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Abstract

One of the important questions in modern quantum mechanics is the mech-
anism behind wavefunction collapse. One possible answer to this prob-
lem is formulated in the continuous spontaneous localization model. This
model states that quantum systems collapse spontaneously. This sponta-
neous collapse generates a small amount of energy. We attempt to measure
this using a mechanical oscillator which is supercooled in a dry dilution re-
frigerator with a nuclear demagnetization stage. In this thesis we discuss
the results of a measurement run where we reach a cryostat temperature
of 3 mk and cantilever Q-factor of approximately 1.4·103. Furthermore we
test a newly designed detection chip which shows promising results for
use in the setup for the CSL experiment. The results of the measurement
run do not further constrain the upper bounds of the CSL parameters, but
do give us a lot of information on how to improve the setup for future
measurements.
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Chapter 1
Introduction

Since the inception of quantum mechanics in the twentieth century, our
knowledge of the quantum world has greatly increased. Naturally, new
questions and problems have arisen. The main problem quantum physi-
cists are trying to solve is how to join the two fundamental physical the-
ories: quantum mechanics and general relativity. A different but equally
important question which still needs answering is the so-called measure-
ment problem. This measurement problem originates from the superpo-
sition principle. Quantum mechanics tells us that for a quantum system
with states |0⟩ and |1⟩, the linear combination of these states α |0⟩+ β |1⟩
is also a possible state. In other words, a quantum system (or particle) can
be in two states (or places) at once. However, the idea that a macroscopic
system can be in multiple states at once seems impossible. You cannot
measure a particle in two places at once, Schrödingers cat cannot be simul-
taneously alive and dead.[1]. Many theories regarding the measurement
problem have been proposed. A large step towards verifying these theo-
ries would be to place a macroscopic object in a quantum superposition.

1.1 Motivation

The theories which attempt to solve the measurement problem can all
be categorized in broader interpretations. One of these interpretations is
called the many worlds interpretation (MWI). The MWI is based on the
postulate that all isolated systems evolve according to the Schrödingers
equation d

dt |ψ⟩ = − i
h̄ H |ψ⟩. This means that the above described state

of α |0⟩+ β |1⟩ actually does not collapse into either |0⟩ or |1⟩ when mea-
sured with the probability of |α2| and |β2| respectivelyWe cannot see this
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8 Introduction

superposition because our view is subjective, our view is from an observer
inside the system. The macrosuperpositions are rapidly destroyed due to
environment-induced superpositions according to our view, but the objec-
tive mathematical view of the world remains intact, including the evolving
wavefunction.[2] The main problem with the MWI is that it is impossible
to verify experimentally.

A counterpart to the MWI is the Copenhagen interpretation. This inter-
pretation states that there is a distinct separation between the quantum
world and the classical world. The quantum mechanical wavefunction
collapses and vanishes when a quantum system is measured as opposed
to the MWI. The only thing that remains is the outcome of the measure-
ment, either |0⟩ or |1⟩. This means that the outcome of any quantum mea-
surement is entirely non deterministic. The outcome of a measurement is
based on probabilities calculated with the wave function.[3]

With this interpretation new problems arise. Questions like ”what de-
fines a measurement?” And why should the state of a system be depen-
dent on the actions of outside observers? Similar to the Copenhagen in-
terpretation, objective-collapse theories, or dynamical reduction models,
assume the total collapse of the wavefunction. However, this collapse is
not dependent on the actions of observers. The main principle of these
theories is that the collapse of the wavefunction is the consequence of the
basic laws of nature. This is achieved by adding a stochastic term to the
Schrödingers equation, which describes the state reduction occurring in
the system. This means that the theory proposed in [4], Ghirardi Rimini
Weber theory (GRW) is not strictly an interpretation of quantum mechan-
ics, but a new quantum theory. In GWR theory it is stated that quantum
states collapse spontaneously. On average 10−16 of these so-called hits or
spontaneous localizations occur every second. Therein lies the solution to
the measurement problem. For a macroscopic system that is made up of
around 1023 atoms, there are 107 hits every second and superpositions are
suppressed almost immediately. Quantum systems are hit very rarely and
retain their superposition for a long time.[5]

GWR theory is not perfect. A different theory based on GWR theory
solved the problems which appeared in GWR theory. It is similar to GWR
theory as it is based on spontaneous collapse of the wavefunction. The
large difference, however, is that the discontinuous hits are replaced by
a continuous stochastic evolution of the states, hence the name continu-
ous spontaneous localization theory (CSL).[6] An additional advantage of

8
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1.2 Goal 9

the spontaneous collapse models is that they are experimentally testable.
CSL theory postulates that the collapsing of the wave function causes
noise. This noise manifests itself as thermal energy generation, in other
words, the collapsing of a wavefunction heats up the system. This small
increase in temperature can theoretically be measured and with it prove
CSL theory.[7]

1.2 Goal

As stated earlier, the proposed excess energy released by the collapsing
wavefunction is very small. Therefore, the thermal noise created by the
collapsing wavefunction is indistinguishable from other noise sources such
as resonances in the system. Therefore experiments concerning CSL gen-
erally give upper bounds for the relevant CSL parameters. By minimizing
other noise sources a noise floor will appear which will then set the upper
bound for the CSL parameters.

To do this, we use a non-interferometric approach. We use an MRFM
(Magnetic resonance force microscopy) setup in a dry dilution refrigera-
tor. MRFM is a method for measuring individual electron spins in a sam-
ple. Since we will not be using the setup for this purpose, we will not dive
into the details of MRFM. The magnetic cantilever in the setup, however,
is used for as a low temperature force sensor. The refrigerator will cool
the setup to ∼20 mk and a nuclear demagnetization stage (NDS) cools it
to sub 10 mk temperatures. The movement of the cantilever is measured
using a SQUID (superconducting quantum interference device). We will
test a new version of the detection chip used which will ideally improve
the coupling between the cantilever and the SQUID chip by an order of
magnitude. This will ultimately mean we will achieve a better signal to
noise ratio and lower the noise floor of our measurements.
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Chapter 2
Theory

2.1 The CSL model

Let us first dive deeper into CSL theory. This section is based on the review
by Bassi et al.[8]

2.1.1 Objective-collapse theories

As stated in the introduction, CSL is a theory which attempts to solve
the measurement problem and falls under the objective-collapse theories.
These theories modify the Schrödinger equation

ih̄
∂

∂t
Ψ(x, t) =

[
− h̄2

2m
∂2

∂x2 + V(x, t)

]
Ψ(x, t) = HΨ(x, t) (2.1)

by adding terms. These new terms should have the following properties:

• The new terms must be nonlinear. Any quantum mechanical super-
position must break at the macroscopic level and the wavefunction
must be localized.

• The new terms must be stochastic. The outcomes of measurements
are non deterministic so these new terms must explain why they are
random.

• There must be some kind of amplification mechanism. For quantum
systems, the effect of the new terms should be negligible but for large
systems their effect should be very strong. In other words, quantum
systems retain their superposition, while macroscopic systems be-
have classically.
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12 Theory

• They must not allow for faster-than-light communication.

These conditions are not easily met. One of the greatest achievements of
modern collapse models is successfully and consistently implementing the
above described conditions.

2.1.2 Parameters

There are two important parameters in CSL theory, namely rc and λ. To
show where these parameters come from and what their physical mean-
ing is, let us briefly review GRW theory.

We look at an arbritrary state described by a wave function ψ(x1, x2, . . . , xN).
According to GRW theory, this state will experience a jump at random
times of the form

ψt(x1, x2, . . . , xN) −→
Ln(x)ψt(x1, x2, . . . , xN)

||Ln(x)ψt(x1, x2, . . . , xN)||
(2.2)

ψt(x1, x2, . . . , xN) represents the state vector at time t, just before the jump
occurs. Ln(x) is a linear operator given by

Ln(x) =
1

(πr2
c )

3
4

e(qn−x)2/2r2
c (2.3)

Here we encounter the first of two parameters. rc is the correlation length
and sets the width of the localization process. qn is the position of the
nth particle and x corresponds to the place where the jump occurs. The
probability density for a jump taking place at position x for the nth particle
is given by

pn(x) ≡ ||Ln(x)ψt(x1, x2, . . . , xN)||2 (2.4)

It is assumed that these jumps are distributed in time according to a Pois-
sonanian process. The frequency of this random process is given by the
second parameter λ, the collapse rate. Both parameters appear in the fol-
lowing equation which describes the superposition collapse of a single
particle:

⟨x| T[ρ(t)] |y⟩ = λGWR

[
1 − e

−(x−y)2

4r2
c

]
⟨x| ρ(t) |y⟩ (2.5)

ρ(t) is the density matrix |ψt⟩ ⟨ψt|. As expected the effect of spontaneous
collapse suppresses the off-diagonal components. T represents the effect
on the wavefunction of the spontaneous collapses.

12
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2.1 The CSL model 13

For the GRW model the numerical values of the two described parame-
ters are λGRW ≃ 10−16s−1 and rc ≃ 10−7m.[9] With these numerical values
three important properties have been proven. First: at the microscopic
level, quantum systems behave as predicted by ”standard” quantum me-
chanics. Second: At the macroscopic level wave functions of massive ob-
jects are always well localized in space and their center of mass move ac-
cording to Newton’s laws of motion. Lastly, the outcomes of measure-
ments on quantum systems follow the Born probability rule according to
the GRW model.

2.1.3 CSL

The most advanced spontaneous collapse model as of today is the Con-
tinuous spontaneous localization model. It is defined by the following
stochastical differential equation:

dψt = [− i
h̄

Hdt +
√

γ

m0

∫
dx[M(x)− ⟨M(x)⟩t]dWt(x)−

γ

2m2
0

∫
dx[M(x)− ⟨M(x)⟩t]

2dt]ψt

(2.6)

H is the standard Hamiltonian. The two other terms are the added terms
which follow the prerequisites laid out in section 2.1.1 and induce the col-
lapse of the wave function. m0 is a reference mass usually taken as the
mass of a nucleon. γ is a positive coupling constant which determines the
strength of the collapse. M(x) is a smeared mass density operator:

M(x) = ∑
j

mjNj(x) (2.7)

Nj(x) =
∫

dyg(y − x)ψ†
j (y)ψj(y) (2.8)

ψ†
j (y) and ψj(y) are the creation and annihilation operator of particle j at

a point in space y. The function g(x) gives a distribution of the mass:

g(x) =
1

(
√

2πrc)3
e
−x2

2r2
c (2.9)

The first of the two parameters introduced in section 2.1.2 appears in this
function. The correlation length rc determines how much the mass is
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14 Theory

”smeared out” out over space. Lastly Wt(x) is an ensemble of indepen-
dent Wiener processes. A Wiener process is a continuous time stochastic
process comparable with Brownian motion[10]. This ensemble contains a
stochastic process for every point in space. The density number operators
ψ†

j (y)ψj(y) in equation 2.8 are responsible for the collapse of the wave-
function. They suppress superpositions containing different numbers of
particles in different points of space.

To look at the collapse itself, we again consider the suppression of the off
diagonal components of the density matrix. The time induced decay of a
many-nucleon system (we ignore the decay of electrons) is

∂

∂t
〈
x̄′
∣∣ ρt

∣∣x̄′′〉 = Γ(x̄′, x̄′′)
〈
x̄′
∣∣ ρt

∣∣x̄′′〉 (2.10)

Γ =
γ

2 ∑
i,j

[
G(x̄′i − x̄′j) + G(x̄′′i − x̄′′j )− 2G(x̄′i − x̄′′j )

]
(2.11)

Where x̄′ ≡ x̄1, x̄2, . . . , x̄N and similar for x̄′′. Γ is the decay function.

G(x) =
1

(4πr2
c )

3
2

e
−x2

4r2
c (2.12)

If we consider a system with only one nucleon, equation 2.11 reduces to

Γ(x′, x′′) =
γ

(4πr2
c )

3
2

[
1 − e

−|x′−x′′ |2

4r2
c

]
(2.13)

This is exactly equation 2.5 with λCSL instead of λGWR

λCSL =
γ

(4πr2
c )

3
2

(2.14)

The first estimate for γ was γ ∼ 10−30 cm3s−1, which corresponds to
λCSL ∼ 2.2 × 10−17 s−1. However, experiments have narrowed down
the possible values for λ and rc. The shaded regions in figure 2.1 shows
the values ruled out. Only the white region still needs experimental veri-
fication.

Let us define l = ||x′− x′′|| where l is the distance between two particles in
superposition. We can now deduce from equations 2.11 and 2.12, that the
contribution to the wave function collapse for a particle in superposition

14
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2.1 The CSL model 15

Figure 2.1: Graph showing the possible values for λ and rc. The shaded regions
are ruled out by experimental tests. It is important to note that this graph is
mostly illustrative and outdated as lower bounds have already been set.[11] The
green regions are from cantilever-based experiments and multilayer structures.
The blue areas are obtained from gravitational wave detectors. The purple areas
are from levitating optomechanical systems. The orange, red and brown regions
are obtained from various heating and excitation experiments. Obtained from
Carlesso et al. [12]
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16 Theory

with l ≪ rC is negligible. However, when l starts to approach rc, G starts
to increase quadratically. Furthermore, for l > rc Γ increases linearly. This
leads to the simplified formula

Γ = λCSLn2N (2.15)

where n is the number of particles with l < rC and N is the total number of
those clusters. This implies the expected result that the larger the system,
the higher the decay rate.

Now that we have a basic framework of the CSL model and how it gov-
erns superposition collapse, let us look at the implications of the model
regarding the force noise on a cantilever setup. We consider the Hamilto-
nian of a standard quantum mechanical harmonic oscillator with an added
stochastic potential which mimics the effect of the CSL model.

Ĥ =
1

2m
p̂ +

1
2

mω0q̂2 − h̄wt
√

ηq̂ (2.16)

where p̂ and q̂ are the standard momentum and position operators. wt is a
white noise, with zero average and delta correlation function. η is defined
by the following formula

η =
(4π)

3
2 λr3

c

m2
0

∫ d3k
(2π)3 k2

ze−k2r2
c |ρ̃(k)|2 (2.17)

with k = (kx, ky, kz), ρ̃(k) =
∫

d3xeik·rρ(r). ρ(r) is the mass density of the
oscillator. Combining these expressions gives the equilibrium energy of
the system ⟨Ĥ⟩.

⟨Ĥ⟩ = kBT +
h̄2Qη

2mω0
(2.18)

where Q is the quality factor of the system. It is clear that the mean energy
consists of the expected thermal term kBT and an additional term which
causes a temperature increase of

∆TCSL =
∆ECSL

kB
=

h̄2Qη

2kBmω0
(2.19)

[11]

2.2 Mechanical resonator

Now let us focus on the actual movement of the mechanical resonator, i.e.
the cantilever. We use the cantilever as a force sensor.

16
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2.2 Mechanical resonator 17

2.2.1 Cantilever transfer function

To be able to analyse the force acting on the cantilever, we will need to
know the transfer function on it:

H(ω) =
X(ω)

Fext(ω)
(2.20)

Where X(ω) is the frequency dependent displacement of the cantilever
and Fext any external force driving the cantilever. To determine the transfer
function we use the equation of motion of a generic oscillator.

mẍ = −kx − cẋ + Fext (2.21)

m is the mass of the resonator, k is the spring constant and c is a constant
of proportionality. m and c are combined in the parameter γ = c

2m which
is the damping factor. [13]. If we rewrite equation 2.21 to the frequency
domain and plug it in equation 2.20 we obtain the following:

H(ω) =
1

k − mω2 + iωc
(2.22)

The cantilever will be driven by a noise source. To see it’s effect, we mul-
tiply the noise spectrum with the absolute square of the transfer function
|H(ω)|2.

Sx(ω) = |H(ω)|2SF(ω) (2.23)

|H(ω)|2 =
1

(k − mω2)2 + c2ω2 (2.24)

To find the average displacement as a result of any force noise SF(ω) acting
upon the cantilever, we multiply the force noise spectrum with equation
2.24 and integrate over all frequencies:〈

1
2

kx2
〉

=
1
2

k
∫ ∞

−∞
x(t)2dx =

1
2π

∫ ∞

0
Sx(ω)dω =

1
2π

∫ ∞

0
|H(ω)|2SF(ω)dω

(2.25)

⟨Ecantilever⟩ =
〈

1
2

kx2
〉

(2.26)

We have written the the expression in terms of the square of the displace-
ment as the energy of the cantilever scales with it. [14]
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18 Theory

2.2.2 Thermal motion

Now let us look at the effect of thermal noise on the movement of the
cantilever. The thermal force noise spectrum is given by

SF,thermal(ω) =
4kbT

ω
Im

(
Fext

X(ω)

)
= 4kBTγ (2.27)

Thermal noise is white, as it is not dependent of ω. We now substitute
eqation 2.27 into equation 2.23. This yields the following expression

Sx,thermal(ω) =
4kBT

m

ω0
Q

(ω2
0 − ω2)2 +

(
ω0ω

Q

)2 (2.28)

We have made some substitutions. Firstly the resonance frequency ω0 =√
k
m is substituted in. Furthermore the quality factor Q =

√
km
γ is used. For

high Q-factors and frequencies close to resonance (ω ≈ ω0) the distribu-
tion in equation 2.28 can be approximated as a Lorentzian distribution:

Sx,thermal(ω) =
kBT

k

ω0
Q

(ω0 − ω)2 +
(

ω0
2Q

)2 (2.29)

Lastly, when equation 2.29 is plugged into equation 2.25, the outcome con-
firms that the thermal motion of the cantilever satisfies the equipartition
theorem 〈

1
2

kx2
〉

=
k

4π

∫ ∞

0
Sx,thermal(ω)dω =

1
2

kBT (2.30)

Here we assume that the cantilever can only move in one dimension.[15]

2.3 SQUID thermometry

As stated in the introduction, the temperature of the setup is measured
using a SQUID. The technical term for the kind of thermometer used is
a magnetic flux fluctuation thermometer (MFFT)[16]. Let us look at the
underlying theoretical principle.

2.3.1 MFFT

Johnson noise is the electronic current noise present in all electrical con-
ductors and is the result of Brownian motion of the charge carriers in the

18
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2.3 SQUID thermometry 19

conductor.[17] This current noise induces a magnetic field in the material
and therefore a flux noise spectrum SΦ. The power spectral density (PSD)
of the flux noise of a conducting wire has the following expression:

SΦ = 4kBTσµ2
0R3G(R/δ) (2.31)

where σ is the bulk conductivity, R is the radius of the wire, T its tempera-
ture and µ0 the magnetic permeability of the conductor. G is a dimension-
less function dependent on the exact geometry of the MFFT. Two proper-
ties of SΦ are important for the use as a thermometer. First, the flux noise
produces a white spectrum as there is no dependence on the frequency of
the noise ω. Secondly, there is a linear dependence on the temperature T.
For a more detailed look into the transfer function of the thermometer we
refer to Van Heck et al. [16].
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Chapter 3
Setup and measurement method

In this chapter we will discuss the experimental setup and measurement
methods of both the ultra low temperature cantilever measurements (Fer-
mat) and the test measurements for the SRON detection chips.

3.1 Fermat

3.1.1 Experimental setup

The Fermat experiment is placed in a dry dilution refrigerator called YETI,
a picture of which is shown in figure 3.1a. For a detailed explanation on
the setup of YETI see ref [18]. On the still plate, a nuclear demagnetiza-
tion stage (NDS) is mounted to cool the sample down sub 10 mk temper-
atures. This NDS consists of a superconducting coil. Within it’s borehole
a PrNi5 matrix is placed. Through the coil a current is sent to generate a
strong magnetic field, with a maximum field strength of 2T correspond-
ing to a current of 40A. The matrix is thermalized to the mixing chamber
(MC) plate with an aluminum thermal switch. Aluminum loses its ther-
mal conductivity when in a superconducting state, therefore we are able
to switch between a high and low heat conductivity by breaking the su-
perconducting state of the aluminum. When ramping op the NDS coil, the
generated field will align the spins in the PrNi5 matrix, therefore lowering
the entropy and increasing its temperature. This generated heat is able to
flow to the MC-plate through the opened heat conductance switch. When
the magnetized PrNi5 matrix reaches the temperature of the MC-plate, the
heat switch is closed and the magnetic field will be ramped down. When
the field strength decreases the spins in the matrix disalign, raising the en-
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22 Setup and measurement method

(a) Overview YETI (b) Close-up

Figure 3.1: Overview of YETI and close up of the experimental setup. The blue
and yellow object visible in the overview is the NDS coil. The silver wire origi-
nating from the coil can be seen attached to the mass spring system with Lego®
blocks on the close-up photo.

tropy. This causes the temperature of the matrix to drop and therefore the
temperature of the silver wire it is soldered to. This silver wire extends
down to the experiment.[19]

Underneath the MC plate the MRFM setup is suspended using a mass
spring system (figure 3.1b. This mass spring system (figure 3.1b) consists
of four copper masses and is optimized for filtering out mechanical vibra-
tions between 100 Hz and 10 kHz. For the exact specifications of the mass
spring system we refer to ref [20]. The cantilever used is an IBM-style
silicon cantilever with a Nd2Fe14B magnet attached to its tip. The magnet
weighs an approximate of 1.5 ng. The cantilever has a resonance frequency
f0 of approximately 653 Hz and a stiffness k ≈ 2.6 × 10−5 N/m.[18] A
dither piezo is placed on the cantilever holder to drive the cantilever. The
plate to which the cantilever is attached can be moved and positioned us-
ing three stick-slip piezo motors. These motors are positioned in a triangle.
By extending and contracting the motors separately or together the piezo
can be moved in x, y, and z. The position of the cantilever is measured
and calculated using capacitors. A 2D sketch of the positioning system is
shown in figure 3.2

22
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3.1 Fermat 23

Figure 3.2: 2D sketch of the positioning system of the cantilever. The cantilever is
attached to the bottom. When extending both the piezos the plate moves down-
wards. When extending only one the cantilever is moved laterally. The green
parts are the capacitor plates used in the position calculation. Sketch by J. Plugge
[18]

To detect the movement of the cantilever a detection chip is used. This
chip is made of a commercially available 2.6 × 2.6 × 0.3 mm3 diamond
plate. On the surface two pick-up loops made of niobium titanium nitride
(NbTiN) are fabricated. Additionally an RF trace is fabricated, which we
did not use for the measurements. The magnet on the tip of the cantilever
induces a current through the superconducting loops given by

I =
Φ
L

(3.1)

Where Φ is the total flux through the surface enclosed by the loop and
L is the inductance of the loop. The alternating current induced by the
movement of the magnetic tip is measured using a SQUID. In between the
pick-loop and SQUID a transformer is used to improve the match between
the inductance of the pick-up loop and the input coil of the SQUID. Lastly,
after the transformer, a calibration coil is present that can be used to inject
flux in the circuit and magnetically drive the cantilever. The pick-up loops,
transformer and SQUID are all fabricated on separate chips. These chips
are connected using wirebonds.

Both the cantilever and the detection chip are thermalized to the silver
wire extending from the NDS coil. The temperature of the silver wire is
measured using two kinds of thermometers. Firstly, We use two resis-
tive thermometers made in house by W.A. Bosch. These thermometers are
calibrated and known to be very precise until approximately 20 mK. To ac-
curately measure temperatures below 20 mK, a MFFT is used. The MFFT
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Figure 3.3: Schematic overview of the entire Fermat setup. From left to right: the
NDS coil from which the silver wire extends. Then at the mass-spring system the
silver wire splits to the resistive thermometer and MFFT. In the sample holder
again the wire splits and thermalizes both the cantilever and the detection chip.
Lastly, the detection circuit is shown. Figure is made by Ir. L.R. van Everdingen.

consists of a gradiometrically wound coil around the silver wire and a
SQUID. The coil picks up the flux fluctuations caused by Johnson noise
described in section 2.3.1 which are then measured by the SQUID. The coil
and SQUID are encased in a lead tube to minimize noise from stray mag-
netic fields. A schematic overview of the entire setup can be seen in figure
3.3

3.1.2 Methodology

We start the measurements by cooling down the setup in the YETI. During
this cooldown the cantilever is retracted from the detection chip. This is
done to prevent the cantilever crashing into the chip and damaging either
the cantilever or the chip due to thermal shrinkage. When the cryostat has
cooled down, we use the three piezo motors to gradually position the can-
tilever at the location where the coupling between the cantilever and the
pickup loop is at its largest. In other words, the location where the move-
ment of the cantilever generates the largest signal in the detection SQUID.
We measure this coupling by moving the cantilever some distance and
afterwards doing a frequency sweep using the dither piezo. We then fit
a Lorentzian over the resonance peak. From this fit we can deduce the
Q-factor and the amplitude. The arbitrary number Q/A is an indicator
for the coupling: if Q/A increases, the coupling increases. To find an ex-
act number of the coupling, namely the amount of voltage generated by
a displacement of a meter of the cantilever, we use the calibration coil to
magnetically sweep the cantilever.
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3.1 Fermat 25

Figure 3.4: Current log of a measuring run. The lowest current corresponds to a
temperature of ∼6 mk. The highest current corresponds to ∼40 mk. The spikes
just before and after ramping up the current are caused by glitches in the Labview
code.

When the cantilever is positioned optimally, we start to cool down us-
ing the NDS stage. We follow the steps described in the section above.
First we ramp up the field with the thermal switch opened. Then we close
the switch and turn off the field to cool down the cantilever to sub 10 mk
temperatures. When we have reached the lowest temperature possible,
we ramp up the field again in steps. By doing this we heat up the can-
tilever again and create clear steps in temperature. We use these steps
lasting a few hours to do energy analysis (see section 4). In figure 3.4 the
current sent through the NDS coil for a measurement run can be seen.
During these temperature steps we do additional magnetic sweeps to get
a clear number for the coupling for each step. After measuring these steps,
the setup is heated using a heater to around 150 mk. After this the heater
turned off and the setup is allowed to gradually cool down again using the
cooling of the refrigerator. This creates a gradual decrease in temperature
and is used for calibration purposes for the MFFT. During the cooling and
heating process the movement data from the detection SQUID is saved in
TDMS files each containing 125 seconds of data. The sampling frequency
is 250000 resulting in 3.125*107 samples per file. The data from the MFFT
is also saved in TDMS files as a voltage with a frequency of 50000 samples
per second. Each file spanning 61 seconds resulting in 3.05*107 samples
per file.
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3.2 SRON detection chips

3.2.1 experimental setup

The detection chips tested are an upgrade from the chips used presently in
the FERMAT setup. They are fabricated by Space Research Organization
Netherlands (SRON). The one major difference is the integration of trans-
formers on the same chip as the pickup loop. This eliminates the need for
the dedicated transformer chip now present in the setup and therefore two
sets of wirebonds. This greatly lowers the parasitic inductance caused by
the wirebonds between chips and potentially increased the coupling be-
tween the cantilever and the SQUID by an order of magnitude. The chips
are made of isolating SiO2 layers of 250 nm and three NbTiN conducting
layers. The bottom two layers are 200 nm thick and the upper layer 500
nm. There are two pickup loops fabricated in the top layer. One has a
notch in it (figure 3.5c). This is done to minimize the flux through the
pickup loop caused by the RF line through the loops (red horizontal line
in figure 3.5a and 3.5c). The rectangular pickup loop is 20 × 30 µm and
has an inductance of 54 pH. A multilayer on chip transformer (rigure 3.5d)
is connected to both pickup loops. The primary coil has one turn and an
inductance of 0.251 nH. The secondary coil has 45 turns and an inductance
of 388 nH. There are two test structures present on the chips. The first is
a additional separate transformer identical to the ones connected to the
pickup loops to test the transfer function of the transformers. The other
structure can be used to test the inter-layer connections.

We primarily wanted to test whether the pickup loops worked. For this
we had to place a local magnetic field over the loops and measure their
response. We designed a sample holder for this purpose. It consists of a
metal slab in which a flux concentrator coil perfectly fits. This coil uses
the Meißner effect to concentrate the generated magnetic flux. For a more
detailed explanation of how these coils work we refer to [21]. Above the
coil a slot is cut out in which a PCB (printed circuit board) can be placed.
The chip is glued on the PCB in such a way that the pickup loops are po-
sitioned above the core of the flux concentrator. The PCB is fastened on
the sample holder using copper tape. The flux concentrator coil is wound
with 100 µ NbTi/CuNi wire and has 105 windings. At room temperature

26
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3.2 SRON detection chips 27

(a) Design chip (b) Photo chip

(c) Pickup loops (d) On chip transformer

Figure 3.5: Overview of the design of the SRON detection chips (a) and a picture
of the chips under a microscope (b). In the middle of the chip two pickup loops
are present (c). The transformers (d, red rings on the design) are placed at the
edges of the chip. Additionally there are some test structures fabricated on the
chip visible. The test transformer is placed differently on the actual measured
chip than shown on the design.
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(a) Without PCB (b) With PCB

Figure 3.6: Photos of the chip test sample holder without the PCB and the flux
concentrator coil visible (a) and with the PCB on the sampleholder (b). The chip
is glued on the PCB but the wirebonds are not yet placed between the chip and
the PCB.

the coil has a resistance of 19.9 Ω and an inductance of 85 µm. Four pins
are soldered to each wire of the coil to increase the total current which can
be sent. In figure 3.6 pictures of the sample holder can be seen.

We also wanted to test the pickup loops with a magnetic field coming from
above the chip, as it would be in the actual MRFM setup. For this purpose
we designed an additional construction and coil. As an additional flux
concentrator coil could not be used, the designed coil had to be as narrow
as possible to generate a sufficiently concentrated field. To do this, we de-
signed a copper bobbin with a core of varying width. On one side, the
core was 4 mm wides such that the bobbin could be screwed on a 2 mm
wide screw. Along 2 mm the width of the core reduces to 2 mm forming
a conical shape. The bobbin is screwed on a screw which is screwed in
a copper plate. This plate is placed above the sample holder using three
poles. The screw can then be turned to gradually lower the coil until it as
close as possible to the chip. It ended up 12.3 mm above the chip. The coil
is wound with the same wire as the flux concentrator coil. It has 464 wind-
ings, a resistance of 22 Ω and an inductance of 198 µH. Just like the flux
concentrator, there are multiple pins soldered to the endings of the wire
to increase the total possible current, only with this coil only two pins are
used to each side. This is done to simplify the soldering and for spatial
reasons. A photo of the complete setup including the top coil is visible in
figure 3.7.

28
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3.2 SRON detection chips 29

Figure 3.7: Photo of the complete sample holder

3.2.2 Methodology

The NbTiN layers in the chip are expected to have a critical temperature
Tc of 11.8 K[22]. The niobium core of the flux concentrator has a slightly
lower Tc of 9.46 K[23]. Lastly, the NbTi wires have a Tc of 10 K[24]. To
reach these temperatures the experimental setup is placed in the dry dilu-
tion refrigerator Elsa. The sample holder is placed and screwed tightly to
the still plate. This plate has a temperature of 1 K and is therefore more
than cold enough to ensure the tracks, wires and core in the setup become
superconducting.

As stated before, we mainly want to test the current response of the pickup
loops when a magnetic field is sent over it. Equation 3.1 implies that a
constant field generates a constant current. Therefore we send a constant
current through the used coil (either the flux concentrator or the top coil)
using the offset of a Zürich Instruments HF2LI lock-in amplifier. For the
measurements with the flux concentrator we used four parallel wires, for
the top coil measurements only two. To measure the generated current,
we used a 1 kΩ resistor to convert the current to a voltage. This volt-
age was measured using a Keithley 2100 digital multimeter. As each wire
in the cryostat can safely handle 10 mA, we can send at most 20 mA of
current to the top coil. We match this maximum current with the flux con-
centrator to easily compare the two results. We ramp up the current from
0 mA to approximately 20 mA in 12 steps and measure the voltage over
the resistor. For each amount of current we send we take 30 individual
measurements spaced 20 ms apart. We then take the mean and standard
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Figure 3.8: Schematic drawing of the measuring circuit used for the detection
chip test measurements. The blue dotted line indicates which the components
inside the cryostat. The yellow dotted lines indicate which components are part
of the detection chip. Note that when using the top coil to measure only 2 wires
are used as opposed to the four wires shown.

deviation of these thirty measurements. We do this for both the regular
and the notched pickup loop and for the test transformer we have shorted
with itself. We then compare the results of the pickup loops and the test
transformer to check wether the measured current is induced in the pickup
loops or in the transformer also present in the pickup circuit. A schematic
drawing of the measuring circuit is visible in figure 3.8
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Chapter 4
Analysis

The Fermat measurements described in section 3.1.2 gather a lot of data
(15 terabytes), but before any conclusions can be drawn, this data needs
to be analyzed. First, we look at the calibration of the MFFT. Secondly, the
analysis of the thermal motion is described and lastly the two methods of
Q-factor calculation are discussed.

4.1 MFFT

We start with the time dependent flux noise. As described in equation
2.31, the temperature dependency regards the PSD. For the time depen-
dent flux noise to go to the PSD, we first take the Fourier transform of the
flux noise. For each TDMS file a power spectrum is created (figure 4.1.
The voltage noise is converted to flux noise i.e. the number of flux quanta.
The noise is generally frequency independent as expected from equation
2.31. At higher frequencies, we do see the PSD decreasing. This is due
to some unknown capacitance in the setup creating a low pass filter. In
the otherwise smooth spectrum there are clear interference peaks visible.
We can safely assume these are non-thermal and therefore we can filter
these out. We did this by creating a mask: a selection of frequencies we
did not use for the temperature analysis. We used the find peaks function
from scipy.signal to find the indices of the peaks. We did this for every
spectrum. If a peak was present in more than 1.5% of the spectra, the
frequencies corresponding to the peak were discarded. This resulted in a
mask used for all spectra. The mask discards 16.1% of the data.

After obtaining the masked spectra. We integrated the clean spectra to
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Figure 4.1: SΦ of the MFFT at one point in time. The gray spectrum is the spec-
trum before the mask got applied to it. The blue spectrum is the masked spectrum
used for the temperature analysis

find the total noise power each timestep. As we do not precisely know the
conductance σ and the geometric term G(R/δ) in equation 2.31, we can-
not use the integrated power to calculate the temperature. To obtain the
temperature as function from the flux noise, we calibrate the MFFT using
the resistance thermometers present in the setup. We do this by fitting a
linear function to the integrated power as a function of the temperature of
the resistance thermometers. We use the gradual decrease in temperature
from 150 mk described in section 3.2.2 (figure 4.2). The fit parameters are
then applied to all the calculated integrated power values to find the tem-
perature for every point in time. As is visible in figure 4.2, two resistance
thermometers are installed in the setup. For the calibration we use ther-
mometer M.

We are especially interested in the temperature on the discrete tempera-
ture steps created by ramping the NDS coil up in steps. From each step
we defined a period of two hours on which the temperature was stable.
We made a histogram of the temperatures at different times within this
period. The temperatures in this period were normally distributed. To
find the average temperature and the standard deviation we first normal-
ized the histogram by dividing it by the total amount of counts. After this

32
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4.2 Thermal motion 33

Figure 4.2: Used calibration slope for the MFFT. The two resistance thermometers
are referred to as L and M

we fitted a Gaussian over the normalized histograms:

f (x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (4.1)

where σ is the standard deviation and µ the average.

4.2 Thermal motion

To study the thermal motion we first needed to find the energy of the can-
tilever. We do this by applying a digital lock-in amplifier to the SQUID
data to separate the real and imaginary part of the signal. The lock-in is
applied at the resonance frequency. This resonance frequency is found by
fitting a Lorentzian to the data, as the thermal motion takes the shape of
a Lorentzian (equation 2.29). We use a Butterworth filter with a cutoff fre-
quency of 0.5 Hz to filter out the secondary peak resulting from the lock-in.
Lastly, we multiply the resulting values with a conversion factor of 2*10−5

m/v to get the displacement x. These values are then plugged in equation
2.30 to ultimately find the energy of the cantilever. This conversion factor
is found using magnetic sweeps with the calibration coil. For the exact
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method of finding this conversion factor we refer to [18]. The energy anal-
ysis is done in the same manner for frequencies 5 Hz above and below the
resonance frequency. This is done to obtain the energy background.

4.3 Q-factor

We used two methods for obtaining the Q-factor of the cantilever. Firstly,
the Q-factor is calculated using the Lorentzian fit done to find the res-
onance frequency. The Q-factor can be calculated by dividing the reso-
nance frequency with the full width half maximum (FWHM). The second
method is by using the autocorrelation function. The Q-factor is a mea-
sure for how fast the cantilever loses its energy, a higher Q-factor means
that the cantilever loses its energy more slowly. For high Q the autocor-
relation is therefore high. The autocorrelation can be calculated using the
following formula:

R(t2) = ⟨(E(t1)− Ē)(E(t1 + t2)− Ē)⟩ (4.2)

Ē is the average energy. The autocorrelation exponentially decays charac-
terized by a correlation time τ:

R(t2) ∝ e
−2t2

τ (4.3)

Q can then be calculated using τ:

Q =
ω0τ

2
(4.4)

Where ω0 = 2π f0. After this exponential function is fitted to the autocor-
relation. The first 1

fc
= 2 seconds are not used for the fit as the low-pass fil-

ter of the lock-in causes the autocorrelation to increase in this regime.[14].

34

Version of August 8, 2025– Created August 8, 2025 - 13:34



Chapter 5
Results

5.1 Fermat

In this section we will discuss the results of run 73 of the Fermat experi-
ment. We will look at the temperature of the sample measured with the
MFFT and the energy and temperature of the cantilever using its thermal
motion. Lastly, we will discuss the Q-factor of the cantilever. We will then
combine all results and discuss the implications on the upper bounds of
CSL parameters.

5.1.1 MFFT

First let us look at the temperature of the sample measured using the
MFFT. The linear fit described in section 4.1 is shown in figure 5.1. The
resulting fit function is

∫
SΦd f = 2.3 · 104 ∗ T + 7.3 · 103. As you can see,

the function is now in the form of
∫

SΦd f = aT + b. As we want to find
the temperature as a function of the flux noise, we invert the function to

T =
∫

SΦd f−b
a . We apply the found expression for the temperature to all the

values of the integrated power. This then gives us the temperature for all
points in time. A plot for the temperature over time including the discrete
temperature steps is visible in figure 5.2. As you can see, the temperature
given by the MFFT and the two resistance thermometers deviate signifi-
cantly from each other at low temperature. There are a number of peaks
visible in the temperature given by the MFFT. These are not present in the
temperature given by the resistance thermometers and are therefore most
likely caused by non-thermal resonance effects at that point in time.
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Figure 5.1: The integrated power spectrum of the silver wire plotted against the
temperature measured by the resistance thermometer. The linear fit is described
by the function

∫
SΦd f = 2.3 · 104 ∗ T + 7.3 · 103. This equation implies that there

is noise present at T = 0, but this is wrong. We will go further into this in the
discussion (section 6).
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Figure 5.2: Temperature over time during a stepwise NDS ramp.
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Figure 5.3: Temperature histogram of the lowest temperature reached. The Gaus-
sian fit is done using equation 4.1 The average temperature and standard devia-
tion are visible in the title of the plot.

Now, as described in section 4.1, we found the average of the temperature
during the steps and the corresponding standard deviations by fitting a
Gaussian over the normalized histograms of the temperature during the
steps. The temperature histogram of the lowest reached temperature is
visible in figure 5.3, the histograms of all other steps are shown in the ap-
pendix. The lowest temperature reached during this NDS run is 3.08 mK.
As expected, the standard deviation of the temperature rises along with
the temperature itself.

5.1.2 Thermal motion

Now let us look at the thermal motion and temperature of the cantilever.
We have found the energy of the cantilever over time using the digital
lock-in described in section 4.2. To compare the temperature of the can-
tilever with the temperature of the sample during the steps, we analyze
the energy during the same periods used for the MFFT histograms. Once
again, we gather the found energies in histograms. The energies are de-
scribed using the Boltzmann distribution (equation 2.30). The energy his-
togram of the lowest temperature reached is visible in figure 5.4, the his-
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tograms of all other temperature steps are shown in the appendix. Along
with the energy histogram, the Boltzmann distribution is plotted accord-
ing to

y = Ae−E/kbT (5.1)

A is a scaling factor. In our case the height of the first bin in the histogram
is chosen as A. The temperature is found using the average energy of the
time period. The average energy is shown as a vertical black line in the his-
tograms. The corresponding temperature is shown in the legend of each
plot.

We now combine the results of the MFFT measurements and the thermal
motion measurements into one plot (figure 5.5). Both the temperatures
shown in figure A.2 are shown and the calculated temperatures where the
energy background is subtracted. A linear fit is done over the tempera-
tures with the background subtracted. As is visible, the data points quite
clearly deviate from the fit at low temperatures. This could be caused by
the noise floor preventing the cantilever from cooling down, but may also
be due to a faulty calibration. The error in the cantilever temperature is
calculated according to the formula

σT =
⟨E⟩
Kb

∗
√

τN (5.2)

Where τ is the correlation time of the cantilever and N the total number of
measurements.

5.1.3 Q-factor

Lastly, let us look at the Q factor of the cantilever over time. One of the au-
tocorrelation fits described in section 4.3 is shown in figure 5.6. For every
energy calculation lasting 125 seconds an autocorrelation fit is done, but
again, we are interested in the discrete temperature steps. The average Q-
factor of each step is shown in figure 5.7. There is no clear relation between
the Q-factor and the temperature visible for both the Lorentzian fit and au-
tocorrelation Q-factors. The only clear difference between the two is that
the autocorrelation Q-factor is consistently higher than the one obtained
from the Lorentzian fit. However, the error margins of the autocorrelation
Q-factors are very large, for the second temperature step even crossing
over towards negative values. Therefore, we mainly trust the Lorentzian
Q-factors as their error margins are much smaller.
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Figure 5.4: Energy histogram of the thermal motion at the lowest reached tem-
perature of the cantilever. The histogram describes the same two hours as the
temperature histogram in figure 5.3. The graph underneath the main histogram
shows how much the energy distribution differs from the expected Boltzmann
distribution.
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Figure 5.5: Temperature of the cantilever plotted against the temperature of the
sample. Both the temperatures with and without the background are shown. The
red dotted line is a linear fit done according to y = ax. This line is mainly present
to clearly show the deviation from the trend for the lowest temperature. The grey
dotted line represents the function y = x
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Figure 5.6: Autocorrelation of the energy of the cantilever at one point in time.
The exponential fit over the autocorrelation is shown in orange. As described
in section 4.3, the first two seconds of the data is not used for the fit. The Q-
factor obtained from this particular fit is 6035.2. The Q-factor obtained from the
Lorentzian fit over this data is 5524.0
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Figure 5.7: Average Q-factor of the cantilever obtained from the Lorentzian fit
and autocorrelation during the analyzed periods during the discrete energy steps.
The Q-factor of the period during the lowest temperature obtained from the
Lorentzian fit is missing, as there was no fit data of that period available.

5.1.4 CSL upper bounds

We will now use the discussed results to calculate the implications for the
upper bounds for the CSL parameters. As the noise created by CSL mani-
fests itself as force noise, we will first calculate the force noise on the can-
tilever according to the following formula:

√
SF =

√
4kBTk
ωcQ

(5.3)

We insert the values found during the lowest temperature reached in the
formula: T = 8 mK, ωc = 2π fc = 2π ∗ 669 Hz, Q = 1.6 · 104. For the
stiffness of the cantilever k we use 2.6 ·10−5 N/m. This gives us

√
SF ≈

4.1 · 10−19 N/
√

Hz. This value is in the same order of magnitude as earlier
found values (5 ·10−19 N/

√
Hz [25]). The figure of merit for CSL measure-

ment is SF/R2 and as above value was found using a smaller cantilever,
no improvement of the CSL parameters can be made.
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5.2 SRON detection chip

Lastly we will discuss the results of the SRON detection chip test measure-
ments. The results of the measurements using the flux generator sending
a magnetic field from underneath the chip are visible in figure 5.8a. The
positive relationship between the measured voltage and the sent current
for both the regular and notched pickup loop implies the chips works as
expected. Especially as the data from the test transformer shows no clear
reaction from an increased magnetic field sent by the flux concentrator.
The noise floor of the Keithley multimeter was approximately 9 ·10−7 V,
so almost an order of magnitude less than the measured signal from the
regular loop.

The data behaves less predictably for the measurements using the top coil.
As you can see in figure 5.8b, the data for the regular pickup loop behaves
as expected and similar the corresponding data obtained using the flux
concentrator. However, the notched coil shows a clear negative relation-
ship between the measured voltage and magnetic field. This would imply
a difference in polarity between the regular and notched coil. However, if
we negate the current independent offset, the absolute value of the voltage
has a positive relationship with the magnetic field over the pickup loop.
The behavior of the data of the test transformer is quite strange. It almost
shows an inverse exponential relationship with the sent field. We cannot
explain this for now, as no equation implies this behavior. However, we
can safely say that at least the regular pickup loop works as expected.

If we now look at equation 3.1, we can calculate the supposed flux through
the pickup loop. A voltage of approximately 7.5 µV over a 1 kΩ resistance
implies a current over the resistance of 7.5 nA. The current induced in the
loop is attenuated by a factor 45 by the transformer (as the ratio between
primary and secondary coil is 1:45). The current induced in the loop is
thus 337.5 nA. This gives a total flux of 1.823 ·10−17 Wb. This flux gives
a flux density of approximately 3 ·10−8 T. Theoretically, the flux concen-
trator coil generates a field of 23.25 ·10−2 T at the center of the coil. This
is approximately five orders of magnitude more than implied by the mea-
sured voltage. The value for the theoretical field strength is calculated
using the model for an infinitely long solenoid. If we instead calculate the
theoretical field using the equation for the magnetic field along the axis
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perpendicular to a current loop

Bz =
µ0

4π

2πR2 I

(z2 + R2)
3
2

(5.4)

where R is the radius of the loop and z the distance from the center. The
radius of the flux concentrator core is approximately 2 mm and for z we
also use 2 mm. This gives a field strength of approximately 2 ·10−4 T. This
is already quite a bit closer to the calculated field of 3 · 10−8 T, but still 4
orders of magnitude bigger. The top coil produces a theoretical magnetic
field of

B = µ0µCu
NI
l

= 1.27 · 10−3 T (5.5)

inside the coil, where µCu is the magnetic permeability of copper. To cal-
culate the field strength at the chip, we use the following formula:

B(z) =
µ0NIR2

2(R2 + z2)
3
2

(5.6)

For R = 2 mm and z = 12.3 mm the equation gives a field strength of ap-
proximately 1 ·10−5 T. This, again is closer to the supposedly measured
field but still 3 orders of magnitude too high. It does explain the lower
signal measured when sending a field with the top coil as the field expe-
rienced by the pickup loops is lower then the field produced by the flux
concentrator.
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Figure 5.8: Voltage over the 1 kΩ resistance in series with the pickup loop gen-
erated by the superconducting current induced by the magnetic field of the flux
concentrator (a) and the top coil (b). The results for the test transformer are shown
in green in both plots. The attribute the offset in all four fit functions to noise re-
sulting from the multimeter and wiring of the cryostat.
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Chapter 6
Discussion

Now that we have gathered all the results, let us critically discuss them.
First we will look into the results of the Fermat experiment. Subsequently
we will discuss the results of the detection chips and more importantly,
whether they can be used in the Fermat experiment as detection chips for
the movement of the cantilever.

6.1 Fermat

Despite gathering a lot of useful data, we have not managed to set new
upper bounds for the CSL parameters. If we compare our results to the
previous results of the Fermat experiment described in [16], we find two
key differences, namely a difference in both reached temperature and Q-
factor of the cantilever. We will discuss both aspects.

First let us look at the reached temperature of the sample. Van Heck et
al. ([16]) claim they have reached a sample temperature of 1.5 mK. Signifi-
cantly lower than our lowest reached temperature of approximately 3 mK.
This might be explained by the analysis method, as the NDS stage setup
has not changed. As explained in section 4.1, the non thermal peaks in the
noise spectrum of the MFFT are masked. Van Heck et al. fill in the ’holes’
created in the spectrum with white noise. We have chosen not to do this
and discard the masked frequencies altogether. An additional reason our
MFFT temperature is higher is because our mask leaves out too many non
thermal peaks. As you can see in figure 4.1 there are still some unmasked
peaks. These peaks raise the IPS and therefore the calculated temperature
of the sample.
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One solution to this problem would be to design a primary MFFT. This
means that this thermometer does not need to be calibrated to a differ-
ent thermometer as is the case in our setup right now. In a sense, the
MFFT we now use can be used as a primary thermometer, provided we
learn the exact geometry of the sensor such that we can fill in the ge-
ometric term in equation 2.31. However, this is unrealistic. In a paper
written by Kirste and Engert ([26]) the design of a primary thermometer
using the temperature dependence of the magnetic flux noise spectrum
is discussed. This geometry of this thermometer is designed in such a
way that the exact temperature dependence of the flux noise is known.
Therefore, the temperature can be directly calculated from the measured
flux noise. Furthermore, this thermometer uses two SQUIDS. These two
SQUIDS produce two noise measurements which are then used to cal-
culate a cross-correlated noise spectrum. The pickup coil of one of the
SQUIDS is located directly above the temperature sensor of the thermome-
ter while the pickup coil of the other SQUID is located far away from the
temperature sensor. Combining the two signals of these SQUIDS for the
cross-correlated noise spectrum filters out a lot of the non-thermal peaks
we have to filter out. A different upgrade to the current MFFT would be
a thermometer which uses the superconducting transition of a number of
wires made from different metals. The materials we would use have a
well known critical temperature. We then could calibrate the measured
flux noise to these transition temperatures, eliminating the need for the
calibration to the resistance thermometers. However, this does not solve
the problem of the non thermal peaks. An upgrade to the MFFT where
these peaks are filtered out like the thermometer in [26] would be a useful
addition to the experimental setup.

In Van Heck et al. the temperature of the sample is used to calculate the
force noise spectrum

√
SF. We have used the temperature of the cantilever

obtained from the thermal motion measurements. Unfortunately, there are
no thermal motion measurements presented below 20 mK. Therefore we
cannot clearly compare our obtained cantilever temperature at the lowest
sample temperature to that of Van Heck et al. We can, however, com-
pare the Q-factor of the cantilever. Van Heck et al. use the Lorentzian fit
method to find the Q-factor. The Q-factor they found was with a value of
40000 a lot higher than the value we found using this method (approxi-
mately 8000). The Q-factor found using the autocorrelation fit was higher
at around 16000, but we deem that method too unreliable. As is visible
in figure 5.6, the error margin of the autocorrelation is very large. This is

46

Version of August 8, 2025– Created August 8, 2025 - 13:34



6.2 SRON detection chips 47

caused by the fact that for quite a few points in time, the exponential fit
was sufficient and gave an unrealistic value for Q.

One reason Van Heck et al. found a much higher Q-factor could be that
the Q-factor measurements they did was not at same cantilever position as
the thermal motion measurements. For the latter measurements the can-
tilever should be as close as possible to the sample, to pick up as much of
the thermal motion. However, this does lower the Q-factor as the magnet
on the tip of the cantilever couples to the spins in the sample and there-
fore restricting its motion. This is most likely also the reason the described
trend in of the Q-factor (lower temperature leads to a higher Q-factor).
The cantilever has to be this close to the sample because the low possi-
ble coupling between the cantilever and the SQUID. This is caused by the
parasitic inductance of the wirebonds between the pickup-, transformer-
and SQUID chip. The tested detection chips with the transformer on the
detection chip could partly solve this problem by eliminating the need for
one set of wirebonds.

6.2 SRON detection chips

The inclusion of the detection chips in the Fermat setup would be a great
addition, provided they work as expected. The measurements done in this
project shed some light on the usability of these chips much is still unclear.
Although the expected positive relationship between the magnetic field
and the measured voltage was found, the signal itself was weaker than
expected according to equation 3.1. Both the theoretical field of the flux
concentrator and the top coil was several orders of magnitude higher than
the suggested field from the measurements. One possible explanation for
the top coil is that it was not close enough to the chips. We lowered the
coil as much as possible but due to the wirebonds of the chip to the PCB,
we could not get the coil as close as we wanted.

Furthermore, the coil was not exactly centered above the pickup loops due
to a fabrication error. We tried to compensate this by gluing the chip also
slightly off-center, but we did not manage to exactly align the chip and
top coil. This attempt of aligning the chip with the top coil inadvertently
caused the chip to also be misaligned with the flux concentrator. We did
not believe this to be a problem before the measurement, as earlier mea-
surements with just the flux concentrator (but with a different chip of the
same design) did not deliver usable results. Because of this we did not
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believe the configuration with the flux concentrator would work.

This being said, we do believe the results point to the chips working as
expected for DC fields. The measured noise floor of the multimeter is well
below the measured signal so the change in measured voltage has to be
caused by the growing magnetic field. Unfortunately, we could not gather
such results for an AC field. As the chips would ultimately be measuring
the magnetic field caused by the magnetic tip of the cantilever, we wanted
to test the chip with an alternating field with a frequency of 700 Hz, ap-
proximately the resonance frequency of the cantilever. These attempts
were not successful, because the multimeter was not sensitive enough to
measure the AC voltage. Crude tests showed that the lowest AC voltage
the multimeter could accurately measure was in the order of 10−4 V, two
orders of magnitude larger than the expected signal. Before implementing
the chip in the Fermat setup, we recommend to test the chip with an al-
ternating field to confirm it would accurately measure the oscillating can-
tilever. This can be done with a more accurate multimeter but maybe even
a SQUID, especially because a SQUID will be used to measure the signal
of the cantilever in the Fermat setup. Additionally, we would doing other
tests on the chip such as testing the critical current of the superconducting
tracks, the conductivity between the three metal layers of the chip and the
workings of the RF-line. These three tests are not essential for use in the
Fermat setup, but teach us a lot about the workings of the chip.
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Chapter 7
Conclusion and outlook

In this thesis we have discussed the latest results of the Fermat experiment
regarding the thermal motion of a mechanical oscillator at ultra low tem-
peratures. The nuclear demagnetization stage works well in cooling down
the cryostat to approximately 3 mk, much lower than the standard dry di-
lution cryostat temperature of approximately 20 mk. This temperature
was accurately measured using a magnetic flux fluctuation thermometer
(MFFT), a thermometer which uses the temperature dependence of John-
son noise. At these low temperatures we can accurately measure the ther-
mal motion of the cantilever opens up the possibility in testing the contin-
uous spontaneous localization model regarding the measurement prob-
lem within quantum mechanics. Furthermore, we have tested an shown
promising results for a new measurement chip to be implemented in the
current Fermat setup. This chip has pickup loops as well as a transformer
on it, eliminating the need for a separate transformer chip and therefore
additional wirebonds. The absence of the wirebonds and their parasitic
inductance will greatly increase the coupling between the cantilever and
the SQUID.

However, the results of the measurement run discussed in this thesis prove
to be unusable to lower the upper bounds for the CSL parameters λ and
rc. This is due to the fact that the cantilever did not reach the low tem-
perature of the cryostat, but only reached a temperature of ∼ 8 mk, where
previous exclusion calculations were done using a temperature of ∼ 1.5
mk. Additionally the measured Q-factor of the cantilever was too low (∼
103 vs. 4·103) To improve these numbers in the future, we need to position
the cantilever further away from the MRFM sample. For this to be feasible
the new chip has to be installed, however much is still unknown about
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the workings of the chip. We only managed to get results for a constant
magnetic field, which, albeit promising, were not conclusive. Tests using
an alternating field are necessary. Additionally, after the implementation
of the SRON detection chips, designing and installing a primary SQUID
thermometer less susceptible for non-thermal mechanical noise would be
a great addition to the Fermat experiment.
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Appendix A
Additional results
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Figure A.1: Histograms of the temperatures measured by the MFFT of each tem-
perature step45and corresponding gaussian fit. Each histogram spans a period
of two hours. All of the fits have been done using equation 4.1. The resulting
average temperature and its standard deviation is given above the plot.
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Figure A.2: Energy histograms of the thermal motion of the cantilever during the
energy steps. Each histogram describes the same two hours as the corresponding
temperature histograms in figure A.1. The graph underneath the main histogram
shows how much the energy distribution differs from the expected Boltzmann
distribution.
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