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Abstract

In this thesis we consider make-to-stock queueing systems with strategic customers,
describing customer’s optimal behavior and seeking optimal decision variables with
respect to producer’s profit as well as overall social welfare of producer and cus-
tomers. These decision variables are the product price and the target inventory
level. We make distinctions between one-product and two-product systems, as well
as unobservable and observable systems. A system being unobservable or observable
represents the level of information granted to arriving customers, which influences
their behavior and thus the corresponding decisions of the producer or social plan-
ner. Additionally, we present a numerical analysis for the observable one-product
system in which results relating to (the optimization of) producer’s profit and social
welfare are visualized, as well as their sensitivities to the modification of key system

parameters.
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1 Introduction

The mathematical theory of queueing systems knows many applications. Queueing
theory’s ability to simulate a broad scope of systems in which there exists some
continuous demand for a finite resource has proven useful in multiple areas such
as computing, manufacturing and commerce. One practical use-case for queueing
theory is the simulation of a system in which fulfillment of demand incurs some
reward while waiting for fulfillment carries a penalty. Such characterics can be found,
for example, in a system consisting of a facility which serves incoming customers,
like a food vendor. When customers receive service (or analogously, a product) they
receive a reward, while they pay some price for joining the system and spending
time waiting in the queue.

One might assume that the customers in this situation have some agency over their
participation in the system, deciding whether or not to join the system based on their
perceived benefit. This invariably involves a trade-off between reward and costs. The
customer’s decision has to be based on information about the state of the system,
for which several levels of observability may be assumed.

To encourage customers to join the system, a producer may choose to maintain
product inventory. To that end, the producer continuously sustains production until
a fixed target inventory level is reached. A practical consideration is the presence of
so-called holding costs associated with the storage of inventory.

Several metrics to evaluate performance of such a system can be considered, for
example the producer’s profit as well as the social welfare which takes into account
the net benefit of both the producer as well as the customers. In order to maximize
the desired objective, key system variables like the price and target inventory level
can be adjusted. This results in an optimization problem which involves a trade-
off between producer’s revenue, producer’s holding costs, customer’s reward and
customer’s waiting and product costs.

In this thesis, we evaluate unobservable and observable make-to-stock queueing sys-
tems with strategic customers, for the one-product as well as the two-product case.
For these systems we seek to answer the following question.

Which (joining) strategy is optimal for individual customers arriving in our un-
observable/observable one-product/two-product make-to-stock queueing system and
how can the decision variables be chosen such that the producer’s profit/social wel-
fare is optimal?

Section [2| presents an overview of prerequisite theory regarding queueing systems,
make-to-stock systems and strategic customers. In Section |3| the one-product model
will be introduced. A previous analysis for the unobservable case of this model
will be reviewed in Section [4l Section [f] covers an analysis of the observable one-

product model. We will discuss the extension of the one-product model to the two-



product model in Section [6} Section [7] then offers a review of work done on the
unobservable two-product model, while Section |§] briefly goes over key insights for
the observable two-product model. We conclude with a discussion about the results
and potential future work in Section 0] Appendix [A] contains the Python code used
for the numerical analysis.



2 Preliminary Theory

The queueing systems analyzed in this thesis build upon the standard M/M/1 queue
and additionally assume strategic customers as well as a make-to-stock production
approach. This section provides a brief overview of the prerequisite theory.

2.1 Queueing Systems and the M/M/1 Queue

We initially consider a setting in which one server, or producer, produces one type of
resource, or product, for which there exists some demand. According to this demand
customers arrive at a service facility in order to receive one unit of product. To meet
demand, the server persists production as long as at least one customer is present in
the system. Since the production of one product takes a non-zero amount of time, a
queue of waiting customers is able to form, leading to a so-called queueing system.

The following assumptions on the queueing system will form the basis of our analysis:

e Customers arrive according to a Poisson process with parameter A > 0, mean-
ing that the periods of time between consecutive customer arrivals, or inter-
arrival times, are mutually independent exponential stochastic variables with
parameter \. From this follows that the mean inter-arrival time equals A\~ ';

e The production time of one product is an exponential stochastic variable with
parameter p > 0, from which follows that the mean production time equals

ot

e We have A < u, meaning that (on average) customer arrivals are less frequent
than production completions;

e Production is handled by one singular server on a first-come, first-served
(FCFS) basis; upon production completion the first customer in the queue
receives the product and leaves the system immediately.

These assumptions together give rise to a M/M/1 queue in Kendall’s notation.[4]
Associated to this M/M/1 queue is a stochastic process known as a birth-and-death
process. If we denote the possible states of the system by the amount of waiting
customers, that is, the states are denoted i for ¢ > 0, then the system transitions
from state 7 to ¢ + 1 with rate A (corresponding to the arrival of a new customer)
and from state ¢ # 0 to i — 1 with rate u (corresponding to a production completion
and the departure of the customer receiving the completed product). Since in each
state the transition probabilities are independent from the states the system was
previously in, the process is a Markov chain as illustrated by Figure By the
assumption A < p, the system tends (as time increases) to a unique stationary
distribution w over the possible states ¢ > 0; if for all states 4, the probability of
the system being in state 7 is described by 7;, then this probability does not change
over time, meaning that the distribution 7r is stationary. It describes the situation



Figure 1: Markov chain corresponding to the M/M/1 queue.

in which the system is in equilibrium: for obtaining 7, we use the local balance
equations

Am; = pmiqq for @ > 0.

Writing p = A/u, the balance equations yield the stationary distribution probabilities
m = (1—p)p’ for i > 0.

2.2 Make-to-Stock

In the M/M/1 queue, the server follows a make-to-order approach: initiation (or con-
tinuation) of production is dependent on the arrival of a customer, which represents
an order. No production occurs when no customers are present in the queue.

In the following, however, the server follows a make-to-stock approach. In this setting
a target inventory level S is set by the server beforehand. Production halts when in-
ventory level reaches the target level S. In general this approach obviously decreases
the average waiting time: if a customer joins the system and finds a product present
in inventory, they take it and leave immediately.

2.3 Strategic Customers

We assumed that arriving customers always join the system. In general, this need
not be the case. A more realistic analysis takes into account the ability of arriving
customers to decide whether or not to join the system, leading to a distinction
between arrival rate and effective arrival rate (the rate at which customers actually
join the system). If the utility an arriving customer gains from joining the queue
is indicated by U, then they join the system if U > 0 and balk (leave) if U < 0.
We arbitrarily assume that in the case that U = 0, an arriving customer joins the

system.

A customer’s utility evaluation is based on the information level they are granted.
We distinguish two cases:

1. The system is unobservable, meaning that an arriving customer has no knowl-
edge about the state of the system. That is, neither the amount of customers



waiting in the queue nor the amount of products in inventory are known. In

this case, customers calculate their expected utility.

. The system is observable, meaning that an arriving customer has full knowledge
about the state of the system. That is, to an arriving customer the amount of
customers waiting in the queue as well as the amount of products in inventory
are known. In this case, customers are able to calculate their utility based on

this information.



3 Description of the One-Product Model

Now we come to our first model of interest. We consider a one-product, make-to-
stock queueing system with strategic customers. Customers arrive according to a
Poisson process with rate A > 0. The one singular server at the service facility
handles production with a production rate of i > 0 and FCFS order. Additionally
we assume that A\ < pu, or equivalently p = \/p < 1.

The server employs a make-to-stock production approach with an initially fixed
target inventory level of S products. When the inventory level is short of S, the
producer sustains production (at rate p) until an inventory level of S products is
reached. Each product in inventory incurs a holding cost of h per unit time to be
payed by the server. Furthermore, the server charges to each joining customer a price

of p to be payed at the instant of joining the system.

If an arriving customer decides to join the system, they receive a reward of R > p
upon service completion (receipt of the product). If the product is in stock they pay
the price p, receive the product and leave immediately. Note that this then triggers
a replenishment job for the server as the inventory level decreases by one. If, on
the other hand, the product is not in stock, they pay price p and join the queue,
additionally paying a waiting cost of ¢ per in-queue unit time, before receipt of the
product and departure.

The producer is able to set the target inventory level S based on the anticipated
behavior of the customers. This behavior greatly depends on the information level
provided to them. We will specifically make the distinction between an unobservable
and an observable system as described in Section indicating whether the current
state of the system, that is, the amount of waiting customers as well as the amount
of products in inventory, is known to an arriving customer. We assume that the

target inventory level S is always known to the customers.



4 Unobservable One-Product Model

Oz and Karaesmen[6] carried out an analysis for the case in which the system is
unobservable to customers, meaning that an arriving customer knows neither the
amount of customers waiting in the queue nor the amount of products in inven-
tory. The target inventory level S is known. This section provides a brief review of
this work. Since the target inventory level S set by the producer depends on the

customer’s behavior, we begin by solving the so-called customer’s problem.

4.1 Customer’s Problem

As we assume that the current queue length as well as the current inventory level
are unobservable to an arriving customer, the decision whether to join or balk is
described by a joining probability ¢ € [0,1]. By the unobservability of the system,
a customer’s joining decision is based on the expected utility gained from joining
the system. Let U(q) be this expected utility for a (fixed) arriving customer when
all other customers join with probability ¢. If we denote by E[W (), S)] the ex-
pected waiting time for given effective arrival rate A (which in our case equals Aq
as ¢ describes joining probability) and target inventory level S, which Buzacott and
Shantikumar [I] showed to be

- 2\
E[W(A, )] = m>

then our expected utility function can be defined as

U(qg) = R—p—cE[W()\g, S)]
(Aq)®
1 (= Aq)

Indeed, the joining customer is expected to receive reward R and pay the product

=R-p—c

price p as well as the expected waiting cost cE[W (Ag, S)].

Note that by symmetry between customers the joining probability ¢ will be the same
for all of them. We seek to find this joining probability given the system parameters.
Recall that the target inventory level S is known to the customers. We distinguish
the following three cases for the state in which an arriving customer encounters the

system.

1. Suppose S =0 and R—p < ¢/u. Since then cE[W (Aq, S)] = ¢/(1n— Aq) > ¢/p,
the rightmost expression being the minimum waiting cost corresponding to an
empty queue and immediate service, we have U(g) < 0 so that the arriving
customer does not join the system. Note that if R — p < ¢/p but S > 0,
the arriving customer may in fact join, taking into account the possibility of

receiving on-hand inventory.



2. Suppose R —p > cE[W (A, S)]. This corresponds to the situation in which the
expected utility is positive even if all other customers join (i.e. ¢ = 1). Since
then it also holds that R —p > cE[W (\g, S)], it follows that U(gq) > 0 so that
the arriving customer does join the system.

3. If neither of the above two cases hold, the customer joins the system with
probability ¢. There exists a unique equilibrium ¢* such that U(¢*) = 0; if
either U(q*) > 0 or U(¢*) < 0 then more customers will join or leave the
system, respectively, over time until U(¢*) =0 .

It follows that the customers’ equilibrium joining probability gs (as a function of the
target inventory level S) is given by

0 ifS=0and R—p<c/pu,

= if R— _ A5
gs =41 ifR—p> CLs (o)
¢* otherwise, where U(q*) = 0.

Furthermore, gg is non-decreasing in .S. This is to be expected since a higher target
inventory level generally results in a lower average waiting time as some joining
customers receive on-hand inventory, leaving the system immediately.

4.2 Producer’s Profit Optimization

Since the producer is aware of the customer’s equilibrium joining probability gg, a
target inventory level S can be set accordingly in order to maximize the expected
producer’s profit (per unit time). This expected profit Z(.5) is given by the difference
between expected revenue and expected holding costs, that is,

Z(S) = pAgs — hE[I(S)],

where E[I(S)] is the expected amount of products in inventory. Buzacott and Shantikumar|[1]

showed that
E[(S) =5 - 28 (1 (Aqs>s
1= Ags I ’

from which follows that

B Ags s\ °
Z(S)—p/\qS—h<S—W <1— (M) ))

There exists a target inventory level S such that gg = 1 (meaning that customers al-
ways join) and Z(S) < Z(S) for S > S. Hence, a profit-maximizing target inventory
level S* can be found by Algorithm

4.3 Social Welfare Optimization

Also of interest is the maximization of the so-called social welfare. This quantity
considers the total utility the system grants to both the producer and the customers.

10



Algorithm 1 Profit-maximizing target inventory level S*
k<0
while ¢; # 1 do
k+—k+1
end while
S* «— argmax{Il(s) : 0 < s < k}

Since payment of the product price is nothing more than a transfer of wealth from
customer to producer, we disregard the price p for this analysis. Hence, the social
welfare takes into account the producer’s holding cost, the customers’ reward and
the customers’ waiting cost. We assume that a social optimizer is able to control the
target inventory level S and the customer joining (i.e. effective arrival) rate A. The
expected social welfare T()\, S) is then given by

T(M\S) = AR — hE[I(\, S)] — cAE[W (), §)]

B 3 1\ S \S+1
anenfse 2 (- () )) e
= A I (= A)p
In order to find optimal (A, S) a sequential approach can be carried out as follows.

First, find the optimal target inventory level S = argmaxg T(X, S), which Veatch

and Wein[7] characterized as

h
| ()
S;\ - e —
In (A)
m
Second, use S§ to find the optimal customer joining rate N = arg maxy T(, S/i‘\)
The resulting pair (\*, S%) maximizes the expected social welfare 7' (A, S).

11



5 Observable One-Product Model

5.1 Model Description

In this section we again analyze the one-product, make-to-stock queueing system
with strategic customers, now with an important alteration: we take the system to
be observable to the customers. That is, to an arriving customer both the amount
of customers waiting in the queue as well as the current amount of products in
inventory is known, in addition to the target inventory level S. We suppose that the
server acts on the customer’s behavior by setting either the target inventory level S

or the product price p.

This analysis will be an extension of Naor’s work[5], as described by Hassin and
Haviv[2], which dealt with a similar observable one-product queueing system with
strategic customers in which a make-to-order instead of make-to-stock approach is

taken.

Again we begin by solving the customer’s problem. It will prove useful to consider the
Markov chain our system gives rise to. In Figure [2| this chain is depicted. The states
—S5,...,—1 indicate an inventory level and the states 0,1,... indicate an amount
of waiting customers. This description of the Markov chain is well-defined: since a
joining customer immediately receives a product from inventory, it cannot be the

case that both the queue and the inventory are non-empty.

D S N VD W
™
I T -
I

Figure 2: Markov chain corresponding to the observable one-product model.

5.2 Customer’s Problem

By our observability assumption an arriving customer is aware of the current state
i > —8 of the system. This information dictates the decision to join or balk, in

contrast to the joining probability in the unobservable system considered in Section

2]

Remark that if an arriving customer finds the system to be in state —5 < i < —1,
they join to receive a product out of inventory immediately, incurring no waiting
time, as we assumed that the reward R of receiving a product exceeds the product

price p.

12



If, however, an arriving customer encounters state ¢ > 0, then their expected sojourn
time will be % since they are served only after the ¢ other customers in the system
are served and service times are distributed exponentially with parameter p. Hence,
the expected utility of a customer joining the system being in state, i.e. having queue
length, ¢ > 0 is given by .
UG = R-p- LY.

Recall that an arriving customer joins the system if U (i) > 0 and balks if U(7) < 0.
This gives rise to an additional assumption: if R < ¢/u then U(i) < R — ¢/ < 0,
meaning no customer ever joins (given that there is no inventory present). Hence,
we assume that Ru/c > 1. By U(7) being obviously linear and decreasing in ¢, there
exists an ¢* such that U(i) > 0 for ¢ < ¢*, and U(i) < 0 for i > i*. Solving U(i) =0
yields that these inequalities hold if and only if i* = (R — p)u/c — 1. As states are
described by integers, we may define the so-called joining threshold to be

"= VR‘WJ . W)

Cc

Now the customers can be said to follow a threshold strategy: if the queue length is
n or higher, then U(i) < 0 and an arriving customer balks, but if the queue length
is less than n, then U(7) > 0 and an arriving customer joins.

5.3 Producer’s Profit Optimization

Based on the customer’s decision strategy, which we found to be the threshold strat-
egy with joining threshold n, the producer accordingly sets either of his controllable
variables, namely the target inventory level S or the product price p. The objective
function is the expected producer’s profit (per unit time) Z(p, S) given by

Z(p,S) = pA — hE[I], (2)

where ) is the effective arrival rate and E[I] is the expected amount of products in

inventory.

To compute A we first note that the customers’ threshold strategy reduces the
Markov chain from Section[5.1]as follows. As we have seen, n is the maximum amount
of customers in the system: no arriving customer will join upon encountering this
amount of customers in the queue. Hence, the possible states for our Markov chain
become —S, ..., n as illustrated in Figure [3] The corresponding balance equations
for this system are

Amj = pumjyq where j = —5,...,n— 1.
Writing p = ﬁ, we find the stationary distribution 7 given by

P —p)

A s where j = —S5,...,n.

13
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Figure 3: Markov chain corresponding to the observable one-product model taking

into account joining threshold n.

Note that 7, is the equilibrium probability of finding the maximum of n customers in
the system, that is, m, is the equilibrium balking probability. Consequently, 1 — 7,
is the equilibrium joining probability, from which we conclude that the effective

joining rate equals

1— n+S
A=A1—mn) = AP

1 pn+s+L 3)

We additionally note that the producer, seeking to maximize profit, sets the maxi-
mum price p which is still in accordance with n as described by . That is to say

that we set
ne
p:p(n):R—;~ (4)

Finally, since in state —j we have j products in inventory, we find that the expected
amount of products in inventory is equal to

N S(1=p) = p(1=p°)
P = 237 = Q)i = o) ©)

Substituting these expressions for A, p and E|[I] into , we find that in equilibrium

the server’s profit is

1—pts ne S(1—p) = p(1 - p°)
Z = _— _ — —
) =37 fsa (R ) = 4 e

1 <)\(1_pn+5) <R_”C>_h5(1—p)—p(1—ps>>. (©)

_1_pn+S+1 L 1—,0

5.3.1 Producer Controls Target Inventory Level

In this section we take the producer’s controllable variable to be the target inventory
level S. That is to say that the producer aims to maximize the profit by varying S.

In order to ease into the analysis we first suppose that there are no holding costs,
i.e. h = 0. Then the expected profit becomes

1_pn+S ne

14



Since it then holds for all n > 0 and S > 0 that

M1 —p)?p"to (R —1¢)

Z2(5+1) = 2(8) = (1 — prtS+I)(1 — pnt5+2)

> 0,

it follows that Z is increasing in S; the higher the target inventory level, the higher
the producer’s profit. Indeed, given that there are no holding costs the producer
profits from increasing inventory as this delays saturation of the system. This in
turn results in more customers joining per unit time, netting the producer higher
revenue hence higher profit.

Now we suppose that the holding costs are non-negative, so that Z(.S) is given by
@. In the absence of a rigorous proof for Z(S) having a unique maximum S*, we
note that in practice there is an upper limit S,,q; for the feasible target inventory
levels. Indeed, realistically the producer does not have access to infinite storage

space. Hence, it suffices to find
S* =argmax{Z(S):0<5 < Spnaz},

which can be done in polynomial time.

5.3.2 Producer Controls Price

In this section we take the producer’s controllable variable to be the product price
p. Since the highest possible price p = p(n) given a joining threshold n can be found
by , we carry out our analysis in terms of n.

The expression for Z(n) as given by @ can be rewritten as

Z(n) = A(n) <B(n)” —n H> :

where we define the substitutions

1

A = s

B(n) = AR(1 — p"*%),

Ry
vV=—,
&
o _ S
g—pS=p)—pd-p°)
I—p

We are interested in a joining threshold n* maximizing Z(n). Since Z(n) is a discrete
function, we require n* to satisfy the inequalities

(7)

15



In order to simplify the written-out versions of these inequalities, we introduce for
- € {A, B} the following notation:

Now the inequalities in become

A(B(v—n*)— Hv) > A/(B'(v —n*+1) — Hv),
A(B(v —n*) — Hv) > AN (BY(v —n* — 1) — Hv).
Note that the term

AR(1 — anrS
A(n)B(n) = 1(_[)n+3+1)

is increasing in n, since the factor 1 — p”*° in the numerator decreases more slowly
than the factor 1—p" 5% in the denominator. From this follows A’B’ < AB < AfBf.
Hence, the inequalities can be summarized as
A'B' 4 (AB — A'B)n* < A'Bt + (ATBT — AB)n*
v .

AB - A'B"— (A—- A)H ~ A'Bf — AB — (AT — A)H

Rewriting further, we find the first inequality in to be
(A—A"YHn*+ A'B’

A(B—H)—- A'(B'—H)

v>nt4

and the second inequality in ([7]) to be

(A— ANHn* — ATB?
A(B—H)— A" (Bt — H)
e AT A+ AT

AY(Bt —H)— A(B—H)
- (AT — A)Hn* + AY(Bt — H) — A(B— H)+ AB + (AT — A)H
Af(Bt — H)— A(B—-H)
“y (AT — A)H(n* + 1)+ AB+ AY(B' — H) — A(B - H)
Af(Bt —H)— A(B—H)

(AT — A)H(n* +1) + AB
AT(Bt —H) - A(B—-H)’
We conclude that can be written as

v<n*+

=n

=n"+1+

) <v < fnt + 1) ®)
where f(n) is defined as
B (A(n) — A(n—1))Hn+ A(n —1)B(n — 1)
Jm) =t ) (Bn) — 1) — Aln— D(Bln — 1) 1)’ )

We seek to show that holds for a unique n* by evaluating the expression for f(n)
through the following three properties.

16



e Note that B((—S +1) — 1) = B(—S) =0, so that
_ (A(=S+1) - A(-5))H
f=S+1) =(=5+1) (1 P ACS T DB S+ 1) (A(S+1) - A(—S))H>

e pH/(p* = 1)
=(=5+1) (1 TR )/ ) — (P 1>>

H
= (=S+1) 1+ARG_pr_H

<0

<-=-5+1
<1.

e f(n) is increasing for n > S + 1. Indeed, using the substitutions C' = AR(1 —
p)/p and = = p"+ we first note that

A — A _ (—p)
(Alm) — Al — 1) H = =S,
g —pr—x 22
A (o - 1) = M G S,
A 1B 1) — (A=)
A(n)B(n) — A( 1)B( 1) (1—2)(1— px) C.

Then () can be written as
fn) =n+ (A(n) —A(n—1)Hn+ A(n—1)B(n — 1)
A(n)B(n) — A(n—1)(B(n—1) — (A(n) — A(n—1))H
—(1=p)zHn+ AR (1 — pz — z/p + 2?)

- (1= p)a(C + H)
. —Hn AR(z+1/x—p—1/p)
(C+H) (1-p)(C+H)
AR 7 —(n
Term" T Crma-y) (o7 4070 = p=1/)

so that it is clear that

C AR
_ — —(n+S+1) _ n+S
fnt1) = f(n) C+H+C+H(p P >>O

forn > S+ 1.

e We assumed in Section that v = Ru/c > 1.

From these properties it follows by that there exists a unique n* > —S§ + 1
satisfying (7)), being the necessary conditions for maximizing Z(n). If we find n* < 0,
we conclude that the parameters do not result in a system in which it makes sense
for the producer to do business. Otherwise, we find the unique profit-optimizing
joining threshold n* and corresponding profit-optimizing product price p* = p(n*).

17



5.4 Social Welfare Optimization

We now turn once again to the social welfare, which takes into account the producer’s
holding cost, the customers’ reward and the customer’s waiting cost. For this setting,
the social optimizer is able to control the target inventory level S as well as the
joining threshold n, which corresponds directly to the price p = p(n) through .
The objective function is the social welfare (per unit time) T'(p, S) given by

T(p,S) = AR — cE[L] — hE[I],

where ) is the effective arrival rate and E[L] the expected amount of customers in

the system.

Plugging in the expression for X in , the expression for E[I] in as well as the
expected amount of customers in the system

n S+1 n n+1
S p”T (1= (n+1)p" +np"")
ot (1= p)(1 —prtatd)

we find that in equilibrium the social welfare is

_ n+S S+1 o n n+1 o o S
T(n,S):)\Rl p A= Dt +np™) S p) —p(L - p7)

1 — pntS+l (1 —p)(1 — prtS+L) 0 )
1 A
B 1—pn+s+1<”%<1 - ) =l (J_ iﬁ +npt)
S0 —p) = p(1=p%)
" (1 _p) > (10)

5.4.1 Producer Controls Target Inventory Level

Analogously to our analysis for the producer’s profit, we first consider the case in
which there are no holding costs, i.e. h = 0. Then the expected social welfare becomes

S+1(1 _ (n 4 1)pn 4 np"+1)>
(1-p) '

Obviously, T is increasing in S: given that there are no holding costs the welfare

1

TS) = T et

<)\R(1 . pn+S) o Cp

increases with inventory as more inventory delays saturation of the system. This
in turns results in more customers joining per unit time, netting them higher total

reward at no holding cost to the producer.

Now we suppose that the holding costs are non-negative, so that T'(S) is given
by . Again, we note that the practical upper limit S,,4, on the feasible target
inventory level allows us to find

S* =argmax{T'(S):0< S5 < Sz}

in polynomial time.
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5.4.2 Producer Controls Price

We now take the social planner’s controllable variable to be the product price p.

Again, we carry out the analysis in terms of n, using the expression for p = p(n) in
(4)-

Similarly to the producer’s profit case, we rewrite the expression for 7'(n) in ,
yielding

T(n) = A(n)(vB(n) — C(n) — H")

where we define the substitutions

1

AN =T

B(n) =1- anrS’
ps+1(1 ISR
(1-p) ’
v = AR,
S(1—p) = p(1 = p°)
1—p ’
We are interested in a joining threshold n* maximizing T'(n), requiring accordance

C(n)=-c

H=h

with the inequalities
T(n*) >T(n*—1) (11)
T(n*) > T(n*+1).

Again we simplify the written-out expressions by introducing for - € {A, B,C} the
notation

o= (TL* - 1)a
A o=.(n*+1).
Then the inequalities in become
AwB—-C—-H)>A(wB' —-C'—H),
A(vB - C — H) > At(vBT — CT — H).
Since A(n)B(n) is increasing in n as we similarly saw in Section [5.3.2] (in which
A(n)B(n) included the factor AR), we can summarize the inequalities as

A(C+ H)— A'(C' + H) < AN(CT + H) — A(C + H)
AB — A'B’ = ATBt — AB ‘

We conclude that can be written as

fn*) <v < f(n"+1) (12)
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where

f(n) = A(n)(Cn)+ H)—A(n—-1)(C(n—1)+ H)
B A(n)B(n) — A(n—1)B(n—1) '
Again we consider three properties of f(n), from which will follow that holds

for a unique n*.

(13)

e Note that C'(0) =0 as well as C(—1) = 0, so that
[A(0) — A(=1)H

1= A©)B0) ~ A1) B
Sy - /< — SH
WS (L 511 )
__Heo
—
< 0.

e f(n) is increasing for n > 0. Indeed, we first note that the numerator in

equals
C(n)+H B Cn—1)+H

1— pn+S+1 1— pn+S+1

and the denominator equals

(1 o p)2pn+5‘—1
(1-— p"+5)(1 — pn+S+1)'

Then can be written as

(C(n)+ H) (1 — p”+5) —(C(n—1)+H) (1 — p”+5+1)
(1—p)2pr+s-1
C(n) (1 _ pn—l—S) _ C(n _ 1) (1 _ pn+5+1) _ Hpn—l-S(l _ p)
(1—p)2pts-t
cp™t (n(1 = p) = p (1 = p")) = Hp"*5(1 — p)
(e

S+1 _.n
I R s el
1—p 1—p

fn) =

so that it is clear that

CSI
fnt1) - ()= " (e— il

P S+1
(1 — = 1—pntet 0
T, 1_pp( p)> l—pc( p ) >
for n > 0.
e We have v = AR > 0.

It now follows by that there exists a unique n* > 0 satisfying , being the nec-
essary conditions for maximizing T'(n). This is the unique social-welfare-optimizing
joining threshold n* from which the corresponding social-welfare-optimizing product
price p* = p(n*) follows.
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5.5 Numerical Analysis

In this section we carry out a numerical analysis. We plot producer’s profit and
social welfare as functions of the joining threshold n and target inventory level S, as
well as the joining threshold and target inventory level maximizing these objectives
as a function of the other controllable variable. Additionally, we discuss the effect of

varying key system parameters.

Base case

For the base case, we suppose that the producer operates with a service rate of
¢ = 100 and customers arrive at a rate of A = 98. The producer incurs a holding
cost of h = 10 per unit time per item in inventory. Customers are rewarded R = 20
upon receipt of the product and pay a waiting cost of ¢ = 5 per unit time spent
waiting. We also set S = 20 and n = 20 as defaults. See Figure [ for plots of Z and
T under this setting.

Optimizing over n and S, we can compute the pair of joining threshold n* (yielding
price p* = p(n*)) and target inventory level S* maximizing producer’s profit Z and
social welfare T', see Table

‘ n* S* p* Z(n*,S*) T(n*,S*)
optimizing Z(n,S) | 12 9  19.4 1808.08 1849.39
optimizing T'(n,S) | 26 9 18.7 1781.11 1866.13

Table 1: Base-case optimal producer’s profit and social welfare.

1840 1 1850 -
1820 1825
1800 1800 A
1780 A 1775 A
1760 A 1750 A
1740 17254

4 1700 A
17204 Z(n) — Z(5)
1700 T(n) 1675 T(S)

0 10 20 30 40 0 10 20 30 40
n s
(a) Z(n) and T'(n). (b) Z(S) and T(S).

Figure 4: Base-case plots.
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Producer’s Profit as a Function of Joining Threshold

Consider the plots in Figure bl For n = 0, the producer’s profit is positive for all
parameter choices. This can be explained by the presence of inventory (recall that
S = 20); even if no queue ever forms, customers still receive product from inventory,
resulting in revenue for the producer. As n increases (or, the price p decreases) the
producer’s profit increases up to the maximum we have proven to exist in Section
before decreasing again. This behavior illustrates the trade-off of decreasing

price: less income per product versus an increase in clientiele.

1825 4
1825 A
1800 A
1800 A
1775 A
1775 A
— — 1750 A
= E
~ 1750 A N 1725 -
1725 A 1700 -
—— labda =96
1700 1675 1 —— labda = 98
1675 - 1650 —— labda = 99.99
0 10 20 30 40 0 10 20 30 40
n n
(a) Varying holding cost h. (b) Varying arrival rate .
2200 A
—_— R=16 1850 1
—— R =20
2000 -  R-o4 1800 -
1750 A
= 1800 A =
= - T £ 17001
1600 A 1650 A
1600 A
1400 1 ’\
1550 +
0 10 20 30 40 0 10 20 30 40
n n
(¢) Varying reward R. (d) Varying waiting cost c.

Figure 5: Sensitivity analysis for the producer’s profit Z(n).
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Producer’s Profit as a Function of Target Inventory Level

Consider the plots in Figure[6] Though we have not proven it, the plots suggest that
for fixed parameters there is indeed a profit-maximizing target inventory level S*.
The relevant trade-off of a higher target inventory level is more effectively meeting
customer demand versus higher total holding costs due to an increase in inventory.

1800 A
1800
1750 A
1750 A
G 1700 %)
N N 1700 A
1650 A
1650 1 —— labda = 96
—— labda = 98
1600 A _
16004 —— labda = 99.99
0 10 20 30 40 0 10 20 30 40
S S
(a) Varying holding cost h. (b) Varying arrival rate A.
2200 A
- ——— R=16
=0 1850
2000 A — R =24
1800 A
— 1800 A —_ i
5 ,_\ & 1750
N N
1600 - 1700
16504 — ¢~
1400 A —\ .-
1600 - c=9
0 10 20 30 40 0 10 20 30 40
S S
(¢) Varying reward R. (d) Varying waiting cost c.

Figure 6: Sensitivity analysis for the producer’s profit Z(S5).
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Profit-Optimizing Target Inventory Level

Consider the plots in Figure [7] As n increases, the profit-maximizing target in-
ventory level S* decreases. This is to be expected: given that customers are more
prepared to wait in a queue, the producer is able to hold less items in inventory,
paying less holding costs, while still meeting customer demand. Likewise, Subfigure
[Ta] reveals that an increase in per-item holding cost decreases the profit-maximizing
target inventory level S*, suggesting that the increase in holding costs diminishes
the benefit of maintaining inventory. Subfigure [7D] shows that an increase in arrival
rate increases S*, suggesting that higher inventory levels can be utilized as a buffer
against congestion.

25 1

—— labda = 96
—— labda = 98
15.0 + —— labda = 99.99

17.5 1

12.5 1

10.0 A

optimal S
optimal S

7.5 1

5.0 1

251

17.5 4

15.0 4

12.5 4

10.0 A

optimal 5
optimal S

7.5 1

5.0 1

251

(c¢) Varying reward R. (d) Varying waiting cost c.

Figure 7: Sensitivity analysis for the profit-optimizing target inventory level S*.
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Profit-Optimizing Joining Threshold

Consider the plots in Figure 8] As S increases, the profit-maximizing joining thresh-

old n* generally decreases. This is also to be expected: given that there are more

products in inventory, there need be less customers in the queue to meet cusomer

demand; the demand is partially satisfied by products in inventory. As per-item costs

increase, n* increases as well, as can be seen in Subfigure [8a which can be explained

by an increase in queue length becoming more profitable than paying holding costs.

Subfigure [8d|suggests that customers tolerate a significantly higher queue length (as

associated with an increase in n*) as waiting cost decreases. For ¢ = 1, n* even rises

again as S becomes large enough.

optimal n

optimal n

(a) Varying holding cost h.

(c) Varying reward R.

optimal n

optimal n

—— |abda = 96
—— labda = 98
15 A —— labda = 99.99
10 A
5 -
0_
0 10 20 30 40
)
(b) Varying arrival rate A.
40 | \_/_/_,_/_
30 A
— c=1
20 =
— =
10 4
0_
0 10 20 30 40

S

(d) Varying waiting cost c.

Figure 8: Sensitivity analysis for the profit-optimizing joining threshold n*.



Social Welfare as a Function of Joining Threshold

Consider the plots in Figure [0} We recognize the presence of an optimal joining
threshold as found in Section [5.4.2] With increasing n, the producer’s revenue in-
creases (at no additional holding cost) but the customer’s waiting costs increase as

well, representing a trade-off for the social welfare.
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1875 A
1860 4
1850 A
1840 A
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— 1800 A =
~ =~
1800 A
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(a) Varying holding cost h. (b) Varying arrival rate A.
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1600 - 1800 -
1400 — 1780 1
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(¢) Varying reward R. (d) Varying waiting cost c.

Figure 9: Sensitivity analysis for the social welfare T'(n).
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Social Welfare as a Function of Target Inventory Level

Consider the plots in Figure[I0] We deduce the existence of a social-welfare-maximizing

target inventory level S*, though we did not prove its existence. As S increases,

customer’s waiting costs decrease (due to the availability of inventory), but the pro-

ducer’s holding costs increase.
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(a) Varying holding cost h.
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(b) Varying arrival rate A.
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(d) Varying waiting cost c.

Figure 10: Sensitivity analysis for the social welfare T'(.S).
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Social- Welfare-Optimizing Target Inventory Level

Consider the plots in Figure[I1] As n increases from 0, the social-welfare-maximizing
target inventory level S* decreases at first, but at some point (as the maximum
queue length, indicated by n, becomes too large) it becomes socially optimal to
increase customer’s benefit by increasing target inventory level at the expense of
the producer’s benefit through increased holding costs.

257 1 —— labda = 96
—— labda = 98
0 - 16 - —— labda = 99.99
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T T 147
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© ©
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= =
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n n
(¢) Varying reward R. (d) Varying waiting cost c.

Figure 11: Sensitivity analysis for the social-welfare-optimizing target inventory level
S*.
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Social-Welfare-Optimizing Joining Threshold
Consider the plots in Figure Note that the social-welfare-optimizing joining
thresholds n* are significantly higher than in the profit optimization case (see Figure

6071 — labda = 96
—— labda = 98
—— labda = 99.99
c c
© ©
£ £
= =
o o
0 10 20 30 40 0 10 20 30 40
s )
(a) Varying holding cost h. (b) Varying arrival rate A.
175 A
150 A
= c 125 -
© =
©
E £ 100 -
o -+
o 8- 75 -
50 A
25 1
0 10 20 30 40 0 10 20 30 40
S )
(c) Varying reward R. (d) Varying waiting cost c.

Figure 12: Sensitivity analysis for the social-welfare-optimizing joining threshold n*.
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6 Description of the Two-Product Model

Our second model extends the previously discussed one-product model. We again
consider a make-to-stock queueing system with strategic customers, now with two
products instead of one. Specifically, we distinguish type-1 and type-2 products and
system parameters corresponding to each type of product.

In this model, type-t customers arrive according to a Poisson process with rate
At > 0. The singular server handles production at the service facility with production
rate u > 0 and FCFS order regardless of product type. We assume that A; + Ao < p,
that is, p = ’\1:7& < 1.

For each type t, the producer sets an initially fixed target inventory level of S;
products. When the inventory level of type ¢ falls short of S;, the producer adds
one type-t replenishment job to the production queue. Hence, the producer sustains
production (at rate u) for so long as the target inventory levels Sj, Sy are not both
met for their respective inventories. Each type-t product in inventory incurs a holding
cost of h; to be payed by the server. Additionally, the server charges to each joining
type-t customer a price of p;.

If a type-t customer decides to join, they receive reward R; > p; upon service
completion (receipt of a type-t product). As in the one-product case, the presence
of on-hand inventory results in immediate receipt of the product, departure, and
addition of a replenishment job for the corresponding product type. If a type-t
customer joining the system ends up in the queue due to there being no inventory,
they pay a waiting cost of ¢; per in-queue unit time and a type-t replenishment job
is added.

Again we make a distinction between an unobservable and an observable system,
and assume that the target inventory levels S; are always known to customers.
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7 Unobservable Two-Product Model

Kanavetas and Kosarevskaia[3] previously analyzed the case in which the two-
product queueing system is unobservable to customers, meaning neither the amount
of customers waiting nor the amount of products in inventory is known. The target
inventory levels Sy are known. This section will briefly go over this work. As in the
one-product case we begin by solving the customer’s problem before considering the

producer’s decisions based on customers’ behavior.

7.1 Customer’s Problem

The joining behavior of a type-t customer can be described by joining probability
q: € [0, 1]. If we suppose that all customers adhere to strategy (g1, ¢2), then it follows
by the unobservability of the system that an arriving type-t customer’s decision to
join or balk is informed by the expected utility Ui(q1,q2) gained from joining. The
expected waiting time for a type-t customer E[W; (A1, A2, S1,52)] for given effective
arrival rates A, Ao and target inventory levels S;, S has been shown to be
E[Wi(A1, Ag, S1,82)] = 5 here j # t 14
[Wi(A1, Az, S1, 2)]—(M_5\j)si(lu_5\1_5\2)were];é . (14)
Hence, the expected utility function becomes

Ui(q1,q2) = Rt — pt — ce E[We(A1q1, Aaga, S1, 52)).

Two important properties for this function are its continuity over [0, 1]? and it being

strictly decreasing in both ¢; and g¢o.

Equilibrium customer behavior is described by the so-called Nash equilibrium, which
is here defined as a pair (¢}, ¢3) whose components are each other’s best response,
meaning that it satisfies

qi“ = argmaxye(o,1] P U1(q , q )’
).

This is well-defined as (¢, ¢5) is the unique fixed point of the mapping

* *
1542
q; = arg maxpe[()ﬂ D UQ(QT7 q;

U (- g U (gt ).
(argprg[g§]p 1(,qz),argplg[g§}p 1(q1,7))

)

We distinguish three cases.

e Suppose S; = So = 0 and additionally ¢;/(R1 — p1) = ¢2/(R2 — p2) as well as
c1/(R1—p1) < p < c1/(R1—p1)+ A1+ A2. Then there is a continuum of Nash
equilibria (¢, ¢3) satisfying ¢f A1 + ¢3A2 = p — c1/(R1 — p1).

e Suppose S1 = S5 = 0 and the additional requirements in the previous case do
not hold. Then there exists a unique Nash equilibrium (¢, ¢5), determinable
by Table 2 in [3].

o If S > 0 or S; > 0, there exists a unique Nash equilibrium (g7, ¢3).
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7.2 Producer’s Profit Optimization

The producer’s profit is equal to
T1(S1, S2) = pihg; "> + padady ™ — hiE[L1(S1, )] — ho E[Io(S1, S2)]
Sl7

with g; 52 denoting the joining probability for a type-t customer. It has been shown
that

St
)\tq5'1,52 )\tq51752 .
E[I(S1,S2)] = S — ! 1— | ———— , J F#t.
- )\2q~25'1752 _ )\2q~25'1752 - )\jqfl,sz

Furthermore, there exist natural bounds S, S on the producer’s inventory deci-
sions. Targeting even higher target inventory levels does not improve profit. Hence,
the optimal profit-maximizing target inventory level pair (S7,S5) can be found as
follows.

1. Calculate upper bounds 57, Ss.

2. For each pair (s1, s2) within these bounds.

51,52 51732)

(a) Determine the Nash equilibrium joining probabilities (¢;"", g5
(b) Evaluate II(s1, s2).

3. Choose the pair yielding the highest profit.

7.3 Social Welfare Optimization

In this section we assume a social planner is able to modify the effective arrival rates
/_\1, o as well as the target inventory levels Si,.S2. The corresponding social welfare
function is

T(A1, Mg, S1,99) = MRy + ARy — C(A1, A2, S1, S2).

where \; R; represents the total reward received by type-t customers and C(\q, Aa, S1,.52)
captures the costs incurred by the producer (i.e. holding costs) as well as customers

(i.e. waiting costs):

2
C(M1, A2, S1,52) = Z(htE[ft(j\l, A2)] + e ME[Wi(A1, A2)]),
=1

where

o ;\t j\t St
ElL;(M, )] =85 ——————1|1- = ) £~ 1
[Le(A1; A2)] = Sy M_)\l_)\2< <M—>\j> )J#
and E[W; (A1, A2)]) is as in (14).

For fixed A1, A9, optimal target inventory levels (S7,S3) have been found explicitly,

namely
g _ | log(he/(hs + ct))
! log (Ae/ (1 — Aj))

—‘ — 1, where j # t.

32



The social-welfare-optimizing 4-tuple (A}, A}, ST, S3) can be found as follows.

1. Establish upper bounds Si, S, using

log (ht/(ht + ct))
%< { log (At/ 1) w '

2. For each possible inventory pair (si, s2) within these bounds:

(a) Find the subdomain
D= {(5\1,;\2) :0< ;\t < Atyj\l +5\2 < ,u}

for which holds (S7,S5) = (s1, s2).
(b) Within this subdomain, optimize effective arrival rates (A1, Az).
(c) Compute the resulting social welfare.

3. Choose the (A}, A5, St,S3) optimizing the social welfare.
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8 Observable Two-Product Model

We now alter the two-product model by assuming that the system is observable to
the customers. Analogously to the one-product case, this means that to an arriving
customer the amount and types of customers waiting in the queue as well as the
current amount and types of products in inventory are known, in addition to the
target inventory levels St, So.

8.1 Customer’s Problem

Since a customer’s utility gained from joining is, as before, linearly dependent on
the amount of customers in the queue, we conclude that the customers once again

adopt a threshold strategy with joining thresholds (ni,n2).

Suppose a customer of type t arrives and encounters a non-empty queue. Naively,
the average sojourn time would equal % where 4; is the amount of waiting
type-t customers. However, we must note that such a customer only waits for the
departure of customers in the queue of the same type, bypassing the customers of the
other type. On the other hand, the arrival of these other-type customers certainly

influenced the production queue, leading to a longer waiting time for our customer.

For example, suppose that due to a surge in arriving customers both inventory types
are empty, and that the producer is working on the production of a type-1 product.
If a customer of type 2 arrives, they certainly have to wait on the production of this
type-1 product. In fact, an arriving type-t customer’s expected waiting time is %,
where my is their place in the production queue.

This complicates our analysis greatly as it is no longer immediately clear how to
define states such that the Markov property holds. Indeed, for any description of
the system state involving a distinction between the product types, transitions are
dependent on the production queue, which is in turn dependent on the history of
arriving customers. For example, the waiting time of an arriving customer depends

on their place in the production queue.

8.1.1 States

We define a state space in which each state consists of the full current production
queue as a vector with elements in {1, 2}. For example, (1,2, 2) denotes a production
queue in which the producer is currently producing a type-1 product before the
production of 2 type-2 products. Note that transitions between states correspond
directly to the arrival of customers and the fulfillment of production, and that the
length of the state vectors is bounded by ni + no + S1 + So.
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More precisely, for state v we have

(v1,v2...,0,,1) with rate Aj, if n < nq,
(v1,v2,...,Un) = < (V1,v2...,0p,2) with rate Ao, if n < no,
(V2y ..y U) with rate p.

Moreover, since no type-t customer joins if there are n; customers of the same type
in the queue, and there can be at most S; replenishment jobs for type ¢, the length
of any state is bounded by ny + no + S1 + So.

Note that this chain is irreducible and positive recurrent (since p < 1), so a stationary
distribution 7r exists and is unique.
8.1.2 Customer’s Strategy

Let v = (v1,...,v,) be a state. Then the place in the production queue for an
arriving type-t customer, i.e. my(v), can be found by Algorithm

Algorithm 2 Place in the production queue my(v).

Require: v = (vy,...,vy),t, 51,52

m+n+1
s+ 0
while s < 5; do

m+—m—1

if v,, =t then

s s+1

end if

end while

my(v) < m

Indeed, m¢(v) equals the position of the Si-th to last type-t order in the production
queue. For example, consider the situation in which S; = 2,5, = 3 and an arriving

customer encounters production queue
v=(1,2,1,1,2,2,1,2,2),

then mq(v) =4 and ma(v) = 6.

It follows that both mq(-) and ma(-) induce a total order on the set of possible pro-
duction queues. As the expected waiting time for a type-t customer having position
m¢(v) given production queue v is equal to

my(v)

E[Wi(my(v))] = 7
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it follows that we also find that the expected utility for a joining type-t customer

encountering queue v, being given by

Ut(v) = R — p — cE[Wi(mu(v))]
cemy(v)
w

induces a total ordering < on the set of possible production queues. From this, we
can find threshold policy (n1,n2): for type-t customers there exists a v} such that
Ui(v) > 0 for v <y v}, meaning that the customer joins, and U(i) < 0 for v >y v,
meaning that the customer balks.

8.2 Complications Regarding Producer’s Profit and Social Welfare

Our description of states, necessitated by the complex relation between queue de-
scription and waiting time, complicates the analysis, and indeed, optimization, of
the producer’s profit and social welfare. In Section [5] we expressed these quantities
in terms of effective arrival rate, expected amount of products in inventory and ex-
pected amount of customers in the system. The calculation of each of these metrics
involved the stationary distribution of the system. However, in the observable two-
product model we are now considering, such stationary distribution is difficult to
find by the exponentially large state space.

36



9 Discussion

9.1 Results

Apart from the reviews of the previous work on the unobservable one-product and

two-product models, we have found the following results.

e For the observable one-product make-to-stock queueing system with strategic

customers:

— the producer’s profit increases indefinitely with the target inventory level
S given that there are no holding costs. If holding costs are non-zero, then
we can exploit the fact that in practice an upper bound for feasible target
inventory levels exists and calculate profit-maximizing S* in polynomial

time;

— there exists profit-maximizing joining threshold n*, corresponding to profit-

maximizing price p*;

— the social welfare increases indefinitely with the target inventory level
S given that there are no holding costs. If holding costs are non-zero,
then we can exploit the fact that in practice an upper bound for feasible
target inventory levels exists and calculate social-welfare-maximizing S*

in polynomial time;

— there exists social-welfare-maximizing joining threshold n*, corresponding

to social-welfare-maximizing price p*;

— we found that our numerical analysis reflected the expected behavior of

the system.

e For the observable two-product make-to-stock queueing system with strategic
customers, we described the subtleties of the customer’s problem and touched

upon the complexity of analyzing the producer’s profit and social welfare.

9.2 Future Work

The following directions for future work on make-to-stock queueing systems with

strategic customers are suggested.

e Study the optimization of the producer’s profit and social welfare for the ob-

servable two-product make-to-stock queueing system.

e Extend the analysis of unobservable or observable make-to-stock queueing sys-
tems to settings in which there are n > 2 types of product.

e Repeat the analysis of the one-product or two-product queueing systems with
partial observability, e.g. only the amount of customers or only the current

inventory level is known to arriving customers.
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A Python code (calc.py)

import numpy as np
import matplotlib.pyplot as plt

plt .rcParams|’figure. figsize’] = [3,3.1]
plt .rcParams| ’savefig.bbox’] = ’tight’

# product price
def p(n):
return R-nx*c/mu

# producer’s profit
def Z(n,S):
rho = labda/mu
A =1/(1—rhoxx(nt+S+1))
B = labda*R#(1—rho**(n+S))
nu = Rsmu/c
H = h*(S*(1—rho)—rho*(1—rho*xS))/(1—rho)
return Ax(Bx(nu-—n)/nu—H)

# social welfare
def T(n,S):
rho = labda/mu
A =1/(1—rhoxx(nt+S+1))
B = 1-rho**(n+S)
nu = labdaxR
C = cxrhox%(S+1)*(1—(n+1)*xrho**ntnxrho**(n+1))/(1—rho)
H = h#*(S*(1—rho)—rhox(1—rhox*%S))/(1—rho)
return Ax(nuxB-C-H)

# f—optimal (nx,Sx) for mn in n_vals and S in s_vals
def find_opt_-n_S(f,n_vals,S_vals):

len.n = len(n_vals)
len.S = len(S_vals)
f_vals = np.zeros((len_.n,len_S))

for i in range(len_n):
for j in range(len_S):

fovals[i][j] = f(n-vals[i],S_vals[j])
max._n_ind ,max_S_ind = np.unravel_index (f_vals.argmax(),f_vals.shape)
max-n = n_vals [max_n_ind]
max_S = S_vals[max_S_ind]
max_p = p(max.n)
max_Z = Z(max.n,max._S)

max_-T = T(max.-n,max_S)
return (max_n,max_S,max_p,max_Z,max_T)

# f—optimal nx given S
def find_opt-n(f,S):
n=20
while True:
if p(n) < 0: raise Exception(”Price-negative”)
fo = f(n,S)

39



f1 = f(n+1,9)
if f0 > f1: # only check f(n+1)<f(n) since opt. nx is unique
return (round (f0,2) ,n,round(p(n),2))
n = n+l
return (round (f0,2) ,n,round(p(n),2))

# f—optimal S+ given n
def find_opt_S(S.max,f,n):
if p(n) < 0: raise Exception(”Price-negative”)
S_vals = range(S_max + 1)
S_opt = np.argmax ([f(n,S) for S in S_vals])
f0 = f(n,S_opt)
return (round(f0,2),S_opt)

def plt_-Zn(n_vals, sens_var = None, sens_vals = [None]):
plt.figure ()
plt . xlabel ("$\it{n}$")
plt.ylabel (’$\it{Z(n)}$’)

sens_var_init = globals ()[sens_var|
for val in sens_vals:
globals ()[sens_var] = val
plt.plot(n_vals, [Z(n,S) for n in n_vals],
label = str(sens_var) + 7-=-" 4+ str(val))
globals ()[sens_var] = sens_var_init

plt.legend ()
plt.savefig (7img/” + 7Zn.” + str(sens_var) + 7 .png”)

def plt_ZS(S_vals, sens_var = None, sens_vals = None):
plt.figure ()
plt.xlabel (’$\it{S}$’)
plt.ylabel ("$\it{Z(S)}$")

sens_var_init = globals ()[sens_var]
for val in sens_vals:
globals ()[sens_var] = val
plt.plot(S_vals, [Z(n,S) for S in S_vals],
label = str(sens_var) + 7-=-7 4+ str(val))
globals ()[sens_var] = sens_var_init

plt.legend ()
plt.savefig (7img/” + 7ZS.” + str(sens_var) + ”.png”)

def plt_ZoptS(n-vals, sens_var = None, sens_vals = None):
plt.figure ()
plt . xlabel ("$\it{n}$")
plt.ylabel ("optimal-$\it{S}$")

sens_var_init = globals ()[sens_var|
for val in sens_vals:
globals ()[sens_var] = val
plt.plot(n_vals, [find_-opt-S(S.max,Z,n)[1] for n in n_vals],
label = str(sens_var) + 7-=-"7 4+ str(val))
globals ()[sens_var| = sens_var_init

plt.legend ()
plt.savefig (”img/” + ”ZoptS.” + str(sens_var) + ”.png”)
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def plt_Zoptn(S_vals, sens_var = None, sens_vals = None):
plt.figure ()
plt . xlabel ("$\it{S}$")
plt.ylabel (’optimal-$\it{n}$")

sens_var_init = globals ()[sens_var|
for val in sens_vals:
globals ()[sens_var] = val
plt.plot(S-vals, [find_opt-n(Z,S)[1] for S in S_vals],
label = str(sens_var) + 7-=-"7 4 str(val))
globals ()[sens_var| = sens_var_init

plt.legend ()
plt.savefig (”img/” + ”Zoptn.” + str(sens_var) + ”.png”)

def plt-Tn(n_vals, sens_var = None, sens_vals = None):

plt.figure ()
plt . xlabel ("$\it{n}$")
plt.ylabel (’$\it{T(n)}$’)
sens_var_init = globals ()[sens_var|
for val in sens_vals:

globals ()[sens_var] = val

plt.plot(n_vals, [T(n,S) for n in n_vals],

label = str(sens_var) + 7-=-" 4+ str(val))

globals ()[sens_var] = sens_var_init
plt.legend ()
plt.savefig (7img/” + ?Tn.” + str(sens_var) + 7 .png”)

def plt_TS(S_vals, sens_var = None, sens_vals = None):

plt.figure ()
plt.xlabel (’$\it{S}$’)
plt.ylabel ("$\it{T(S)}$")
sens_var_init = globals ()[sens_var]
for val in sens_vals:

globals ()[sens_var] = val

plt.plot(S_vals, [T(n,S) for S in S_vals],

label = str(sens_var) + 7-=-7 4+ str(val))

globals ()[sens_var] = sens_var_init
plt.legend ()
plt .savefig (”img/” + ”TS.” + str(sens_var) + ”.png”)

def plt_ToptS(n-vals, sens_var = None, sens_vals = None):
plt.figure ()
plt . xlabel ("$\it{n}$")
plt.ylabel ("optimal-$\it{S}$")

sens_var_init = globals ()[sens_var|
for val in sens_vals:
globals ()[sens_var] = val
plt.plot(n_vals, [find_opt-S(S.max,T,n)[1] for n in n_vals],
label = str(sens_var) + 7-=-"7 4+ str(val))
globals ()[sens_var| = sens_var_init

plt.legend ()
plt.savefig (”img/” + ”ToptS_.” + str(sens_var) + ”.png”)
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def

plt_Toptn(S_vals, sens_var = None,

plt.figure ()
plt.xlabel (’$\it{S}$’)

plt.ylabel (’optimal-$\it{n}$’)

sens_var_init = globals ()[sens_var|

for val in sens_vals:
globals ()[sens_var] = val

plt.plot(S-vals, [find_opt_n(T,S)[1]

”

label = str(sens_var) + 7-=-7

globals ()[sens_var| = sens_var_init

plt.legend ()

sens_vals

for

+

= None):

S in S_vals],
str(val))

plt.savefig (”img/” + ”Toptn.” + str(sens_var) + ”.png”)

S_max = 1000

h = 10

labda = 98

mu = 100

R = 20

c =5

S =20

n = 20

n_vals = range(40)

S_vals = range(40)

print (find_opt_-n_S(Z,n_vals ,S_vals))
print (find_opt_-n_S(T,n_vals ,S_vals))

plt.
plt.
plt.
plt.

plt

plt.
plt.
.plot(S_vals, [Z(n,S) for S in

plt

plt.

plt

for

figure (figsize =[3,4])

xlabel (’$\it{n}$’)

plot (n_vals, [Z(n,S) for n in
plot (n_vals, [T(n,S) for n in

.legend (loc="lower-left ’)
plt.

savefig (”img/” + ”base.n” + 7

figure (figsize =[3,4])
xlabel (’$\it {S}$’)

plot (S-vals, [T(n,S) for S in

.legend (loc="lower-left )
plt.

savefig (”img/” + ”"base_.S” + 7

var_vals in |
[ ’h’, [5,10,15] ],
[ ’labda’, [96,98,99.99
[ 'R’, [16,20,24] ],
[ 7077 [175’9} ]7
]:

sens_var = var_vals [0]
sens_vals = var_vals[1]

n_vals],label
n_vals],label

.png”)

S_vals],label
S_vals],label

.png”)

] ?
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plt_-Zn(n_vals, sens_var, sens._vals)
plt_ZS(S_vals, sens_var, sens_vals)
plt_ZoptS(n_vals, sens_var, sens_vals)
plt_Zoptn(S_vals, sens_var, sens_vals)
plt_Tn(n_vals, sens_var, sens._vals)
plt _TS(S_vals, sens_var, sens_vals)
plt_-ToptS(n_vals, sens_var, sens_vals)
plt_Toptn(S_vals, sens_var, sens_vals)
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