement) to list succesfulchanges
success← true

end if
end if
RestoreBackup()

end if
count++

end for
SortBetter(succesfulchanges)
if size of succesfulmoves > 0 then

(bestgroup1, bestgroup2)← first element of succesfulmoves
FindValidMoves (bestgroup1, bestgroup2)
success← true

end if
return success

34

Algorithm 9 Pseudocode of Find Valid Changes

function FindValidChanges(group1, group2)
// This function checks if changing subject group group1 and subject group
// group2 results in a valid cluster scheme.
CreateBackup(cs)
line1 = Getclusterline(group1)
line2 = Getclusterline(group2)
MoveToLine(line2, group1)
MoveToLine(line1, group2)
if Not CorrectlyClassifiedStudents(cs) then

ReClassify(cs)
end if
if Not CorrectlyClassifiedStudents(cs) then

▷ If it is still not valid after reclassification
RestoreBackup(cs)
return false

else
return true

end if

35

7 Results of Hill Climbing Methods

In this section, we present the analyses of the hill climbing methods described
in section 6. This is done by the mean and median of the penalty after one
hour, and how frequent certain cluster scheme-lengths occur.

The objective is to compare the application of the Single Movement and Single
Shift algorithm with the method where only backtracking is used. To test the
Single Movement and Single Shift algorithms, a hybrid method is used which
combines these two with the backtracking method of subsection 5.5. First, the
initial cluster scheme is made using backtracking, and then one of the algo-
rithms is used to optimize the penalty. The probability of which algorithm is
used, varies in each situation below. Again, after a certain time, the whole
cluster scheme is removed, and rebuilt by the backtracking method.

Since backtracking itself is an optimization strategy, in two of the new meth-
ods, backtracking is still used for the optimizing process. In the first test, this
is done with 50% chance, and both the single movement and single shift are
used with 25% chance. In the second test, they all have the same probability
of execution. In the last test, backtracking is just used for the initial schedule,
and optimization is done by the hill climbing methods. All these new methods
are compared with the original methods in which solely backtracking is used.

For each test, we use the same subject groups and student of the same grade
and school. This grade has 31 subjects of which 4 are attended by main groups
and thus not clustered. The number of subject groups vary from one to six.
Moreover, there are 192 students in this grade. The most number of subjects
chosen by one student is 10.
On this grade, each test is executed 100 times, where each test is terminated
after one hour.

Mean of Penalty Mean of Schedule-length
Original Method 11588167 39,12
B 50, M 25, S 25 11142313 38,87
B 33, M 33, S 33 11171685 38,91
B 0, M 50, S 50 11496436 39,24

Table 1: The mean and schedule-length of the penalty after one hour of running
the algorithm. Here, the Original Method is with the backtracking method, and
no movement and shifting. The ”B” stands for ”Backtracking”, ”M” for ”Move-
ment”, and ”S” for ”Shifting”. The numbers behind the methods represent the
percentage of times the associated code is called.

36

Median of Penalty Median of Schedule-length
Original Method 11252116 39
B 50, M 25, S 25 11249272 39
B 33, M 33, S 33 11250550 39
B 0, M 50, S 50 11277622 39

Table 2: The median of the penalty and schedule-length after one hour of run-
ning the algorithm. Here, the Original Method is with the backtracking method,
and no movement and shifting. The ”B” stands for ”Backtracking”, ”M” for
”Movement”, and ”S” for ”Shifting”. The numbers behind the methods repre-
sent the percentage of times the associated code is called.

In the data shown in table 1 and table 2 show that using 50% backtracking
results in the lowest penalty and mean of the schedule-length. Recall that the
schedule-length is the cluster scheme-length plus the schedule-positions needed
for the subjects attended by the basic groups.

The effectiveness of combining backtracking, moving and shifting can be ex-
plained by the locality of each methods’s search. Moving a single subject group
to another clusterline results in a cluster scheme that remains largely similar to
the original one. Shifting two subject group introduces more change but still
stays close to the initial solution. Backtracking, however, allows multiple sub-
ject groups to be placed on entirely different lines, enabling a broader search. In
other words, backtracking can explore near-optimal solution before jumping to
a different region of the solution space. Meanwhile, moving and shifting refine
the search locally, helping to identify a local optimum.

Although the two methods combining backtracking, shifting and moving have
a lower mean than the original method, there is no significant difference. More-
over, note that the median of the schedule-length is the same for all combina-
tions.

37

Figure 1: The number of times a schedule-length is reached in one hour. Each
test is done 100 times.

We run each test 100 times. Not all of them reach the same schedule-length
in one hour. In figure 1 it is seen that all of them reach minimal cluster scheme
41. The tests of the ”Backtracking 0, Movement 50, Shifting 50” reaches the
lengths 37,38,39 and 40 the fewest times. Schedule-length 36 is not reached a
single time by this algorithm.
Figure 1 shows that ”Backtracking 50, Movement 25, Shifting 25” achieves the
lower lengths, 36, 37, and 38, the most out of the four methods. This coincides
with the intuitive explanation given earlier.

38

8 Discussion

In this research, our main focus was to investigate the High School Cluster-
ing Problem. We have applied the local search functions Single Movement and
Single Shift in which subject groups are placed on a different clusterline and
shifted with other groups. We have compared this strategy with the original
backtracking algorithm. We found that the strategy to combine backtracking
and hill climbing can improve the clusterscheme within our dataset.

To recall, a cluster scheme with a low penalty implies a low cluster scheme-
length and thus a low schedule-length. This implies that fewer positions in the
schedule are needed. This makes scheduling more flexible and thus less complex
to schedule all the lessons. Furthermore, due to the flexibility, it is more feasible
to satisfy the tough requirements high schools can have.

It is remarkable that the final schedule-length of a cluster scheme can differ
significantly, even when the same method is applied. In figure 1 it is seen that
even for the same test, length 36 was only reached a couple of times. It is an
interesting question why there is such variation and how the cluster scheme can
get to this more optimal situation faster.

One limitation of this study was that it was conducted on a single dataset.
While for this specific case the method of combining backtracking with single
movement and single shift had a positive effect, it is unclear if this holds in gen-
eral. It did, however, indicate that this algorithm can result in a more optimal
solution ánd that this method was applicable.

Each test is executed for one hour, which is a reasonable amount of time to
wait for an optimized cluster scheme. Future research could examine whether
extending this duration, for example, 8 hours, would yield significantly more
optimized cluster scheme.

For our experiments, we have decided to examine 50 random movements or
shifts each time the function Findmovingsubject group or FindShiftings is called.
Investigating the effect of a different amount of movements and shift is left for
future research.

The bottleneck for our approach was reclassifying the students to their cho-
sen subjects, as this takes a relatively long time. To avoid this bottleneck, one
could only try the valid movements and shifts without reclassifying. Since com-
bining optimizations is likely to have a better result, this could also be done in
combination with the reclassifying method.

Another improvement could be to examine traingle-switch, moving subject
group a to the line of subject group b, moving b to the line of subject group c,
and c to the line of a, is beneficial to add. Moreover, other polygon-switches

39

could be examined. The downside is that the amount of possible switches in-
creases drastically, which could negatively impact the speed of the algorithm.

To generalise this research, our methodology could be tested on multiple sections
of different schools to give a better understanding of the overall effectiveness of
this method.

In conclusion, more optimal cluster scheme were found by a combination of
backtracking, single shift, and single movement during the clustering process.
Even though I have not shown that this method is beneficial for all clustering
problems for all schools, this thesis shows that it could be an option for a sched-
uler to test.

40

9 Symbols & Notation

Aj Average amount of students in a group of subject j,
C The set of all possible soft constraints
G The set of groups. This tuple is comprised of a class, teacher and a subject.

This set is denoted by {(S, v, t)|S ⊆ S, v ∈ V, t ∈ T}}
Gj The set of groups of subject j, denoted by Gj := {g ∈ G|g is a group of subject j} ⊆ G.
HSSP High School Scheduling Problem,
I∗ The minimum number of non-empty cluster lines,
Lj The number of lessons of a group of subject j,
L The cluster scheme,
M The maximum length of the cluster scheme,
mj The minimum group size of a group of subject j,
Mj The maximum capacity of subject j,
Nk The number of subjects chosen by student k,
S The set of all students,
Sij The maximum amount of students that can be applied to subject j when placed on line i,

Sjk

{
1 if student k chooses subject j,
0 otherwise,

T The set of all timeslots,
V The set of all subjects,

wijt

{
1 if teacher t teaches subject group j which is in clusterline i,
0 otherwise,

xij

{
1 if a group subject j is in clusterline i,
0 otherwise,

yijk

{
1 if student k takes subject j which is in clusterline i,
0 otherwise,

Z The set of clusterlines,

υgti

1 if subject group g is not present on line i,
or Υgt = 1,

0 otherwise.

Υgt

{
1 if subject group g ∈ G can be taught on timeslot t ∈ T,
0 otherwise.

41

References

Carter, M. W., & Laporte, G. (1998). Recent developments in practical course
timetabling. In E. Burke & M. Carter (Eds.), Practice and theory of
automated timetabling ii (pp. 3–19). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Carter, M. W., Laporte, G., & Lee, S. Y. (1996). Examination timetabling: Al-
gorithmic strategies and applications. Journal of the operational research
society , 47 (3), 373–383.

Carter, M. W., & Tovey, C. A. (1992). When is the classroom assignment
problem hard? Operations Research, 40 (1-supplement-1), S28–S39.

Ministerie van Onderwijs, Cultuur, en Wetenschap. (n.d.). Aantal vo-scholen.
Retrieved from https://www.ocwincijfers.nl/sectoren/voortgezet

-onderwijs/instellingen/aantal-vo-scholen

Ministerie van Onderwijs, e. W., Cultuur. (2023). Feiten en cijfers over ler-
aren en het lerarentekort. Retrieved from https://open.overheid.nl/

documenten/dpc-91b57e282681f06e0e7f38caa087c4bb464b045e/pdf

Onderwijs, D. U. (n.d.). Onderwijspersoneel vo in aantal perso-
nen. Retrieved from https://duo.nl/open onderwijsdata/voortgezet

-onderwijs/personeel/in-aantal-personen.jsp

Post, G., Ahmadi, S., & Geertsema, F. (2010). Cyclic transfers in school
timetabling. OR spectrum, 34 , 133–154.

Post, G. F., & Ruizenaar, H. (2004). Clusterschemes in dutch secondary schools.
Rijksoverheid. (n.d.). Prognosecijfers leerlingendaling. Retrieved from

https://www.rijksoverheid.nl/onderwerpen/leerlingendaling/

prognosecijfers-leerlingendaling

van der Kooy, N. (2017). The high school scheduling problem: Improving local
search & fairness evaluation.

van Kesteren, B. (1999, 8 26). The clustering problem in dutch high schools
changing metrics in search space.

42

https://www.ocwincijfers.nl/sectoren/voortgezet-onderwijs/instellingen/aantal-vo-scholen
https://www.ocwincijfers.nl/sectoren/voortgezet-onderwijs/instellingen/aantal-vo-scholen
https://open.overheid.nl/documenten/dpc-91b57e282681f06e0e7f38caa087c4bb464b045e/pdf
https://open.overheid.nl/documenten/dpc-91b57e282681f06e0e7f38caa087c4bb464b045e/pdf
https://duo.nl/open_onderwijsdata/voortgezet-onderwijs/personeel/in-aantal-personen.jsp
https://duo.nl/open_onderwijsdata/voortgezet-onderwijs/personeel/in-aantal-personen.jsp
https://www.rijksoverheid.nl/onderwerpen/leerlingendaling/prognosecijfers-leerlingendaling
https://www.rijksoverheid.nl/onderwerpen/leerlingendaling/prognosecijfers-leerlingendaling

	Introduction
	High School Scheduling Problem
	Problem description

	The Clustering Problem
	Definitions
	Problem description
	Hard Constraints
	Soft Constraints

	Problem definition
	Objective function

	Existing Heuristics for Solving the Clustering Problem
	Branch and Bound Method
	Simple Backtracking Algorithm

	The Clustering Problem at Zermelo
	Problem definition
	Soft constraints
	Hard constraints

	Penalty function
	Objective function
	Penalty-functions of three soft constraints
	Cluster scheme-length
	Freedom
	Classifications

	Backtracking Algorithm

	Improving Cluster schemes with Hill Climbing
	Single Movement
	Description
	Pseudocode

	Single Shift
	Pseudocode

	Results of Hill Climbing Methods
	Discussion
	Symbols & Notation
	References

