

CheatGPT? Reframing artificial intelligence interactions in education at Leiden University

Kunakhovich, Maria

Citation

Kunakhovich, M. (2025). *CheatGPT?: Reframing artificial intelligence interactions in education at Leiden University.*

Version: Not Applicable (or Unknown)

License: <u>License to inclusion and publication of a Bachelor or Master Thesis,</u>

2023

Downloaded from: https://hdl.handle.net/1887/4282708

Note: To cite this publication please use the final published version (if applicable).

CheatGPT? Reframing artificial intelligence interactions in education at Leiden University

MA Thesis
Maria Kunakhovich /// S4540646

Supervisor: Dr. Andrew Littlejohn

MSc Global Ethnography
Cultural Anthropology and Development Sociology
Faculty of Social Sciences
Leiden University

Summer 2025

TABLE OF CONTENTS

CHAPTER 1: ARTIFICIAL INTELLIGENCE IN EDUCATION

- 1.1 ETHNOGRAPHIC VIGNETTE
- 1.2 CONTEXTUALISATION: AI IN AN EDUCATIONAL LANDSCAPE
- 1.3 DEBATES AND EXISTING LITERATURE
- 1.4 RESEARCH SCOPE AND APPROACH
- 1.5 REFRAMING AI USE: BEYOND THE CHEATING NARRATIVE
- 1.6 RESEARCH QUESTIONS AND THESIS STRUCTURE

CHAPTER 2: THEORETICAL FRAMEWORK, METHODOLOGY AND ETHICAL REFLECTION

- 2.1 THEORETICAL FRAMEWORK
- 2.2 METHODOLOGY
- 2.3 POSITIONALITY AND ETHICS

CHAPTER 3: AI BEYOND CHEATING: STUDENT AND TEACHER PRACTICES IN EDUCATION

- 3.1 ETHNOGRAPHIC VIGNETTE
- 3.2 POLICIES IN PLACE
- 3.3 STUDENT PRACTICES
- 3.4 TEACHER RESPONSES
- 3.5 CHALLENGING THE CHEATING NARRATIVE
- 3.6 TO CHAT OR NOT TO CHAT
- 3.7 HOW AI HELPS AND HINDERS
- 3.8 CONCLUSION

CHAPTER 4: THE SYSTEM THAT CREATES THESE PRACTICES

- 4.1 ETHNOGRAPHIC VIGNETTE
- 4.2 PRESTATIEMAATSCHAPPIJ (PERFORMANCE SOCIETY)
- 4.3 HARDER, FASTER, BETTER, STRONGER
- 4.4 THE NEOLIBERAL UNIVERSITY
- 4.5 TRANSFORMING UNIVERSITY
- 4.6 SYSTEMIC PRESSURES
- 4.7 NETWORK RECONFIGURATION
- 4.8 CONCLUSION

CHAPTER 5: DISCUSSION, REFLECTION AND CONCLUSION

- 5.1 DISCUSSION
- 5.2 REFLECTION
- 5.3 CONCLUSION

1. ARTIFICIAL INTELLIGENCE IN EDUCATION

1.1 ETHNOGRAPHIC VIGNETTE

When I'm not performing my anthropological duties, I work in a lovely neighbourhood restaurant in the North of Haarlem. Recently it came up in conversation with a couple I was serving that I am working on my master's thesis in Anthropology. They were curious about the topic, and before I could answer, the gentleman joked, 'Or are you just going to ask chat[GPT] like everybody now?' This casual exchange reveals how Artificial intelligence (AI) use has become normalised in public discourse around academic work. The customer's joke didn't come from a bad place, but it reflects a widespread assumption that AI tools are now the default approach to intellectual tasks like thesis writing. The phrase *like everybody now* suggests that AI adoption is seen as universal, extending far beyond my research context at Leiden University. What's striking is how this comment came unprompted from someone completely outside academia. It shows that the 'AI as shortcut' narrative has entered popular consciousness, reducing complex academic work to something that can be simply outsourced to 'chat.'

This normalisation of AI as a tool to cheat through education and maybe broader life is exactly what prompted me last year to discover what is really going on with Artificial Intelligence in higher education.

As artificial intelligence tools that can write, paraphrase, and translate text become more common, writing is no longer just a human skill. Al refers to 'computing systems that are able to engage in humanlike processes such as learning, adapting, synthesizing, self-correction and use of data complex processing tasks' (Popenici & Kerr, 2017: 2). This is the definition of Al I'll be employing throughout the thesis.

1.2 CONTEXTUALISATION: AI IN AN EDUCATIONAL LANDSCAPE

Recently, a humorous trend has emerged on social media where students jokingly refer to ChatGPT as a classmate, even contemplating whether 'he' should be invited to their graduation ceremonies. In one popular short video, graduates dressed in caps and gowns celebrate in a large hall while a slightly anthropomorphic robot dances in the background. The caption reads, 'ChatGPT showing up to our graduation.' This lighthearted portrayal contrasts sharply with the serious actions taken by universities worldwide, many of which are imposing bans on Generative Artificial Intelligence (GenAl) tools like ChatGPT. Institutions are grappling with how to deal with this technology, often disciplining students who test the boundaries of these restrictions. This juxtaposition highlights the tension at the heart of Al's role in education: is it a helpful partner in learning we should embrace or a disruptive force that undermines academic integrity? ChatGPT, created by OpenAl with support from investors like Microsoft, is a powerful large language model (LLM) that was launched in November 2022. This development has kickstarted a new era of education with unprecedented challenges to educational processes, with a much larger group having access to Al tools than ever before.

Students, educators and institutions are worried about the effects of GenAl on academic integrity, educational processes, authenticity and the ethical implications of Al in higher education.

Students navigate this dynamic landscape not only by embracing Al and interacting with it as an

educational resource but also by engaging in conversations about its implications. How do people make sense of their relationships and interactions with AI? Is it collaboration, co-creation, co-dependency or a back and forth?

1.3 DEBATES AND EXISTING LITERATURE

Existing work on Artificial Intelligence (AI) in higher education discusses either the unprecedented potential of AI to enhance teaching and studying practices or the arising fears and threats for academic integrity and the educational system as a whole.(Molek 2019) Scholars are therefore divided on whether to resist or include AI in a higher educational context. AI is a novel technology, but students have always adopted new tools, such as calculators and digital translators for example, that have raised similar questions and doubts for educators. How teachers and institutions respond to AI is part of a familiar cycle, where new devices are initially ignored, then resisted, and finally accommodated (Sharples 2022)

Educators worry that students may use AI tools in ways that make it harder to ensure honesty and originality in their work; prioritizing the end product over the process through which one actually learns. Students are able to produce a satisfying essay or reflection without fully engaging with the material or academic practices like critical thinking, writing, argumentation structure or proper sourcing. This creates a new dynamic where AI tools designed to help students are met by AI tools designed to detect AI facilitated cheating practices. Students submit work that is made by Al, educators assess with Al; 'Nobody gains or learns anything' (Sharples 2022) On the other hand accounts of students and teachers using AI in creative ways to enhance their pedagogical and educational practices offer potential for higher education. (Ghimire, Bhattarai, and Baral 2024) Al can be helpful for students for whom English is not their first language, making education more accessible. Al can be used as a debate partner, a research aid, a summary tool and help process large amounts of data. Ai can be helpful as a personalization aid, tailoring lessons to fit the specific educational needs of students. (Chan and Hu 2023) Some teachers are already finding creative ways to use Al in the classroom. For instance, Al-generated prompts or summaries can be used in assignments that encourage students to analyze or critique the Al's output, allowing them to engage critically and reflexively with technology. (Fyfe 2023) Instead of just banning AI, teachers can use it to create dynamic, interactive learning experiences that prepare students for a career in an AI era, scholars argue. The University of Amsterdam is experimenting with AI Pilots in which teachers integrate AI technology into their curriculum. Anne Uilhoorn, teacher in the Bachelor programme Future Planet studies for example, has created a custom GPT that can give feedback on student's research questions. (Uva teaching & learning centre, 2024)

Scholars on different sides of the debate agree that we need to come up with ways to make 'good' and 'ethical' Al and use it is such ways. Some argue that Al is neutral and others say it is biased, both presenting Al as a passive subject. Technologies are often overlooked as an actor as non-human agency seems a 'contradiction in terms' (Callon, Law & Rip 1986). 'either they are ignored altogether - technologies, animals, environmental processes, angels or fairies, they are simply absent from social science stories-or they get, as it were, passive, walk-on parts. They are

treated as if they were simply the instruments, perhaps the collective instruments, of people and their actions' (Callon & Law 1997) These perspectives miss the fact that outputs arise from the interaction of human and machine, and that we change one another in the process. Humans and AI form a network of interactions in which notions of morality are constructed (Latour 2005). This research moves beyond the polarized debate about AI as 'good' or 'bad' to explore how students and educators at Leiden University actually use and make sense of AI.

1.4 RESEARCH SCOPE AND APPROACH

This thesis investigates the complex interplay between Artificial Intelligence tools and higher education at Leiden University, specifically focusing on teachers and students in the Humanities and Social & Behavioural Sciences faculties. My 'field', in line with Gupta and Ferguson's (1992) understanding, wasn't a fixed location but rather a constructed space encompassing the university campuses, including study areas, as well as digital interactions through surveys and interviews with students and teachers. I observed students in study spaces, interviewed both students and teachers, and conducted surveys. I followed AI interactions throughout this constructed field, which led me to discover that even though AI shapes education, the incentive to use AI is rooted in the way the educational system is currently functioning.

Al is a hot topic in a lot of different fields, but very little ethnographic research has been published so far. An ethnographic account of undergraduates in Vietnam by Nguyen & Goto (2024), while uncovering some surface level data, is an incomplete account in my opinion. The researchers work from the assumption that any Al interaction should be considered cheating. I believe that as a researcher it is not up to me to define what cheating is in this specific context. My goal is to find out what is considered cheating or misconduct by students and teachers and how those notions affect and are affected by Al interactions.

1.5 REFRAMING AI USE: BEYOND THE CHEATING NARRATIVE

My thesis will suggest a reframing of how AI use is understood in the context of higher education. I will argue that it functions as a coping mechanism in response to the priorities, pressures and productivity demands of the current educational system, rather than solely as an act of cheating. This perspective moves beyond the polarized debate about AI as 'good' or 'bad' to explore how students and educators at Leiden University actually use and make sense of AI.

This mirrors the oversimplified framing I encountered in university policies, where AI use gets reduced to basic categories of cheating versus legitimate use. The use of Artificial intelligence is irrefutably reshaping the social fabric of education, yet very little is known about the practices and interactions with AI in academia.

Using Actor-Network Theory (ANT) and Symbolic Interactionism (SI), this study will investigate how human-AI interactions reshape teaching, learning, and ideas about academic integrity. I hope to contribute to a deeper understanding of the human-AI hybrid and its implications for the future of education.

1.6 RESEARCH QUESTIONS AND THESIS STRUCTURE

With my research I plan to add an ethnographic account of AI practices in higher education. To understand this complex phenomenon, my research is guided by one central question and three interconnected sub-questions that examine both individual practices and systemic conditions: Main Research Question: How do students and teachers at Leiden University make sense of AI adoption within the context of contemporary education?

Sub-questions:

What new teaching and learning practices are students and teachers developing? What systemic factors guide Al adoption at LU?

How do different actors construct meaning around AI and how do those meanings shape practices and interactions?

These questions emerge from the need to move beyond surface-level assumptions about AI as either purely beneficial or harmful. The main question positions sense-making as a social process, recognizing that the meanings of AI use are not predetermined but actively constructed through interactions between students, teachers, technologies, and institutional contexts.

The first sub-question explores the practical dimension, investigating what people actually do with AI rather than what policies say they should do. The second sub-question acknowledges that AI adoption doesn't occur in a vacuum but within specific institutional, economic, and cultural conditions. The third sub-question focuses on the interpretive processes through which AI takes on different meanings for different actors, exploring how students might frame AI as a 'coping mechanism' while teachers see it as a 'threat to learning.'

Together, these questions enable an examination of AI adoption that accounts for both agency and structure, acknowledging that while individuals make choices about AI use, those choices occur within systems that constrain and enable certain possibilities.

Using Actor-Network Theory (ANT) and Symbolic Interactionism (SI), this study will investigate how human-AI interactions reshape teaching, learning, and ideas about academic integrity. I hope to contribute to a deeper understanding of the human-AI hybrid and its implications for the future of education.

The subsequent chapters will detail the research process, explore student and teacher perspectives and practices, delve into issues of academic integrity and institutional responses, present the argument about systemic pressures, and conclude with a discussion of the findings and their implications. This structure aims to move beyond a simplistic 'good or bad' framing of Al and instead provide a nuanced, ethnographic account of how Al is shaping higher education within a specific institutional context.

2. THEORETICAL FRAMEWORK, METHODOLOGY AND ETHICAL REFLECTION

2.1 THEORETICAL FRAMEWORK

Understanding AI in education requires a theoretical framework that can unpack the interplay between humans and AI entities, as well as the meanings ascribed to these interactions. I employ Actor-Network Theory (ANT), Symbolic Interactionism (SI), and Communities of Practice (CoP) to explore how AI-human assemblages are co-constructed, negotiated, and understood within

educational environments. This framework examines Al adoption as a response to systemic pressures within higher education, moving beyond framing Al use as merely an academic integrity issue. ANT allows for an analysis of how AI, as an actor in interaction with students and teachers, reshapes practices within the neoliberal university. Through this lens, I investigate how students, teachers, policies, and AI tools form networks that transform teaching and learning at Leiden University. These practices and effects generated through Al-human assemblages are interpreted and made sense of by the human actors involved. To analyze this meaning-making process, I shift from ANT's tendency to decentralize the human to a Symbolic Interactionist framework. This enables me to examine how participants understand, negotiate, and ascribe significance to their interactions with AI and the transformations these interactions produce. Communities of Practice provides insight into how Al-mediated practices become embedded within collective learning processes. Following Lave and Wenger (1991), I examine how learning occurs through participation in communities where AI becomes part of the 'set of relations among persons, activity, and world'(p. 98). This lens reveals how students and teachers develop shared Al practices through legitimate peripheral participation, and how newcomers are socialized into emerging norms around AI use within academic communities.

Together, these complementary perspectives provide a robust analytical approach for understanding both the evolving educational practices and the interpretive processes through which these changes become meaningful within the university context.

2.1.1 Actor Network Theory: Understanding Human-Al Educational Networks

Actor Network Theory, developed by Bruno Latour, Michel Callon, Madeleine Akrich and John Law in the early 1980s, provides a foundational lens for analyzing the complex interactions between human and non-human actors in educational settings. Latour challenges traditional conceptualizations of the social and proposes it to be understood as a dynamic, ever-changing network of actors. The social emerges from interactions between actors. These actors, which include people, technologies, objects, and institutions, are treated symmetrically, meaning that non-human, non-living entities are granted agency as active participants in shaping networks (Latour 2005).

In ANT, human and non-human actors should be treated equally in analysis. We should strive to avoid distinctions in agency as both human and non-human actors have force over outcomes of processes (Fenwick & Edwards 2010, Latour 1987). This approach is particularly relevant to my research, which encompasses human actors (students, teachers, staff) and non-human actors (Al tools, policies, assessments, the university itself).

However, for my application of ANT, I believe it is important to differentiate between the capacities we grant to human and non-living, non-human actors like computers and AI. In line with Kipnis, I take a stance between Latour and his critics by granting agency to non-human entities but emphasizing the difference between human and nonhuman agency (Kipnis 2015).

2.1.2 Conceptualizing Agency in Educational Al Networks

My understanding and use of agency is rooted in ANT and its critiques. Agency is the capacity to act (Hornborg, 2016; Kipnis, 2015). In interaction, this capacity to act can become transformative. Translation emphasizes the negotiations, transformations, and adaptations that occur as entities interact (Callon 1986).

Hornborg (2016) argues that while non-living objects lack agency, they still influence their surroundings in four ways: they create physical constraints that limit how living beings can move and act; they trigger responses from living entities, like how weather prompts certain behaviors; they perform designated functions as human-designed tools and technologies; and finally, they get attributed agency they don't actually have, people treat them as if they're autonomous when they're really just passive objects.

This last point seems particularly applicable to AI in educational contexts. Nass and Reeves (2000) discuss this ascribed agency in their computers-as-social-actors-paradigm (CASA). It proposes that humans treat computers in human-computer interactions as social actors, ascribing them with human-like characteristics and treating them similarly to how they would treat a fellow human being. Social norms that apply to humans often are applied to computers in these instances. CASA 'suggests that humans treat media and computers like real people, mindlessly applying scripts for interacting with humans to interactions with social technologies' (Gambino et al 2020:71).

As Hornborg (2016) notes, 'When a fetishized object has the appearance of having agency, it is the perception of the object which influences human agency, not the object itself that acts.'This insight is crucial for understanding how students and teachers perceive and interact with Al tools, particularly when they describe Al as 'helping'them or when they anthropomorphize these technologies.

2.1.3 ANT in Educational Context

ANT analyses offer a method for picking apart assumed categories and structures in education as products of interactions between heterogeneous, human and non-human actors. A network in the educational context can thus be a Student-Al hybrid that produces something that is submitted to a teacher, who might also form a hybrid with Al to process the submission. This perspective allows us to examine how systemic pressures within the neoliberal university create networks where Al becomes a necessary tool for navigation rather than simply a threat to academic integrity.

This framework is essential for understanding my central argument that AI adoption functions as a coping mechanism within the current educational structure. Rather than viewing AI as an external disruptor, ANT allows me to examine how AI tools become integrated into existing networks of actors, policies, assessments, and institutional pressures to create new hybrid assemblages that respond to demands for efficiency and productivity.

2.1.4 Symbolic Interactionism: Meaning-Making through Al Interactions

This is where symbolic interactionism becomes crucial for understanding how humans make sense and meaning of the effects that are produced out of alliances between human and non-human, non-living entities. Strathern (1996) calls these hybrids or assemblages in Actor Network Theory. Symbolic Interactionism (SI) is a sociological perspective based on the ideas of George Herbert Mead, but coined and structured by Herbert Blumer in 1969. Blumer's approach to SI recognizes three foundational premises that are particularly relevant to understanding AI adoption in higher education

.First premise: Human beings engage with things around them based on the meanings that those things hold for them. These include physical items like computers and AI interfaces, other individuals such as teachers or fellow students, groups of people like classmates or faculty, institutions such as universities or examination boards, and principles like academic integrity or educational efficiency (Blumer 1969: 2). In the context of AI in education, this premise helps explain why students and teachers develop different relationships with AI tools based on the meanings they assign to them. For students experiencing time pressure and workload stress, AI may take on the meaning of a 'coping mechanism'or 'efficiency aid, 'while for teachers concerned about academic integrity, the same technology may carry meanings of 'cutting corners'or 'deception.'

Second premise: These meanings are not inherent but are shaped through social interactions with others. This is particularly significant for understanding how AI meanings emerge and evolve within educational communities. The meaning of AI use is not predetermined but develops through interactions between students and peers, teachers and colleagues, and institutional communications about AI policies.

My research data demonstrates this dynamic clearly. When one student mentioned being advised by a study coach to 'use AI for efficiency,'this interaction shaped their understanding of AI as a legitimate educational tool. Conversely, when institutional policies frame AI primarily through the lens of academic misconduct, this shapes different meanings around AI use as potentially transgressive behavior.

Third premise: Individuals interpret and adapt these meanings as they navigate their experiences, using an ongoing process of evaluation and reinterpretation (Blumer 1969: 2). This emphasizes the construction of behavior in interaction. How people interact with AI is constructed through previous interactions with other actors and AI. Neither group's behavior is fixed; instead, both continuously negotiate and renegotiate their practices based on ongoing interactions and evolving meanings.

The symbolic interactionist perspective reveals how the meanings assigned to AI tools are not simply individual but emerge from the social and institutional context of the neoliberal university. Symbolic interactionism helps me analyse concepts with dynamic meanings like for example academic integrity of misconduct. When students consistently report using AI due to time pressure, they are not simply making individual choices but responding to socially constructed meanings about efficiency, productivity, and academic survival within current institutional

demands. Similarly, when teachers express concerns about 'nobody learning and nobody gaining anything'in Al-mediated education, they are drawing on collectively constructed meanings about authentic learning, educational value, and professional identity that have developed through interactions within academic communities.

The framework helps explain how meanings around AI use are contested and multiple. The same AI interaction can simultaneously carry different meanings depending on the social context and actor perspectives involved. This multiplicity of meanings reflects the complex negotiations occurring as educational communities adapt to AI integration.

2.1.5 Communities of Practice: Learning and Al Integration

Lave and Wenger (1991) conceptualize learning as fundamentally social, occurring through *legitimate peripheral participation* in communities of practice rather than individual knowledge acquisition. They argue that 'learning is an integral and inseparable aspect of social practice'(p. 31), where a community of practice encompasses 'a set of relations among persons, activity, and world, over time'(p. 98). In this framework, newcomers gradually move from peripheral participation toward full participation in the practices of a community through engagement with others in shared activities, gradually adopting the norms, values, and practices of the group. This aligns with the symbolic interactionist premise that meanings arise through social interaction. In communities of practice, shared meanings about roles, tasks, and values are continuously negotiated and redefined, reflecting symbolic interactionism's emphasis on interpretive processes that shape social behavior. Similarly to Actor network theory, communities of practice lets me discover AI as an actor within a network or community.

This concept is particularly relevant for understanding how AI practices develop and spread within educational communities. Students don't learn to use AI in isolation; they develop practices through participation in study groups, informal conversations, and classroom interactions. A student who sees regular AI use around them, will internalize the normalcy of AI in an educational context. Similarly, teachers develop AI-related pedagogical strategies through interactions with colleagues. The communities of practice framework helps explain how AI adoption becomes normalized or stigmatized within different educational communities. For example when study coaches advise students to use AI for efficiency, they are legitimizing certain practices, while examination boards establishing detection protocols create different community norms around AI use.

2.1.6 Integrating the Framework: Networks, Meanings, and Practices

By combining ANT, Symbolic Interactionism, and Communities of Practice, I can view students, teachers, and AI as intertwined, dynamic actors that shape and reshape each other within specific communities and institutional contexts. ANT provides the tools to map the networks and trace how human and non-human actors influence each other, while symbolic interactionism offers insights into how meanings are constructed and reconstructed through these interactions. Communities of practice helps explain how shared norms and practices around AI use develop and spread within educational settings.

This integrated framework is essential for supporting my argument that AI adoption must be understood as embedded within broader educational, institutional, and societal dynamics rather than merely as an integrity issue. The framework reveals how systemic pressures within the neoliberal university create conditions where AI becomes meaningful as a coping mechanism, how these meanings are socially constructed through interactions within educational communities, and how practices around AI use develop through participation in specific communities of practice.

The theoretical framework thus enables me to examine how the transformation of teaching and learning through AI is not simply a technological change but a complex social process involving the reconstruction of meanings, the formation of new networks, and the evolution of educational practices within the constraints and opportunities of contemporary higher education structures. This perspective moves beyond reactive, prohibitive approaches to AI in education toward a more nuanced understanding of how AI tools become integrated into the social fabric of educational communities, shaped by and shaping the institutional contexts in which they operate. To study how these theoretical frameworks apply to the reality of AI use at Leiden University, I developed a mixed-methods methodological framework which I will cover in the next section.

2.2 METHODOLOGY

2.2.1 Ethnographic vignette

Before my very first interview I was preparing and observing in the canteen area of Lipsius building. Lipsius is the main humanities building, set in the historical center of Leiden. I chose to sit in this area over a study area or library in hope of overhearing something intriguing about student AI use. As I walked in and settled into a green cushioned seat in the corner, but with good overview of the area, I smelled coffee, heard the clicking of keyboards and luckily some chatter. Students were sitting in lively groups, some alone bent over a bowl of soup or a book. After a while, I realized I needed to print my interview questions for later that day. While i was searching for the nearest printer, a fellow student approached me. He was looking for the printer too. As we made our way upstairs, I decided this was it. This was the moment that my fieldwork was really starting. After just a morning in the canteen, I was sure students were using AI on campus, but hadn't really overheard any conversations about it. I decided to test the waters with informal conversation and asked this gentleman a couple of questions about his experience with Al in higher education. He was very quick to state that he didn't really use Al tools and when he did, he relied on the advice of Dutch tech visionary, journalist and media personality Alexander Klöpping: view Al as an intern, give it small, specific tasks, but do not expect it to take over your work. After sharing this slightly banal sentiment with me, the student said he had to run to get to his class and left hastily. I remember thinking how interesting it was that this student was parroting a socially appropriate opinion on AI, rather than sharing his personal opinion and experience. The answer sounded almost rehearsed and reeked of Al fatigue. This brief encounter encapsulated what would prove to be a challenge of my research: how do you study something that people are both reluctant to be honest about and already bored of discussing? This is where

qualitative ethnographic methods helped me uncover the complex interactions students and teachers are having with AI, AI generated content and each other in an academic context.

2.2.2 Mixed methods

My research into AI use in higher education required methods capable of capturing how both students and teachers make sense of these new technologies within academic contexts. This approach was grounded in symbolic interactionist theory, which recognizes that social reality is interpreted rather than literal, and always under symbolic construction (Emerson et al., 2011: 2). Rather than assuming AI use has fixed meanings, I approached it as a site where participants actively construct understandings through their interactions with technology, policies, and each other. Symbolic interactionism emphasizes that people act based on how they define their situations, not on objective circumstances alone (Emerson et al., 2011: 2). In academic settings, both students' and teachers' decisions about whether, when, and how to engage with AI tools emerged from their interpretations of what these practices meant for learning, teaching, academic integrity, and their professional or academic identities. Since such meanings are unpredictable and emergent rather than predetermined (Emerson et al., 2011: 2), I needed a mixed methods approach that could capture both the interpretive processes through which meanings developed and the broader patterns of practices and attitudes across both student and teacher population.

2.2.3 Fieldwork realities

The fieldwork period was not without obstacles, although probably rather breezy compared to other fields. Two scheduled appointments were canceled without rescheduling, and one participant arrived 30 minutes late. Interestingly, once conversations began, participants often seemed comfortable extending beyond the scheduled time, suggesting genuine interest in the topic despite initial scheduling challenges. When approaching students directly on campus, responses were notably brief, with many seeming disinterested, rushed or uncomfortable discussing their AI use. I employed different approaches for different participant groups. With students, I kept interactions casual and brief, typically 30-minute meetings over coffee or digitally. I approached them via WhatsApp and email, deliberately presenting myself as a fellow student to establish rapport. With teachers and faculty members, my approach was more formal. All appointments were arranged via email, and I prioritized in-person meetings, either visiting participants in their offices or booking campus rooms for our meetings. Three interviews were conducted digitally at the participants' request. I used semi-structured interviews, observations, had informal conversations, and conducted a survey.

During my interviews, I used an audio recorder/voice tracer. One participant actually mentioned that they were very aware of how they spoke and the fact that they were being recorded. I wonder whether this was the case for others. I chose to record with a voice tracer rather than recording with my phone, to communicate to my participants that this recording is professional and will be handled with care and confidentiality. Perhaps a phone would have faded more into the background because of the normalcy of the object and made my interlocutors more comfortable instead.

My participants signed an informed consent form with two signatures, one specifically for the recording. I wonder whether this reassured participants about their confidentiality and position, or if it drew too much attention to the fact that our conversation was being recorded.

2.2.4 Interviews

I prepared each interview with written, specific questions and a structure that I wanted to stick to. I rarely referred to my list of questions but tried to steer the conversation towards them. Sometimes the conversation would naturally flow past the themes and topics I had planned to cover. This unstructured approach turned out to be very useful, as participants would share things I would not have known to ask about. The topics they stressed also revealed a lot about their opinions surrounding AI. This approach closely alligns with how Bryman defines semi-structured interviews as a qualitative research method (Bryman 2012: 471) Semi-structured interviews were essential for understanding how participants made sense of their Al use within academic contexts. 'Keeping structure to a minimum is supposed to enhance the opportunity of genuinely revealing the perspectives of the people you are studying (Bryman 2012: 404) As Bryman emphasizes, this method captures both researcher-directed topics and participant-generated meanings, allowing for flexibility to pursue issues that may not have been anticipated (Bryman 2012). The method was particularly suited to symbolic interactionist research as it enabled participants to reveal their situated meaning regarding Al use. It shows how they interpreted academic integrity, their relationships with technology, and their roles as students or teachers (Hammersley & Atkinson, 2007:186). The conversational flow often led to unexpected revelations about emotional relationships with AI tools, demonstrating what Emerson et al. describe as the 'emergent' nature of meanings that arise through interaction, making this method ideal for capturing the complex, evolving nature of Al adoption in academia.

In two cases, my participants even said things like, 'oh oops, I forgot this is being recorded,' or 'haha, maybe take that off the record,' suggesting they felt comfortable and were being very honest. I also believe that this style of interviewing suits me well: I like to chat and can find a common language with most people. A more structured interview would have felt unnatural. Later on in fieldwork, as I collected more data, my interviews changed slightly: I would try to confirm what I heard from other participants. Here, I had to be mindful of my own bias and desire to discover links and patterns, and avoid asking too leading questions. Instinctively I was applying grounded theory, a qualitative research methodology first described by Glaser and Strauss in 1967. Grounded theory is 'theory that was derived from data, systematically gathered and analyzed through the research process' where 'data collection, analysis, and eventual theory stand in close relationship to one another' (Strauss and Corbin 1998: 12, cited in Bryman 2012). This approach proved particularly valuable for my research because it allowed emerging patterns around AI use to shape my subsequent data collection. As Bryman notes, grounded theory is 'iterative, or recursive,' meaning that 'data collection and analysis proceed in tandem, repeatedly referring back to each other' (Bryman 2012:387).

In practice, this meant that early interviews revealing students' anxieties about AI detection led me to ask later participants more directly about their strategies for avoiding detection. Similarly, when teachers mentioned struggling with assessment design, I began exploring this theme more systematically in subsequent interviews. Rather than rigidly following my initial interview schedule, I allowed the data to guide my inquiry following what Bryman describes as 'the generation of theory out of data' (2012). This iterative process helped me move beyond my initial assumptions about AI use to understand it as a complex negotiation of meanings, relationships, and institutional pressures. While I did not develop a full grounded theory, this approach generated key concepts that shaped my analysis, such as understanding AI use as *coping strategies* rather than just *cheating*. Even though I presented myself the same way in all interviews (differently towards students and teachers, but consistently per group), because I did not strictly follow a list of questions, I ended up having very different conversations and receiving varying answers. This resulted in a data pool that is insightful, because it reflects what participants find important, but hard to compare.

2.2.5 Survey

I used anonymous digital surveys to both inform the early stages of inquiry and gather quantitative data later in the fieldwork. This method helped me access a broader range of honest accounts of AI experiences that might not emerge through other methods. As Bryman explains, 'Web surveys operate by inviting prospective respondents to visit a website at which the questionnaire can be found and completed online' (Bryman, 2012: 671), providing my participants with anonymity and the freedom to complete the survey wherever, whenever and at whatever pace they wanted. This flexibility proved valuable because participants who declined interview invitations could usually still find time to fill in the survey, allowing me to capture perspectives from students and teachers who might otherwise have been excluded from my research.

I also chose to supplement my qualitative data with survey data because AI use in academia involves complex negotiations between official policies and actual practices. According to Bryman, participants are less likely to show social desirability bias in self-completion questionnaires compared to interviews where a researcher is present (Bryman, 2012: 234). This was essential for getting authentic accounts of AI practices that participants might be reluctant to admit face-to-face.

I designed my initial exploratory survey with open questions to gauge the situation in the field, identify tensions, and reveal prevalent AI practices among students and faculty at Leiden University. I took this approach to help develop more specific interview questions, given the limited existing ethnographic research on AI practices in education. I planned a follow-up explanatory survey with closed questions for the end of the fieldwork period, intending to collect quantitative data that I could compare with qualitative findings to identify differences or overlaps. My survey distribution strategy reflected how sensitive the research topic was. I used multiple approaches, the most successful being little laminated A6 pamphlets with the tagline 'Are you using AI in your studies? Tell me your secrets in this survey. Don't worry, I won't tell'. This was language I deliberately chose to acknowledge students' cautious attitudes toward discussing AI use. I hung them up throughout the university in humanities and social science buildings. I decided to place pamphlets in university restrooms, recognizing that 'everybody uses the

Figure 1. Pamphlet with QR code for survey. Source: Personal archive

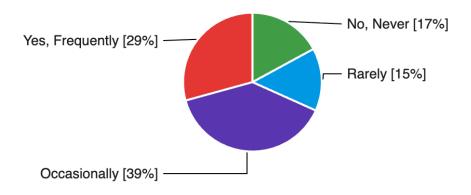


Figure 2. Pamphlet with qr code on University information board. Source: personal archive

restrooms, while not everyone stops to look at information boards in the canteen,' thus reaching a broader sample while maintaining the anonymity crucial for this sensitive topic.

Despite these efforts, I found survey distribution more challenging than I expected, ultimately having to rely on WhatsApp groups, which resulted in mostly anthropology student respondents. This limitation made the quantitative data I collected less representative of the broader humanities and social sciences student body. However, I saw the anonymity advantage work through participants' honest responses, including 'confessions' of submitting AI-generated work. One particularly revealing response to 'Were there consequences [to submitting AI-generated work]?' was 'I got away with it' with a smiling devil emoji, showing how students see AI use as 'naughty behavior' or misconduct while still doing it.

I gathered survey data from 50 students that showed occasional AI use was most common (39%), with key motivations including time pressure, curiosity, and academic challenges. These findings guided some of my student interviews, using qualitative methods to elaborate on quantitative patterns. This suggested students see AI as a multifaceted tool rather than just a shortcut, while

the prominence of time pressure aligned with broader systemic issues within contemporary higher education. Looking back, I would include more open questions in future surveys, as I found these more insightful for capturing the nuances of student attitudes despite being harder to process and analyze.

2.2.6 Observations

While interviews revealed what participants were willing to articulate about their Al practices, observation was necessary to understand these practices in their natural context. As Hammersley and Atkinson emphasize, 'interviews and conversations are important aspects of all fieldwork, but they cannot substitute for proper observation and examination of socially organized action' (Hammersley & Atkinson, 2007: 169). My approach aligned with what Bryman describes as unstructured observation, where the 'aim is to record in as much detail as possible the behaviour of participants with the aim of developing a narrative account of that behaviour' (Bryman, 2012: 273). This method was essential for capturing the situated nature of Al use. I could observe how students actually integrated these technologies into their academic routines, beyond what they could or would describe in interviews. Observation allowed me to witness the embodied practices, social negotiations, and unspoken anxieties that shaped Al use in academic settings, revealing the taken-for-granted assumptions that structured how students navigated the complex social and institutional pressures around these tools.

I conducted observations in study spaces on campus in Leiden and The Hague, visiting libraries, study areas, quiet spaces, and cafeteria tables where people were working on their laptops. I would walk around trying to spot who was using Al tools. At Arsenaal, for example, I would walk along the outer walls in the study area and look onto the screens of students there, positioning myself far enough away that I could not read any information, but close enough to recognize the layout or logotype of common Al tools like ChatGPT, Claude, NotebookLM, Perplexity or Gemini. Originally, I planned to ask those using Al to walk me through their process, but I quickly realized that students studying didn't have time for an overly curious anthropologist. I ended up just counting how many screens I saw with LLM/GenAl tools on them. This unfortunately did not provide deeper insights, but it did reaffirm how common Al use is in a higher education context. These observations proved helpful for distributing my survey. Whenever I saw someone working with an Al tool, I would slide a card with the QR code for my survey. One student initially got very afraid and nervous but quickly relaxed when I told them this was just for a thesis project and not affiliated with the university. A reaction that powerfully illustrated the level of apprehension students feel around discussions of Al and academic integrity.

2.3 POSITIONALITY AND ETHICS

2.3.1 My Role as Student-Researcher

An intriguing attitude towards be as a student researcher emerged during my interviews that I only noticed after reviewing my transcripts. Throughout my forty-minute conversation with Professor Peters, they consistently referred to students as 'they'—never 'you,'despite sitting across from

someone who was obviously both researcher and student. This was the case with almost all of my informants. 'They don't understand the implications,'the professor explains, discussing student Al use. 'They think it's just a tool, but they're not learning to think critically.'

I suspect this linguistic distinction revealed much about how they conceptualized our interaction. I was perceived primarily as a researcher, a colleague with whom they could share candid opinions about 'them', the students. In contrast, the educational advisor I interviewed later that week notably addressed students as *you* and *jullie*, linguistically including me in that group. 'You're dealing with so much pressure,'they said. They also expressed the most positive outlook regarding student motivations and potential. I suspect that therefore they didn't feel uncomfortable including me in that group.

Alternatively, because teachers rarely encounter their students in researcher roles, they may have mentally recategorized me, seeing me not as a student but as a professional equal. This small linguistic choice becomes a window into how different faculty members position themselves in relation to students.

My position as a master's student at Leiden University investigating AI, academic integrity, and university structures created a complex dual identity as both student and researcher. This positionality presented unique methodological and ethical considerations that shaped every aspect of my fieldwork approach. Initially, ethical considerations appeared straightforward, guided primarily by established principles and codes of conduct regarding informed consent, anonymity maintenance, and harm minimization. I adapted my interview approaches based on participant categories, students versus teachers, with the goal of creating comfortable environments conducive to honest conversation.

The vulnerability of participants, particularly students, became apparent throughout the research process. While teachers demonstrated eagerness to share their experiences and perspectives regarding AI use in education, students exhibited notable hesitation when approached for participation. This reluctance proved valuable as ethnographic data, revealing the sensitive nature of Al discussions within the student population and highlighting underlying power dynamics. My positioning as a fellow student provided distinct advantages for access and rapport-building, as participants could relate to shared academic experiences. As a student myself, I occupied a unique position where student participants represented my peers rather than subjects under institutional authority. This peer relationship enhanced the likelihood of truthful and candid responses about GenAl use in coursework, as I did not represent an authority figure to them. However, this familiarity simultaneously created ethical complexities, particularly when participants shared information about academic misconduct or institutional practices with broader implications. A central ethical dilemma emerged: if I discovered consistent academic dishonesty by a participant, what obligations did I have as both anthropologist and fellow student? This complexity intensified when both students and teachers served as research participants, creating potential conflicts of loyalty and confidentiality.

In terms of positionality and bias it might also be worth noting that before starting my preparations for fieldwork, I had never interacted with LLM tools like ChatGPT. I realized that to analyze AI interactions and understand the nuances of what my participants shared with me, I had to explore

these tools for myself. Upon first interactions my feelings and impressions were mixed. I was disappointed with the output and could not imagine someone being naive enough to submit something generated by Al. However, after tweaking some prompts and figuring out how the tools work, I began to see the danger. The output began to improve and even started looking like a student submission. Yet if you looked closer and actually had knowledge of the topic in question, the Al output was not as impressive as it first appeared.

This learning process proved important for my research approach. It helped me understand both why students might be drawn to these tools and how the quality of Al output could evolve with user experience. This knowledge informed my interviews and analysis, as I could better relate to my participants.

2.3.2 Ethics

Following the American Anthropological Association (AAA) and Antropologie Beroepsverening (ABv) codes of ethics, I grounded my approach in the principle that an anthropologist's primary commitment to research participants should be rooted in respect, transparency, and harm minimization, treating them as collaborators rather than mere subjects. This commitment involved obtaining informed consent, maintaining clarity about research purposes, and respecting participants' autonomy to establish boundaries around shared information.

I implemented comprehensive anonymization strategies extending beyond simple pseudonym usage. These measures included systematic alteration of specific identifying details such as academic departments, geographic locations, and distinctive institutional features. To provide additional protection, I adopted non-binary they/them pronouns for all participants in the thesis, regardless of actual gender identity, creating an extra layer preventing identification through linguistic patterns.

For data management I followed De Kooning et al.'s principles emphasizing that raw ethnographic data remains highly contextual and embedded in researcher positionality, therefore requiring that field notes and unprocessed materials never be shared due to their potential for misinterpretation outside their original context.

2.3.3 Avoiding Harm While Revealing Practices

Observations in study spaces presented ethical complexities surrounding the boundary between legitimate public observation and personal space respect. Obtaining deeper insights about usage patterns proved challenging without potentially invasive interruptions that could compromise participant comfort and privacy.

Upon fieldwork completion, confidentiality issues assumed new dimensions. The anonymity of my online survey had encouraged student admissions of submitting Al-generated work. I recognized that sharing specific details about successful undetected Al use or teachers' detection strategies could inadvertently provide guidance for misconduct or undermine instructors' pedagogical efforts. My ethical responsibility extended beyond protecting individual identities to considering broader impacts of research findings. However, I also considered that in the rapidly evolving

digital context of AI, specific tactics and strategies change so quickly that detailed information might lose relevance or practical applicability before causing harm.

These fieldwork experiences transformed abstract ethical principles into practical considerations requiring constant negotiation and reflexive engagement with the complex moral landscape of contemporary academic life.

These methodological and theoretical tools enabled me to move beyond surface-level assumptions about AI use to examine the complex realities of how students and teachers actually engage with these technologies. The following chapter presents these findings, revealing practices far more sophisticated and thoughtful than dominant narratives suggest.

3. AI BEYOND CHEATING: STUDENT AND TEACHER PRACTICES AT LEIDEN UNIVERSITY 3.1 ETHNOGRAPHIC VIGNETTE

On a sunny march morning I made my way to the Hague campus of Leiden university. I was excited to interview my first student participant, an international student from the USA, currently finishing up their masters programme in Humanities. I arrive early, find a quiet spot near a large window in the campus cafe, set up my recorder and order a coffee. Linus (pseudonym) arrives about 5 minutes before our appointment and I find him near the reception. I reached out to Linus as he was supposed to attend an AI event I went to last December, I reckon he will have some interesting insights about AI in education. In his email Linus let me know that 'although he is not the most frequent Al user, he loves to think about these more philosophical concepts of learning and intelligence and their relation to academic performance. Our conversation naturally flowed towards the topic of Al detection, something that happened in many of the interviews I conducted. In such an Al rich landscape, to quote Linus, 'I think you will have trouble finding people who do not use Al', even those who do not submit Al generated text are changing their writing style to appear 'more' human. Linus tells me he is a frequent em dash user, according to peers he should start taking em dashes out of his writing as 'they are a signal of ChatGPT writing' This anecdote reveals how AI is changing the practices even of those who do not actively interact with it. The interactions between students, teachers, Al tools and other actors create intriguing practices. This reality challenges the dominant narrative that frames AI in education as a battle between rule-breakers and rule-enforcers. Instead, it reveals a more complex landscape where both students and teachers navigate demands using available technologies, including AI, while trying to preserve educational values.

This chapter explores the diverse perspectives of Leiden University students and teachers on integrating Artificial Intelligence systems in higher education. Through conversations and interviews with both bachelor's and master's students at various points in their academic journeys, along with survey responses and observations, I examined how both groups approach AI use in their studies and teaching practice. These discussions revealed different motivations for engaging (or not) with AI systems, the specific ways they incorporate them into their work, and the thoughtful concerns they raise about AI's influence on learning, academic conduct, and university life more broadly.

The rise of AI technology presents what both groups see as promising opportunities for productivity and serious challenges around developing essential skills, navigating ethical questions, and maintaining core values of critical engagement and reflection within academic education. Through these encounters, I aim to show how students and teachers are adopting, questioning, and thinking critically about AI within their educational experiences and the current academic landscape, revealing shared struggles rather than adversarial positions.

3.2 POLICIES IN PLACE AT LEIDEN UNIVERSITY

Before getting into the practices of students and teachers, I find it useful to have a look at the policies currently in place. At Leiden University, Al policies emerge from an institutional stance of cautious prohibition rather than educational opportunity. The university's official communication explicitly advises against using commercial Al platforms, citing concerns about data processing agreements and EU Al regulation compliance, which classifies Al use in education as 'high risk.' This risk-averse approach translates into course-level policies through a standardized blank GenAl module embedded in every Brightspace page that operates from a clear baseline: 'The basic principle is that the use of GenAl is not permitted.'Teachers fill in what ways students might be allowed to use Al.

In December, I attended an Expert Meeting on GenAl in Assessment that revealed the institutional tensions surrounding Al policy. Here the Al Assessment Scale (AIAS) was first presented. The framework adopts a five-level scale of Al integration developed by Perkins et al (2024).. and emphasizes that 'there is currently no white list of reliable AI systems' and 'any form of AI deployment brings potential risks. This quantified approach mirrors what Nuhrat (2025) identifies with Turnitin: when complex educational relationships are reduced to numerical scales, the quantification itself shapes behavior in unintended ways rather than providing meaningful guidance. Just as students learned to game Turnitin's similarity scores without improving originality, the Al Assessment Scale risks becoming another metric to optimize rather than a tool for meaningful pedagogical reflection. Rather than fostering original thinking, the scale risks normalizing certain levels of AI dependency by categorizing it as acceptable practice. The discussion at the GenAl meeting centred around securing grades and assessments, protecting them from Al plagiarism. Interestingly, when confronted with the notion that submitting something that you didn't write yourself isn't all that new, teachers agreed with me. Many stated that the scale and accessibility of AI tools make this type of cheating different. A comment made at the GenAl assessment meeting really hit the nail on the head for me. When discussing essay farms, ghost writers and Al generated work, a faculty member said: 'and now everybody can afford to have their work done for them, you can be poor and prompting. Now that it is not the lucky few who can outsource their work, student work is policed more vigilantly than ever. This observation captures a crucial contradiction in institutional responses to Al. For decades, wealthy students could hire ghostwriters without institutional concern, but now that AI democratizes access to academic assistance, the response has been increased surveillance rather than pedagogical adaptation. The meeting highlighted the gap between institutional messaging and faculty reality. While official communications emphasize risk and restriction,

Level of AI integration		Key Message to Students	Disclosure
1	NO AI	The assessment is completed entirely without Al assistance. This level ensures that students rely solely on their knowledge, understanding, and skills. Al-generated content or any other form of Al may not be used at any point during the assessment.	No AI disclosure required.
2	AI-ASSISTED IDEA GENERATION AND STRUCTURING	Al can be used in the assessment for brainstorming, creating structures, and generating ideas for improving work. However, the use of Al-generated content within the assignment is not allowed. No Al content is allowed in the final submission.	Al disclosure is required. Include a statement declaring how Al was used in your final submission. A record of used prompts should be maintained and handed over to the teacher on request.
3	AI-ASSISTED EDITING	Al can be used to make improvements to the clarity or quality of student-created work to improve the final output, but no new content can be created using Al. It's not allowed to use Al to fully complete your assignment. Al can be used, but your original work with no Al content must be provided in an appendix.	Al disclosure is required. Include a statement declaring how Al was used in your final submission. A record of used prompts should be maintained and handed over to the teacher on request.
4	AI TASK COMPLETION, HUMAN EVALUATION	Al is used to complete certain elements of the task, with students providing discussion or commentary on the Al-generated content. This level requires critical engagement with Al-generated content and evaluating its output. You will use Al to complete specified tasks in your assessment. Any Al-created content must be cited.	Al created content in your work must be referenced accordingly, using APA-citation. A prompt record should be maintained and can be requested by the teacher.
5	FULL AI	Al should be used as a 'co-pilot' in order to meet the requirements of the assessment, allowing for a collaborative approach with Al and enhancing creativity. You may use Al throughout your assessment to support your own work. Depending on the teacher's decision, reference may be required.	The teacher can request to either not cite anything or cite Al-generated content using APA-citation. A prompt record should be maintained and can be requested by the teacher.

Figure 4. The Al Assessment scale (AlAS)
Source: Personal archive

faculty discussions focused on practical adaptation and pedagogical innovation. The meeting in December proved very fruitful for participant recruitment. One participant who I met there captured the frustration: 'I also got quite angry from that meeting, it was all about prohibition and policy'bStudents also report inconsistent communication, with many uncertain about what is actually permitted. One student observed: 'There's this Brightspace module... It's not super complete. It's not something that I think most people look at... teachers just copy and paste it in and they don't really think about the implications of it.'

3.3 STUDENT PRACTICES

Students interact with AI by giving prompts, usually simple language text that describes what an AI system should do. Some describe this as trying to talk to it like a human. They may upload documents like PDFs of articles or even interview summaries to provide context for their inquiry or if the system is not familiar with the source they are referring to. Students employ strategies to work with AI outputs and make them more reliable, such as comparing AI suggestions to the original text, checking page number references, and editing AI-generated text to match their own writing style. Some instruct the AI to flag when it might be hallucinating or drawing from training data rather than the provided text. Despite its utility, some students, particularly those in later stages or research-focused programs, find current AI models insufficient for nuanced tasks like interpreting challenging academic texts or providing insightful feedback compared to a good teacher.

This section outlines the practices students use to support their academic work.

Students employ AI systems across various academic activities, with text comprehension and interpretation representing a particularly sophisticated approach. This practice involves uploading articles to facilitate deeper engagement through questioning and discussion, allowing students to verify AI responses against original sources. However, this method requires students to possess prior understanding of the material to be truly effective. I had the opportunity to review one participant's Claude chat history. They engaged in enthusiastic debates that helped them structure a proposal and research questions for their thesis. They shared the requirements of their thesis and the topics that interest them. They asked Claude to suggest theoretical groundwork and criticize their research questions as they developed them.

Another student processed feedback they received from their supervisor with a GPT they built themselves. They uploaded their original work, the assignment requirements, and the feedback the teacher provided. They prompted the GPT to generate a list of steps to incorporate the provided feedback into the next version of the assignment.

Al also serves as a valuable resource for structuring and drafting academic work. Students report using these systems to organize their thinking and establish connections between ideas, finding particular value in Al's ability to help restructure existing text and provide coherence to developing arguments.

For technical assistance, students frequently turn to AI for specialized tasks such as writing code in R for statistics or formatting references in specific academic styles. A student I spoke to referred to the time-saving capacities of AI systems for tasks that are 'made for machines': 'Like it [AI] can be really, really useful and helpful, especially in academic work where you have like a lot of stuff to do. Just like creating a bibliography, where it has a stylized form and everything is the same, like those kinds of random jobs that are made for a machine, I think, that you don't need to spend your brain power on to check if like every comma is right.'

This comment demonstrates student sophistication in identifying appropriate AI applications and reveals two important dimensions of how students conceptualize AI use. First, it shows students making clear distinctions between intellectual work (requiring human engagement) and administrative tasks (suitable for automation), suggesting more nuanced thinking than plain prohibition or permission approaches. Second, it reflects how students' are conditioned to want to automate their process to become more efficient.

While some students experiment with using AI for article searches, this application has proven less reliable due to concerns about accuracy and detail verification. Hallucinations in the form of non-existent sources, page numbers, or even scholars are common according to my informants. This is backed up by teachers who have encountered work with generated sources and by university communication that warns students about AI hallucinations.

One student reports seeing extensive AI use by peers in group assignments and in class. For example, when someone hasn't read the literature necessary to participate in class. To my informant's surprise, 'AI seems to partially replace search engines.'According to them, classmates will look up concepts discussed in lectures or even historical figures through AI systems, rather than using 'Google or Wikipedia.'This signals a shift in digital skills, where once users seeking information crafted a Google search, they are now prompt engineering.

Finally, summarization represents another key application, with students using AI to generate focused summaries of articles that align with specific topics or research questions, ultimately supporting their own writing and analytical processes.

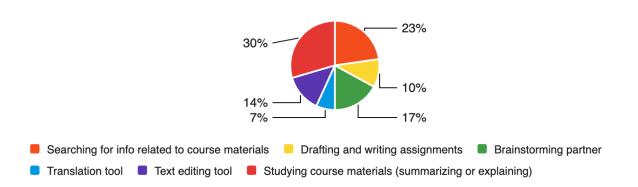


Figure 5. Survey data on student Al application

3.4 TEACHER RESPONSES

As a reaction to student AI use, teachers are developing new strategies for teaching and engaging students as well as assessing and grading. Most teachers I spoke to do not necessarily want to ban AI; some even suggest that it would be 'silly and a waste of time'to not use AI in certain situations. Others use AI in class to teach their students how to responsibly use LLMs. This section covers the spectrum of opinions, perspectives, and practices by educators at Leiden University. I examine the adaptations that teachers are implementing, the shifting dynamics, AI practices, concerns, and what teachers are missing regarding support and community at Leiden University. To structure my analysis, I have categorized teachers' approaches into the following categories:

- 1. Removing the incentive to use Al
- 2. Removing the possibility to use Al
- 3. Deterring and detecting Al use
- 4. Teaching how to engage with AI in fruitful and responsible ways

3.4.1. Removing the incentive

Instead of banning AI use, teachers in this category try to remove as much incentive to use AI as they can. They focus on reducing students' motivation to use AI deceitfully in their assignments. Teachers in this category often refer to formative testing versus summative assessment. My understanding of these concepts is shaped by what my participants told me and aligns with Sandler (1989) and Harlen & James (1997). Formative assessment focuses on the learning

process and is essentially feedback for the student and teacher that informs the next steps (Harlen & James 1997: 370). Summative assessment has a different nature and goal. Summative assessment quantifies knowledge as the product of education usually at the end of a course. This type of assessment focuses on grades.

A linguistics lecturer explained it to me this way: 'Formative is assessing the student to help them learn better, summative is assessing to be able to give a grade and say whether they earned their diploma or not.'They later added that students will be more tempted to use AI in a graded assignment. 'Once a deadline is graded, some students cannot resist the temptation of a shortcut.'

A lecturer in International Studies provides a contradictory opinion based on their experience with bachelor-level tutorials. We discussed the emergence of AI in November 2022 and what changes, if any, they noticed in student submissions from that moment on.

'And at the beginning, I was very naive and I was like, oh, yeah, okay, these answers are, you know, pretty okay. And then I started realizing that a lot of them said exactly the same thing. And I was like, oh, f*ck, of course. So, yeah.'Here my participant refers to weekly ungraded student submissions: 'when they [students] are not graded, and I'm just grading them for actually submitting and not for the content, I see a lot more AI there.'

'After the first batch of questions that I realized was, you know, probably very AI, I did tell them, look, I'm going to have to double check everything and your grades are not your final grades because if I see that, if I get a confirmation that there's AI here, I'm going to just send them all to the Board of Examiners and start discounting points. I think that made them a little nervous. And after that, the second batch of homework, which were much better, right?'

In true Foucauldian fashion, even the possibility of getting caught was enough to discourage Al use; deterrence through fear of consequences. This is backed by student testimonies stating that they are afraid to commit fraud or misconduct.

Another topic being discussed is students' internal motivation. Some teachers say that treating their students like adults and appealing to their inherent desire to learn can remove the incentive to use Al.

3.4.2. Removing the possibility to use Al

This category of adaptations makes it either impossible or difficult to successfully use AI for an assignment or assessment. One example is having exams happen on-site in a controlled environment without internet. One teacher told me how their students have to do handwritten journaling while watching a film in class or leading up to a paper/essay submission. The same teacher also introduced handwritten final exams for one of their classes. Relying heavily on source materials or cases that are either very contemporary or niche might trip up AI systems, rendering them useless for these assignments. The practicality and feasibility of implementing such measures for all assignments and students is questioned due to scale, time, and resource constraints.

'What we came up with is the agreement that we're going to be emphasizing more discussions, debates, or presentations that will be more oral assessments. And then when we do need written

assignments, then it will be, for an essay, there will be definitely more emphasis on primary source research on which large language models are not actually trained.'

This comment demonstrates how teachers are actively redesigning their pedagogy in response to AI, moving toward assessment methods that require human presence and interaction. The emphasis on oral assessments and primary source research shows teachers' understanding of AI's limitations and their willingness to adapt their teaching practices rather than simply prohibiting AI use.

As stated previously, GenAl policies are in place at Leiden University and are being communicated in various degrees to students. One lecturer says: 'There is no way at this point in the semester someone can say 'I didn't know this [GenAl use] wasn't allowed.''

This brings me to another challenge in the Al in higher education landscape. There is no definitive way to prove Al use as long as the student keeps denying it.

'So how are you going to ensure that you can continue to see whether your students have learned what they need to learn?'This question captures the fundamental challenge teachers face in an Al-integrated educational environment. It reflects deep uncertainty about how to assess genuine learning when traditional markers of understanding can potentially be Al-generated. The teacher's concern points to a larger epistemological crisis in education: if we cannot reliably distinguish between student and Al work, how do we know if learning has occurred?

3.4.3. Deterring and detecting Al use

Rather than restructuring assignments, some teachers take a direct approach by actively discouraging AI use through student conversations and developing detection skills.

'I seek discussions with students. I think it's on me to discourage them. And what I do is saying things like your homework is literally exam prep because your exam is also an essay on a similar topic. So if you don't do your homework yourself, you're going to have a bad exam because you can't cheat in the exam. And I think that's sort of, I think you can motivate students. I encourage them to use AI like other teachers here as well for certain things, but not for generating longer text phrases.'

This educator's efforts to deter AI use touch on two other interesting dimensions. First, there is a clear distinction between different uses of AI. For certain tasks AI use is encouraged, but text generation is not allowed. This is an opinion shared by many teachers I spoke to. Second, it touches on students' responsibility toward themselves and their education. By using AI systems to cut corners, students hurt themselves the most. The quote also reveals the teacher's attempt to frame AI avoidance regarding student self-interest rather than moral obligation, recognizing that practical consequences may be more persuasive than ethical arguments.

'If you use AI as a gofer, then this happens. Then you say, okay, then I can produce a lot, because I have to do things quickly, and then I have more time and space available for other things. The disadvantage is that you don't really learn it.'

This comment articulates the productivity paradox at the heart of AI use in education. It highlights the tension between efficiency and learning. The teacher's metaphor of AI as a 'gofer' captures how students might delegate intellectual work, gaining time but sacrificing the learning process

itself. What's particularly insightful is the teacher's recognition that students make rational calculations about time management, even when those calculations may undermine their educational goals.

3.4.4. Teaching students to engage with Al in potentially fruitful ways

As teachers and students agree that AI is here to stay, teachers are making efforts to incorporate AI into their curriculum and teach students how to engage with it in potentially fruitful ways. There is a recognized need among teachers for the university to educate students in effective AI use. An educational advisor similarly stated that students need to be taught how to use AI effectively and safely, just like other academic skills such as looking up sources or using statistical programs. They emphasized that learning how to use AI systems effectively is something that you only learn by doing it. This perspective reframes AI from a cheating mechanism into an academic skill that requires proper instruction, similar to how universities teach research methods or statistical software.

Several examples illustrate what teachers are doing to have their students engage with Al. A participant in the history department engages extensively with Al and stated that they are pleased with how their department deals with Al, not immediately banning it, but discussing how they can use it appropriately.

'So I'm quite pleased with the way the department is responding overall and that is not rejecting it upfront like some other places are doing. It's an adjustment. It's a challenge, but I think it's also a good opportunity.'

This comment captures a fundamentally different institutional approach to AI, one that embraces adaptation rather than resistance. The teacher's satisfaction with their department's response suggests that collaborative, open-minded approaches to AI integration may be more sustainable and educationally productive than prohibitionist policies.

One example involved having ChatGPT generate an 18th-century conspiracy with real and fake elements and write it in the form of a newspaper article in 18th-century English. This was then uploaded to Brightspace for students to read, and in the next class, they had students engage with this generated text. They asked them to use AI systems to analyze it and possibly find the original source, which does not exist. The teacher said that it was an interesting experience, with students on different sides of the classroom having completely different outcomes. When they revealed that this was AI-generated text, this opened discussion about potential AI uses in education.

This exercise demonstrates sophisticated pedagogical thinking about AI integration. By creating a scenario where students unknowingly analyze AI-generated content, the teacher reveals both AI's capabilities and limitations in a hands-on way. Students having 'completely different outcomes'when trying to verify the source illustrates AI's inconsistency and the importance of critical evaluation skills. The exercise simultaneously teaches students about historical research methods, source verification, and AI capabilities while warning students about the dangers of uncritical AI use.

The same instructor also noted that AI can be very useful for analyzing automatically transcribed medieval texts, especially if they are transcribed from a PDF and are full of typos that make little sense. Al seems able to make sense of such texts. However, a significant cautionary point is that AI is not trained on those original sources, and therefore can misinterpret different terminology that has different meanings in different contexts. They brought up the word 'enthusiasm,'which in the 18th century had religious connotations, very different from how we experience that word now. Because AI models are trained on more modern materials, they cannot process the correct historical definition of enthusiasm.

This observation reveals the nuanced understanding teachers develop through hands-on AI experimentation. The instructor recognizes AI's strength in pattern recognition and text processing while remaining critical and aware of its limitations in historical context. The 'enthusiasm' example perfectly illustrates how AI's modern training data can create incorrect interpretations. This is a critical insight for students learning to work with historical sources. This kind of contextual awareness can only come from educators who engage seriously with AI rather than simply prohibiting it.

Furthermore, teachers have discussions with their students in class and give examples of what they can and cannot use AI for. They suggest that it is useful for language correction, especially if English is not your first language, and noted that ChatGPT is quite good with R and Python these days. Before, students and programmers would look up different bits of code online; now they can use AI instead. Through these teacher efforts, students learn how to use AI and how they can enhance their work while staying aware of the core learning goals of the class.

These practical guidelines demonstrate how teachers are developing Al literacy curricula organically, creating boundaries based on pedagogical value rather than blanket restrictions. The recognition that Al can support non-native English speakers and assist with coding reflects an equity-minded approach that acknowledges different student needs and backgrounds. By positioning Al as a replacement for looking up code snippets rather than for thinking about programming logic, teachers maintain learning objectives while embracing technological efficiency.

3.5 CHALLENGING THE CHEATING NARRATIVE

The evidence of sophisticated practices on both sides reveals why the dominant 'cheating and catching' narrative fails to capture the reality of Al use in higher education. Students are not simply seeking shortcuts to avoid learning, they are developing complex ethical frameworks and practical strategies for integrating Al while preserving educational value. Teachers are not simply trying to maintain the status quo, they are experimenting with pedagogical innovations and adaptive strategies that acknowledge Al's presence while preserving learning objectives. When teachers encounter work that appears to be Al-generated, it burdens them with additional scrutiny during grading. It can lead to second-guessing and even guilt when suspecting a student who might be innocent. The difficulty in definitively proving Al use means this doubt can become a persistent challenge for teachers. Some teachers note that work that is 'too clean' or

inconsistent with a student's prior writing level might raise suspicion, though this is not definitive proof. Hallucinated sources in student work are a clear indicator of Al use.

Multiple teachers mention student work being too good as a red flag or sign that AI has been used. 'And so of course, yeah, if it's outstanding, outstandingly good, then you start having question marks, but it's also the way things are phrased.'Others also mention having students read their work aloud or present on the same topic to detect possibly AI-generated work. 'If their essay reads like it was written by Shakespeare, and their presentations are full of grammar mistakes, that's a red flag.'

Interestingly, one teacher who is more skeptical about their ability to detect AI explains how students use AI to 'humanize' their AI-generated work:

'Then you say, look this is my style of writing. Use this style and solve this. And make a few language errors in it, like I do there. Well, no person will detect it anymore. Even if they know you well.'

The possibility of AI being present in student submissions changes how teachers grade and relate to student work and students. When asked how teachers perceive AI-generated submissions, my informants shared reactions that focused on emotions. They mentioned feeling 'frustrated,''disappointed,'and 'betrayed,'like their trust had been broken. This doubt can be particularly strong for students who submit good work, as it might resemble high-quality AI output, leading to a kind of irony where better students face more suspicion. 'If a student submits shoddy work, then you think, oh they got a six, that's nice, it's their own work, good.'

The same teacher shared that the betrayal also feels greater coming from a so-called 'good' student because you do not expect it. They do add an important side-note: 'My point is not that students are not to be trusted, but my point is more that our doubt can no longer be removed. And that doubt creates distrust.'

This articulates the erosion of trust in educational relationships and reveals two fundamental shifts in academic culture. First, it demonstrates how Al's presence creates permanent uncertainty that cannot be resolved through better detection methods as the doubt itself becomes the problem. Second, it shows how teachers recognize that their suspicion is systemic rather than personal, pointing toward institutional rather than individual solutions to restore trust in educational interactions. This points exactly to what I am examining: how Al's presence is changing social, interactional aspects of higher education. Teachers respond to this doubt with panicked attempts at securing their assignments and grades, which signals mistrust to their students. This shifts the student-teacher dynamic to an academic integrity arms race, each side trying to outsmart the other.

Others share that suspicion is very hard to navigate as you don't want to wrongfully accuse a student and ruin your relationship and trust. This is exacerbated by the aforementioned difficulty in proving AI use in a submission.

'You get these bits of text (student submissions) and it made me completely paranoid because I really couldn't tell whether something was AI-generated or an authentic student submission.'

This teacher shared a particularly insightful observation: because students are constantly exposed to AI-generated content through internet and social media consumption, their natural writing voice

increasingly mimics these artificial patterns, making authentic human text nearly indistinguishable from Al-generated work.

Besides these emotional dimensions, there is a practical downside to grading when Al's presence is possible. It becomes more time-consuming. 'It [receiving possibly Al-generated work] feels quite burdensome because you feel you have to re-read everything.'

These pedagogical shifts indicate a broader movement toward assessment that aligns with deeper learning objectives and individual student engagement rather than just the final, easily Algenerated output. However, implementing these changes requires time and effort for teachers to redesign courses and assessments.

'If we cannot come up with a question that challenges them, then it's on us, not on AI or the students. Do you get the space within your program to design such questions? That's the problem.'

This comment identifies assessment design as a key factor in Al-resistant education while revealing two critical dimensions of teacher experience with Al challenges. First, it demonstrates teachers taking responsibility for pedagogical innovation while simultaneously acknowledging institutional constraints that prevent such innovation, showing the bind between professional ideals and practical limitations. Second, it illustrates how teachers recognize that effective Al integration requires systemic support rather than individual heroics, pointing toward the need for institutional investment in pedagogical development rather than prohibitionist policies.

3.6 TO CHAT OR NOT TO CHAT?

Contrary to assumptions that students use AI to avoid learning, the evidence reveals sophisticated thinking about educational purposes and learning objectives. Students consistently distinguish between meaningful academic work and what they perceive as bureaucratic requirements, adjusting their AI use accordingly.

Students are also aware of how AI can damage their studying process. In survey responses, students report fear of over-reliance as a reason not to use AI, while a participant in an interview tells me that when 'AI helps me learn something, it is helpful; when it helps me avoid learning, it is not helpful. This sentiment highlights their understanding that when AI is used as a shortcut to an answer, it does not benefit their learning process.

Similarly, a student who is adamant about not using AI systems (for academia and beyond) shared this sentiment: 'And lately it's been a bit more about just making the most out of my time in university and actually learn how to do stuff instead of learning how to use questionable technologies.'

There is a sense of 'personal pride' in doing the work oneself. Over-reliance is seen as irresponsible to oneself, preventing active, creative engagement and potentially being 'detrimental to writing skills,'leading to a 'passive process' where one is 'just not learning anything.'

When I asked students opposed to using AI in their education how they relate to other students who do use AI systems, the first insight was that students do not really discuss their practices, so they do not exactly know what others are doing.

'I don't really speak to many people about it, but around me I feel like basically everyone is using it to some extent. I don't know to which extent—I know people who use it a lot, but in class, if I look around, I see almost all the time people using chat[GPT].'

This highlights the ubiquity of AI use and demonstrates two significant dimensions. First, it shows how students exist in a state of informed uncertainty about their peers' practices, creating isolation even within shared experiences. Second, it reveals the contrast between public silence and private awareness, where students observe AI use constantly but lack forums for discussing its implications or developing collective approaches to ethical engagement.

When students do speak about AI with their peers, it is either jokingly or even in a boasting manner, to show that they 'got away with it.'The actual practices of how AI can enhance learning are not discussed to the same extent. This shows certain secrecy around actual practices and at the same time the awareness that students have of what is and isn't allowed.

'I really haven't talked that much to my peers about AI use. I think when it comes up, it's more like in this joking manner of like, 'Oh yeah, just let ChatGPT write my assignment.' So, I don't really know what other people, like other students do.'

This joking framing serves multiple functions: it acknowledges the ubiquity of AI use while maintaining plausible deniability, and it reduces complex ethical considerations to simple binary choices.

'It is quite common to see people not do the readings. So then they get the AI to write a quick exam question for them. They edit it a little bit so it looks a bit more like they wrote something. And then they brag about how they didn't have to do any effort and they still passed. And they got a 6 or something, and they're like, 'Oh yeah, I didn't have to do anything with that.'' This performative confession focuses on the most egregious uses while obscuring the nuanced ways most students actually engage with AI systems.

Secondly, my informants seemed primarily concerned with their own education. Stating that as long as they are graded fairly for their own honest work, they do not mind others using Al and even consider it a disadvantage for the educational process of those who do.

'I don't mind. As long as we don't have grading that is based on some kind of bell curve, so that my relative position to other students influences my own grade, I don't mind. I get good grades with my work. What other people do, I don't care, because it doesn't affect me.'

This reveals individual rather than collective approaches to education and illuminates two significant aspects of contemporary student attitudes toward academic integrity. First, it shows how students frame Al use as a personal choice rather than a community issue, potentially missing opportunities for peer learning and collaborative skill development. Second, it demonstrates students' focus on individual outcomes within competitive educational systems, suggesting that grading structures themselves may influence attitudes toward Al use and academic integrity more broadly.

'Yeah, kind of a bit unbothered. Like I said, I really value the idea of skill. And I just know I'm getting more out of it. So I feel really like, oh, this person I think will realize one day that they really kind of missed something a bit fundamental. Which, I mean, like I said, I'm writing my thesis now. And the people who I think maybe are struggling the most with their thesis are the people that

were cutting all these corners in the first year when they were supposed to be developing these skills so that the thesis would be easy. So then I think, I feel more a sense of like, that's really unfortunate for them in a sense like that it's unfair to me or something.'

Similarly, a student in the end of their master's program expressed a view that if students use AI 'to pass' because they lack motivation or energy, he felt that they should be allowed to do so, as long as his own grade was 'representative of my work or my effort.'He questioned, 'Like who am I to stand in the way of that?'suggesting a focus on his personal academic outcome rather than policing others.

In the early stages of my research, I had the chance to speak with a first-year anthropology class about their AI use. This happened during an exam prep session organized by a student association, so the students who showed up were the more motivated ones, those with higher standards for themselves who really wanted to get the most out of their studies. As their tutorial teacher pointed out when I mentioned this later, I should be aware that these were the 'straight A students,'which introduces some bias into the findings.

During this conversation, students frequently brought up environmental concerns about AI use. In early 2023, an image circulated online showing how much water gets used for a single AI search or generative prompt, and this apparently made quite an impression on these students. When I raised this topic in later conversations with other students during my fieldwork, I encountered two interesting responses.

The first response was similar to how we approach many things nowadays. Essentially that the benefits of using AI outweigh the negative aspects, or that the convenience outweighs the environmental concerns.

'I think a certain amount of avoidance in the sense you have the same when you think about animal mass production or where do our clothes come from. It just makes it convenient, it makes it comfortable, we can rely on it. There's some inkling inside of us that tells us, 'Oh, you shouldn't actually be using it that much.' And then another part that is like, 'Yeah, but I'm also not going to sit here for three days writing my R code when I can do it with ChatGPT in 30 minutes.''

The second response was more thought-provoking and centered on the individualization of responsibility. This student argued that environmental questions around Al should be tackled at a structural political level rather than placing the responsibility on individual users.

'I think we need political solutions for that and not individual responsibilization. I can be morally completely correct and not use AI and not have a successful career in academia then. Like, okay, who am I helping with that? I don't even want to open this topic of like weighing the practical benefits versus ethical considerations because the practical benefits are for me to work well in a system that I can't change.'

This articulates resistance to individual blame for systemic problems and illuminates two critical aspects of contemporary educational experience. First, it demonstrates students' sophisticated understanding of how structural constraints limit individual moral action, recognizing that personal virtue within unchanged systems may be self-defeating. Second, it reveals the impossible bind students face between ethical ideals and practical survival, pointing toward the need for institutional rather than individual solutions to Al integration challenges.

This comment is particularly interesting because it highlights the core of my argument. This student uses AI to cope with a system they cannot change. Both perspectives highlight the individualized aspects of AI use.

3.7 HOW AI HELPS AND HINDERS

Student conversations confirm that AI use is more nuanced than just cheating. Students are aware of policies and more importantly seem aware of the (still mostly unknown long-term) consequences of AI use. They form their own lines of what constitutes acceptable AI use and how it can help their learning. Because of this awareness, students can manoeuvre the AI in education landscape in ways that speed up their process without detriment to learning.

For some students, there is a fear of committing (unintentional) misconduct, mostly present among younger bachelor students.

The efficiency demands and competitive pressures inside and outside university walls make AI systems particularly attractive to students juggling multiple responsibilities. An interaction with a fellow master's student shows how these broader factors shape AI use in academic contexts. This student worked part-time and cared for family members while completing their research master's program. They explained their AI process to me:

'This is the document where I put everything and I also have usually a support document for this draft so that when I copy paste from ChatGPT for example while I organize my thoughts and then I use what I have there to write something in the draft document. Or sometimes when I really like what it wrote, then I put it in the draft document, but I mark it to say, 'Okay, this part I copied from ChatGPT.' So I do have to think more strongly here to write it in my own words and to just use this as a base, but not as, not pretend that I wrote this, you know what I mean? In my final product, I want to write it myself. I will not put a paragraph just copied from ChatGPT or from any other Al.' This demonstrates sophisticated thinking about Al as a thinking aid rather than a replacement for thought and reveals two crucial dimensions of student Al engagement. First, it shows students developing elaborate personal systems for maintaining intellectual integrity while benefiting from Al assistance, suggesting that students are more ethically sophisticated than institutional policies assume. Second, it illustrates how students distinguish between process support and product replacement, indicating that blanket prohibitions may miss opportunities for pedagogically valuable Al integration.

What's interesting here is how they developed their own ethical framework based on what mattered to them. For their thesis, which they cared deeply about, they maintained strict standards. But for assignments they called 'pro-forma,'they made different choices. The distinction was between meaningful work and what felt like bureaucratic busywork.

'I had to write this internship report. And that internship report, honestly, no, I just did not care about it. Because it was this 10 questions or 15 questions or whatever. I don't remember. And it was just paper that you have to write. And you notice, you know, from the beginning that you are just writing it. So they have some kind of physical product, but the questions and the reflections and all of it, my whole body was just screaming, no, I don't want to do this. I don't want to spend any minute of my life on this. So for that, I do, I did use ChatGPT for example, a lot. And I didn't

care because I, It's not something that I identify with. So I have no problem also using it more extensively, I would say. I tried to, yeah, I mean, I did edit for sure. I also got the feedback from my supervisor that he said, oh wow, yeah, it's so good. Well done. And I just thought, bro, I didn't, you know, I didn't do this.'

This illustrates the distinction students make between meaningful and bureaucratic work and highlights two significant aspects of contemporary educational experience. First, it demonstrates students' sophisticated ability to distinguish between assignments that serve learning objectives and those that fulfil administrative requirements, suggesting more thoughtful engagement with educational purposes than often assumed. Second, it reveals how meaningless assignments may actually encourage AI use by failing to engage student investment, pointing toward assessment design as a key factor in AI adoption patterns.

When you consider this student's situation: working, caring for family, and studying full-time; their approach makes complete sense. They strategically used their limited time and energy for what felt meaningful while using AI to handle what they saw as meaningless administrative requirements. AI became a coping mechanism for managing an impossible workload rather than a way to avoid learning.

The supervisor's praise of the Al-generated work reveals something important about how Al is changing dynamics between students and teachers. This shift in trust and evaluation is something I'll explore further in the next chapter.

Another student agrees that some types of tasks are more suited for AI and they don't feel like they need to be spending their time and energy on it, similarly feeling okay about using AI for tasks that they don't identify with or feel will benefit their education.

'But higher education, the reason why people do that nowadays, I feel like it's not because... It's primarily because they want to get a job, because they need to get a job. And secondly, maybe something that I like, that I'm passionate about, which is not what universities used to be. They used to be just centers of knowledge that people would... people wouldn't go to university because they needed a job. They went there because they were the center of theological and intellectual debate, like a shit-ton of smart people and cool things are happening there. It was not about getting a job.'

This provides interesting insight about the goal of attending university and receiving higher education generally. The focus is on the final product of university education, a diploma, rather than the process of learning. Roughly speaking, students go to university to get a diploma, to get a job, instead of going to get educated. This focus on product over process is visible at different scales in higher education. This notion, combined with external factors that I will cover, leads to adoption of AI systems in higher education.

3.8 CONCLUSION

Linus's experience of removing em dashes from his writing to avoid AI detection illustrates this chapter's central argument: AI in education cannot be reduced to simple misconduct or cheating. Despite not using AI tools himself, Linus found his writing practices transformed, showing how AI influences educational practices even for non-users.

This chapter has challenged dominant narratives that frame AI use as academic dishonesty by documenting the sophisticated practices that students and teachers actually develop. The ethnographic evidence reveals strategic prompting techniques, critical evaluation methods, creative pedagogical applications, and careful negotiations of academic integrity.

The evidence challenges the framing of AI in higher education as individual moral failure. Instead, it reveals students and teachers as actors navigating similar constraints within educational networks, not opponents in an academic integrity arms race.

My key insights move beyond the cheating narrative. First, students actively try to maintain intellectual integrity while managing demands with AI tools, while teachers develop approaches that acknowledge AI's existence. Second, both groups demonstrate commitments to learning and quality of education. Third, AI adoption reflects responses to structural conditions within higher education. The complexity of these practices suggests they emerge from shared conditions rather than individual choices. Current approaches focused on prohibition and detection treat symptoms while ignoring underlying factors, creating dynamics that damage educational relationships. Having documented these complex practices, a question emerges: what systemic pressures make the adoption of these new AI practices likely? The next chapter examines the structural conditions within higher education that create environments where these practices become normalised.

4. THE SYSTEM THAT CREATES THESE PRACTICES

4.1 ETHNOGRAPHIC VIGNETTE

On the third floor of Pieter de la Court, the social sciences building, I set up my interview office; a small windowless room with a big desk, a couple of chairs, and a lamp in the corner. I dim the lights slightly and manage to make the room quite cozy and inviting. I've arranged to meet with a bachelor's student named Max (pseudonym). We decided to meet after their class, around 12 o'clock. When we set up this meeting, Max had told me that they don't really use AI technologies. During our conversation I can tell Max is comfortable, sitting with one of their legs pulled up into the chair.

'I study full time and work in elderly care, so my schedule is insane. By the time I get home from work, it's usually 10 PM and I'm exhausted. This one week I had a 200-word reflection due the next day. Usually I keep up with the readings pretty well, but this week I was drowning. I sat down at my laptop, opened the longest article, and literally fell asleep on my keyboard. Woke up in the middle of the night with my face pressed against the laptop. I was genuinely scared of failing the class, so I opened ChatGPT and had it write the reflection. Submitted it and got a passing grade. No questions asked. My teacher gets like thirty of these every week, so honestly they probably don't have time to scrutinize every single one.'

This scenario illustrates how systemic pressures create conditions where AI use occurs. Max is exhausted from juggling work and study demands. The teacher is managing an unsustainable workload. The result is a transaction where Max submits work they didn't do and receives a grade

suggesting learning that didn't happen. The teacher, loses insight into their student's work. This is how Al gets used, not as innovation or pure cheating, but as a response to structural constraints.

The widespread adoption of AI tools by students and teachers, as documented in chapter 3, should not be understood as individual misconduct. Instead, these practices emerge from systematic pressures within contemporary higher education that make AI adoption a response to structural demands. This chapter examines how the *prestatiemaatschappij* (performance society) and the neoliberal university create conditions where efficiency becomes a survival necessity, transforming AI into a coping mechanism.

Understanding why students turn to AI despite knowing institutional policies prohibit it, and why teachers struggle with engagement and enforcement, requires examining the broader forces reshaping higher education. The transformation of universities from centers of intellectual engagement to efficiency-driven credentialing institutions creates what one student described as a 'toxic environment for the process of education.'Within this environment, AI adoption is not the illness, but a symptom of adaptation to systemic dysfunction.

This chapter's main argument is that AI adoption is rooted in systemic pressures that influence behaivour of actors within education. Firstly, Neoliberal values translated into education through corporate managing styles and secondly the performance of neoliberal thought through the notion of prestatiematschappij and *homo economicus*.

4.2 PRESTATIEMAATSCHAPPIJ

The concept of the *prestatiemaatschappij* as described by Pfauth, Verkade & Hofstede (2016) in 'Prestatiemaatschappij: Happiness in a success-oriented society' provides crucial insight into the systemic forces shaping contemporary higher education. This performance society represents a social order where individuals have internalized market logic and transformed themselves into self-governing entrepreneurs focused on maximizing efficiency and productivity. People constantly optimize their performance within competitive structures, embodying the neoliberal ideal of *homo economicus* - a rational actor who calculates decisions in terms of personal gain and market value.

'Al is very productive and very efficient to use it for university.' - A sentiment voiced by a student, what struck me about this sentence is the language the student used. They had internalized the ideals of *homo economicus*.

In this performance society, work and achievement standards are (self-)imposed through socialization. Individuals discipline themselves into endless self-improvement and optimization, treating their education, skills, and time as resources to be maximized for productive output. The *prestatiemaatschappij* represents both a symptom and mechanism of neoliberal governance, where structural inequalities are obscured by the ideology of individual choice and personal responsibility for success or failure.

According to McKenzie (2001), traditional philosophical distinctions are becoming less influential and 'performance', 'effectiveness' and 'efficiency' are growing in power as the new conventions

defining the basis for the measurement of what is right, true, and good (McKenzie, 2001: 178–79). This shift fundamentally alters how educational activities are valued and assessed, prioritizing measurable outcomes over processes of intellectual development or critical thinking.

4.3 HARDER, FASTER, BETTER, STRONGER

Educational systems place enormous emphasis on academic achievement and timely progression. Students face multiple checkpoints throughout their studies - from binding study advise to competitive admissions for specialized programs and honors tracks. These gatekeeping mechanisms create intense pressure to meet strict performance standards within tight deadlines, with serious consequences like delayed graduation or disenrollment for those who fail to collect the necessary amount of EC's. The system prioritizes not just excellence but speed, creating a double burden: students must excel academically while racing against the clock, with financial penalties amplifying the stress of any delays (Dopmeijer et al., 2023).

Students face overwhelming competing demands on their time and energy. Beyond core academic responsibilities, they must juggle multiple pressures simultaneously. Many work part-time jobs out of financial necessity - either to cover living expenses or minimize student debt accumulation. Students experience increasingly high costs of living due to rising rents, energy prices and inflation, not to mention tuition impacts.

Students also try to maintain social relationships, handle daily responsibilities, pursue physical and mental health, gain work experience through internships, and sometimes provide family care. Pressure extends beyond immediate needs to future career prospects, compelling students to build impressive resumes through leadership roles, volunteer work, and extracurricular activities to remain competitive in job markets.

Research by the Trimbos Institute confirms this pattern: 62.7% of students reported experiencing significant stress, 45.5% frequently experienced performance pressure from themselves, and 30.8% often felt performance pressure from others.(Dopmeijer et al., 2023:59) Students describe performance pressure as overwhelming feelings of having to perform and meet expectations, primarily in academic areas. This pressure comes partly from students themselves, but largely from environmental or external factors including educational institutions, society, and future employers. (Dopmeijer et al., 2023).

The digital age has intensified these pressures by making disconnection impossible. Students remain constantly connected via social media to activities of friends, family, and influencers worldwide. This creates pressure to 'choose happiness'- enormous choice freedom that paradoxically increases pressure to make perfect decisions (Kramer & Launspach, 2012; Schohaus & De Vries, 2013). Endless digital possibilities mean students struggle to focus on single tasks, often expect to multitask constantly, and never truly disconnect, preventing rest and contributing to fear of missing out.

4.4 THE NEOLIBERAL UNIVERSITY

Perhaps the most revealing aspect of contemporary Al adoption lies in its political dimensions. Interviewees frequently alluded to institutional pressures, funding models valuing efficiency, and

emphasis on student numbers over educational quality. One participant argued that 'capitalism wants us to think less, and academia needs to think more,' suggesting AI inadvertently exacerbates this tension by offering shortcuts in already pressurized systems.

Al itself is not fundamentally changing education - it is a tool that perfectly fits the needs of someone trying to navigate current educational systems. The structural organization of programs featuring large lectures and limited small-group interaction contributes to this dynamic. In such environments, Al becomes tool serving multiple stakeholders: students managing workloads and instructors handling large classes, time constraints and budget cuts.

This aligns with what Troiani and Dutson (2021) identify as the fundamental transformation from the liberal university, 'recognized as a space for critical thought, slow contemplation and transformative becoming', to the neoliberal university whose 'imperative is to continuously increase performance – measurable in ultimately economic terms' (p. 5). As Ganti (2014) notes, neoliberalism operates here both ' as a structural force that affects people's life-chances and as an ideology of governance that shapes subjectivities' (p. 89), a dual nature evident in how Al adoption both responds to and reinforces existing institutional pressures.

In just a few decades, the social democratic approach that treated education as a basic human right has been supplanted by a commercialized neoliberal university system grounded in principles of individualism, rationality, and self-interest - concepts encapsulated by *homo* economicus (Peters & Jandrić, 2018). Rather than operating as centers of knowledge and intellectual debate, universities increasingly function as businesses selling educational products to student-consumers.

As one interview participant observed: 'Al doesn't make education capitalist. Education is capitalist, and therefore we have an Al. This is an industry. Students are clients.'This understanding that Al is not making education capitalist, but is a symptom of a capitalist educational system, sits at the center of this chapter's argument.

Before starting an interview with an AI enthusiast at the university, I was setting up my recorder and making small talk about my methodology. Interviewing fellow academics creates an interesting dynamic since they understand the research process on a level that other participants don't. My academic participants often initiated conversations about how many people I'd spoken to and what methods I was using, rather than just answering my questions.

This Al enthusiast was no different. They glanced at my recorder and said, 'I really hope you're not doing all of that transcribing by hand. That's what Al is for!'

Even though I wasn't transcribing manually (I used a paid version of MacWhisper software that doesn't share data with external servers), I was surprised to hear this suggestion from a university professor. The expectation that I would naturally use AI reflects the same productivity pressures that drive student Ai adoption, the assumption that not using available tools would be somehow irrational or inefficient.

I had personal doubts about using AI tools for transcription, since it seemed to contradict my own argument that education becomes more valuable when we focus on the process. The careful work of transcribing and analyzing matters more than just the final product of having a transcript.

After processing data from about twenty interviews, I can confirm my suspicions. The transcripts I spent real time with, doing thorough post-AI checking and corrections, are much more vivid in my memory than the ones I rushed through. The process of carefully listening and re-listening had embedded those conversations deeper into my understanding of the data.

4.4.1 New Public Management

This transformation involves the marketization of higher education - applying business logic to educational processes. Universities now operate under New Public Management (NPM), emphasizing efficiency, measurability, and return on investment. Budget constraints become primary drivers of educational decisions, forcing institutions to maximize student throughput while minimizing costs.(Peters & Jandrić, 2018: 556) As one participant noted when discussing budget cuts: 'We're talking about budget cuts, as if the university has to be a company.'

Chris Lorenz (2012) identifies four key ways that NPM has systematically transformed higher education, revealing how neoliberal managerial principles undermine traditional academic values through specific structural changes.

1. Faculty-Student Ratios

NPM manifests through 'a continuous worsening of the faculty/student ratio, which manifests itself in among other things ever increasing teaching loads for faculty and continuing enlargements of scale in education'(Lorenz, 2012, p. 605). This shift prioritizes cost reduction over educational quality, systematically reducing the amount of staff members while keeping the same amount of students and trying to attract more new ones for the following year. A teacher in the humanities faculty shared their concerns about the logistics and efficiency becoming involved in teaching in their department.

'The seminar groups, well, they are going up because of the budget cuts so that is a concern. That means we're going to go up to 24 students... we also need to think logistically because of the budget cuts, how we can teach more efficiently with fewer staff members because sadly some programs are being cut'Another participant takes it a step further and reflects on what the skewed teacher/student ration practically means for students. 'A lot of students want to think for themselves without AI, but they don't know how. And there aren't enough teachers to give them personal guidance.'['Heel veel studenten die willen wel zonder AI, zelf nadenken, maar ze weten niet hoe. En er zijn niet genoeg docenten om ze persoonlijke begeleiding te geven'] This shows how cost efficiency strategies act as a systemic factor that invites AI use.

2. Faculty Employment

The second manifestation involves faculty 'decomposing into a shrinking core of tenured faculty and a growing periphery of part-time, temporary faculty hired for one year, one semester, or one course'(Lorenz, 2012, p. 605). This creates what Lorenz describes as 'the structural substitution of inflexible and expensive faculty (especially tenured, full-time professors) by flexible and cheap staff (especially untenured, part-time adjuncts)'(Lorenz, 2012, p. 605). The result is a two-tier workforce that undermines job security and professional autonomy.

3. Teaching and Research

NPM deliberately separates teaching and research functions, where 'teaching and research are continuously dissociated' as 'teaching is increasing' while 'academic research is being outsourced and commodified'(Lorenz, 2012, p. 605). This abandons the traditional university model where research and teaching were complementary activities, reconceptualizing them as separate production processes optimized independently.

I've noticed this divide of teaching and research responsibilities when speaking with a large part of my participants. When asked about their function at the university most make this distinction within the first sentence. This division seems to be a large part of their identity as a scholar. A lecturer with research funding explained: 'I have a project, so I have less teaching duties than most of my colleagues... so I'm only teaching one course this semester'. The separation becomes quantified through workload percentages: 'I have a large research grant, so unlike my colleagues here who are even busier than I am, I only teach 10, 20, 30% per semester rather than 70, 80%'.

4. Tuition and length

The fourth manifestation occurs through financial restructuring where 'tuition fees are increasing, and the duration of studies is being reduced'(Lorenz, 2012, p. 605). This treats education as an economic transaction rather than a developmental process, repositioning students as consumers purchasing educational products delivered through shortened, more expensive degree programs. A tutor in a humanities programme told me how when they were still in school, sometimes the most insightful thoughts came during the summer break. Some insights would only come once they had sat with the new knowledge for a while and had had time to ponder upon it. They shared this anecdote to share their worry that students today are being rushed too much. 'We are pushing them too much. We are giving them too much content that they cannot digest. We are finite. We are humans, right? Our brains are not limitless... we cannot just shove students with content throughout one semester, then move on to the next and shove them with more content. There's no time to actually ponder and process' unfortunately their worries are not out of place. A bachelor student agrees that their programme is 'pretty fast-paced' they describe it as 'Okay, block, done, next, block, done, next'

These interconnected changes reveal NPM as a systematic reorientation from academic standards toward market efficiency. Lorenz concludes that these manifestations represent structural changes that fundamentally challenge traditional understandings of quality higher education (Lorenz, 2012, p. 629).

Henry Giroux's 2002 analysis of the neoliberal turn in universities noted the shift from providing higher knowledge to universities selling products to consumers (students). Universities developed online education partly rooted in financial efficiency, as labor constitutes about 70% of university spending, making reduced teaching expenditures appealing. While many teachers employ digital technologies fruitfully, what matters most is whether pedagogical implementation of these technologies harms or undermines student development and human freedom (Giroux, 2002: 447-448).

4.5 TRANSFORMING UNIVERSITY

The neoliberal university fundamentally restructures relationships between education and society. In conversation with a student participant, who is adamantly against using AI in education and pleads for a restructuring of contemporary education, we touched upon the goal of academic education. Where universities once served as 'centers of theological and intellectual debate' attracting people because they were places 'where a ton of smart people and cool things are happening, 'they now primarily function as credentialing institutions. Students attend university 'primarily because they want to get a job, because they need to get a job.

Knowledge becomes commodified, packaged into discrete units (courses, credits, modules) that can be efficiently delivered and consumed. Learning outcomes are standardized and measured against predetermined metrics, reducing complex intellectual development to quantifiable outputs. Students internalize this commodification, approaching education strategically rather than intellectually. They calculate return on investment for different courses, optimize course selections for maximum grade-point-average benefit, and treat educational experiences as resources to be maximized for career advancement. This instrumental approach to learning creates conditions where Al adoption becomes logical extension of existing optimization strategies.

This model shifts core university commitments from 'the quest for universal truth' and 'the cultural infrastructure for democracy' to 'quality assurance' as defined by efficiency and excellence discourse, where neoliberal managerialism becomes the dominant model of knowledge performance (Peters & Jandrić, 2018). The Public University circa 1960-80 saw its mission as educating citizens broadly, sharing knowledge widely, and producing it according to publicly articulated purposes, viewing free higher education as fundamental human right necessary for democratic participation.

The Neoliberal University, by contrast, is a post-historical institution based on technological excellence. This transformation accelerated since the 1990s and early 2000s, when significant restructuring occurred in Dutch education and healthcare systems. Both sectors became increasingly commercialized, creating what one participant described as a 'toxic environment for the process of education'when combined with standardized grading systems and mechanized evaluation criteria.

Within the neoliberal university, when technology transforms into 'standardized efficiency,'student freedom becomes limited to 'the selection of the most adequate means for reaching a goal which [the individual] did not set'(Giroux, 2002: 447). Students essentially optimize themselves within competitive structures they didn't create, embodying *prestatiemaatschappij* logic.

This prioritizes measurable performance over genuine learning and fosters individualism that undermines social connections necessary for academic community and student mental wellbeing. Measurable goals replace educational and ethical considerations, creating what Giroux calls 'moral sleeping pills'- systems that obscure how students are shaped into competitive individuals rather than collaborative learners.

Budget cuts and performance monitoring create impossible conditions for faculty, who must juggle increased teaching loads, expanded administrative duties, research pressure, and pedagogical innovation demands while handling larger student populations with fewer resources. This reduces teachers from intellectual leaders to educational service providers, making AI tools appealing for faculty as well, though interviews revealed less direct adoption for core teaching tasks

4.6 SYSTEMIC PRESSURES

My research reveals that Al adoption among students is strongly driven by time pressures and productivity demands within current educational systems. This challenges dominant narratives that primarily frame Al solely as threat to academic integrity or simple cheating. Students view Al as practical solution for managing workload and responsibilities - essentially a coping mechanism. Teachers also acknowledge student stress and workload concerns while sharing their own anxieties regarding class sizes and budget cuts.

Survey data reveals that 'time pressure' (27%) emerged as the primary motivation among students using AI, followed by curiosity (25%) and Peer recommendation (22%). This paints a picture of students exploring AI as multifaceted tool rather than solely seeking shortcuts for academic work. The dominance of time pressure as motivation aligns with teacher suspicions and critiques of current neoliberal academia.

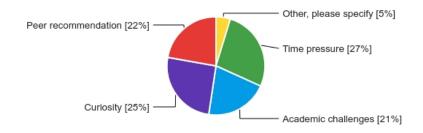


Figure 6. Survey data visualization on why students use Al tools

When organizations prioritize results over methods and celebrate high achievement without allowing adequate time for quality development, people are more inclined to cut corners. As Bal, Grassiani, and Kirk note, a colleague reflected on institutional practices of publishing best GPAs, observing that some educators and schools assume 'everyone can excel'. This assumption of equal opportunity overlooks systemic inequalities - such as students who must work sixteen hours per week to afford their education - fostering competitive atmospheres that fail to account for varying personal and structural challenges students face (Bal, Grassiani, Kirk, 2014: 62). The transformation of universities from intellectual communities to credentialing institutions fundamentally changes how students approach their studies and relate to educational technologies. This instrumental approach to education, where learning becomes subordinated to career preparation, creates conditions where Al adoption becomes logical extension of existing optimization strategies.

4.7 NETWORK RECONFIGURATION

From an ANT perspective, the contemporary university operates as a heterogeneous network where human actors (students, teachers, administrators) interact with non-human actors (policies, pressures, budgets) to produce what we recognize as higher education(Latour, 2005). See figure 7 below for the actor network of AI use at Leiden university. AI introduction doesn't simply add another actor, it triggers a reconfiguration of the network

Universities now operate like businesses, focusing on numbers and efficiency over actual learning. When budgets get cut, students must prove their worth through grades and productivity while professors face pressure to process more students with fewer resources. This creates real, daily pressure where students feel constant rushing to meet deadlines, while professors struggle with heavier teaching loads and less time for individual student support.

When students are juggling 5 courses, part-time jobs, and impossible deadlines, they see Al as a lifeline. One student described asking ChatGPT questions about their research because 'my professor doesn't have time to answer every little thing I'm confused about. 'Meanwhile, professors find themselves overwhelmed with large classes and administrative tasks, unable to provide the personalized guidance students need. But when universities respond with prohibitions, students don't stop using Al, they just hide it better, while professors struggle to detect and police Al use on top of their existing workloads. This creates a stressful cat-and-mouse game where students worry about misconduct and professors feel burdened with checking every assignment for Al content. The relationship becomes influenced by suspicion and professors start viewing student work with distrust. Students develop elaborate systems to use Al 'ethically' while professors adapt their assessments to be more 'Al-proof,'if they have the space to do so. This erosion of trust is unpleasant in the short run and might be detrimental to education in the long run.

As one interview participant noted, students 'jokingly refer to ChatGPT as a classmate and wonder whether 'he' should be invited to their graduation. This anthropomorphization reveals how Al becomes integrated into learning communities not as tool but as social actor with its own identity and role.

The introduction of AI into educational networks disrupts traditional authority relationships between students and teachers. When students have access to powerful information processing tools, the knowledge asymmetry that traditionally structured classroom dynamics becomes reduced. Students can access explanations, generate ideas, and receive feedback independently of instructor availability.

The breakdown of traditional authority structures doesn't necessarily democratize education but rather creates new forms of uncertainty and competitive pressure. Both students and teachers must continuously adapt to changing technological capabilities while operating within institutional frameworks designed for pre-digital educational relationships.

Within neoliberal logic, efficiency becomes not just practical consideration but moral framework.. Students internalize these values, measuring educational choices against metrics of efficiency rather than intellectual curiosity or personal growth.

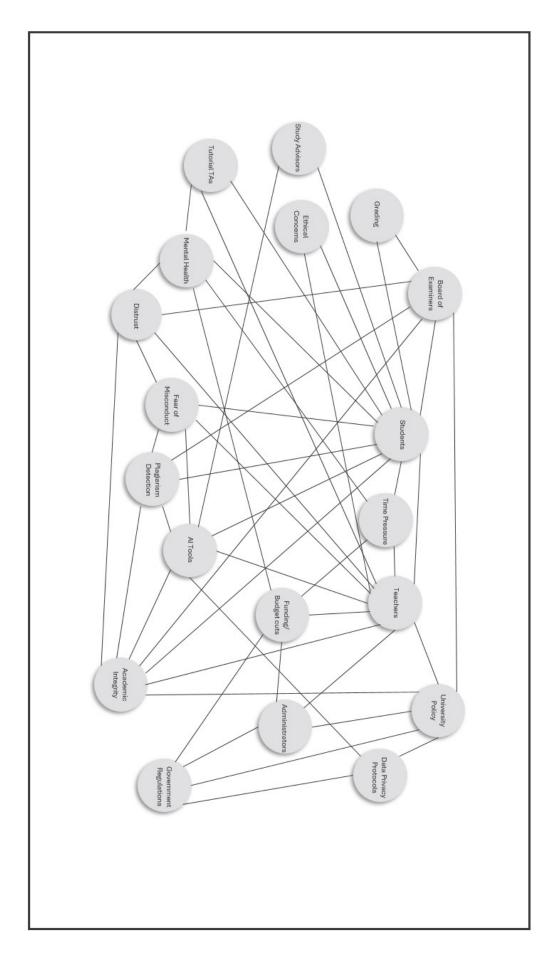


Figure 7. Actor Network - Al at Leiden university

Taking shortcuts through AI becomes not just acceptable but perceived as necessary for survival within impossible systemic demands. Students develop sophisticated justifications for AI use that center on pragmatic necessity rather than intellectual laziness. They distinguish between 'meaningful'assignments worthy of full attention and 'busywork'that can reasonably be outsourced to AI tools.

The language students use reveals this internalization: they speak of efficiency, productivity, and competitiveness. This vocabulary mirrors corporate efficiency discourse, demonstrating how deeply market logic has penetrated educational practice.

4.8 CONCLUSION

One can choose to either sympathise with Max's story from the beginning of this chapter, or not. But that moment reveals the core argument: Al adoption is a response to existing neoliberal pressures, not the cause of deteriorating education.

Another student captured this reality perfectly. When I asked about the pressures they face, they explained how AI becomes a survival tool within systems they cannot change:

'I critique that you have to be more efficient and more productive all the time. I think that's absolutely ridiculous. But like that's the system and I cannot dream of an alternative academic system in which I can just escape and try to make my work there. So I somehow have to cope in a way. In a way, that sense, AI is a coping mechanism, I would say.'

This chapter traced a clear sequence. The *prestatiemaatschappij* first transformed individuals into *homo economicus*: rational actors calculating personal gain. Universities then implemented these values through New Public Management practices that prioritize efficiency over education. Al adoption emerges as a logical response to these pre-existing conditions.

The evidence supports this causal order. Students cite time pressure not because AI created rushed academic environments, but because neoliberal university management already demands constant optimization. Students and teachers turn to efficiency tools not because technology changed their priorities, but because they function in a system that makes it so attractive. From an Actor-Network Theory perspective, AI gets enrolled into networks already organized around productivity. The technology fits existing patterns rather than creating new ones. Students form communities with ChatGPT because the system already made their teachers too busy. Teachers worry about AI detection while managing workloads that have nothing to do with education.

The key insight changes how we understand educational technology. When participants describe a 'toxic environment for the process of education,' they're not describing Al's impact. They're describing conditions that made Al adoption attractive in the first place. My experience transcribing interviews by hand for example reveals what gets lost when efficiency becomes the primary value, but those efficiency pressures existed long before ChatGPT.

This reframing matters. Instead of treating AI as disruptive technology that requires new policies, we can see it as revealing existing dysfunction. The problem isn't that AI makes education more capitalist. It's that education was already capitalist enough that AI seemed like a solution.

Understanding this sequence points toward different questions about what universities are for and whether current structures serve educational goals.

5. DISCUSSION, REFLECTION AND CONCLUSION

5.1 DISCUSSION

In this final section of the thesis I will synthesize an discuss my findings, reflect on my research process and results and finally conclude with some final thoughts on Artificial Intelligence at Leiden university

5.1.1 Answering the research questions

My research question asked how students and teachers at Leiden University make sense of Al adoption within contemporary education. Through interviews, observations, and survey data, I discovered that this sense-making process cannot be separated from the structural conditions of the neoliberal university. Participants don't encounter Al as a neutral technology in isolation but as a tool that fits uncomfortably well into existing pressures around efficiency, productivity, and performance.

Students and teachers develop complex approaches to AI use that attempt to maintain intellectual integrity while managing tough systemic demands. Survey and interview data confirmed time pressure as the primary motivation for AI use, with students describing AI adoption as a *coping mechanism* for managing workloads rather than as a tool for avoiding learning. Teachers acknowledged these constraints, with budget cuts and increased class sizes creating conditions where AI detection and prevention become burdens rather than educational priorities.

The research revealed how meanings around academic integrity itself become contested in AI contexts. Students develop sophisticated distinctions between work that *matters* (thesis research, personally meaningful assignments) and *busywork* (standardized reports, pro-forma exercises), applying different ethical standards accordingly. Teachers struggle with erosion of trust as they can no longer confidently distinguish between student and AI work, leading to systemic doubt that affects relationships regardless of actual AI use.

These meaning-making processes demonstrate symbolic interactionism in action, as participants continuously negotiate and reconstruct their understanding of appropriate AI use through ongoing interactions with peers, instructors, policies, and AI tools themselves. The research shows how institutional contexts shape but do not determine individual meanings, as actors creatively interpret and adapt to new technological possibilities within existing social frameworks. This research demonstrates the value of combining Actor-Network Theory with symbolic interactionism to understand how technologies become enrolled in social networks while recognizing the distinctly human processes of meaning construction. While ANT reveals how AI becomes integrated into educational networks, symbolic interactionism illuminates how participants actively construct meanings around appropriate use through social interaction.

The findings extend existing theory by showing how neoliberal governance doesn't just create external pressures but shapes subjectivity itself.

5.1.2 Systemic Factors

The research demonstrates that AI adoption cannot be understood apart from the transformation of higher education under neoliberal governance. The *prestatiemaatschappij* creates subjects who internalize efficiency and productivity as moral goods, while New Public Management institutionalizes these values through organizational practices that prioritize outputs over learning processes. Faculty-student ratios that have worsened due to budget constraints leave students seeking alternative sources of support and guidance. Increased tuition fees and shortened degree programs intensify pressure for completion, while students simultaneously manage part-time employment and rising living costs.

5.2 REFLECTION

5.2.1 Value of ethnography

Methodologically, the research shows how ethnographic approaches can reveal the gap between policy rhetoric and lived experience, uncovering practices that remain invisible in survey research or policy analysis. The combination of interviews, observations, and survey data proved essential for understanding how participants navigate competing values around efficiency and learning. Survey data revealed practices and motivations, but only through qualitative methods could I understand the sophisticated ways students and teachers negotiate appropriate AI use while maintaining commitment to educational quality.

5.2.2 Study limitations

Like any research, this research has several limitations. The ethnographic focus on Leiden University provides deep insight into specific institutional dynamics but limits the extent to which it can be compared and generalized to other educational contexts. Different universities with varying policies, student populations, and institutional cultures may exhibit different patterns of Al adoption and meaning construction.

The sample, while diverse in terms of academic levels and disciplines within humanities and social sciences, may not capture experiences of non-traditional students, and students with disabilities may have different relationships with AI tools that weren't fully explored in this research.

The rapid pace of Al development means findings about specific tools and capabilities may become outdated quickly. However, the underlying systemic pressures identified in this research - time constraints, productivity demands, institutional efficiency priorities - are likely to persist regardless of technological changes.

5.3 CONCLUSION

This research challenges framings of AI in education as primarily an academic integrity issue. By demonstrating how AI adoption emerges from pressures within neoliberalized higher education, it suggests that responses must address structural conditions rather than individual behaviors. The

evidence shows that prohibition-focused approaches not only fail to prevent AI use but damage educational relationships by creating adversarial dynamics between students and teachers who share concerns about educational quality.

Al integration requires addressing structural conditions that make Al adoption a coping mechanism rather than simply restricting or prohibiting their use. This means honest institutional examination of workload expectations, assessment practices, budget priorities, and fundamental purposes of higher education in democratic society.

Teachers developing creative approaches to AI integration offer models for moving beyond reactive prohibition toward proactive pedagogical innovation. Examples include using AI-generated content for critical analysis exercises, teaching students to evaluate AI outputs against original sources, and incorporating AI tools into research methods training. I observed how students engage in enthusiastic debates with AI that help them structure research proposals and develop theoretical frameworks, and how they process supervisor feedback through custom-built AI tools to generate improvement strategies.

However, these approaches require institutional support rather than individual experiments. Teachers need professional development opportunities, collaborative spaces for sharing effective practices, and protection from administrative pressure to simply detect and punish AI use. Effective AI integration becomes a collective rather than individual responsibility. Students need education in effective AI use similar to training in other academic skills like research methods or statistical software. This includes understanding AI capabilities and limitations, developing strategies for maintaining intellectual integrity while benefiting from AI assistance, and learning to distinguish between appropriate and inappropriate applications. However, such training must occur within broader efforts to address systemic pressures that make AI adoption attractive in the first place. Teaching students to use AI ' responsibly' while maintaining impossible workload expectations simply transfers responsibility for systemic problems to individual actors.

The customer's joke at the beginning of this thesis - ' Or are you just going to ask chat[GPT] like everybody now?' - captures how AI has entered popular consciousness as a universal solution to intellectual work. This research suggests such assumptions miss the complex realities of how people actually engage with these technologies within specific institutional contexts.

Understanding those realities offers hope for more thoughtful approaches to educational technology that serve academic development rather than simply institutional efficiency.

The transformation of higher education is not inevitable. The choices institutions make about AI integration reflect deeper choices about educational purposes, democratic values, and social priorities. This research suggests that supporting meaningful learning requires attention not just to new technologies but to the social and economic conditions within which those technologies operate. Only by addressing both can educational institutions do justice by their students and employees and provide valuable education in the new AI informed world.

REFERENCES

- Al-Zahrani, A. and A. Alasmari 2024 The role of artificial intelligence in enhancing academic integrity in higher education. *Educational Technology Research and Development* 72(3): 1245-1267.
- Atkinson, P. 1990 The ethnographic imagination: Textual constructions of reality. Routledge.
- Bal, E., E. Grassiani and J. Kirk 2014 Neoliberal individualism in Dutch universities: Teaching anthropology in an age of uncertainty. *Learning and Teaching* 7(3): 46-72.
- Blumer, H. 1969 Symbolic interactionism: Perspective and method. Prentice-Hall.
- Bryman, A. 2012 Social research methods. 4th ed. Oxford University Press.
- Callon, M. 1986 Some elements of a sociology of translation: Domestication of the scallops and the fishermen of St Brieuc Bay. In: J. Law (ed.), *Power, action and belief: A new sociology of knowledge?* Routledge, pp. 196-233.
- Callon, M. and J. Law 1997 After the individual in society: Lessons on collectivity from science, technology and society. *The Canadian Journal of Sociology* 22(2): 165-182.
- Callon, M., J. Law and A. Rip (eds.) 1986 *Mapping the dynamics of science and technology:*Sociology of science in the real world. Macmillan.
- Chan, C.K.Y. and W. Hu 2023 Students' voices on generative AI: Perceptions, benefits, and challenges in higher education. *International Journal of Educational Technology in Higher Education* 20(1): 43.
- De Kooning, E., N. Poulisse and T. Janssen 2018 Ethical considerations in ethnographic research:

 Data management and participant protection. *Anthropological Ethics* 12(4): 78-94.
- Dopmeijer, J., Scheeren, L., van Baar, J., & Bremer, B. 2023. Harder better faster stronger? Een onderzoek naar risicofactoren en oplossingen voor prestatiedruk en stress van studenten in het hbo en wo. Trimbos-instituut, ECIO en RIVM.
- Emerson, R.M., R.I. Fretz and L.L. Shaw 2011 Writing ethnographic fieldnotes. 2nd ed. University of Chicago Press.
- Fenwick, T. and R. Edwards 2010 Actor-network theory in education. Routledge.
- Fyfe, P. 2023 How to cheat on your final paper: Assigning AI for student writing. *AI & Society* 38(4): 1395-1405.

- Gambino, A., J. Fox and R.A. Ratan 2020 Building a stronger CASA: Extending the computers are social actors paradigm. *Human-Machine Communication* 1: 71-86.
- Ganti, T. 2014 Neoliberalism. *Annual Review of Anthropology* 43: 89-104. https://doi.org/10.1146/annurev-anthro-092412-155528
- Ghimire, S., N. Bhattarai and S. Baral 2024 Creative applications of AI in pedagogy: A systematic review. *Educational Innovation Quarterly* 18(2): 234-251.
- Giroux, H.A. 2002 Neoliberalism, corporate culture, and the promise of higher education: The university as a democratic public sphere. *Harvard Educational Review* 72(4): 425-463.
- Gupta, A. and J. Ferguson 1992 Beyond 'culture': Space, identity, and the politics of difference. *Cultural Anthropology* 7(1): 6-23.
- Hammersley, M. and P. Atkinson 2007 Ethnography: Principles in practice. 3rd ed. Routledge.
- Harlen, W. and M. James 1997 Assessment and learning: Differences and relationships between formative and summative assessment. *Assessment in Education* 4(3): 365-379.
- Kipnis, A. 2015 Agency between humanism and posthumanism: Latour and his opponents. *HAU: Journal of Ethnographic Theory* 5(2): 43-68.
- Kramer, E. and M. Launspach 2012 *De prestatieparadox: Hoe ambitie en perfectionisme ons geluk in de weg staan.* Atlas Contact.
- Latour, B. 1987 Science in action: How to follow scientists and engineers through society. Harvard University Press.
- Latour, B. 2005 Reassembling the social: An introduction to actor-network-theory.

 Oxford University Press.
- Lave, J. and E. Wenger 1991 Situated learning: Legitimate peripheral participation. Cambridge University Press.
- Leiden University 2024 AI in het onderwijs [AI in education]. https://www.medewerkers.universiteitleiden.nl/onderwijs/ict-en-onderwijs/ai-in-het-onderwijs?cf=bestuursbureau-expertisecentra&cd=bestuursbureau (accessed January 2025).
- Lorenz, C. 2012 If you're so smart, why are you under surveillance? Universities, neoliberalism, and new public management. *Critical Inquiry* 38(3): 599-629.
- McKenzie, J. 2001 Perform or else: From discipline to performance. Routledge.

- Molek, E. 2019 Artificial intelligence in higher education: Promise and peril. *Journal of Educational Computing Research* 57(4): 931-949.
- Nass, C. and B. Reeves 2000 *The media equation: How people treat computers, television, and new media like real people and places*. CSLI Publications.
- Nguyen, T.H. and R. Goto 2024 An ethnographic study of undergraduate Al use in Vietnam: Patterns of academic misconduct. *Asian Journal of Educational Research* 15(3): 89-104.
- Nuhrat, Y. 2025 Quantifying academic integrity: Turnitin and negotiated ethics in higher education in Turkey. *Critical Studies in Education*. https://doi.org/10.1080/17508487.2025.2461480
- Perkins, M., J. Furze, E. Roe and P. Bruza 2023 Al Assessment Scale (AIAS). https://aiassessmentscale.com/ (accessed 13/6/2025).
- Peters, M.A. and P. Jandrić 2018 Neoliberalism and the university. In: D. Cahill, M. Cooper, M. Konings and D. Primrose (eds.), *Neoliberalism and the University*. SAGE Publications Ltd, pp. 553-563. https://doi.org/10.4135/9781526416001.n42
- Pfauth, T., H. Verkade and B. Hofstede 2016 *Prestatiemaatschappij: Over de hedendaagse prestatiecultuur en hoe we ermee om kunnen gaan.* De Correspondent.
- Popenici, S.A.D. and S. Kerr 2017 Exploring the impact of artificial intelligence on teaching and learning in higher education. *Research and Practice in Technology Enhanced Learning* 12(1): 22.
- Sandler, R. 1989 Assessment of students as individuals. In: D.P. Wolf (ed.), *Assessment in practice: The view from science classrooms*. Education Development Center, pp. 61-70.
- Schohaus, M. and P. De Vries 2013 De prestatiemaatschappij: Van meritocratische naar therapeutische samenleving. Boom.
- Sharples, M. 2022 Automated essay writing: An AIED opinion. *International Journal of Artificial Intelligence in Education* 32(4): 1119-1126.
- Strauss, A. and J. Corbin 1998 *Basics of qualitative research: Techniques and procedures for developing grounded theory.* 2nd ed. Sage Publications.
- Strathern, M. 1996 Cutting the network. *The Journal of the Royal Anthropological Institute* 2(3): 517-535.

- Troiani, I. and C. Dutson 2021 The neoliberal university as a space to learn/think/work in higher education. *Architecture and Culture* 9(1): 5-23. https://doi.org/
 10.1080/20507828.2021.1898836
- UvA Teaching & Learning Centre 2024 *Al pilots in education: Annual report 2024*. University of Amsterdam.
- Wenger, E. 1998 *Communities of practice: Learning, meaning, and identity*. Cambridge University Press.