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Abstract

In this thesis we consider make-to-stock queueing systems with strategic customers,

describing customer’s optimal behavior and seeking optimal decision variables with

respect to producer’s profit as well as overall social welfare of producer and cus-

tomers. These decision variables are the product price and the target inventory

level. We make distinctions between one-product and two-product systems, as well

as unobservable and observable systems. A system being unobservable or observable

represents the level of information granted to arriving customers, which influences

their behavior and thus the corresponding decisions of the producer or social plan-

ner. Additionally, we present a numerical analysis for the observable one-product

system in which results relating to (the optimization of) producer’s profit and social

welfare are visualized, as well as their sensitivities to the modification of key system

parameters.
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1 Introduction

The mathematical theory of queueing systems knows many applications. Queueing

theory’s ability to simulate a broad scope of systems in which there exists some

continuous demand for a finite resource has proven useful in multiple areas such

as computing, manufacturing and commerce. One practical use-case for queueing

theory is the simulation of a system in which fulfillment of demand incurs some

reward while waiting for fulfillment carries a penalty. Such characterics can be found,

for example, in a system consisting of a facility which serves incoming customers,

like a food vendor. When customers receive service (or analogously, a product) they

receive a reward, while they pay some price for joining the system and spending

time waiting in the queue.

One might assume that the customers in this situation have some agency over their

participation in the system, deciding whether or not to join the system based on their

perceived benefit. This invariably involves a trade-off between reward and costs. The

customer’s decision has to be based on information about the state of the system,

for which several levels of observability may be assumed.

To encourage customers to join the system, a producer may choose to maintain

product inventory. To that end, the producer continuously sustains production until

a fixed target inventory level is reached. A practical consideration is the presence of

so-called holding costs associated with the storage of inventory.

Several metrics to evaluate performance of such a system can be considered, for

example the producer’s profit as well as the social welfare which takes into account

the net benefit of both the producer as well as the customers. In order to maximize

the desired objective, key system variables like the price and target inventory level

can be adjusted. This results in an optimization problem which involves a trade-

off between producer’s revenue, producer’s holding costs, customer’s reward and

customer’s waiting and product costs.

In this thesis, we evaluate unobservable and observable make-to-stock queueing sys-

tems with strategic customers, for the one-product as well as the two-product case.

For these systems we seek to answer the following question.

Which (joining) strategy is optimal for individual customers arriving in our un-

observable/observable one-product/two-product make-to-stock queueing system and

how can the decision variables be chosen such that the producer’s profit/social wel-

fare is optimal?

Section 2 presents an overview of prerequisite theory regarding queueing systems,

make-to-stock systems and strategic customers. In Section 3 the one-product model

will be introduced. A previous analysis for the unobservable case of this model

will be reviewed in Section 4. Section 5 covers an analysis of the observable one-

product model. We will discuss the extension of the one-product model to the two-
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product model in Section 6. Section 7 then offers a review of work done on the

unobservable two-product model, while Section 8 briefly goes over key insights for

the observable two-product model. We conclude with a discussion about the results

and potential future work in Section 9. Appendix A contains the Python code used

for the numerical analysis.
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2 Preliminary Theory

The queueing systems analyzed in this thesis build upon the standard M/M/1 queue

and additionally assume strategic customers as well as a make-to-stock production

approach. This section provides a brief overview of the prerequisite theory.

2.1 Queueing Systems and the M/M/1 Queue

We initially consider a setting in which one server, or producer, produces one type of

resource, or product, for which there exists some demand. According to this demand

customers arrive at a service facility in order to receive one unit of product. To meet

demand, the server persists production as long as at least one customer is present in

the system. Since the production of one product takes a non-zero amount of time, a

queue of waiting customers is able to form, leading to a so-called queueing system.

The following assumptions on the queueing system will form the basis of our analysis:

• Customers arrive according to a Poisson process with parameter λ > 0, mean-

ing that the periods of time between consecutive customer arrivals, or inter-

arrival times, are mutually independent exponential stochastic variables with

parameter λ. From this follows that the mean inter-arrival time equals λ−1;

• The production time of one product is an exponential stochastic variable with

parameter µ > 0, from which follows that the mean production time equals

µ−1;

• We have λ < µ, meaning that (on average) customer arrivals are less frequent

than production completions;

• Production is handled by one singular server on a first-come, first-served

(FCFS) basis; upon production completion the first customer in the queue

receives the product and leaves the system immediately.

These assumptions together give rise to a M/M/1 queue in Kendall’s notation.[4]

Associated to this M/M/1 queue is a stochastic process known as a birth-and-death

process. If we denote the possible states of the system by the amount of waiting

customers, that is, the states are denoted i for i ≥ 0, then the system transitions

from state i to i + 1 with rate λ (corresponding to the arrival of a new customer)

and from state i ̸= 0 to i− 1 with rate µ (corresponding to a production completion

and the departure of the customer receiving the completed product). Since in each

state the transition probabilities are independent from the states the system was

previously in, the process is a Markov chain as illustrated by Figure 1. By the

assumption λ < µ, the system tends (as time increases) to a unique stationary

distribution π over the possible states i ≥ 0; if for all states i, the probability of

the system being in state i is described by πi, then this probability does not change

over time, meaning that the distribution π is stationary. It describes the situation
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Figure 1: Markov chain corresponding to the M/M/1 queue.

in which the system is in equilibrium: for obtaining π, we use the local balance

equations

λπi = µπi+1 for i ≥ 0.

Writing ρ = λ/µ, the balance equations yield the stationary distribution probabilities

πi = (1− ρ)ρi for i ≥ 0.

2.2 Make-to-Stock

In the M/M/1 queue, the server follows a make-to-order approach: initiation (or con-

tinuation) of production is dependent on the arrival of a customer, which represents

an order. No production occurs when no customers are present in the queue.

In the following, however, the server follows a make-to-stock approach. In this setting

a target inventory level S is set by the server beforehand. Production halts when in-

ventory level reaches the target level S. In general this approach obviously decreases

the average waiting time: if a customer joins the system and finds a product present

in inventory, they take it and leave immediately.

2.3 Strategic Customers

We assumed that arriving customers always join the system. In general, this need

not be the case. A more realistic analysis takes into account the ability of arriving

customers to decide whether or not to join the system, leading to a distinction

between arrival rate and effective arrival rate (the rate at which customers actually

join the system). If the utility an arriving customer gains from joining the queue

is indicated by U , then they join the system if U > 0 and balk (leave) if U < 0.

We arbitrarily assume that in the case that U = 0, an arriving customer joins the

system.

A customer’s utility evaluation is based on the information level they are granted.

We distinguish two cases:

1. The system is unobservable, meaning that an arriving customer has no knowl-

edge about the state of the system. That is, neither the amount of customers
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waiting in the queue nor the amount of products in inventory are known. In

this case, customers calculate their expected utility.

2. The system is observable, meaning that an arriving customer has full knowledge

about the state of the system. That is, to an arriving customer the amount of

customers waiting in the queue as well as the amount of products in inventory

are known. In this case, customers are able to calculate their utility based on

this information.
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3 Description of the One-Product Model

Now we come to our first model of interest. We consider a one-product, make-to-

stock queueing system with strategic customers. Customers arrive according to a

Poisson process with rate λ > 0. The one singular server at the service facility

handles production with a production rate of µ > 0 and FCFS order. Additionally

we assume that λ < µ, or equivalently ρ = λ/µ < 1.

The server employs a make-to-stock production approach with an initially fixed

target inventory level of S products. When the inventory level is short of S, the

producer sustains production (at rate µ) until an inventory level of S products is

reached. Each product in inventory incurs a holding cost of h per unit time to be

payed by the server. Furthermore, the server charges to each joining customer a price

of p to be payed at the instant of joining the system.

If an arriving customer decides to join the system, they receive a reward of R > p

upon service completion (receipt of the product). If the product is in stock they pay

the price p, receive the product and leave immediately. Note that this then triggers

a replenishment job for the server as the inventory level decreases by one. If, on

the other hand, the product is not in stock, they pay price p and join the queue,

additionally paying a waiting cost of c per in-queue unit time, before receipt of the

product and departure.

The producer is able to set the target inventory level S based on the anticipated

behavior of the customers. This behavior greatly depends on the information level

provided to them. We will specifically make the distinction between an unobservable

and an observable system as described in Section 2.3, indicating whether the current

state of the system, that is, the amount of waiting customers as well as the amount

of products in inventory, is known to an arriving customer. We assume that the

target inventory level S is always known to the customers.
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4 Unobservable One-Product Model

Öz and Karaesmen[6] carried out an analysis for the case in which the system is

unobservable to customers, meaning that an arriving customer knows neither the

amount of customers waiting in the queue nor the amount of products in inven-

tory. The target inventory level S is known. This section provides a brief review of

this work. Since the target inventory level S set by the producer depends on the

customer’s behavior, we begin by solving the so-called customer’s problem.

4.1 Customer’s Problem

As we assume that the current queue length as well as the current inventory level

are unobservable to an arriving customer, the decision whether to join or balk is

described by a joining probability q ∈ [0, 1]. By the unobservability of the system,

a customer’s joining decision is based on the expected utility gained from joining

the system. Let U(q) be this expected utility for a (fixed) arriving customer when

all other customers join with probability q. If we denote by E[W (λ̄, S)] the ex-

pected waiting time for given effective arrival rate λ̄ (which in our case equals λq

as q describes joining probability) and target inventory level S, which Buzacott and

Shantikumar [1] showed to be

E[W (λ̄, S)] =
λ̄S

µS(µ− λ̄)
,

then our expected utility function can be defined as

U(q) = R− p− cE[W (λq, S)]

= R− p− c
(λq)S

µS(µ− λq)
.

Indeed, the joining customer is expected to receive reward R and pay the product

price p as well as the expected waiting cost cE[W (λq, S)].

Note that by symmetry between customers the joining probability q will be the same

for all of them. We seek to find this joining probability given the system parameters.

Recall that the target inventory level S is known to the customers. We distinguish

the following three cases for the state in which an arriving customer encounters the

system.

1. Suppose S = 0 and R−p < c/µ. Since then cE[W (λq, S)] = c/(µ−λq) > c/µ,

the rightmost expression being the minimum waiting cost corresponding to an

empty queue and immediate service, we have U(q) < 0 so that the arriving

customer does not join the system. Note that if R − p < c/µ but S > 0,

the arriving customer may in fact join, taking into account the possibility of

receiving on-hand inventory.
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2. Suppose R− p > cE[W (λ, S)]. This corresponds to the situation in which the

expected utility is positive even if all other customers join (i.e. q = 1). Since

then it also holds that R− p > cE[W (λq, S)], it follows that U(q) > 0 so that

the arriving customer does join the system.

3. If neither of the above two cases hold, the customer joins the system with

probability q. There exists a unique equilibrium q∗ such that U(q∗) = 0; if

either U(q∗) > 0 or U(q∗) < 0 then more customers will join or leave the

system, respectively, over time until U(q∗) = 0 .

It follows that the customers’ equilibrium joining probability qS (as a function of the

target inventory level S) is given by

qS =


0 if S = 0 and R− p < c/µ,

1 if R− p > c λS

µS(µ−λ)
,

q∗ otherwise, where U(q∗) = 0.

Furthermore, qS is non-decreasing in S. This is to be expected since a higher target

inventory level generally results in a lower average waiting time as some joining

customers receive on-hand inventory, leaving the system immediately.

4.2 Producer’s Profit Optimization

Since the producer is aware of the customer’s equilibrium joining probability qS , a

target inventory level S can be set accordingly in order to maximize the expected

producer’s profit (per unit time). This expected profit Z(S) is given by the difference

between expected revenue and expected holding costs, that is,

Z(S) = pλqS − hE[I(S)],

where E[I(S)] is the expected amount of products in inventory. Buzacott and Shantikumar[1]

showed that

E[I(S)] = S − λqS
µ− λqS

(
1−

(
λqS
µ

)S
)
,

from which follows that

Z(S) = pλqS − h

(
S − λqS

µ− λqS

(
1−

(
λqS
µ

)S
))

.

There exists a target inventory level S̄ such that qS = 1 (meaning that customers al-

ways join) and Z(S) ≤ Z(S̄) for S ≥ S̄. Hence, a profit-maximizing target inventory

level S∗ can be found by Algorithm 1.

4.3 Social Welfare Optimization

Also of interest is the maximization of the so-called social welfare. This quantity

considers the total utility the system grants to both the producer and the customers.
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Algorithm 1 Profit-maximizing target inventory level S∗

k ← 0

while qk ̸= 1 do

k ← k + 1

end while

S∗ ← argmax{Π(s) : 0 ≤ s ≤ k}

Since payment of the product price is nothing more than a transfer of wealth from

customer to producer, we disregard the price p for this analysis. Hence, the social

welfare takes into account the producer’s holding cost, the customers’ reward and

the customers’ waiting cost. We assume that a social optimizer is able to control the

target inventory level S and the customer joining (i.e. effective arrival) rate λ̄. The

expected social welfare T (λ̄, S) is then given by

T (λ̄, S) = λ̄R− hE[I(λ̄, S)]− cλ̄E[W (λ̄, S)]

= λ̄R− h

(
S − λ̄

µ− λ̄

(
1−

(
λ̄

µ

)S
))
− c

λ̄S+1

(µ− λ̄)µS
.

In order to find optimal (λ̄, S) a sequential approach can be carried out as follows.

First, find the optimal target inventory level S∗
λ̄
= argmaxS T (λ̄, S), which Veatch

and Wein[7] characterized as

S∗
λ̄ =

 ln
(

h
h+c

)
ln
(
λ̄
µ

)
 .

Second, use S∗
λ̄
to find the optimal customer joining rate λ̄∗ = argmaxλ̄ T (λ̄, S

∗
λ̄
).

The resulting pair (λ̄∗, S∗
λ̄
) maximizes the expected social welfare T (λ̄, S).
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5 Observable One-Product Model

5.1 Model Description

In this section we again analyze the one-product, make-to-stock queueing system

with strategic customers, now with an important alteration: we take the system to

be observable to the customers. That is, to an arriving customer both the amount

of customers waiting in the queue as well as the current amount of products in

inventory is known, in addition to the target inventory level S. We suppose that the

server acts on the customer’s behavior by setting either the target inventory level S

or the product price p.

This analysis will be an extension of Naor’s work[5], as described by Hassin and

Haviv[2], which dealt with a similar observable one-product queueing system with

strategic customers in which a make-to-order instead of make-to-stock approach is

taken.

Again we begin by solving the customer’s problem. It will prove useful to consider the

Markov chain our system gives rise to. In Figure 2 this chain is depicted. The states

−S, . . . ,−1 indicate an inventory level and the states 0, 1, . . . indicate an amount

of waiting customers. This description of the Markov chain is well-defined: since a

joining customer immediately receives a product from inventory, it cannot be the

case that both the queue and the inventory are non-empty.

−S −S + 1 . . . 0 1 . . .

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

Figure 2: Markov chain corresponding to the observable one-product model.

5.2 Customer’s Problem

By our observability assumption an arriving customer is aware of the current state

i ≥ −S of the system. This information dictates the decision to join or balk, in

contrast to the joining probability in the unobservable system considered in Section

4.

Remark that if an arriving customer finds the system to be in state −S ≤ i ≤ −1,
they join to receive a product out of inventory immediately, incurring no waiting

time, as we assumed that the reward R of receiving a product exceeds the product

price p.
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If, however, an arriving customer encounters state i ≥ 0, then their expected sojourn

time will be i+1
µ since they are served only after the i other customers in the system

are served and service times are distributed exponentially with parameter µ. Hence,

the expected utility of a customer joining the system being in state, i.e. having queue

length, i ≥ 0 is given by

U(i) = R− p− c(i+ 1)

µ
.

Recall that an arriving customer joins the system if U(i) ≥ 0 and balks if U(i) < 0.

This gives rise to an additional assumption: if R < c/µ then U(i) < R − c/µ < 0,

meaning no customer ever joins (given that there is no inventory present). Hence,

we assume that Rµ/c ≥ 1. By U(i) being obviously linear and decreasing in i, there

exists an i∗ such that U(i) ≥ 0 for i ≤ i∗, and U(i) < 0 for i > i∗. Solving U(i) = 0

yields that these inequalities hold if and only if i∗ = (R − p)µ/c − 1. As states are

described by integers, we may define the so-called joining threshold to be

n =

⌊
(R− p)µ

c

⌋
. (1)

Now the customers can be said to follow a threshold strategy : if the queue length is

n or higher, then U(i) < 0 and an arriving customer balks, but if the queue length

is less than n, then U(i) ≥ 0 and an arriving customer joins.

5.3 Producer’s Profit Optimization

Based on the customer’s decision strategy, which we found to be the threshold strat-

egy with joining threshold n, the producer accordingly sets either of his controllable

variables, namely the target inventory level S or the product price p. The objective

function is the expected producer’s profit (per unit time) Z(p, S) given by

Z(p, S) = pλ̄− hE[I], (2)

where λ̄ is the effective arrival rate and E[I] is the expected amount of products in

inventory.

To compute λ̄ we first note that the customers’ threshold strategy reduces the

Markov chain from Section 5.1 as follows. As we have seen, n is the maximum amount

of customers in the system: no arriving customer will join upon encountering this

amount of customers in the queue. Hence, the possible states for our Markov chain

become −S, . . . , n as illustrated in Figure 3. The corresponding balance equations

for this system are

λπj = µπj+1 where j = −S, . . . , n− 1.

Writing ρ = λ
µ , we find the stationary distribution π given by

πj =
ρj+S(1− ρ)

1− ρn+S+1
where j = −S, . . . , n.
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−S −S + 1 . . . 0 1 . . . n

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

Figure 3: Markov chain corresponding to the observable one-product model taking

into account joining threshold n.

Note that πn is the equilibrium probability of finding the maximum of n customers in

the system, that is, πn is the equilibrium balking probability. Consequently, 1 − πn

is the equilibrium joining probability, from which we conclude that the effective

joining rate equals

λ̄ = λ(1− πn) = λ
1− ρn+S

1− ρn+S+1
. (3)

We additionally note that the producer, seeking to maximize profit, sets the maxi-

mum price p which is still in accordance with n as described by (1). That is to say

that we set

p = p(n) = R− nc

µ
. (4)

Finally, since in state −j we have j products in inventory, we find that the expected

amount of products in inventory is equal to

E[I] =

S∑
j=1

jπ−j =
S(1− ρ)− ρ(1− ρS)

(1− ρ)(1− ρn+S+1)
. (5)

Substituting these expressions for λ̄, p and E[I] into (2), we find that in equilibrium

the server’s profit is

Z(n, S) = λ
1− ρn+S

1− ρn+S+1

(
R− nc

µ

)
− h

S(1− ρ)− ρ(1− ρS)

(1− ρ)(1− ρn+S+1)

=
1

1− ρn+S+1

(
λ(1− ρn+S)

(
R− nc

µ

)
− h

S(1− ρ)− ρ(1− ρS)

1− ρ

)
. (6)

5.3.1 Producer Controls Target Inventory Level

In this section we take the producer’s controllable variable to be the target inventory

level S. That is to say that the producer aims to maximize the profit by varying S.

In order to ease into the analysis we first suppose that there are no holding costs,

i.e. h = 0. Then the expected profit becomes

Z(S) = λ
1− ρn+S

1− ρn+S+1

(
R− nc

µ

)
.
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Since it then holds for all n ≥ 0 and S ≥ 0 that

Z(S + 1)− Z(S) =
λ(1− ρ)2ρn+S(R− nc

µ )

(1− ρn+S+1)(1− ρn+S+2)
> 0,

it follows that Z is increasing in S; the higher the target inventory level, the higher

the producer’s profit. Indeed, given that there are no holding costs the producer

profits from increasing inventory as this delays saturation of the system. This in

turn results in more customers joining per unit time, netting the producer higher

revenue hence higher profit.

Now we suppose that the holding costs are non-negative, so that Z(S) is given by

(6). In the absence of a rigorous proof for Z(S) having a unique maximum S∗, we

note that in practice there is an upper limit Smax for the feasible target inventory

levels. Indeed, realistically the producer does not have access to infinite storage

space. Hence, it suffices to find

S∗ = argmax{Z(S) : 0 ≤ S ≤ Smax},

which can be done in polynomial time.

5.3.2 Producer Controls Price

In this section we take the producer’s controllable variable to be the product price

p. Since the highest possible price p = p(n) given a joining threshold n can be found

by (4), we carry out our analysis in terms of n.

The expression for Z(n) as given by (6) can be rewritten as

Z(n) = A(n)

(
B(n)

ν − n

ν
−H

)
,

where we define the substitutions

A(n) =
1

1− ρn+S+1
,

B(n) = λR(1− ρn+S),

ν =
Rµ

c
,

H = h
S(1− ρ)− ρ(1− ρS)

1− ρ
.

We are interested in a joining threshold n∗ maximizing Z(n). Since Z(n) is a discrete

function, we require n∗ to satisfy the inequalitiesZ(n∗) > Z(n∗ − 1),

Z(n∗) ≥ Z(n∗ + 1).
(7)
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In order to simplify the written-out versions of these inequalities, we introduce for

· ∈ {A,B} the following notation:
· = ·(n∗),

·′ = ·(n∗ − 1),

·† = ·(n∗ + 1).

Now the inequalities in (7) becomeA(B(ν − n∗)−Hν) > A′(B′(ν − n∗ + 1)−Hν),

A(B(ν − n∗)−Hν) ≥ A†(B†(ν − n∗ − 1)−Hν).

Note that the term

A(n)B(n) =
λR(1− ρn+S)

1− ρn+S+1

is increasing in n, since the factor 1− ρn+S in the numerator decreases more slowly

than the factor 1−ρn+S+1 in the denominator. From this follows A′B′ < AB < A†B†.

Hence, the inequalities can be summarized as

A′B′ + (AB −A′B′)n∗

AB −A′B′ − (A−A′)H
< ν ≤ A†B† + (A†B† −AB)n∗

A†B† −AB − (A† −A)H
.

Rewriting further, we find the first inequality in (7) to be

ν > n∗ +
(A−A′)Hn∗ +A′B′

A(B −H)−A′(B′ −H)

and the second inequality in (7) to be

ν ≤ n∗ +
(A−A†)Hn∗ −A†B†

A(B −H)−A†(B† −H)

= n∗ +
(A† −A)Hn∗ +A†B†

A†(B† −H)−A(B −H)

= n∗ +
(A† −A)Hn∗ +A†(B† −H)−A(B −H) +AB + (A† −A)H

A†(B† −H)−A(B −H)

= n∗ +
(A† −A)H(n∗ + 1) +AB +A†(B† −H)−A(B −H)

A†(B† −H)−A(B −H)

= n∗ + 1 +
(A† −A)H(n∗ + 1) +AB

A†(B† −H)−A(B −H)
.

We conclude that (7) can be written as

f(n∗) < ν ≤ f(n∗ + 1) (8)

where f(n) is defined as

f(n) = n+
(A(n)−A(n− 1))Hn+A(n− 1)B(n− 1)

A(n)(B(n)−H)−A(n− 1)(B(n− 1)−H)
. (9)

We seek to show that (8) holds for a unique n∗ by evaluating the expression for f(n)

through the following three properties.
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• Note that B((−S + 1)− 1) = B(−S) = 0, so that

f(−S + 1) = (−S + 1)

(
1 +

(A(−S + 1)−A(−S))H
A(−S + 1)B(−S + 1)− (A(−S + 1)−A(−S))H

)
= (−S + 1)

(
1 +

ρH/(ρ2 − 1)

λR(1− ρ)/(1− ρ2)− ρH/(ρ2 − 1)

)

= (−S + 1)

1 +
H

λR(1− ρ)/ρ−H︸ ︷︷ ︸
<0


< −S + 1

≤ 1.

• f(n) is increasing for n > S + 1. Indeed, using the substitutions C = λR(1−
ρ)/ρ and x = ρn+S , we first note that

−(A(n)−A(n− 1))H =
(1− ρ)x

(1− x)(1− ρx)
H,

A(n− 1)B(n− 1) =
λR(1− x/ρ)

1− x
=

λR(1− ρx− x/ρ+ x2)

(1− x)(1− ρx)
,

A(n)B(n)−A(n− 1)B(n− 1) =
(1− ρ)x

(1− x)(1− ρx)
C.

Then (9) can be written as

f(n) = n+
(A(n)−A(n− 1)Hn+A(n− 1)B(n− 1)

A(n)B(n)−A(n− 1)(B(n− 1)− (A(n)−A(n− 1))H

= n+
−(1− ρ)xHn+ λR

(
1− ρx− x/ρ+ x2

)
(1− ρ)x(C +H)

= n+
−Hn

(C +H)
+

λR(x+ 1/x− ρ− 1/ρ)

(1− ρ)(C +H)

=
C

(C +H)
n+

λR

(C +H)(1− ρ)

(
ρn+S + ρ−(n+S) − ρ− 1/ρ

)
so that it is clear that

f(n+ 1)− f(n) =
C

C +H
+

λR

C +H

(
ρ−(n+S+1) − ρn+S

)
> 0

for n > S + 1.

• We assumed in Section 5.2 that ν = Rµ/c ≥ 1.

From these properties it follows by (8) that there exists a unique n∗ ≥ −S + 1

satisfying (7), being the necessary conditions for maximizing Z(n). If we find n∗ < 0,

we conclude that the parameters do not result in a system in which it makes sense

for the producer to do business. Otherwise, we find the unique profit-optimizing

joining threshold n∗ and corresponding profit-optimizing product price p∗ = p(n∗).
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5.4 Social Welfare Optimization

We now turn once again to the social welfare, which takes into account the producer’s

holding cost, the customers’ reward and the customer’s waiting cost. For this setting,

the social optimizer is able to control the target inventory level S as well as the

joining threshold n, which corresponds directly to the price p = p(n) through (4).

The objective function is the social welfare (per unit time) T (p, S) given by

T (p, S) = λ̄R− cE[L]− hE[I],

where λ̄ is the effective arrival rate and E[L] the expected amount of customers in

the system.

Plugging in the expression for λ̄ in (3), the expression for E[I] in (5) as well as the

expected amount of customers in the system

E[L] =

n∑
j=1

jqj =
ρS+1(1− (n+ 1)ρn + nρn+1)

(1− ρ)(1− ρn+S+1)
,

we find that in equilibrium the social welfare is

T (n, S) = λR
1− ρn+S

1− ρn+S+1
− c

ρS+1(1− (n+ 1)ρn + nρn+1)

(1− ρ)(1− ρn+S+1)
− h

S(1− ρ)− ρ(1− ρS)

(1− ρ)(1− ρn+S+1)

=
1

1− ρn+S+1

(
λR(1− ρn+S)− c

ρS+1(1− (n+ 1)ρn + nρn+1)

(1− ρ)

− h
S(1− ρ)− ρ(1− ρS)

(1− ρ)

)
. (10)

5.4.1 Producer Controls Target Inventory Level

Analogously to our analysis for the producer’s profit, we first consider the case in

which there are no holding costs, i.e. h = 0. Then the expected social welfare becomes

T (S) =
1

1− ρn+S+1

(
λR(1− ρn+S)− c

ρS+1(1− (n+ 1)ρn + nρn+1)

(1− ρ)

)
.

Obviously, T is increasing in S: given that there are no holding costs the welfare

increases with inventory as more inventory delays saturation of the system. This

in turns results in more customers joining per unit time, netting them higher total

reward at no holding cost to the producer.

Now we suppose that the holding costs are non-negative, so that T (S) is given

by (10). Again, we note that the practical upper limit Smax on the feasible target

inventory level allows us to find

S∗ = argmax{T (S) : 0 ≤ S ≤ Smax}

in polynomial time.
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5.4.2 Producer Controls Price

We now take the social planner’s controllable variable to be the product price p.

Again, we carry out the analysis in terms of n, using the expression for p = p(n) in

(4).

Similarly to the producer’s profit case, we rewrite the expression for T (n) in (10),

yielding

T (n) = A(n)(νB(n)− C(n)−H∗)

where we define the substitutions

A(n) =
1

1− ρn+S+1
,

B(n) = 1− ρn+S ,

C(n) = c
ρS+1(1− (n+ 1)ρn + nρn+1)

(1− ρ)
,

ν = λR,

H = h
S(1− ρ)− ρ(1− ρS)

1− ρ
.

We are interested in a joining threshold n∗ maximizing T (n), requiring accordance

with the inequalities T (n∗) > T (n∗ − 1)

T (n∗) ≥ T (n∗ + 1).
(11)

Again we simplify the written-out expressions by introducing for · ∈ {A,B,C} the
notation 

· = ·(n∗),

·′ = ·(n∗ − 1),

·† = ·(n∗ + 1).

Then the inequalities in (11) becomeA(νB − C −H) > A′(νB′ − C ′ −H),

A(νB − C −H) ≥ A†(νB† − C† −H).

Since A(n)B(n) is increasing in n as we similarly saw in Section 5.3.2 (in which

A(n)B(n) included the factor λR), we can summarize the inequalities as

A(C +H)−A′(C ′ +H)

AB −A′B′ < ν ≤ A†(C† +H)−A(C +H)

A†B† −AB
.

We conclude that (11) can be written as

f(n∗) < ν ≤ f(n∗ + 1) (12)
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where

f(n) =
A(n)(C(n) +H)−A(n− 1)(C(n− 1) +H)

A(n)B(n)−A(n− 1)B(n− 1)
. (13)

Again we consider three properties of f(n), from which will follow that (12) holds

for a unique n∗.

• Note that C(0) = 0 as well as C(−1) = 0, so that

f(0) =
[A(0)−A(−1)]H

A(0)B(0)−A(−1)B(−1)

=
[1/(1− ρS+1)− 1/(1− ρS)]H

(1− ρS)/(1− ρS+1)− (1− ρS−1)/(1− ρS)

= − Hρ

1− ρ

≤ 0.

• f(n) is increasing for n > 0. Indeed, we first note that the numerator in (13)

equals
C(n) +H

1− ρn+S+1
− C(n− 1) +H

1− ρn+S+1

and the denominator equals

(1− ρ)2ρn+S−1

(1− ρn+S)(1− ρn+S+1)
.

Then (13) can be written as

f(n) =
(C(n) +H)

(
1− ρn+S

)
− (C(n− 1) +H)

(
1− ρn+S+1

)
(1− ρ)2ρn+S−1

=
C(n)

(
1− ρn+S

)
− C(n− 1)

(
1− ρn+S+1

)
−Hρn+S(1− ρ)

(1− ρ)2ρn+S−1

=
cρn+S

(
n(1− ρ)− ρS+1(1− ρn)

)
−Hρn+S(1− ρ)

(1− ρ)2ρn+S−1

=
ρ

1− ρ

(
cn− cρS+1(1− ρn)

1− ρ
−H

)
so that it is clear that

f(n+ 1)− f(n) =
ρ

1− ρ

(
c− cρS+1

1− ρ
ρn(1− ρ)

)
=

ρ

1− ρ
c
(
1− ρn+S+1

)
> 0

for n > 0.

• We have ν = λR > 0.

It now follows by (12) that there exists a unique n∗ ≥ 0 satisfying (11), being the nec-

essary conditions for maximizing T (n). This is the unique social-welfare-optimizing

joining threshold n∗ from which the corresponding social-welfare-optimizing product

price p∗ = p(n∗) follows.
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5.5 Numerical Analysis

In this section we carry out a numerical analysis. We plot producer’s profit and

social welfare as functions of the joining threshold n and target inventory level S, as

well as the joining threshold and target inventory level maximizing these objectives

as a function of the other controllable variable. Additionally, we discuss the effect of

varying key system parameters.

Base case

For the base case, we suppose that the producer operates with a service rate of

µ = 100 and customers arrive at a rate of λ = 98. The producer incurs a holding

cost of h = 10 per unit time per item in inventory. Customers are rewarded R = 20

upon receipt of the product and pay a waiting cost of c = 5 per unit time spent

waiting. We also set S = 20 and n = 20 as defaults. See Figure 4 for plots of Z and

T under this setting.

Optimizing over n and S, we can compute the pair of joining threshold n∗ (yielding

price p∗ = p(n∗)) and target inventory level S∗ maximizing producer’s profit Z and

social welfare T , see Table 1.

n∗ S∗ p∗ Z(n∗, S∗) T (n∗, S∗)

optimizing Z(n, S) 12 9 19.4 1808.08 1849.39

optimizing T (n, S) 26 9 18.7 1781.11 1866.13

Table 1: Base-case optimal producer’s profit and social welfare.

(a) Z(n) and T (n). (b) Z(S) and T (S).

Figure 4: Base-case plots.
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Producer’s Profit as a Function of Joining Threshold

Consider the plots in Figure 5. For n = 0, the producer’s profit is positive for all

parameter choices. This can be explained by the presence of inventory (recall that

S = 20); even if no queue ever forms, customers still receive product from inventory,

resulting in revenue for the producer. As n increases (or, the price p decreases) the

producer’s profit increases up to the maximum we have proven to exist in Section

5.3.2 before decreasing again. This behavior illustrates the trade-off of decreasing

price: less income per product versus an increase in clientiele.

(a) Varying holding cost h. (b) Varying arrival rate λ.

(c) Varying reward R. (d) Varying waiting cost c.

Figure 5: Sensitivity analysis for the producer’s profit Z(n).
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Producer’s Profit as a Function of Target Inventory Level

Consider the plots in Figure 6. Though we have not proven it, the plots suggest that

for fixed parameters there is indeed a profit-maximizing target inventory level S∗.

The relevant trade-off of a higher target inventory level is more effectively meeting

customer demand versus higher total holding costs due to an increase in inventory.

(a) Varying holding cost h. (b) Varying arrival rate λ.

(c) Varying reward R. (d) Varying waiting cost c.

Figure 6: Sensitivity analysis for the producer’s profit Z(S).
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Profit-Optimizing Target Inventory Level

Consider the plots in Figure 7. As n increases, the profit-maximizing target in-

ventory level S∗ decreases. This is to be expected: given that customers are more

prepared to wait in a queue, the producer is able to hold less items in inventory,

paying less holding costs, while still meeting customer demand. Likewise, Subfigure

7a reveals that an increase in per-item holding cost decreases the profit-maximizing

target inventory level S∗, suggesting that the increase in holding costs diminishes

the benefit of maintaining inventory. Subfigure 7b shows that an increase in arrival

rate increases S∗, suggesting that higher inventory levels can be utilized as a buffer

against congestion.

(a) Varying holding cost h. (b) Varying arrival rate λ.

(c) Varying reward R. (d) Varying waiting cost c.

Figure 7: Sensitivity analysis for the profit-optimizing target inventory level S∗.
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Profit-Optimizing Joining Threshold

Consider the plots in Figure 8. As S increases, the profit-maximizing joining thresh-

old n∗ generally decreases. This is also to be expected: given that there are more

products in inventory, there need be less customers in the queue to meet cusomer

demand; the demand is partially satisfied by products in inventory. As per-item costs

increase, n∗ increases as well, as can be seen in Subfigure 8a, which can be explained

by an increase in queue length becoming more profitable than paying holding costs.

Subfigure 8d suggests that customers tolerate a significantly higher queue length (as

associated with an increase in n∗) as waiting cost decreases. For c = 1, n∗ even rises

again as S becomes large enough.

(a) Varying holding cost h. (b) Varying arrival rate λ.

(c) Varying reward R. (d) Varying waiting cost c.

Figure 8: Sensitivity analysis for the profit-optimizing joining threshold n∗.
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Social Welfare as a Function of Joining Threshold

Consider the plots in Figure 9. We recognize the presence of an optimal joining

threshold as found in Section 5.4.2. With increasing n, the producer’s revenue in-

creases (at no additional holding cost) but the customer’s waiting costs increase as

well, representing a trade-off for the social welfare.

(a) Varying holding cost h. (b) Varying arrival rate λ.

(c) Varying reward R. (d) Varying waiting cost c.

Figure 9: Sensitivity analysis for the social welfare T (n).

26



Social Welfare as a Function of Target Inventory Level

Consider the plots in Figure 10. We deduce the existence of a social-welfare-maximizing

target inventory level S∗, though we did not prove its existence. As S increases,

customer’s waiting costs decrease (due to the availability of inventory), but the pro-

ducer’s holding costs increase.

(a) Varying holding cost h. (b) Varying arrival rate λ.

(c) Varying reward R. (d) Varying waiting cost c.

Figure 10: Sensitivity analysis for the social welfare T (S).
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Social-Welfare-Optimizing Target Inventory Level

Consider the plots in Figure 11. As n increases from 0, the social-welfare-maximizing

target inventory level S∗ decreases at first, but at some point (as the maximum

queue length, indicated by n, becomes too large) it becomes socially optimal to

increase customer’s benefit by increasing target inventory level at the expense of

the producer’s benefit through increased holding costs.

(a) Varying holding cost h. (b) Varying arrival rate λ.

(c) Varying reward R. (d) Varying waiting cost c.

Figure 11: Sensitivity analysis for the social-welfare-optimizing target inventory level

S∗.

28



Social-Welfare-Optimizing Joining Threshold

Consider the plots in Figure 12. Note that the social-welfare-optimizing joining

thresholds n∗ are significantly higher than in the profit optimization case (see Figure

8).

(a) Varying holding cost h. (b) Varying arrival rate λ.

(c) Varying reward R. (d) Varying waiting cost c.

Figure 12: Sensitivity analysis for the social-welfare-optimizing joining threshold n∗.
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6 Description of the Two-Product Model

Our second model extends the previously discussed one-product model. We again

consider a make-to-stock queueing system with strategic customers, now with two

products instead of one. Specifically, we distinguish type-1 and type-2 products and

system parameters corresponding to each type of product.

In this model, type-t customers arrive according to a Poisson process with rate

λt > 0. The singular server handles production at the service facility with production

rate µ > 0 and FCFS order regardless of product type. We assume that λ1 + λ2 < µ,

that is, ρ = λ1+λ2
µ < 1.

For each type t, the producer sets an initially fixed target inventory level of St

products. When the inventory level of type t falls short of St, the producer adds

one type-t replenishment job to the production queue. Hence, the producer sustains

production (at rate µ) for so long as the target inventory levels S1, S2 are not both

met for their respective inventories. Each type-t product in inventory incurs a holding

cost of ht to be payed by the server. Additionally, the server charges to each joining

type-t customer a price of pt.

If a type-t customer decides to join, they receive reward Rt > pt upon service

completion (receipt of a type-t product). As in the one-product case, the presence

of on-hand inventory results in immediate receipt of the product, departure, and

addition of a replenishment job for the corresponding product type. If a type-t

customer joining the system ends up in the queue due to there being no inventory,

they pay a waiting cost of ct per in-queue unit time and a type-t replenishment job

is added.

Again we make a distinction between an unobservable and an observable system,

and assume that the target inventory levels St are always known to customers.
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7 Unobservable Two-Product Model

Kanavetas and Kosarevskaia[3] previously analyzed the case in which the two-

product queueing system is unobservable to customers, meaning neither the amount

of customers waiting nor the amount of products in inventory is known. The target

inventory levels St are known. This section will briefly go over this work. As in the

one-product case we begin by solving the customer’s problem before considering the

producer’s decisions based on customers’ behavior.

7.1 Customer’s Problem

The joining behavior of a type-t customer can be described by joining probability

qt ∈ [0, 1]. If we suppose that all customers adhere to strategy (q1, q2), then it follows

by the unobservability of the system that an arriving type-t customer’s decision to

join or balk is informed by the expected utility Ut(q1, q2) gained from joining. The

expected waiting time for a type-t customer E[Wt(λ̄1, λ̄2, S1, S2)] for given effective

arrival rates λ̄1, λ̄2 and target inventory levels S1, S2 has been shown to be

E[Wt(λ̄1, λ̄2, S1, S2)] =
λ̄Si
i

(µ− λ̄j)Si(µ− λ̄1 − λ̄2)
where j ̸= t. (14)

Hence, the expected utility function becomes

Ut(q1, q2) = Rt − pt − ctE[Wt(λ1q1, λ2q2, S1, S2)].

Two important properties for this function are its continuity over [0, 1]2 and it being

strictly decreasing in both q1 and q2.

Equilibrium customer behavior is described by the so-called Nash equilibrium, which

is here defined as a pair (q∗1, q
∗
2) whose components are each other’s best response,

meaning that it satisfiesq∗1 = argmaxp∈[0,1] p · U1(q
∗
1, q

∗
2),

q∗2 = argmaxp∈[0,1] p · U2(q
∗
1, q

∗
2).

This is well-defined as (q∗1, q
∗
2) is the unique fixed point of the mapping

(arg max
p∈[0,1]

p · U1(·, q∗2), arg max
p∈[0,1]

p · U1(q
∗
1, ·)).

We distinguish three cases.

• Suppose S1 = S2 = 0 and additionally c1/(R1 − p1) = c2/(R2 − p2) as well as

c1/(R1− p1) < µ < c1/(R1− p1)+λ1+λ2. Then there is a continuum of Nash

equilibria (q∗1, q
∗
2) satisfying q∗1λ1 + q∗2λ2 = µ− c1/(R1 − p1).

• Suppose S1 = S2 = 0 and the additional requirements in the previous case do

not hold. Then there exists a unique Nash equilibrium (q∗1, q
∗
2), determinable

by Table 2 in [3].

• If S1 > 0 or S1 > 0, there exists a unique Nash equilibrium (q∗1, q
∗
2).
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7.2 Producer’s Profit Optimization

The producer’s profit is equal to

Π(S1, S2) = p1λ1q
S1,S2
1 + p2λ2q

S1,S2
2 − h1E[I1(S1, S2)]− h2E[I2(S1, S2)]

with qS1,S2
t denoting the joining probability for a type-t customer. It has been shown

that

E[It(S1, S2)] = St −
λtq

S1,S2
t

µ− λ2q
S1,S2
2 − λ2q

S1,S2
2

1−

(
λtq

S1,S2
t

µ− λjq
S1,S2
j

)St
 , j ̸= t.

Furthermore, there exist natural bounds S̄1, S̄2 on the producer’s inventory deci-

sions. Targeting even higher target inventory levels does not improve profit. Hence,

the optimal profit-maximizing target inventory level pair (S∗
1 , S

∗
2) can be found as

follows.

1. Calculate upper bounds S̄1, S̄2.

2. For each pair (s1, s2) within these bounds.

(a) Determine the Nash equilibrium joining probabilities (qs1,s21 , qs1,s22 ).

(b) Evaluate Π(s1, s2).

3. Choose the pair yielding the highest profit.

7.3 Social Welfare Optimization

In this section we assume a social planner is able to modify the effective arrival rates

λ̄1, λ̄2 as well as the target inventory levels S1, S2. The corresponding social welfare

function is

T (λ̄1, λ̄2, S1, S2) = λ̄1R1 + λ̄2R2 − C(λ̄1, λ̄2, S1, S2).

where λ̄tRt represents the total reward received by type-t customers and C(λ̄1, λ̄2, S1, S2)

captures the costs incurred by the producer (i.e. holding costs) as well as customers

(i.e. waiting costs):

C(λ̄1, λ̄2, S1, S2) =

2∑
t=1

(htE[It(λ̄1, λ̄2)] + ctλ̄tE[Wt(λ̄1, λ̄2)]),

where

E[It(λ̄1, λ̄2)] = St −
λ̄t

µ− λ̄1 − λ̄2

(
1−

(
λ̄t

µ− λ̄j

)St
)
, j ̸= t

and E[Wt(λ̄1, λ̄2)]) is as in (14).

For fixed λ̄1, λ̄2, optimal target inventory levels (S∗
1 , S

∗
2) have been found explicitly,

namely

S∗
t =

⌈
log (ht/(ht + ct))

log
(
λ̄t/(µ− λ̄j)

)⌉− 1, where j ̸= t.
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The social-welfare-optimizing 4-tuple (λ̄∗
1, λ̄

∗
2, S

∗
1 , S

∗
2) can be found as follows.

1. Establish upper bounds S̄1, S̄2 using

St <

⌈
log (ht/(ht + ct))

log
(
λ̄t/µ

) ⌉
.

2. For each possible inventory pair (s1, s2) within these bounds:

(a) Find the subdomain

D = {(λ̄1, λ̄2) : 0 ≤ λ̄t ≤ λt, λ̄1 + λ̄2 < µ}

for which holds (S∗
1 , S

∗
2) = (s1, s2).

(b) Within this subdomain, optimize effective arrival rates (λ̄1, λ̄2).

(c) Compute the resulting social welfare.

3. Choose the (λ̄∗
1, λ̄

∗
2, S

∗
1 , S

∗
2) optimizing the social welfare.
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8 Observable Two-Product Model

We now alter the two-product model by assuming that the system is observable to

the customers. Analogously to the one-product case, this means that to an arriving

customer the amount and types of customers waiting in the queue as well as the

current amount and types of products in inventory are known, in addition to the

target inventory levels S1, S2.

8.1 Customer’s Problem

Since a customer’s utility gained from joining is, as before, linearly dependent on

the amount of customers in the queue, we conclude that the customers once again

adopt a threshold strategy with joining thresholds (n1, n2).

Suppose a customer of type t arrives and encounters a non-empty queue. Naively,

the average sojourn time would equal i1+i2+1
µ where it is the amount of waiting

type-t customers. However, we must note that such a customer only waits for the

departure of customers in the queue of the same type, bypassing the customers of the

other type. On the other hand, the arrival of these other-type customers certainly

influenced the production queue, leading to a longer waiting time for our customer.

For example, suppose that due to a surge in arriving customers both inventory types

are empty, and that the producer is working on the production of a type-1 product.

If a customer of type 2 arrives, they certainly have to wait on the production of this

type-1 product. In fact, an arriving type-t customer’s expected waiting time is mt
µ ,

where mt is their place in the production queue.

This complicates our analysis greatly as it is no longer immediately clear how to

define states such that the Markov property holds. Indeed, for any description of

the system state involving a distinction between the product types, transitions are

dependent on the production queue, which is in turn dependent on the history of

arriving customers. For example, the waiting time of an arriving customer depends

on their place in the production queue.

8.1.1 States

We define a state space in which each state consists of the full current production

queue as a vector with elements in {1, 2}. For example, (1, 2, 2) denotes a production

queue in which the producer is currently producing a type-1 product before the

production of 2 type-2 products. Note that transitions between states correspond

directly to the arrival of customers and the fulfillment of production, and that the

length of the state vectors is bounded by n1 + n2 + S1 + S2.
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More precisely, for state v we have

(v1, v2, . . . , vn)→


(v1, v2 . . . , vn, 1) with rate λ1, if n < n1,

(v1, v2 . . . , vn, 2) with rate λ2, if n < n2,

(v2, . . . , vn) with rate µ.

Moreover, since no type-t customer joins if there are nt customers of the same type

in the queue, and there can be at most St replenishment jobs for type t, the length

of any state is bounded by n1 + n2 + S1 + S2.

Note that this chain is irreducible and positive recurrent (since ρ < 1), so a stationary

distribution π exists and is unique.

8.1.2 Customer’s Strategy

Let v = (v1, . . . , vn) be a state. Then the place in the production queue for an

arriving type-t customer, i.e. mt(v), can be found by Algorithm 2.

Algorithm 2 Place in the production queue mt(v).

Require: v = (v1, . . . , vn), t, S1, S2

m← n+ 1

s← 0

while s < St do

m← m− 1

if vm = t then

s← s+ 1

end if

end while

mt(v)← m

Indeed, mt(v) equals the position of the St-th to last type-t order in the production

queue. For example, consider the situation in which S1 = 2, S2 = 3 and an arriving

customer encounters production queue

v = (1, 2, 1, 1, 2, 2, 1, 2, 2),

then m1(v) = 4 and m2(v) = 6.

It follows that both m1(·) and m2(·) induce a total order on the set of possible pro-

duction queues. As the expected waiting time for a type-t customer having position

mt(v) given production queue v is equal to

E[Wt(mt(v))] =
mt(v)

µ
,
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it follows that we also find that the expected utility for a joining type-t customer

encountering queue v, being given by

Ut(v) = R− p− cE[Wt(mt(v))]

= R− p− cmt(v)

µ

induces a total ordering ≤U on the set of possible production queues. From this, we

can find threshold policy (n1, n2): for type-t customers there exists a v∗t such that

Ut(v) ≥ 0 for v ≤U v∗t , meaning that the customer joins, and U(i) < 0 for v >U v∗t ,

meaning that the customer balks.

8.2 Complications Regarding Producer’s Profit and Social Welfare

Our description of states, necessitated by the complex relation between queue de-

scription and waiting time, complicates the analysis, and indeed, optimization, of

the producer’s profit and social welfare. In Section 5 we expressed these quantities

in terms of effective arrival rate, expected amount of products in inventory and ex-

pected amount of customers in the system. The calculation of each of these metrics

involved the stationary distribution of the system. However, in the observable two-

product model we are now considering, such stationary distribution is difficult to

find by the exponentially large state space.
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9 Discussion

9.1 Results

Apart from the reviews of the previous work on the unobservable one-product and

two-product models, we have found the following results.

• For the observable one-product make-to-stock queueing system with strategic

customers:

– the producer’s profit increases indefinitely with the target inventory level

S given that there are no holding costs. If holding costs are non-zero, then

we can exploit the fact that in practice an upper bound for feasible target

inventory levels exists and calculate profit-maximizing S∗ in polynomial

time;

– there exists profit-maximizing joining threshold n∗, corresponding to profit-

maximizing price p∗;

– the social welfare increases indefinitely with the target inventory level

S given that there are no holding costs. If holding costs are non-zero,

then we can exploit the fact that in practice an upper bound for feasible

target inventory levels exists and calculate social-welfare-maximizing S∗

in polynomial time;

– there exists social-welfare-maximizing joining threshold n∗, corresponding

to social-welfare-maximizing price p∗;

– we found that our numerical analysis reflected the expected behavior of

the system.

• For the observable two-product make-to-stock queueing system with strategic

customers, we described the subtleties of the customer’s problem and touched

upon the complexity of analyzing the producer’s profit and social welfare.

9.2 Future Work

The following directions for future work on make-to-stock queueing systems with

strategic customers are suggested.

• Study the optimization of the producer’s profit and social welfare for the ob-

servable two-product make-to-stock queueing system.

• Extend the analysis of unobservable or observable make-to-stock queueing sys-

tems to settings in which there are n > 2 types of product.

• Repeat the analysis of the one-product or two-product queueing systems with

partial observability, e.g. only the amount of customers or only the current

inventory level is known to arriving customers.
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A Python code (calc.py)

import numpy as np

import matp lo t l i b . pyplot as p l t

p l t . rcParams [ ’ f i g u r e . f i g s i z e ’ ] = [ 3 , 3 . 1 ]

p l t . rcParams [ ’ s a v e f i g . bbox ’ ] = ’ t i g h t ’

# product p r i c e

def p(n ) :

return R−n∗c/mu

# producer ’ s p r o f i t

def Z(n , S ) :

rho = labda /mu

A = 1/(1− rho ∗∗(n+S+1))

B = labda ∗R∗(1− rho ∗∗(n+S ) )

nu = R∗mu/c

H = h∗(S∗(1− rho)−rho∗(1− rho ∗∗S))/(1 − rho )

return A∗(B∗(nu−n)/nu−H)

# so c i a l we l f a r e

def T(n , S ) :

rho = labda /mu

A = 1/(1− rho ∗∗(n+S+1))

B = 1−rho ∗∗(n+S)

nu = labda ∗R

C = c∗ rho ∗∗(S+1)∗(1−(n+1)∗ rho ∗∗n+n∗ rho ∗∗(n+1))/(1− rho )

H = h∗(S∗(1− rho)−rho∗(1− rho ∗∗S))/(1 − rho )

return A∗(nu∗B−C−H)

# f−opt imal (n∗ ,S∗) f o r n in n va l s and S in s v a l s

def f i n d o p t n S ( f , n va l s , S v a l s ) :

l en n = len ( n v a l s )

l en S = len ( S v a l s )

f v a l s = np . z e ro s ( ( len n , l en S ) )

for i in range ( l en n ) :

for j in range ( l en S ) :

f v a l s [ i ] [ j ] = f ( n v a l s [ i ] , S v a l s [ j ] )

max n ind , max S ind = np . unrave l index ( f v a l s . argmax ( ) , f v a l s . shape )

max n = n v a l s [ max n ind ]

max S = S v a l s [ max S ind ]

max p = p( max n )

max Z = Z(max n , max S )

max T = T(max n , max S )

return (max n , max S , max p , max Z , max T)

# f−opt imal n∗ g iven S

def f i n d o p t n ( f , S ) :

n = 0

while True :

i f p(n) < 0 : raise Exception ( ” Pr i ce  negat ive ” )

f 0 = f (n , S)
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f 1 = f (n+1,S)

i f f 0 > f 1 : # only check f (n+1)< f (n) s ince opt . n∗ i s unique

return (round( f0 , 2 ) , n , round(p(n ) , 2 ) )

n = n+1

return (round( f0 , 2 ) , n , round(p(n ) , 2 ) )

# f−opt imal S∗ g iven n

def f i n d o p t S (S max , f , n ) :

i f p(n) < 0 : raise Exception ( ” Pr i ce  negat ive ” )

S v a l s = range ( S max + 1)

S opt = np . argmax ( [ f (n , S) for S in S v a l s ] )

f 0 = f (n , S opt )

return (round( f0 , 2 ) , S opt )

def pl t Zn ( n va l s , s en s va r = None , s e n s v a l s = [ None ] ) :

p l t . f i g u r e ( )

p l t . x l a b e l ( ’ $\ i t {n}$ ’ )

p l t . y l a b e l ( ’ $\ i t {Z(n)} $ ’ )

s e n s v a r i n i t = globals ( ) [ s en s va r ]

for va l in s e n s v a l s :

globals ( ) [ s en s va r ] = va l

p l t . p l o t ( n va l s , [ Z(n , S) for n in n v a l s ] ,

l a b e l = str ( s en s va r ) + ”  = ” + str ( va l ) )

globals ( ) [ s en s va r ] = s e n s v a r i n i t

p l t . l egend ( )

p l t . s a v e f i g ( ”img/” + ”Zn ” + str ( s en s va r ) + ” . png” )

def pl t ZS ( S va l s , s en s va r = None , s e n s v a l s = None ) :

p l t . f i g u r e ( )

p l t . x l a b e l ( ’ $\ i t {S}$ ’ )

p l t . y l a b e l ( ’ $\ i t {Z(S)} $ ’ )

s e n s v a r i n i t = globals ( ) [ s en s va r ]

for va l in s e n s v a l s :

globals ( ) [ s en s va r ] = va l

p l t . p l o t ( S va l s , [ Z(n , S) for S in S v a l s ] ,

l a b e l = str ( s en s va r ) + ”  = ” + str ( va l ) )

globals ( ) [ s en s va r ] = s e n s v a r i n i t

p l t . l egend ( )

p l t . s a v e f i g ( ”img/” + ”ZS ” + str ( s en s va r ) + ” . png” )

def plt ZoptS ( n va l s , s en s va r = None , s e n s v a l s = None ) :

p l t . f i g u r e ( )

p l t . x l a b e l ( ’ $\ i t {n}$ ’ )

p l t . y l a b e l ( ’ opt imal  $\ i t {S}$ ’ )

s e n s v a r i n i t = globals ( ) [ s en s va r ]

for va l in s e n s v a l s :

globals ( ) [ s en s va r ] = va l

p l t . p l o t ( n va l s , [ f i n d o p t S (S max , Z , n ) [ 1 ] for n in n v a l s ] ,

l a b e l = str ( s en s va r ) + ”  = ” + str ( va l ) )

globals ( ) [ s en s va r ] = s e n s v a r i n i t

p l t . l egend ( )

p l t . s a v e f i g ( ”img/” + ” ZoptS ” + str ( s en s va r ) + ” . png” )
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def plt Zoptn ( S va l s , s en s va r = None , s e n s v a l s = None ) :

p l t . f i g u r e ( )

p l t . x l a b e l ( ’ $\ i t {S}$ ’ )

p l t . y l a b e l ( ’ opt imal  $\ i t {n}$ ’ )

s e n s v a r i n i t = globals ( ) [ s en s va r ]

for va l in s e n s v a l s :

globals ( ) [ s en s va r ] = va l

p l t . p l o t ( S va l s , [ f i n d o p t n (Z , S ) [ 1 ] for S in S v a l s ] ,

l a b e l = str ( s en s va r ) + ”  = ” + str ( va l ) )

globals ( ) [ s en s va r ] = s e n s v a r i n i t

p l t . l egend ( )

p l t . s a v e f i g ( ”img/” + ” Zoptn ” + str ( s en s va r ) + ” . png” )

def plt Tn ( n va l s , s en s va r = None , s e n s v a l s = None ) :

p l t . f i g u r e ( )

p l t . x l a b e l ( ’ $\ i t {n}$ ’ )

p l t . y l a b e l ( ’ $\ i t {T(n)} $ ’ )

s e n s v a r i n i t = globals ( ) [ s en s va r ]

for va l in s e n s v a l s :

globals ( ) [ s en s va r ] = va l

p l t . p l o t ( n va l s , [T(n , S) for n in n v a l s ] ,

l a b e l = str ( s en s va r ) + ”  = ” + str ( va l ) )

globals ( ) [ s en s va r ] = s e n s v a r i n i t

p l t . l egend ( )

p l t . s a v e f i g ( ”img/” + ”Tn ” + str ( s en s va r ) + ” . png” )

def plt TS ( S va l s , s en s va r = None , s e n s v a l s = None ) :

p l t . f i g u r e ( )

p l t . x l a b e l ( ’ $\ i t {S}$ ’ )

p l t . y l a b e l ( ’ $\ i t {T(S)} $ ’ )

s e n s v a r i n i t = globals ( ) [ s en s va r ]

for va l in s e n s v a l s :

globals ( ) [ s en s va r ] = va l

p l t . p l o t ( S va l s , [T(n , S) for S in S v a l s ] ,

l a b e l = str ( s en s va r ) + ”  = ” + str ( va l ) )

globals ( ) [ s en s va r ] = s e n s v a r i n i t

p l t . l egend ( )

p l t . s a v e f i g ( ”img/” + ”TS ” + str ( s en s va r ) + ” . png” )

def plt ToptS ( n va l s , s en s va r = None , s e n s v a l s = None ) :

p l t . f i g u r e ( )

p l t . x l a b e l ( ’ $\ i t {n}$ ’ )

p l t . y l a b e l ( ’ opt imal  $\ i t {S}$ ’ )

s e n s v a r i n i t = globals ( ) [ s en s va r ]

for va l in s e n s v a l s :

globals ( ) [ s en s va r ] = va l

p l t . p l o t ( n va l s , [ f i n d o p t S (S max ,T, n ) [ 1 ] for n in n v a l s ] ,

l a b e l = str ( s en s va r ) + ”  = ” + str ( va l ) )

globals ( ) [ s en s va r ] = s e n s v a r i n i t

p l t . l egend ( )

p l t . s a v e f i g ( ”img/” + ”ToptS ” + str ( s en s va r ) + ” . png” )
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def plt Toptn ( S va l s , s en s va r = None , s e n s v a l s = None ) :

p l t . f i g u r e ( )

p l t . x l a b e l ( ’ $\ i t {S}$ ’ )

p l t . y l a b e l ( ’ opt imal  $\ i t {n}$ ’ )

s e n s v a r i n i t = globals ( ) [ s en s va r ]

for va l in s e n s v a l s :

globals ( ) [ s en s va r ] = va l

p l t . p l o t ( S va l s , [ f i n d o p t n (T, S ) [ 1 ] for S in S v a l s ] ,

l a b e l = str ( s en s va r ) + ”  = ” + str ( va l ) )

globals ( ) [ s en s va r ] = s e n s v a r i n i t

p l t . l egend ( )

p l t . s a v e f i g ( ”img/” + ”Toptn ” + str ( s en s va r ) + ” . png” )

S max = 1000

h = 10

labda = 98

mu = 100

R = 20

c = 5

S = 20

n = 20

n v a l s = range (40)

S v a l s = range (40)

print ( f i n d o p t n S (Z , n va l s , S v a l s ) )

print ( f i n d o p t n S (T, n va l s , S v a l s ) )

p l t . f i g u r e ( f i g s i z e = [3 , 4 ] )

p l t . x l a b e l ( ’ $\ i t {n}$ ’ )

p l t . p l o t ( n va l s , [ Z(n , S) for n in n v a l s ] , l a b e l = ’ $\ i t {Z(n)} $ ’ )

p l t . p l o t ( n va l s , [T(n , S) for n in n v a l s ] , l a b e l = ’ $\ i t {T(n)} $ ’ )

p l t . l egend ( l o c=’ lower  l e f t ’ )

p l t . s a v e f i g ( ”img/” + ” base n ” + ” . png” )

p l t . f i g u r e ( f i g s i z e = [3 , 4 ] )

p l t . x l a b e l ( ’ $\ i t {S}$ ’ )

p l t . p l o t ( S va l s , [ Z(n , S) for S in S v a l s ] , l a b e l = ’ $\ i t {Z(S)} $ ’ )

p l t . p l o t ( S va l s , [T(n , S) for S in S v a l s ] , l a b e l = ’ $\ i t {T(S)} $ ’ )

p l t . l egend ( l o c=’ lower  l e f t ’ )

p l t . s a v e f i g ( ”img/” + ” base S ” + ” . png” )

for v a r v a l s in [

[ ’ h ’ , [ 5 , 1 0 , 1 5 ] ] ,

[ ’ labda ’ , [ 9 6 , 9 8 , 9 9 . 9 9 ] ] ,

[ ’R ’ , [ 1 6 , 2 0 , 2 4 ] ] ,

[ ’ c ’ , [ 1 , 5 , 9 ] ] ,

] :

s en s va r = v a r v a l s [ 0 ]

s e n s v a l s = v a r v a l s [ 1 ]
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pl t Zn ( n va l s , s ens var , s e n s v a l s )

p l t ZS ( S va l s , s ens var , s e n s v a l s )

p l t ZoptS ( n va l s , s ens var , s e n s v a l s )

p l t Zoptn ( S va l s , s ens var , s e n s v a l s )

plt Tn ( n va l s , s ens var , s e n s v a l s )

plt TS ( S va l s , s ens var , s e n s v a l s )

plt ToptS ( n va l s , s ens var , s e n s v a l s )

plt Toptn ( S va l s , s ens var , s e n s v a l s )
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