Toannis Liolios

Co-clustering on binary hypergraphs

Master’s thesis

September 7th 2025

Thesis supervisor:

Dr. Mirko Signorelli

Leiden University

Mathematical Institute

Abstract

This thesis investigates co-clustering in binary hypergraphs as a means to reduce
complexity and improve interpretability in higher-order network data. We adapt a
variational expectation—maximization (VEM) framework to jointly cluster nodes and
hyperedges, providing a parsimonious representation of latent structure. Through sim-
ulation studies, we show that the method recovers parameters with high accuracy when
group differences are pronounced, while closer parameter settings require larger sample

sizes for reliable performance.

Contents

1 Introduction

1.1 Graphs
1.2 Hypergraphs
1.3 EM Algorithm
1.3.1 Classification EM
1.3.2 Variational EM o
2 Model
2.1 The Latent Class Analysis model
2.2 Cocluster-LCA
2.3 Estimation
2.3.1 Block EM (BEM)
2.3.2 Classification EM (CEM)
2.4 Model selectiono
241 ICL . ..o
2.4.2 Selection of K, G
2.4.3 Identifiability and the trace maximization algorithm

3 Simulation study

3.1 Data generating mechanism00
3.2 Evaluation metrics L
3.3 Experimental setup

3.3.1 Simulations 1,2and 3

3.3.2 Simulation 4
3.4 Simulations 1-3 (2x2 easy, 2x2 hard, 3x3 mixed)
3.5 Simulation 4 (model-selection) Lo
3.6 The case for multiple random initializations

4 Discussion

A Optimization proofs for the VE and M steps of the BEM
A1 VE-step
A.1.1 Optimizing w.rt. c;(k)o oo
A.1.2 Optimizing wrt d;(g)

10
11
17
19

23
23
25
28
28
31
33
33
34
34

38
39
40
42
42
42
42
54
95

57

A.2.1 Optimizing w.rt. v, o oo 65
A.2.2 Optimizing wr.t. o, 65
A2.3 Optimizing wrt. O . . 0 0 0000000 66

1 Introduction

Networks provide a fundamental framework for modeling and analyzing many real-world
systems, including transportation grids and biological processes. These systems are often
represented using graphs, which are mathematical structures composed of vertices (nodes)
and edges that capture pairwise relationships. Graph-based models have been studied exten-
sively, which has helped with understanding the behavior of a variety of complex networks
(Newman, 2003). However, as the systems we study become increasingly intricate, the limi-
tations of these tools become apparent.

A primary drawback of graphs is their inability to describe multi-way interactions, which
are essential in many domains. For instance, co-authorship networks, ecological interac-
tions and e-mail networks often involve multiple entities interacting simultaneously. In a
co-authorship network, for example, a graph would represent a paper co-authored by au-
thors A, B, and C as three pairwise edges (A-B, B-C, A-C), losing the information that
all three collaborated on the same paper. To capture these higher order interactions, hy-
pergraphs extend the graph framework by introducing hyperedges, a generalization of edges
that connect any number of nodes at once. This added flexibility has made hypergraphs a
powerful tool for modeling complex systems (Battiston et al., 2020).

Hypergraphs often exhibit some underlying structure which is not directly observable.
For instance, consider a hypergraph in which vertices are concert-goers, and the hyperedges
are the set of people who attended a particular concert. The genre of music being played
or the individual preferences of attendees directly influence the resulting hypergraph. If
this structure is not known or observable, it is referred to as latent. Modeling the latent
structure of hypergraphs is therefore of great interest, as it can reveal deeper mechanisms
governing how interactions are formed. Ng and Murphy (2022) focused on modelling the
latent structure of the hyperedges, by clustering the hyperedges based on which nodes partic-
ipated in them. On the other hand, Brusa and Matias (2024) addressed the latent structure
of the nodes, by clustering the nodes into communities with similar behaviours. Simulta-
neous clustering of both nodes and hyperedges, known as co-clustering, remains relatively
unexplored.

In this work, we develop a co-clustering approach for hypergraphs that simultaneously
models latent group structures of both nodes and hyperedges. An Expectation-Maximization
(EM) algorithm is first introduced to clarify the estimation procedure, but due to its in-
tractability, we proceed with a Variational EM (VEM) approach that makes estimation

feasible.

1.1 Graphs

A network can be represented by a graph, which consists of nodes and the connections
between them, known as edges. Graphs provide a framework for modeling systems with

pairwise interactions, and are formally defined as follows:

Definition 1.1 (Graph). A graph G is the ordered pair G = (V, E),
where V- = {v1,vs,...vn} is a set of N vertices (or nodes) and
E C {(vi,vj) | vi,v; € V,i # j} is the set of M edges, each defined as a pair of distinct

vertices.

If the edge (v;, v;) is an ordered pair, then the graph is called directed. In a directed graph,
an interaction is determined not only by the nodes involved but also by their ordering, so
(vi,vj) and (vj,v;) are distinct edges. If instead (v;,v;) is an unordered pair, the graph is
called undirected. In this case, an interaction is fully specified by the participating nodes,
and (v;,v;) and (v;,v;) represent the same edge. A common representation of a graph is
through its adjacency matrix, X. The adjacency matrix is a N x N collection of indicator

functions denoting whether an interaction between two elements exists. Formally,

1, if (v;,v;) € E
0, if (Ui,Uj) ¢ E.

Zl,’ij =

Note that self-interactions are prohibited in this formulation, as x;; = 0 by definition. This
restriction is meaningful in certain contexts, such as in a friendship network, where self-
interactions (e.g., someone being friends with themselves) are not considered. However, in
situations where self-interactions are relevant, i.e. when z;; = 1 for some node i, the graph
would include self-loops. A graph that explicitly excludes self-loops is referred to as a simple
graph.

Another extension is that of weighted graphs. A weighted graph contains information
not only about which interactions occur, but also about the magnitude (weight) of that
interaction. These extensions can be found in supply chain networks (Arora and Ventresca,
2018), where each edge represents a flow of goods, with the weight of the edge representing
the amount of goods being transported. If such information is not included, then we have
an unweighted graph.

Despite the flexibility that graphs offer, they suffer from one major drawback. While
they can represent multiple types of pairwise interactions, they are not capable of modeling

higher-order interactions. For example, let us consider a co-authorship network in which

the authors A, B and C all share a pairwise edge between each other. It is unclear whether
three co-authorships took place (A with B, B with C and C with A), or just a single one (A,
B and C all together), as those yield identical representations in a graph. This scenario is
illustrated in Figure 1. Hypergraphs are a natural extension of graphs which allow for this

specification of the participating nodes of the higher-order interactions.

1
by
A,B,C

Author-Paper 1 Coauthorship Author-Paper 2

,,,
Imn
Tw

p]
]
=
n
>
n

Figure 1: A visualization of the coauthorship problem. In the first scenario, one paper is
coauthored by authors A-B, one paper is coauthored by B-C, and one paper is coauthored
by A-C. In the second scenario, a single paper is jointly coauthored by A, B and C. In the

graph representation, both scenarios result in the same graph representation.

1.2 Hypergraphs

Definition 1.2 (Hypergraph). A hypergraph is an ordered pair G = (V, E), where V. =
{v1,...,un} is the set of N wvertices, and

E = {e; = (vj,...,v;)|vj,-..,v; have jointly interacted,j = 1,..., M} is the set of M
hyperedges.

The index s within each hyperedge denotes the size of the hyperedge, i.e. the number of
nodes that interacted. The hyperedge set E is a subset of all the possible combinations of
the node set, V. Thus, we can see that E' C P(V'), where P is the power set. Given that the
power set of a set of size N has cardinality equal to 2%, it follows that M < 2V. While graphs
typically use an adjacency matrix to represent pairwise connections, this does not extend
naturally to higher-order interactions. To accommodate these, the incidence matrix is used,
which is a generalization of the adjacency matrix that encodes higher-order interactions. It
is a M x N matrix where the rows represent the hyperedges, while the columns represent
the nodes. The entry in the j-th row and the i-th column is equal to 1 if the i-th node
participates in the j-th hyperedge, and 0 otherwise.

1, ifv e

0, if V; ¢ €;

Iji =

To aid in understanding this notation, we consider the following incidence matrix with 7

nodes and 3 hyperedges.

X =

0
1 (1)
1

_ O
_ O O

1
0
0

o O =

0
1
0

~ O = O

, the second hyperedge is e; = (4,5, 6),

—~

1,2,3
and the last hyperedge is e3 = (1,6,7). We can visualize hypergraphs as overlapping subsets

In equation (1), the first hyperedge is e; =

of the node set, similarly to a Venn diagram. In our case, the visualization of the hypergraph

is in Figure 2.

10

[©
®

@

Figure 2: The visualization of the hypergraph with incidence matrix (1). Each colored shape

represents a hypergraph, while the orange circles represent the individual nodes.

In principle, a single node may appear multiple times in the same hyperedge, and there is
no minimum requirement on the number of nodes per hyperedge. If we enforce a maximum
of one appearance of each node per hyperedge and consider hyperedges of size m > 2 (i.e. at
least a pairwise interaction), we construct a simple hypergraph. In such hypergraphs, each

hyperedge can only appear once.

Definition 1.3 (Simple hypergraph). A hypergraph G = (V, E) is called simple if every node
appears at most once per hyperedge, every hyperedge is at least of size 2, and no hyperedge

15 repeated.

While the simplicity assumption is common in hypergraph-based models, especially in
applications such as social network analysis (Xiao et al., 2024), we do not impose it in this
thesis. Hyperedges may be of any size and may appear multiple times. We introduce the
notion of simple hypergraphs solely due to their prevalence in the literature. Nevertheless,

all derived results apply equally when restricted to simple hypergraphs.

1.3 EM Algorithm

The Expectation-Maximization (EM) algorithm, introduced by Dempster et al. (1977), is
an iterative maximum likelihood estimation procedure for statistical models that depend on
latent (i.e. unobserved) variables. These can be variables that influence the observed data
but can not be directly measured. Whereas maximum likelihood estimation models without
latent variables can be straightforward, the same procedure can not be directly applied into

latent models. An example is given below.

Definition 1.4 (Mixture distribution). Let fi(x),..., fx(x) be a collection of probability

density functions, and let ¢ = (cy,...,cx) be a vector of non-negative mixture weights such

11

that Z,[f:l ¢, = 1. A random wvariable X is said to follow a mixture distribution with

component densities fi,..., fr and weights c if its probability density function is given by:

Ix(z) = Z crfr(x).

The mixture distribution reflects a scenario where each observation of a random variable
gets generated from density fr with probability ¢;. This can happen when the data is gen-
erated by several subpopulations, each with its own parameters, but we only observe the

overall result without knowing which subpopulation each observation came from.

Assume we have a random variable X which follows a Gaussian mixture distribution. This
means, that for mixture weights ¢y, ..., cx and mixture parameters ¢, = (u1,01),...,0k,
each observation of X comes from N (uy, o) with probability ¢;. Let fi, denote the probabil-
ity density function of the k-th component normal distribution. Let Z = (Z, ..., Z,) be the
latent unobserved random variable of group assignments for the random vector (X7, ..., X,,).
For the ¢ —th observation X;, Z; = k if-f the observation was generated by the k —th compo-
nent. This information is hidden, hence the characterization ”latent”. The density of each

observation X; under the mixture is

k=1
K
1 (z; — Mk)z)
= c exp | —————], 2
> o (-5 (2

Using 6 = (04, ...,0;) and ¢ = (cy, ...,), the marginal log-likelihood of the entire vector

can be expanded as follows

logL(0, | X) = log(P(X, = z1,.... X, = x,))

= log (_H P(X; = a))

= Zlog (Ckfk(%’))
_ Zlog (Z Ck\/% exp (——(xi Q_ng>)) . (3)

Direct optimization of the likelihood in (3) w.r.t. pux, ok, and ¢ is infeasible because the
group assignments Z are unobserved. As a result, the likelihood involves a sum over all
possible group assignments, leading to a complicated, nonconvex surface. However, if we
had access to information about either the true parameter values or the exact component
that generates each observation, an analytical solution could be obtained. We present these
two situations.

If the component assignment of each observation was known, we could perform MLE in
the classical way. For example, assume that Z = (Z,...,Z,) is known to us. For each

component k, we denote the set of observations generated by this component as
In=A{i: Z; = k}.

Let the size of this set be denoted by ny = |I|. Since all of the observations whose index is in
I}, are generated from the same distribution, they represent an independent and identically
distributed (i.i.d) sample of length nj from a normal distribution with unknown mean gy
and unknown variance o;. We define the marginal likelihood exclusively for the observations
that were generated by the k-th component as L®*, and its respective marginal log-likelihood

as [®), We can decompose the model’s full marginal likelihood, L(8|X), as
K
L(O)X) = [LP(6x|X).
k=1

Similarly, we decompose the marginal log-likelihood, [(8]|X) as

K

1(8]1X) =D 1M (6,]X).

i=1
This follows from the distinctness of the elements of the sets I,. Each component specific

marginal log-likelihood, I(®), can be calculated

W64 X) = logL™ (6| X) = log (H fk(Xi)>

i€y,

1 (Xi - Nk)Q)
=lo e -
g(};[k V2T oy, Xp(207

-2 (G ()

1
— Xi — u)?.
i€y,

= —% log(27) — ny log oy —

13

Maximization with respect to py and oy, respectively yields the maximum likelihood estimates

/lka O/\—k‘

This process can be repeated independently for every k, providing maximum likelihood
estimates for every parameter of interest.

Inversely, we assume that the true parameter values were known, but the group assignment
variable Z = (Zy,...,Z,) remained latent. We first give the definition of the posterior
distribution of the latent variable Z.

Definition 1.5 (Posterior distribution of the latent variable). Let X = (Xi,...,X,) be an
observation vector from a mizture distribution with K components. Let Z = (Zy,...,Zy)
denote the latent group assignment variable. The quantity P(Z|X) is called the posterior

distribution of the latent variable.

The posterior distribution of the latent variable is the probability that an observation

was generated from a certain component. We can expand it using Bayes’ formula

P(Z; = k) fr(Xi)
f(X)
Ckfk(Xi)

K

Z cr frr (Xz)

k'=1

P(Z; = k| X;) =

1 (Xi—pi)?
e, P <_ Q%k) (4)
f Cly ——— exp <——(Xi7“k/)2>
=1 \/ﬂ()’k/ 2013/

Since all of the parameters used in (4) are known, estimating P(Z; = k|X;) only requires a
straightforward computation.

Thus, if we knew the latent group assignments, we could estimate each component’s parame-
ters. Similarly, if we knew each component’s parameters, we could estimate the latent group
assignments. The EM algorithm builds on top of these observations. Before we present it,
we introduce the complete data likelihood, which is the likelihood with the assumption that

Z is known.

14

Definition 1.6 (Complete data likelihood). Let X = (X1,...,X,,) be an observation vector
generated by a k-component mizture. The complete data likelihood L.(0,c|X,Z) and the
complete data log-likelihood 1.(0,c| X, Z) are

N K
o(0,cX, Z) HH (i fu(X 01))” (5)
i=1 k=1
and
1.(6, ¢| X, Z) = logL.(6, ¢| X, Z) ZZZJog (cx fi(Xi; 00) (6)
=1 k=1

As the latent group assignments are not actually known, we work with the expectation

of the complete data log likelihood w.r.t. Z|X,

N
Ezx [I.(0,c|X, Z)] = Ezx ZZ Zilog (cr fu(Xi:0k))

i=1 k=1

DY B[Zillog (cufi(Xi; 6r) (7)

1 1

=
Il

(2

WE
™)~

IP)(Z, = k|X)log (Ckfk(Xi; Ok)) .

1

b
Il

1

(2

It is important to distinguish between the complete data likelihood, and the marginal
likelihood as defined in (3). In terms of notation, L(-),[(-) are used to denote the marginal
likelihood and marginal log-likelihood respectively, whereas L.(-) and [.(-) are used to denote
the complete-data likelihood and complete-data log-likelihood. The complete data likelihood,
L., assumes that the latent variable Z is observed, and includes that information in the
likelihood expression, resulting in a simpler form. In contrast, the marginal likelihood, L,
reflects the actual setting where Z is unobservable. It accounts for this uncertainty by
summing over all possible values, leading to a more complex expression. Although the
marginal likelihood is the true likelihood of interest for inference, it can be problematic to
work with directly, as shown in the normal mixture example. The EM addresses this issue
by working with the expected value of the complete data likelihood.

In essence, we pretend to know the component-specific parameters to calculate the expec-
tation of the complete data log-likelihood (E-step), and then we use that result to maximize
that same likelihood with respect to our parameters of interest (M-step). Dempster et al.
(1977) showed that the parameters of the mixture model can be estimated by iterating be-

tween the E and M steps multiple times. We now provide a formal description of the EM

15

algorithm.

Let X = (Xj,...,X,) denote the observation vector generated by a mixture distribution

with K components. Let the expectation of the complete data log-likelihood be denoted by
Q(0,c) = Ezx[l(0,c|X, Z)]. The EM algorithm is now described as follows:

1.

Sett =0

0

Generate random starting estimates of the mixture weights, ¢®, and the mixture

component parameters, 0.

E-Step
Evaluate Q(8, |0, c®) = E x[1.(0", cV|X, Z)]

M-Step

Update the mixture weights ¢ and model parameters @ by maximizing)
Y = argmaxQ(0, ¢[0", V)
and

0" = argmaxQ(0, ¢[8V, V)

]

Increase t by 1

Repeat steps 3 to 5 with the new estimates until convergence, or until the maximum

number of iterations is reached.

The convergence of the EM algorithm can be determined by two different methods (Wu,

1983). The first approach is to check whether the change in the @Q-function between iterations

falls below a predetermined threshold e. The other approach is to monitor the change in the

parameter estimates and mixture weights, and declare convergence once these changes are

smaller than e . In this thesis, we adopt the latter criterion, using the change in parameters

and weights to assess convergence. We will claim the EM algorithm has converged when

07 — 0] < e, (8)
et — | < e, 9)
Vke{l,...,K}, (10)

16

for any two consecutive iterations, for some chosen ¢ > 0. If that condition is not satis-
fied within the predetermined maximum number of iterations, T},.., the algorithm is also
terminated, but it has not converged.

The EM algorithm has been proven to be correct (Rubin and Little, 1991), meaning that
increases in the complete data likelihood, Q(@, c|0(t)7 c"), guarantee increases in the model’s
marginal likelihood, L(0®, ¢®|X). Thus, since Q(8, c|9(t), c) increases in every iteration,
the marginal likelihood also increases. However, this monotonic improvement property can
be problematic. Because the EM algorithm guarantees an increase in the expected complete
data log-likelihood at each iteration, it is a greedy algorithm. If it is initialized near an
underwhelming local maximum, it will converge to that point and cannot escape, since any
step away would reduce the objective function. This tendency of EM to get trapped in poor
local optima is well studied in the literature (Dempster et al., 1977), and several strategies
have been proposed to mitigate it. If prior knowledge about the approximate range or values
of the parameters is available, it can be used to guide initialization in a way that increases
the chance of converging to a better maximum. In certain cases, such as with a normal
mixture model, applying the k-means algorithm can yield parameter estimates that serve as
a reasonable starting point, capturing part of the underlying structure of the data (Shireman
et al., 2015). When such prior knowledge or techniques are not available, empirical studies
suggest that running the algorithm multiple times with different random initializations and
selecting the best outcome is an effective strategy (Biernacki et al., 2003).

In some cases, an analytical closed-form update rule for both the E and M steps can
be derived. The normal distribution mixture that we demonstrated in one such case. If
this derivation is too challenging for either step, a numerical optimization method may be
employed. Issues arise when even numerical optimization proves to computationally infeasi-
ble, in which case we arrive at a standstill. Multiple extensions of the EM algorithm have
been proposed to solve this issue, such as the Classification EM (CEM) and the Variational
EM (VEM). The former is employed when we only care about the group assignments, and
is a relaxation of the classical EM, whereas the latter uses an approximate distribution to

simplify the expression of (), which it then optimizes.

1.3.1 Classification EM

The Classification EM (Celeux and Govaert, 1985) is a relaxation of the EM presented
in the previous section. Instead of using the soft clustering scheme of the EM, we hard

cluster each observation into a single group. In this way, a definitive clustering is obtained

17

at each iteration, as opposed to the EM algorithm, which computes a vector of posterior
probabilities. The utility of this variant stems from two advantages. Firstly, it is much
simpler computationally, and runs significantly faster than a classical EM. Secondly, we
estimate the group assignment vector Z in every iteration, making use of the complete data
log-likelihood and not the expectation of it. As a result, it can be applied to problems
in which the expected complete data likelihood is difficult to compute or optimize. The
co-clustering problem of hypergraphs is one of those problems, and we will explore that in
more detail in Chapter 2. Let X = (X3,...,X,,) be an observation vector generated by a

k-component mixture. The CEM algorithm is described as follows:

1. Set ¢t = 0.

2. Generate random starting estimates of the mixture weights, c,go), the mixture compo-

nent parameters, 9,530), and initial class assignments Z(.

3. CE-Step (Classification E-Step)
For each data point X;, assign it to the most likely component based on the current

parameters:
ZZ-(Hl) =argmax P(Z; = k | X, 0, c"),
k
i.e., assign each point to the component with the highest posterior probability.
4. M-Step

Update the parameters based on the hard assignments:
1 n
(t+1) _ (t+1) _
c = — 1z =k},
Szt =k

=1

and
0!tV = argmax (0, ¢V | X, Z(H),
0

where [. is the complete-data log-likelihood.
5. Increase t by 1.

6. Repeat steps 3 to 5 until convergence or until the maximum number of iterations is

reached.

18

1.3.2 Variational EM

An important limitation of EM estimation is that it requires computing the posterior dis-
tribution of the latent variable, P(Z|X). In many cases, this posterior is either analytically
intractable or computationally infeasible to estimate. This makes the E-step, which uses
P(Z|X) to evaluate the expected complete-data log-likelihood, difficult or impossible to
perform. The Variational EM (Neal and Hinton, 2000) offers a solution by replacing the in-
tractable posterior with a more manageable approximation. The approximating distribution,
q(Z), is chosen from a restricted family of distributions typically defined to simplify computa-
tion, for example by assuming independence between latent variables. The goal is to find the
q(Z) that is closest to the true posterior. Closeness is measured using the Kullback-Leibler
(KL) divergence (Kullback and Leibler, 1951), which quantifies the difference between two
probability distributions:

Definition 1.7 (Kullback-Leibler divergence). Given distributions Q@ and P, the Kullback-
Leibler (KL) divergence from @ to P is defined as:

DaQlIP] = [Quos s

The KL divergence is always non-negative and equals zero only when the two distribu-
tions are identical (Kullback and Leibler, 1951). A larger KL divergence indicates greater
dissimilarity between the distributions, while a smaller value suggests that the distributions
are more similar. Thus, the search for a suitable approximation of P(Z|X) can be framed
as minimizing the KL divergence between the true posterior P(Z|X) and a set of candidate
distributions. This leads to the following optimization problem, where the goal is to find the

distribution ¢(Z) that minimizes the divergence:
§(Z) = argmin Dyt [¢(Z)[[P(Z]X)].

The minimization of the KL divergence is closely related to the maximization of the model’s

marginal likelihood, through a result known as the Kullback-Leibler divergence decomposition.

Lemma 1.1 (Kullback-Leibler divergence decomposition). Let X be a random variable gen-
erated by a k-component mixture. Let Z denote the latent group assignment variable as-
sociated with X. Let q(Z) be a distribution over the latent variable. The Kullback-Leibler
divergence from q(Z) to P(Z|X) can be decomposed as

Dir[a(2)|[P(Z]X)] = Eyz)[log ¢(Z)] — Eq(z)[log P(Z, X)] + log P(X)
where log P(X) is the marginal log-likelihood.

19

Proof.

q(Z)
P(Z|X)

Diczla(2)|[P(Z]X)] = / 4(Z)log

B q(Z)

= Fan {1 P(Z\XJ

= Eqyz)llogq(Z) —logP(Z|X)]

= Eyz)[log ¢(Z2)] — Eq(z)[log P(Z] X)]
(

~ By logal(2)] — Eyollog)

— E,2)log 4(2)] — E,2)log P(Z, X)) + log B(X).

) =
)

Re-arranging the terms yields
log P(X) = Eq(z) [log P(Z, X)] = Eq(z)[log ¢(Z)] + Dir[q(2)[[P(Z]| X)]. (11)

The first two terms of the right-hand side constitute the Evidence Lower Bound (ELBO)

of the variational distribution ¢(Z), namely

ELBO(q(Z)) = Ey)log B(Z, X)] ~ Eyz)llog q(Z)]
<
log P(X) = ELBO(q(2)) + Dic1[q(2)|[B(Z|X) (12)

There are two main corollaries of this result. First, because the KL divergence is always
non-negative (Kullback and Leibler, 1951) the marginal log-likelihood is always larger than
the ELBO, i.e.

log P(X) > ELBO(q(2)) (13)

which establishes the ELBO as a lower bound for the marginal log-likelihood. Second,
because log P(X') does not depend on the choice of ¢(Z), the left-hand side of (12) remains
constant under the minimization of the KL divergence w.r.t. ¢(Z). As aresult, the right hand
side must also remain constant. Therefore, any decrease in the KL divergence corresponds to
an equal increase in the ELBO. This implies that minimizing the KL divergence is equivalent
to maximizing the ELBO.

Building on these observations, the Variational EM (VEM) algorithm optimizes a lower
bound on the marginal likelihood by performing EM updates on the ELBO instead of the

20

complete-data log-likelihood. The E-step is referred to as the Variational E-step to empha-
size this adjustment. This yields an increasing sequence of lower bounds, which becomes

tight when the variational approximation ¢(Z) closely matches the true posterior.

The VEM algorithm is described as follows:

1. Set t =0.
2. Generate random starting estimates of the mixture weights, c,go), the mixture compo-

nent parameters, 9,530), and the variational parameters ¢(®(Z2).

3. VE-Step (Variational E-Step)
Update the variational distribution by solving:

¢"t(Z) = arg max E, oz [log P(X, Z | 89, eD)] — By llog ¢ (Z)]
q\(2)

4. M-Step
Update the parameters by:

Y = argmax E 1z [log P(X, Z | 89, V)] = B 1) (5 [log ¢+ (2)]

Cc

6D = arg maxE,) [log P(X, Z | 6, € D)] — By log ¢V (2)]

5. Increase t by 1.

D

. Repeat steps 3—5 until convergence or the maximum number of iterations is reached.

Convergence is assessed in the same way as in the standard EM algorithm.
One advantage of the variational approach is that it can mitigate issues such as dependen-
cies between latent group assignments. It has been successfully applied in various settings,
including co-clustering problems (Keribin et al., 2012). However, the method yields only an
approximate solution, and the quality of this approximation cannot be quantified. This is
because evaluating the KL divergence requires access to exact probability values, which are
typically intractable in the VEM setting. Furthermore, like the classical EM algorithm, VEM
is sensitive to initialization and prone to convergence to local optima (Blei et al., 2017). For

this reason, non-random or carefully designed initialization strategies are often necessary.

21

2 Model

The aim of this chapter is to provide an overview of previously studied models and to
introduce our extension. In Section 2.1, we review the existing models along with their
associated estimation methods. Section 2.2 then presents our model in detail, including
derivations of both its marginal and complete-data likelihood. Following this, Section 2.3
focuses on the application of the CEM and VEM algorithms to our model, obtaining a
re-estimation procedure. Finally, Section 2.4 addresses issues related to identifiability and

model selection.

2.1 The Latent Class Analysis model

}M><N’ of a

We are interested in modeling the structure of the incidence matrix, X € {0,1
hypergraph. A naive first step would be to assume that every node has the same probability
of joining any hyperedge, meaning that every binary entry X;; depends on a shared single

parameter, 0 < # < 1. This would result in the data generating process
X;i ~ Bernoulli(9), Vi, j.

The marginal likelihood of this model can be computed and optimized, as it is a collection
of MN ii.d. Bernoullis, making it a standard maximum likelihood estimation problem.
However, it lacks the complexity to model hyperedge size heterogeneity which is often present
in observed networks. A natural extension is the saturated hypergraph model, which models
each node-hyperedge interaction individually, replacing the single parameter 6 with M - N

parameters, 0;;,. We denote the 8;; matrix as 8 = (6]-1-) ~ The marginal likelihood

j=1,...M;i=1,...,

23

of this model is

M N
=111 =00

This model not only involves a very large number of parameters that grows with both M, N,

but also from the fact that only a single observation is available to estimate each parameter.

To overcome both of these issues, the LCA (Ng and Murphy, 2022) assumes a latent clustering

of G categories over the hyperedges. This idea is motivated from the fact that, in many

applications, the hyperedges may be categorized into intuitive groups. For instance, in a

co-authorship network, the group of a hyperedge may represent the field of the publication.

In this model, the event-joining probability depends only on the node and the group of the

hyperedge, reducing the number of parameters to G(N + 1) - 1. The group of each hyperedge

is randomly drawn from a multinomial distribution with parameter § = (01, ..
denoting Z = (Z, ..

generation process

Z; ~ Multinomial(6), j=1,....M
XjilZ; ~ Bernoulli(0z,,), Vi, j

The marginal likelihood of this model is:

.y 5(;) By
., Zn) the latent group assignment vector, we have the following data

(15)

as P(Z; = g) = 0,.

Direct maximum likelihood estimation of this model’s marginal likelihood is intractable. Ng
and Murphy (2022) overcame this challenge by introducing a re-estimation procedure based
on a modified Expectation-Maximization algorithm. Building on this, Brusa and Matias
(2024) proposed a similar approach focused exclusively on node clustering in hypergraphs.
Our work extends these methods by performing simultaneous clustering on both the nodes

and hyperedges.

2.2 Cocluster-LCA

We consider a hypergraph with N nodes and M hyperedges, X € {0,1}"*¥. We assume
it has two independent latent clustering procedures, one for the nodes and one for the
hyperedges. The event joining probability depends only on the groups of the node and
the hyperedge. We select a fixed number of clusters for each procedure, namely G for the
hyperedges and K for the nodes. Let Z = (Zy,...,Zy), W = (Wy,...,Wy) be the latent

cluster assignment variables for the hyperedges and nodes respectively, i.e.,
Z; = g < Hyperedge j belongs to group g,
W; = k < Node 7 belongs to group k.
The a priori group assignment probabilities are denoted by § = (d1,...,dq) for the
hyperedge groups, and v = (71, .., 7k) for the node groups. These denote the probabilities

that any hyperedge (or, respectively, node) originated from a certain group, before the

information of X is incorporated.

P(Z; =g) =0, je{l,...,M}

G
with Y ", =1,6,>0

g=1

P(W; = k) =y, i € {1,...,N}

K
with ka =1,v > 0.
k=1

Our aim is to simplify the LCA model of equation (15) by making the hyperedge-joining
probability parameter depend only on the clusters of each node-hyperedge pair. Thus, we

require G X K parameters for each combination:

P(X]z‘ZJ =g, Wz = k’) = ng,

25

which results in the following representation of the data-generating mechanism

Z; ~ Multinomial(9), j=1,...,M
W; ~ Multinomial(y), i=1,...,N
in|Zj, Wz ~ BeTnDUlli(erWi), VZ,j

The total number of parameters is KG + (G — 1) + (K — 1). For relatively small choices
of K,G compared to N, M, this number of parameters can become much smaller than
the parameters of the saturated model, the hyperedge clustering model (15), and the node
clustering model (Brusa and Matias, 2024). This reduction results in a more parsimonious
model, whose interpretation is simpler. We denote the 6y, matrix as 8 = (egk)gzl,..‘,G; k=1, K"
The marginal likelihood of the model is

L(67770‘X) = HP(GJ)

v
- H ZP(GJ’ZJ =g)P(Z; = g)
7j=1 g=1
M G N
- HZP(Zj =9) HP(XJ1|ZJ =g)
Jj=1g=1 i=1
M G N K
“TIS Pz =) [I S P(XulWi = k, Z; =) P(W; = k)
Jj=1g=1 i=1 k=1

M G N K
A TS - o w

This marginal likelihood cannot be maximized in closed form. Numerical optimization
also proves to be infeasible for a reasonably sized dataset, as a single computation of the
marginal likelihood requires the summation of KV x GM terms. For example, for a hyper-
graph which contains M = 50 hyperedges, N = 50 nodes, and K = G = 2 latent groups, this
corresponds to summing over 2!% terms. In order to estimate the parameters, we attempt
to make use of the EM algorithm, which requires us to work with the complete data likeli-
hood. By defining the indicator variables corresponding to each node’s/hyperedge’s group

assignment
e Node-specific group assignment indicator: Wi, = Lyw,—x;},
e Hyperedge-specific group assignment indicator: Zj, = 1(z,—4},

26

we can write the complete data likelihood L¢, and the corresponding complete data log-

likelihood, - as

M d N K M G N K
Lc(0,6,9|X,Z,W) = HH(S?HH o TTTT T TT6G (1 — 0ot —7) %™ (17)

j=1g=1 j=1g=1n=1k=1
M G N K
1c(0,0,v|X,Z,W) = ZZZngog +ZZWz‘kl09(7k)
=1 g=1 n=1 k=1
M G N K
+ZZZZZJQ Wiklog(zﬂ(l — Ogi) 7). (18)
7j=1 g=1 n=1 k=1

Finally, by taking the expectation of the complete data log-likelihood over Z, W|X, we derive
the Q-function

M G N K
Ezwix [lc(0,8,9|X, Z, W) =Ezwix | Y_ Y Ziglog(d,) + > > Walog()

7j=1 g=1 n=1 k=1

N K
ST 2, Wikdog (97 (1 — 0g1))

1 n=1 k=1

+

INE
Mo

Il
—_

J

= ZZEZW|X igllog(d,) +

Jj=1 g=1

M G N K
+ Z DD Erwix[ZigWallog (07 (1 — 6gi)') (19)

g

Mz

K
Z Ezwx [Willog(Vk)
=1

1k

3
Il

The specification of the Q-function requires the calculation of the following posterior distri-

butions:
o Ezwix[Zjy) =P(Z; = g|X;.),
o Ezwix[Wi] =P(W; = k| X.),
o Eywx[ZjgWi]| =P(Z; = g, W; = k| X).

where X,;, X;. denote the ¢-th column and j-th row of the incidence matrix X. The first two

quantities can be obtained by applying Bayes’ rule:

27

P(X;|Z; = g)P(Z; = g)
P(X,)

N K o
0g TT 22 1l (1 — Ogr) =
_ i=1k=1 , (20)

P(Z; = g|X;.) =

P
P(W; = k|X,) =

M G .
e T35 0,055 (1 =)~

1 1
= — . (21)

Z w11 Z 0glts (1 = Ogir) =71

k=1 j=1g=

We apply Bayes’ rule to the third quantity,

P(X1Z, = 9, Wi = k)P(Z; = g)P(W; = k)

P(Z; = g, W; = k|X) = P 0X)

(22)

The denominator in (22), P(X), is the model’s marginal likelihood as defined in Equation
(16). Because this quantity is intractable to compute, estimating P(Z; = ¢, W; = k | X)
becomes computationally infeasible. In the context of latent block models, earlier work by
Govaert and Nadif (2008) and Keribin et al. (2012) introduced two EM-based approaches
that can be adapted to our setting. The first, Block EM (BEM), generalizes the Variational
EM algorithm for coclustering by using a variational distribution as an approximation of the
posterior distribution. The second, Classification EM (CEM), takes a more direct route by
maximizing the complete-data log-likelihood without relying on such approximations. In the
next chapter, we explore these methods in detail and examine their properties in the context

of our model.

2.3 Estimation
2.3.1 Block EM (BEM)

The intractability of the posterior distribution P(Z; = g, W; = k|X) can be solved with a
VEM approach. We search for a variational distribution qzw (Z, W) which is the closest
approximation to the intractable posterior, in terms of the KL divergence. We restrict our

search to variational distributions with the property qzw (Z, W) = qz(Z)qw (W), where

28

4z, qw are variational distributions that only depends on Z, W respectively. In addition, we

assume that these two distribution can be further factorized by

= H dz; (ZJ)
W) = HquW

These two simplifications are equivalent to assuming that Z and W are a posteriori inde-
pendent, and that all the Z; and all the W; are pairwise independent among themselves.

Throughout the thesis we will use the notation

These are the approximate posterior distributions of node-specific latent assignment proba-
bility, and the hyperedge specific latent assignment probability. When referring to the entire
set of ¢;(k) for all 7, k, or the entire set of d;(g), we use the notation ¢ = (cl(k))l

and d = (dj(g)>j:1,...,M; 9=1,..G
we aim to optimize with the VEM. Govaert and Nadif (2008) proposed an optimization

=1,.,N; k=1,...,K
respectively. These two are the variational distributions that

criterion to be optimized, denoted ®. This criterion coincides with the ELBO of the varia-
tional distribution gz w (Z, W) with the posterior independence property between Z, W. The

proposed criterion is:
(I)(C7 da v, 57 0) = IE"Z,VV|X [lC(ev 67 7|X7 Z? W)] + H(C) + H(d) (23)

where H(c), H(d) denotes the entropy of ¢, d respectively, i.e.

ZZQ Yog(c;i(k)),

=1 k=1

ZZdJ)log(d;(g))-

Jj=1g=1
Even with this variational approximation, performing a joint maximization of ® for both
¢, d analytically (E-step) remains difficult. Consequently, we will use a fixed point iteration
for the E-step, which iteratively maximizes ® w.r.t. ¢ with fixed d, and then maximizes it
w.r.t. d for fixed e. This process is repeated until convergence is met. Putting everything
together, we construct a VEM that uses alternating optimization on the VE-step, optimiz-
ing ® w.r.t. ¢, d first (using the fixed point algorithm), with fixed 6,4, (VE-step), and

29

optimizing w.r.t. 8,7, d second, with fixed ¢, d (M-step).
The optimization of ® with respect to ¢, for fixed 6,+, 9, d yields

G
e T 0 (1=)
g=1

k) = , (24)
2w 11015 (1= B
The optimization of ® with respect to d, for fixed 8,, 4, c yields
K
R 59 kljl Qz;k (1 - ‘gkg>8k_yﬂC
i) = 5 , (25)
) Ogr I1 H,i;'f(l - ekg/)sk_yjk
g'=1 k=1
where
M N M N
Qig = ng‘(g)%‘i; Yjk = Z ci(k)rji, by = Zdj(9)7 Sk = Z ci(k).
=1 =1 3=1 i=1
The optimization of G with respect to 8,, d for fixed ¢, d yields
N
> ai(h
ﬁ/k == N) (26)
M
2. 4;(9)
A
0g == (27)
M N
A ; ; zjid;(g)ci(k)
Ogr = —1— : (28)
> 2. dj(g)ei(k)
j=1li=1

The block EM algorithm is as follows:
1. Initialize ¢©,d©, 50 ~© 9O
2. Fort=1,...,

2.1. VE-step
Estimate ¢, d* via a fixed point algorithm

30

i. Initialize &(0) —dW
For s=1,...,

ii. Calculate E(S)(k) given (gl(sfl)

{ D8O 0W) via (24) Vi, k

iii. Calculate ng;) (g9) given (&), ~® §0 91 via (25) Vj, g
iv. Increase s by 1
v. Repeat steps (ii) - (iv) until convergence
vi. Update dgtﬂ)(g) = J§S) (9)

Update cl(-tﬂ)(k) = 51(-5)(k:)

2.2. M-step

Update 6D ~(t+D) 90+ with formulas (26), (27), (28) using ct1), dV)

2.3. Increase t by 1

3. Repeat steps 2.1-2.3 until convergence or until the maximum number of iterations has

been reached.

We consider the BEM algorithm to have converged when

[y =~V <,
|5(t) _ 5(t*1)‘ <e,

100 — 9| < ¢

for a specified tolerance € > 0, i.e. each parameter shifts less than € between two consecutive
iterations.
The re-estimation formulas are again obtained through the constrained optimization of

the new criterion, and the proofs are in appendix (A).

2.3.2 Classification EM (CEM)

The classification EM assigns a hard clustering in every iteration, instead of the probabilistic
clustering by the classical EM. Therefore, it uses the complete data log-likelihood directly
and not its expectation w.r.t. the latent grouping variables. This is particularly useful in the
hypergraph co-clustering context, as it avoids the need for any variational approximation.

The algorithm is as follows:
1. Initialize 8@, ~(© 9©

31

2. Fort=1,...,

2.1. E-step
Update the posterior probabilities c (t) (k‘) d() (g) via a fixed point algorithm, using
(24), (25)

2.2. Assign each node v; and each hyperedge e;, to the cluster which provides the
maximum posterior probability.

WY = arg max(cl” (k)),
k

Z\""V = argmax(d\ (9)),
g

2.3. M-step

Update estimates as:

N
W‘(t+1)
(t+1) _ # of nodes in cluster k _ ; ik
k N -
il t+1)
sty _ # of hyperedges in cluster g _ =
g M M

N M
(t+1) (t+1)

J9

N M
Z Z W(ki:f—‘rl)Z(t-i—l)

? J9

2.4. Increase t by 1

2.5. Repeat until convergence or until the maximum number of iterations is reached.

We consider the CEM algorithm to have converged when

[y =] <
‘5(t) s ‘ <,

100 — 91| < ¢

for a specified tolerance € > 0, i.e. each parameter shifts less than € between two consecutive

iterations.

32

2.4 Model selection

While the Block EM algorithm takes on the task of estimating every parameter of the
model, two hyperparameters require our specification. Specifically, these are the number of
node groups, K, and the number of hyperedge groups, G. As their true sizes are latent,
we require a way to establish a set of candidate models, and then order them based on
some measure. Measures such as the Akaike Information Criterion (AIC) or the Bayesian
Information Criterion (BIC) are commonly used for such model selection problems. For a
given model m with estimated marginal likelihood IA/, a parameter set of size k and a sample

size of n, they are defined as:

A

BIC(m) -In(n) —21In(L)

AIC(m) =2k —21In(L)
However, in the case of Cocluster-LCA, the calculation of the marginal likelihood L is in-
tractable, making both measures unusable. A potential approach to tackling this issue would
be to replace the real marginal likelihood with its variational approximation, through the
ELBO. However, the tightness of the bound between the real and variational likelihood is

unknown, making this an approximation of uncertain quality. To counter this problem,
Biernacki et al. (2000) introduced the Integrated Complete Likelihood (ICL).

2.4.1 ICL

The ICL is defined as the logarithm of the integrated complete likelihood. It is defined as

Definition 2.1 (Integrated Complete Likelihood). Given a Cocluster-LCA model, R with
parameter set Q = (v, 6,0), the Integrated Complete Likelihood is

[CL(R) = / (X, Z,W|Q: M)p(C: M)

The practicality of the ICL also lies in the ability to easily estimate it. Keribin et al.
(2012) have provided a closed-form solution for the ICL of a binary co-clustering model,

which is:

Theorem 1 (Closed form solution of the ICL (Keribin et al., 2012)). Given a Cocluster-
LCA model, R, with parameter set Q = (v, 98,0), the Integrated Complete Likelihood can be

33

computed in closed form as

ICL(R) =logT'(G) +1log (M) — logT'(N + G) — logT'(K + M)
+) logT(Nj, + 1) + > 1ogT(N? + 1) + > logT'(nf + 1)
k Y k,g

+log T'(Ng N9 — nf + 1) — log ' (N, N9 + 2)

where T'(+) is the Gamma function, K is the number of node clusters, G is the number of

hyperedge clusters, M is the number of observed hyperedges, N is the number of nodes and

N M N M
Ne=) Wi, NO=> Zj, nl=> > WaZjX;.
=1 7j=1 =1 j=1

Zjq and Wy, are obtained through the hard clustering of the nodes and hyperedges with

the maximization of d;(g) and ¢;(k), respectively.

2.4.2 Selection of K, G

A plethora search algorithms can be employed to search through the candidate models, such
as the one developed by Keribin et al. (2012). However, they come at a cost of information
loss, as not all possible configurations are examined. Therefore, we opt to use a brute force
method of exhausting every single predefined combination of K, G. To this end, we upper
and lower bound K, G on arbitrary but computationally feasible values, and fit a model for
every combination that falls within the permissible range. Then a IC'L value is calculated
for each model, and the model with the highest IC'L is chosen.

2.4.3 Identifiability and the trace maximization algorithm

The Cocluster-LCA is identifiable up to label permutation under very mild conditions (Brault
et al., 2014). These are:

L. >0 Vked{l,...,K}
2.6,>0 Vge{l,...,G}
3. N>2K -1
4. M >2G -1

5 K >2and G > 2

34

6. The matrix product @47 yields a G x 1 vector with distinct entries.

7. The matrix product 80 yields a 1 x K vector with distinct entries.

Conditions 6 and 7 ensure that each latent group corresponds to a distinct distribution.
Without these conditions, different parameter configurations could lead to indistinguishable
or nearly identical distributions, making the model non-identifiable. Condition 5 is necessary
because a Cocluster-LCA model with K = 1 or G = 1 reduces to a one-dimensional mixture
of Bernoulli distributions, which is generally non-identifiable (Gyllenberg et al., 1994). As

such, we will restrict the search space for K, G to values greater than or equal to 2.

Because The Cocluster-LCA is identifiable only up to label permutation, any reordering
of the group labels results in an equivalent model to the original. For example, assume a
model with the simple parameter set ¢ = (¢1, ¢2). The following two configurations represent

the same underlying model:

ct = (¢, 1), cB = (c1,¢2).

This label ambiguity is not problematic in settings where the true labels are unknown,
such as in real data. However, in simulation studies, where the ground truth is known
and performance metrics such as classification accuracy are used, it becomes an important
limitation. If the estimated labels are permuted relative to the true labels, accuracy will be
artificially low, even when the clustering is otherwise correct. To remedy this, we will use the
trace maximization algorithm, which searches for the optimal permutation by maximizing
the number of correctly matched labels. We first define the confusion matrix.

For a clustering problem with G groups, let Z* be the true group labels and Z the
estimated labels. We define the confusion matrix C' as a G x G matrix where Cj; counts the
number of samples assigned to group ¢ in Z* and to group j in Z. The trace of the confusion
matrix, Tr(C'), gives the total number of observations for which the two clusterings have
assigned the same label. The trace maximization algorithm aims to maximize the trace of
the confusion matrix by permuting the estimated labels. The trace maximization algorithm
evaluates all possible label permutations and selects one that maximizes the trace of the

confusion matrix between the true and estimated labels. Formally,
1. Generate all G! permutations 7 of the G group labels.

2. For each permutation 7, relabel the estimated labels as T(Z), and compute the confu-

sion matrix C(between Z* and 7(Z).

35

3. Compute the trace of each confusion matrix, Tr(C(™)

4. Select the permutation 7% that maximizes the trace:

7 = arg max Tr(C™).

5. Use T*(Z) as the relabeled estimated clustering for evaluation.

The trace maximization procedure is applied separately to the hypergraph labels (using Z
and Z*) and the node labels (using W and W*). While there is no theoretical guarantee that
this algorithm will recover the correct label order, particularly when parameter estimates

are poor, our empirical results show that it performs reasonably well in practice.

36

3 Simulation study

The previous chapter established a modified VEM estimator (referred to as BEM) for the
estimation of a Cocluster-LCA model. This chapter complements that theoretical analysis
through a series of simulation studies aimed at evaluating the estimator’s performance in
controlled settings. Simulations allow us to test the estimator in settings where the true
parameters are known, the latent structure is fully specified, and certain aspects of the
difficulty, such as the level of separation between groups, can be varied.

Our objectives are as follows:

1. To assess the estimator’s ability to correctly recover the latent groups of the nodes/hyperedges

2. To measure the accuracy with which it estimates the parameters of group proportions

(7, d) and connecting probabilities ().
3. To examine its robustness and scalability as the problem gets more complex

4. To examine the effectiveness of the ICL in selecting the best model

To explore these objectives, we designed 4 Monte Carlo experiments, each constructed to
test the estimator under different conditions.
The first two focus on simple coclustering settings with two latent groups. In Experiment
1, the group structure is well-separated, serving as a baseline, while Experiment 2 reduces
group separability to challenge the estimator’s ability to distinguish similar components.
Experiment 3 increases model complexity by introducing three latent groups in both di-
mensions, with varying degrees of overlap across the group combinations, assessing how
performance degrades as the number of groups increases. Finally, Experiment 4 investigates
model selection: we simulate data from a three-by-three structure and evaluate whether the
ICL criterion correctly identifies this latent configuration when fitting models with varying
numbers of groups. To assess scalability, Experiments 1 and 2 are run across different sample
sizes, while Experiments 3 and 4 are conducted on a fixed moderate-size dataset. To this
end, we implemented the BEM in R and used the ALICE High Performance Computing
facility to run the simulations in parallel. The code is available in the GitHub repository
https://github.com/Liolios42/Coclustering-on-binary-hypergraphs.

Section 3.1 outlines the data generation process, while Section 3.2 introduces the eval-
uation metrics, and Section 3.3 describes the implementation choices. Section 3.4 presents
the results of Simulations 1-3, and Section 3.5 reports the results of Simulation 4. Finally,

Section 3.6 discusses the motivation for using multiple starting points.

38

https://github.com/Liolios42/Coclustering-on-binary-hypergraphs

3.1 Data generating mechanism

In all experiments, we defined the number of nodes N, the number of observed hyperedges
M, the number of node/hyperedge groups K, G and their respective prior probabilities =, d,

and the connecting probabilities 8. The mechanism used to simulate the dataset is
1. For each node v;,i € {1,... N} sample its latent group through W; ~ Multinomial(~y)
2. For each hyperedge e;, 7 € {1,... M} sample its latent group through Z; ~ Multinomial(J)

3. For each hyperedge e; belonging to group g and each node v; belonging to group k,
perform a Bernoulli(f,,) trial to decide whether the node joins the hyperedge.

This procedure outputs an M x N matrix X, an M x 1 hyperedge group assignment vector
Z*,and an N x 1 node group assignment vector W*. The matrix X is used for inference, as

it is observable, whereas Z*, W* are used for evaluation, as they are latent.

The parameter sets used to generate the datasets are:

Experiment 1:

N € {200,1000}, M € {200, 1000},
0.8 0.7 0.9 0.6

Y= 76 - ,0 — .
0.2 0.3 04 0.2

N € {200,1000}, M € {200, 1000},

Experiment 2:

0.6 0.6 04 0.3
vy = 76 = 70 = .

0.4 0.4 0.2 0.25

Experiment 3:
N =500, M =500,

0.6 0.6 09 06 04
~v=103|,6=(03|,0=1]02 0.8 04
0.1 0.1 0.2 0.7 0.1

39

Experiment 4:

N =500, M =500,

0.6 0.6 0.9 06 04
¥=103[,6=103|,0= {02 08 04
0.1 0.1 0.2 0.7 0.1

For clarity, we also assign descriptive names to these experiments: 2x2 easy (Experiment 1),
2x2 hard (Experiment 2), 3x3 mixed (Experiment 3) and model-selection (Experiment
4).

3.2 Evaluation metrics

We evaluate the estimator’s performance using three metrics: mean absolute error (MAE) of
the parameter estimates, classification accuracy, and the adjusted Rand index (ARI). These
metrics assess both the quality of parameter recovery and the accuracy of inferred group
assignments for nodes and hyperedges.

The mean absolute error is measured using the average elementwise ¢; distance between
the estimated and true parameters:
_o-lh

AK G 7’

=7l
L(v) = [ie] K7|| |
8-l
G

This metric captures how closely the true parameter values are recovered.

1,(d)

Classification accuracy refers to the proportion of nodes or hyperedges whose group labels
are correctly identified. For a given node group assignment vector W* = (W}, ... WY)
and hyperedge group assignment vector Z* = (Z7,...,Z5), let W = (Wl, . .,WN) and
7 = (Zl, cee Z}w) be the respective estimated group assignment vectors. The node and

hyperedge classification accuracies are defined as:

N
2 Ly
Node Classification Accuracy = =1 N ,
M
Z]1Z§ =7
Hyperedge Classification Accuracy = = i ,

40

i.e. the number of nodes (or hyperedges) for which the estimated group is the correct one,
divided by the total number of nodes (or hyperedges). Because the Cocluster-LCA is a mix-
ture model, the labels of the estimated groups are arbitrary under permutation, i.e. what is
estimated as ”Node group 1”7 does not necessarily align with the group we defined as ”Node
group 1”7 in the generation of the data. Therefore, a direct comparison between W* and W
(or between Z* and Z) would be meaningless. To remedy this, we align the estimated labels
with the true ones by permuting them via the trace maximization algorithm (as described
in Chapter 2.4.3). We apply this algorithm to both W, Z with reference to W*, Z* respec-
tively. The node and hyperedge classification accuracies are then reported after applying

this algorithm.

The adjusted Rand index (Rand, 1971) quantifies the similarity between the true and es-
timated clusterings, correcting for agreement by chance and accounting for arbitrary label
permutations. It is particularly appropriate for mixture models, where the group labels are
only identifiable up to permutation.

Let X = {Xj,...,X,} be n datapoints, and let C;, Cy represent two clusterings of X
into k distinct clusters. Let a represent the number of pairs of datapoints which are clustered
together in C7, and are clustered together in C5, and let b represent the number of pairs of
datapoints which belong to different clusters in C; and different clusters in C5. For example,
we consider the case k = 2, n = 4. For a sample X = {X;, X5, X3, X}, we consider the
clusterings C = {(X1, X4), (X2, X3)}, Co = {(X1, X3, X4), (X2)}. In this case, C; clusters
X1, Xy and Xy, X3 together, whereas Cy clusters X, X3, X4 together, and X, separately.
The pair (X7, X,) is the only one which is clustered together in both C; and Cy, which
would result in a = 1. In constrast, the pairs that are clustered separately in both Cy, Cy
are (X1, X2) and (X4, Xy), resulting in b = 2.

The Rand Index is then defined as
a+b

()
The Adjusted Rand Index (ARI) adjusts this quantity for the expected value of RI under

random labeling:

RI =

RI — E[RI]
1 —E[RI]’
where E[RI] denotes the expected RI under chance. This corresponds to the RI obtained if

ARI =

we were to randomly guess each cluster. The calculation of this quantity requires the use of
an algorithm found in Vinh et al. (2009).

41

The ARI takes values between —1 and 1, where 1 indicates perfect agreement between
clusterings, 0 corresponds to the expected similarity under random guessing, and negative

values indicate less agreement than expected by chance, i.e., systematic disagreement.

3.3 Experimental setup
3.3.1 Simulations 1, 2 and 3

The goal of the first three experiments is to evaluate the accuracy of parameter estimation
when the true latent structure is correctly specified. For each experiment, we generated data
according to a known configuration of latent groups and ran 500 Monte Carlo replicates.
Within each replicate, we used three random initializations on the BEM, and selected the
fit with the highest ICL for analysis.

3.3.2 Simulation 4

The goal of the fourth experiment is to assess the ability of the model to recover the correct
latent structure when it is not known in advance. In each of the 500 Monte Carlo replicates,
we fitted all 9 possible combinations of K € {2,3,4} and G € {2,3,4} (i.e., 9 models in
total). Each model was run with three random initializations, and the solution with the
highest ICL across all 27 fits was retained. The corresponding values of (K, G) were then

treated as the inferred group structure.

For all experiments, we imposed a limit of 20 BEM iterations, and selected a convergence
threshold of € = 0.0001.

3.4 Simulations 1-3 (2x2 easy, 2x2 hard, 3x3 mixed)

Classification Accuracy

When the latent structure was correctly specified, the BEM algorithm consistently achieved
high accuracy in both parameter recovery and clustering performance across all settings. A
summary table for the accuracies and ARI for each experiment is given in Table 1.

In the 2x2 easy experiment, classification accuracy was almost perfect across all configu-
rations. The model achieved perfect hyperedge classification (100%) in all 500 replicates in
3 out of 4 settings, and maintained nearly perfect performance elsewhere (Table 1). Node
classification accuracy was similarly high, exceeding 99.4% in all cases, with ARIs also close

to 1, indicating close to perfect recovery of the true partitioning.

42

Dataset N M | Acc. nodes Acc. hyperedges ARI nodes ARI hyperedges
2x2 easy 200 200 | 0.998 (0.014) 1.000 (0.000) 0.992 (0.054) 1.000 (0.000)
2x2 easy 200 1000 | 0.996 (0.040) 0.999 (0.000) 0.987 (0.110) 0.999 (0.002)
2x2 easy 1000 200 | 0.994 (0.030) 1.000 (0.000) 0.980 (0.111) 1.000 (0.000)
2x2 easy 1000 1000 | 0.998 (0.016) 1.000 (0.000) 0.995 (0.060) 1.000 (0.000)
2x2 hard 200 200 | 0.852 (0.071) 0.987 (0.009) 0.511 (0.166) 0.952 (0.385)
2x2 hard 200 1000 | 0.980 (0.085) 0.981 (0.094) 0.951 (0.176) 0.962 (0.189)
2x2 hard 1000 200 | 0.840 (0.085) 0.991 (0.065) 0.488 (0.187) 0.981 (0.133)
2x2 hard 1000 1000 | 0.996 (0.004) 0.992 (0.004) 0.986 (0.018) 0.968 (0.018)
3x3 mixed 500 500 | 0.981 (0.094) 0.986 (0.094) 0.984 (0.064) 0.994 (0.042)

Table 1: Classification accuracy and Adjusted Rand Index (ARI) for the 2x2 easy, 2x2
hard, and 3x3 mixed experiments. Values are reported as the mean over 500 Monte Carlo
replicates, with standard deviations in parentheses. The best performing model in each

experiment is indicated in bold.

The 2x2 hard experiment introduced more overlap between the latent groups, resulting in
reduced separability. As expected, this posed a challenge in the small sample case. Specif-
ically, when M = 200, the classification accuracy and ARI of the nodes were substantially
lower, regardless of the number of nodes. For example, node accuracy was around 85.2%
(ARI: 0.511) for N = 200, and similarly 84.0% (ARI: 0.488) for N = 1000. In contrast,
when M was increased to 1000, performance greatly improved: accuracy rose to 99.6% and
98.0%, and ARI to 0.951 and 0.986 for N = 200 and N = 1000, respectively.

In the 3x3 mixed experiment, the model still performed remarkably well. Node and
hyperedge accuracies were 98.1% and 98.6%, respectively, with ARIs above 0.98, showcasing

the robustness of the BEM even as the number of latent groups increase.

Estimation error
Parameter estimation errors followed a similar pattern to classification accuracy. We
present these results in Table 2. In addition, we present 9 histograms (Figures 3 to 10),

which visualize the distribution of estimates for each of the 500 Monte Carlo replicates.

43

Dataset N M (%) 41(9) 01(0)

9x2 easy 200 200 | 0.024 (0.021) 0.024 (0.019) 0.004 (0.004)
2x2 easy 200 1000 | 0.022 (0.023) 0.012 (0.008) 0.002 (0.003)
9x2 easy 1000 200 | 0.014 (0.027) 0.025 (0.019) 0.003 (0.010)
2x2 casy 1000 1000 | 0.013 (0.030) 0.011 (0.008) 0.001 (0.000)
ox2 hard 200 200 | 0.106 (0.088) 0.029 (0.022) 0.009 (0.007)
9x2 hard 200 1000 | 0.027 (0.080) 0.029 (0.092) 0.005 (0.025)
9x2 hard 1000 200 | 0.116 (0.101) 0.035 (0.063) 0.011 (0.020)
9x2 hard 1000 1000 | 0.027 (0.020) 0.012 (0.009) 0.001 (0.001)
3x3 mixed 500 500 0.020 (0.022) 0.016 (0.019) 0.011 (0.024)

Table 2: Average estimation errors of 7,9,60 for the 2x2 easy, 2x2 hard, and 3x3 mixed

experiments. Values are reported as the mean over 500 Monte Carlo replicates, with standard

deviations in parentheses. The best performing model in each experiment is indicated in bold.

44

qrrg

300 300
200 200 =200
N =200
100 100
0 0
000 025 050 075 100
612
500 400 !
400
300 200
300
200
200 100
J00 100
0 0 ! 0
000 025 000 025 050 075 100 0.00 1.00
821)
400 ' 500
400
300 200
300
200
200 100
100 100
0 . 0 0
000 025 050 075 100 050 075 100 0.00 1.00

Figure 3: Histogram of estimated parameters (v, ¢, and 6) from 500 Monte Carlo replicates
of the 2x2 easy experiment with N = 200, M = 200. The dotted line indicates the true

value of the respective parameter.

45

1 2

400 400
300 300
M =200
200 200 N = 1000
100 100
0 0

014 612
500 /
400 400
200 300 200
200 200 100
100 100
0 0] 0
0.00 0.25 0.50 0.00 0.25 0.50 0.75 1.00 0.00 1.00
B2)
500 ' 500
400 400
200
300 300
200 200 100
100 100
0 T 0 0
000 025 050 075 1.00 0.00 050 075 1.00 0.00 1.00

Figure 4: Histogram of estimated parameters (v, ¢, and 6) from 500 Monte Carlo replicates
of the 2x2 easy experiment with N = 1000, M = 200. The dotted line indicates the true

value of the respective parameter.

46

1 2

300 300
200 200 M= 1000
N =200

100 100

0 0

014 612 34
500 i
400 400 300
300
300 200
200 200
100 100 100
0 0 0 0
0.00 0.25 0.50 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 1.00
B2) Sg
500 : 500
400 400 300
300 300 -
200 200
100 100 100
0 T 0 0
000 025 050 075 1.00 0.00 050 075 1.00 0.00 050 075 1.0

Figure 5: Histogram of estimated parameters (v, ¢, and 6) from 500 Monte Carlo replicates
of the 2x2 easy experiment with N = 200, M = 1000.

47

1 2

400 400
300 300
M = 1000
200 200 N = 1000
100 100
0 0
000 025 050 050 075 1.00
014 612 34
500 500 i
400 400 300
300 300 200
200 200
100 100 100
0 0 0 0
0.00 0.25 0.50 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 1.00
B2) Sg
500 i A00
400 400 300
300
300 -
200 200
100 100 100
0 T 0 0
000 025 050 075 1.00 0.00 050 075 1.00 0.00 050 075 1.0

Figure 6: Histogram of estimated parameters (v, ¢, and 6) from 500 Monte Carlo replicates
of the 2X2 easy experiment with N = 1000, M = 1000. The dotted line indicates the true

value of the respective parameter.

48

300

200

100

500
400
300
200
100

1.00

300

200

100

400
300
200
100

q{g

M =200
N =200

34

1.00 0.00 0.25 0.50 0.75 1.00
Sg

000 025 050 075 1.00

Figure 7: Histogram of estimated parameters (v, ¢, and 6) from 500 Monte Carlo replicates
of the 2x2 hard experiment with N = 200, M = 200. The dotted line indicates the true

value of the respective parameter.

49

75 75

50 50 M =200
N =1000

25 25

300 300

200 200

100 100

0

T 0
0.00 0.25 0.50 0.75 1.00 0.75 1.00 0.00 0.25 0.50 0.75 1.00
B2 Sy
500 L
400
400 200
300 300
200 200 100
100 100
0 0 0 T
0.00 0.50 0.75 1.00 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 8: Histogram of estimated parameters (v, ¢, and 6) from 500 Monte Carlo replicates
of the 2x2 hard experiment with N = 1000, M = 200. The dotted line indicates the true

value of the respective parameter.

50

200 200
150 150 M = 1000
100 100 N =200
50 50
0 0 T
0.00 0.25 1.00 000 025 050 075 1.00
811 51
500 500 300
400 400
300 300 200
200
200 100
100 100
0 0 0 0 0
0.00 0.25 0.50 0.75 1.00 0.00 0.75 1.00 0.00 0.25 0.50 0.75 1.00
821 S9
500 500 200
400 400
300 300 200
200 200
100
100 100
0 0 0 .
0.00 050 075 1.00 0.00 075 1.00 000 025 050 075 1.0

Figure 9: Histogram of estimated parameters (v, ¢, and 6) from 500 Monte Carlo replicates
of the 2x2 hard experiment with N = 200, M = 1000. The dotted line indicates the true

value of the respective parameter.

51

qrrg

300 300
200 200 M = 1000
N = 1000
100 100
0 0 T
000 025 1.00 000 025 050 075 1.00
014 34
400 400
300 300 200
200 200 100
100 100
0 0 0 0 0
0.00 0.25 0.50 0.75 1.00 0.00 0.75 1.00 0.00 0.25 0.50 0.75 1.00
B2 Sg
400 400
300 300 200
200 200 100
100 100
0 0 0 .
0.00 050 075 1.00 0.00 075 1.00 000 025 050 075 1.00

Figure 10: Histogram of estimated parameters (v, §, and €) from 500 Monte Carlo replicates
of the 2x 2 hard experiment with N = 1000, M = 1000. The dotted line indicates the true

value of the respective parameter.

52

Y1 Y2 13

] 300 ' a0 [
200 200 300 M = 500
200 N = 500
100 100 100
0 0 p H
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
B11 B12 B13
500 400
400 400 300 300
300 300 200 200
200 200 100
100 100 100
0 0 0 0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0 1.00
624 622 623
500
400 ;gg 300 300
300
e 500 200 200
100 100 100 100
0 0 D 0 0 b=
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 1.00
031 032 B33
500
200 400 400 400
300 300 300 300
200 200 200 200
100 100 100 100
0 p == 0 g ==
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 11: Histogram of estimated parameters (v, §, and €) from 500 Monte Carlo replicates
of the 3x3 mixed experiment with N = 500, M = 500. The dotted line indicates the true

value of the respective parameter.

In the 2x2 easy experiment (Figures 3 to 6), the average ¢; error remained consistently
low (below 0.025) across all sample sizes and parameters. As the number of nodes (V)
increased, estimation of « improved, whereas an increase of the hyperedges (M) led to a
more accurate recovery of §. Estimation of # also improved with each increase in sample
size (in any direction), although its error was generally low from the start. As seen in the
monte carlo histograms (Figures 3 to 6), the estimates were generally centered around the
true value for all parameters, with only rare and small deviations.

In the 2x2 hard experiment (Figures 7 to 10), estimation errors for v were substantially
higher when M was low, which is consistent with the drop of node clustering accuracy. In-
creasing M caused the error of v to decrease, reaching levels comparable to the 2x2 easy

case. The errors of §, 6 followed similar but less pronounced trends. The histograms (Fig-

53

ures 7 to 10) further illustrate this behavior, showing more dispersed estimates when M is
low. This spread is particularly noticeable for v in the M = 200 case. When M = 1000, the
estimates for all parameters become tightly concentrated around their true values.

Finally, the 3x3 mixed experiment (Figure 11) resulted in slightly higher estimation er-
rors across all parameters, which was expected from the added model complexity. However,
this error increase was minor, suggesting that the BEM scales well in increased latent group
dimensions. The histograms (Figure 11) support this observation, showing only slight devi-

ations around the true parameter values.

3.5 Simulation 4 (model-selection)

In Simulation 4, we generated a hypergraph using a latent structure with K = 3 and G = 3.
We then fitted models with varying numbers of latent clusters and computed the Integrated
Complete-Data Likelihood (ICL) for each fitted model. The objective was to evaluate the
ICL as a model selection criterion, that is, to identify whether the model with the highest
ICL corresponds to the true latent structure.

The ICL criterion proved to be very effective selecting the correct number of latent group
dimensions. Table 3 shows the relative frequency of each combination of K, G that maximized
the ICL. On 93% of replicates, the ICL was maximized by a model matching the true latent
structure. In the remaining cases, the selected model had a latent structure which differed
from the true one only in one dimension, with the other dimension correctly specified. In
addition, all misclassifications involved choosing a number of groups which was larger than
the real one. In many of those cases, the additional group had a prior probability very close

to zero, effectively resulting in a model which, in practice, has the correct number of groups.

K\G|2 3 4
2 |0 0 0
3 |0 093 0.04
4 [0 003 0

Table 3: Relative frequency of the latent structure that maximized the ICL over 500 Monte

Carlo replicates.

o4

3.6 The case for multiple random initializations

The BEM, as an EM variant, is prone to getting trapped in local maxima. To account for
this, we used three random initializations for each replicate, and retained only the run that
achieved the highest ICL value. This increases the chance of selecting a starting point which
is not surrounded by poor local maxima.

Relying on a single initialization is risky and ill-advised. To illustrate the importance of
multiple runs, we also report results for the three simulation scenarios (2x2 easy, 2x2 hard,

and 3x3 mixed) using only the first BEM run in each replicate.

Dataset N M | Acc. Nodes Acc. Hyperedges ARI Nodes ARI Hyperedges
2x2 easy 200 200 | 0.940 (0.146) 0.997 (0.034) 0.821 (0.352) 0.994 (0.077)
2x2 easy 200 1000 | 0.900 (0.226) 0.956 (0.205) 0.695 (0.528) 0.989 (0.099)
2x2 easy 1000 200 | 0.916 (0.170) 0.974 (0.117) 0.741 (0.402) 0.942 (0.233)
2x2 easy 1000 1000 | 0.937 (0.172) 0.982 (0.105) 0.789 (0.455) 0.995 (0.049)
2x2 hard 200 200 | 0.764 (0.131) 0.957 (0.108) 0.336 (0.248) 0.881 (0.217)
2x2 hard 200 1000 | 0.944 (0.078) 0.942 (0.090) 0.435 (0.646) 0.696 (0.460)
2x2 hard 1000 200 | 0.758 (0.139) 0.948 (0.151) 0.266 (0.299) 0.760 (0.427)
2x2 hard 1000 1000 | 0.951 (0.146) 0.971 (0.162) 0.721 (0.727) 0.916 (0.194)
3x3 mixed 500 500 | 0.944 (0.149) 0.908 (0.189) 0.947 (0.119) 0.918 (0.153)

Table 4: Classification accuracy and Adjusted Rand Index (ARI) for the 2x2 easy, 2x2 hard,
and 3x3 mixed experiments, using only the first BEM run. Values are reported as the mean

over 500 Monte Carlo replicates, with standard deviations in parentheses.

In Tables 4 and 5, we observe how using a single BEM initialization resulted in per-
formance drops ranging from mild to severe. This decline was most evident in both node
classification accuracy and parameter estimation error for the 2x2 hard experiment. Even in
scenarios where mean performance was only slightly affected, the standard deviations were
consistently much higher. This suggests that relying on a single run leads to unstable and

less reliable estimates.

55

Dataset N M () 4(9) 4(0)

9x2 easy 200 200 | 0.067 (0.13) 0.026 (0.25) 0.006 (0.005)
2x2 easy 200 1000 | 0.103 (0.222) 0.029 (0.104) 0.035 (0.078)
9x2 easy 1000 200 | 0.078 (0.15) 0.049 (0.110) 0.040 (0.080)
9x2 easy 1000 1000 | 0.075 (0.164) 0.016 (0.049) 0.021 (0.054)
ox2 hard 200 200 | 0.195 (0.139) 0.055 (0.104) 0.024 (0.032)
9x2 hard 200 1000 | 0.062 (0.143) 0.068 (0.158) 0.015 (0.044)
9x2 hard 1000 200 | 0.198 (0.143) 0.076 (0.143) 0.028 (0.040)
9x2 hard 1000 1000 | 0.040 (0.077) 0.032 (0.088) 0.007 (0.029)
3x3 mixed 500 500 | 0.129 (0.142) 0.165 (0.166) 0.122 (0.090)

Table 5: Average estimation errors of 7,9,60 for the 2x2 easy, 2x2 hard, and 3x3 mixed
experiments, using only the first BEM run. Values are reported as the mean over 500 Monte

Carlo replicates, with standard deviations in parentheses.

4 Discussion

In this work, we derived a model-based approach for the co-clustering of binary hypergraphs
with two latent structures, referred to as the Cocluster-LCA model. This model generalizes
previous approaches that focused solely on clustering either the nodes or the hyperedges.
In the Cocluster-LCA model, each node and hyperedge is assigned to a latent group, and
the probability that a node participates in a hyperedge depends solely on their respective
group memberships. This structure offers greater modeling flexibility and increases the in-
terpretability of the resulting parameter estimates.

Such model-based co-clustering approaches have been studied in the literature (Govaert and
Nadif, 2008). Our contribution lies in providing an extensive set of Monte Carlo simulations
to compare the estimator’s behavior under a wide range of settings, as well as a detailed,
step-by-step analytical derivation of the re-estimation formulas, offering reproducibility for
future applications.

The Cocluster-LCA takes the form of a finite mixture model, enabling the use of the Ex-
pectation Maximization for parameter estimation. However, because of the intractability
of the E-step, a variational approximation (VEM) is instead used. A generalization of the
VEM for co-clustering is implemented, referred to as the BEM. To further reduce the com-
putational complexity of the variational E-step, a fixed-point update scheme is introduced,
resulting in a more efficient estimation procedure. A number of Monte Carlo experiments
were conducted to assess the estimator’s ability to recover the true clustering structure and
underlying parameter values.

The estimator’s performance was strongly influenced by the sample sizes of both the nodes
(N) and hyperedges (M). Specifically, increasing M improved the estimation of &, while
increasing N enhanced the estimation of 4. As @ depends on both nodes and hyperedges, its
estimation improved with increases in either sample. Clustering accuracy for nodes and hy-
peredges followed a similar trend. Another factor affecting performance was the separability
of the parameter values of the groups. Easily identifiable parameter configurations resulted
in highly accurate estimates regardless of sample size, whereas more difficult to separate
configurations ended up in poor estimation for smaller samples. Additionally, increasing
the number of latent groups had a slight negative impact on both accuracy and parameter
estimation. Lastly, the Integrated Complete Likelihood (ICL) criterion demonstrated strong
performance in selecting the correct model structure.

There are several directions in which this work could be extended. First, the model could

be augmented by allowing the node-joining probability to depend not only on the group

57

memberships of the node and the hyperedge, but also on the groups of the other nodes par-
ticipating in the hyperedge. This extension would enable the modeling of interactions where
participation depends on both the nature of the event and the composition of its partici-
pants. Second, a temporal extension of the model could be considered, in which hyperedges
are observed over time and the underlying parameters are either static or allowed to vary
dynamically. In such a case, tools from survival analysis could be employed to model the
timing of the hyperedge formation. This would allow the model to be applied to timestamped
data, adding an extra layer of information to help understand how participation and group

structure evolve over time.

58

A Optimization proofs for the VE and M steps of the
BEM

The ® criterion we aim to optimize in both VE and M steps of the BEM algorithm is
(I)<c7 d7 Y, 67 0) - EZ,W\X [LC(07 57 7|X7 Z7 W)] + H(C) + H(d)

where

Expanding the terms we get

M G N K
e, d,,0,0) =D > di(g)log(dy) + 3 Y cilk)log(m)

A.1 VE-step
A.1.1 Optimizing w.r.t. ¢;(k)

We assume that d, =, 9,0, are constant. As we have constrained optimization, we use the

method of Lagrangian multipliers. Specifically, we have the N constraints:

K

gile)=1-> (k) =0 (29)
k=1
Vi=1,...,N

The Lagrangian function, A(e, A) them becomes the sum of the N + 1 terms:

Ale,\) = ®(c|d,v,6,0) + > gi(c)A

i=1

60

We take the derivative w.r.t. ¢;(k):

OA(e,\) 0%(c|d,~,6,0) 0 (EQZ(Cz)Az)

03 f blalea(s,) 03 3 ko)
- e (k) * 96 (k)

M G
= 0+log() + D 3" di(9)log(t3 (1= ,0)' =) = (1+loglci(k)) =\,

Ie. d;(9)
[I650- ng)lxﬁ> — 1 —log(ci(k)) — A

I

g

2

l

S
N N
—

—a

‘Q%Q_.

2(9)2]1(1 _ ggk)dj(g)(l—xji)) —1-— ZOQ(Ci(k)) - N

M G
- (TIIT - e>) 1 logle(k) — A
Setting the obtained quantity equal to 0 yields:

M G 4.
log (% IT 11 92{c<g) Jz(l—egk)dj@(lIji))—l—ki
Cir, = € =

61

Returning to the constraint equation, (29),

|
11

K log('yk 11 H9d7(g>a:ﬂ(1 egk)dj(g)(l—xji) Z1-N
1_ § e j=1g=1 — 0
k=1
K Zog<wk I 1 6" - egk)da‘@“”ﬁ))
e—Ai—lze j=1lg=1 =1
k=1
K
—X;i—1 d] sz -(g)(l—x-i) .
e E o ng (1 —04)% i =1
k=1 j=1lg=1

K M G
S T T - guybe

M G
di(g)zj; Tii
Ai = log (Z 'kaHQQk(g) (1 — fgp) 1@ 0=2i0)) 1
Plugging the \; back to the derived solution we obtain:

~

log(% 11 H 607" (19,)d'(g)(l_zﬁ)>—1—>\i
¢i(k)=e

Zog<wk 1111 00193 (1 agk)dﬂg)“—mﬁ))-{zog(z o 1111 607775 (1-9,,) @ w) 1}_1
=e

j=1lg=1 k=1 j=lg=1

e
log<% 1 ed](«nx]l(l egk)dj(g)(l—xji)>
e j=1g=1

G
zog<z e 11 1 637" (1-6,)5 0~ W)
e

k=1 j=1g=

M G g)m
v I1 H1 (1 = By,)Y@ 1=250)

j=1lg

A.1.2 Optimizing w.r.t d;(g)

The proof is equivalent to the one for ¢;(k).

62

We assume that c¢,-y, d, @ are constant. As we have constrained optimization, we use the

method of Lagrangian multipliers. Specifically, we have the M constraints:

G
hi(d) =1-> d;(g) =0 (30)
Vi=1,...,.M

The Lagrangian function, A(d, A) then becomes the sum of the M + 1 terms:

M
A(d,) = O(d|c,,8,0) + Y hi(d));
j=1
We take the derivative w.r.t. d;(g):
> hy(d)
a > hi(d)x
OM(d.\) _ 0%(d|c,7,8,0) , \i= T
9d;(g) d;(g) 9d;(g)
N K G
03 > ci(k)log() 92 dj(g)log(dy)
_ i=1 k=1 + g=1
9d;(g) ad,

* ad,
9 éc@(g) log(d; (9)) af:l é G log(e(k) v o
- 8dj — adj(g) +;>\J ;(1_dj(g))
= 0+1og(9,) + 3 > calk)og(03 (1 = 61)' =) — (1 +log(d;(9))) — X
= log(d,) + log (H [T 050 (1 —)00 >> 1 —log(d;(g)) — A;

63

Returning to the constraint equation (30):

G

L= dil9) =

5 11 11 egﬁk)w“(1_egk)ci(’“)“‘”ﬂ'“>—1—Aj

G log
1— E e i=1k=1
g=1

=0
G 5 o150 g ci(k’)(lz-i)>
e_’\j_IZGg< Hl;[o7 (1=05) Y
g=1
G N K
3 (T 0o) <o
g=1 i=1 k=1
N1 1
G N K ci(k)zys 21
> 8 T TL O™ (1 =)00
g=1 i=1k=1
1
Aj = —log -1

G K ci(k)x
> g H [1 eg;c (1 = Ogp)W =0)

G N K

Plugging A; back into the derived solution we obtain:

is ci(k)xj; c; —T;
log <5q H H egk I (1—0,1) (k) (1 J1)>_1_>\j
djg (&

K ci(k)z; e (k) (1
10g<59 1 11 ng J (1—0,4%) (k) (1 J1)>—[10g<
e

i=1k=1

G N K I
S 4, 1:[1:[99 ci(k) 12(1 0,)z(k)(l Ijz)) 1:| _1

g=1 R ket

i=1k=1

K o (ke
10g<(59 II Hg';g(k)]1(1 9)C»L(k)(l z]1)>

G
10g<2 59 H H ezzk(k)xﬂ(1_egk)ci(k)(l—mji>)
(&

g=1

59 901(19)1]1(1 o egk)ci(k)(liji)

G NOK e
Yo, 1T 11 6’92 (1 - Hgk)%(k)(l—xji)

64

A.2 M-step

A.2.1 Optimizing w.r.t.

K
This is a constrained optimization problem with the single constraint: h(y) :=1—>_ v, = 0.
k=1
Define the Langrangian Ay, \) = ®(vl|e,d, d,0) + h(y)A
OAx.\) _ 0%(yle.d.6,6) D ()Y

Og Ok Ok
N K K

o(£ £ atbmegtw) 01— %)

_ \imi= L =1
O, O

N

> ci(k)
_ =1 _)\

Yk

Setting it equal to 0, solving for 7, and replacing it in the constraint yields:

%Cz(k) i 'N ¢i(k) K N
,yk:z:l)\ @1-%:0@)\:2201(@

K

Note that > ¢;(k) = 1 for all ¢, and thus A\ = N, which we replace in the original solution
k=1

to get

N
;Ci(k)
A = = N

A.2.2 Optimizing w.r.t. J,

a
A constrained optimization problem with constraint h(6) = 1 — >, = 0. Define the

g=1
Langrangian A(d,\) = ®(d|e,d,~,0) + h(d)A
OA(8,\) 0®(d|c,d,~,0) N O (h(d)N)

04, 04, 04,
M G e

O\ 2 2 di(9)logdy) 0 (1 -3 5g>
. J=19= g=1
- as, AT,

M

-21 d;(g)
— = —\

59

65

Setting it equal to 0, solving for J, and replacing it in the constraint yields:

Sl L2l :

g=1 j=1

G

Note that) d;(g) =1 for all 4, and thus A = M, which we replace in the original solution
g=1

to get

> (o)

~ j=
0g =

M
A.2.3 Optimizing w.r.t. 0,

This problem is an unconstrained optimization problem. Thus we solve it by taking the

partial derivative w.r.t. 8, and setting it equal to 0.

027, 0.0le.d) _ g3 e 1y 21905 (1 = 007

DOy i=1 j=1 00
N M _
x:log(d 1—2;)log(1—0
= ZZdj(g)ci(k) 02 80() +a(j)80 (o)
i=1 j=1 L gk gk
N M _
zi; (1 —xy)
= dy(g)es(he) |22 — L=)]
;; ’ _egk 1— egk
= iidj(g)Cz(k) M}
i=1 j=1 -09k<1 - ng)
N M . N)
= di(g)ci(k) 2 d;(g)ci(k gk
;;) g, - 1; 9)e) g7
N M N M
1
~ 9) Z Z di(g)ci(k)zji — Ogi Z Z di(g)ci(k)
gk(l gk‘) i=1 j=1 = o

66

And by setting the obtained quantity equal to 0 we obtain:

99k(11 7 |2 bl = 0 32 dlae)| =0
= N M dj(g)ei(k)aj — O iidj(g)cZ(k):O
= Oyt iidﬂ (9)ci(k) = iid](g)ci(k)xﬁ
L @b
= 0, =

67

References

Arora, N. and Ventresca, M. (2018). A network-based approach for modeling and analyzing
supply chain systems. Applied Network Science, 3(1):1-20.

Battiston, F., Cencetti, G., lacopini, 1., Latora, V., Lucas, M., Patania, A., Young, J.-G.,
and Petri, G. (2020). Networks beyond pairwise interactions: Structure and dynamics.
Physics Reports, 874:1-92.

Biernacki, C., Celeux, G., and Govaert, G. (2000). Assessing a mixture model for clustering
with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(7):719-725.

Biernacki, C., Celeux, G., and Govaert, G. (2003). Choosing starting values for the EM algo-
rithm for getting the highest likelihood in multivariate gaussian mixture models. Compu-
tational Statistics Data Analysis, 41(3):561-575. Recent Developments in Mixture Model.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859-877.

Brault, V., Keribin, C., Celeux, G., and Govaert, G. (2014). Estimation and selection for
the latent block model on categorical data. Statistics and Computing, 25:1-16.

Brusa, L. and Matias, C. (2024). Model-based clustering in simple hypergraphs through a
stochastic blockmodel. Scandinavian Journal of Statistics, 51(4):1661-1684.

Celeux, G. and Govaert, G. (1985). A classification EM algorithm for clustering and two
stochastic versions. Computational Statistics Quarterly, 2(1):73-82.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood from In-
complete Data Via the EM Algorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):1-22.

Govaert, G. and Nadif, M. (2008). Block clustering with bernoulli mixture models: Compar-
ison of different approaches. Computational Statistics & Data Analysis, 52(6):3233-3245.

Gyllenberg, M., Koski, T., Reilink, E., and Verlaan, M. (1994). Non-uniqueness in proba-
bilistic numerical identification of bacteria. Journal of Applied Probability, 31(2):542-548.

69

Keribin, C., Brault, V., Celeux, G., and Govaert, G. (2012). Model selection for the bi-
nary latent block model. In 20th International Conference on Computational Statistics
(COMPSTAT 2012), pages 379-390, Limassol, Cyprus.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79-86.

Neal, R. and Hinton, G. (2000). A view of the EM algorithm that justifies incremental,

sparse, and other variants. Learning in graphical models, 89.

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review,
45(2):167-256.

Ng, T. L. J. and Murphy, T. B. (2022). Model-based clustering for random hypergraphs.
Advances in Data Analysis and Classification, 16(3):691-723.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical Association, 66(336):846-850.

Rubin, D. B. and Little, R. J. A. (1991). Statistical analysis with missing data. Journal of
Educational Statistics, 16(2):150-155.

Shireman, E., Steinley, D., and Brusco, M. (2015). Examining the effect of initialization
strategies on the performance of gaussian mixture modeling. Behavior Research Methods,
49.

Vinh, N. X., Epps, J., and Bailey, J. (2009). Information theoretic measures for clusterings
comparison: is a correction for chance necessary? In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML 09, page 1073-1080, New York,
NY, USA. Association for Computing Machinery.

Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. The Annals of
Statistics, 11(1):95-103.

Xiao, H.-B., Hu, F., Li, P.-Y., Song, Y .-R., and Zhang, Z.-K. (2024). Information propagation
in hypergraph-based social networks. Entropy, 26(11).

70

	Introduction
	Graphs
	Hypergraphs
	EM Algorithm
	Classification EM
	Variational EM

	Model
	The Latent Class Analysis model
	Cocluster-LCA
	Estimation
	Block EM (BEM)
	Classification EM (CEM)

	Model selection
	ICL
	Selection of K, G
	Identifiability and the trace maximization algorithm

	Simulation study
	Data generating mechanism
	Evaluation metrics
	Experimental setup
	Simulations 1, 2 and 3
	Simulation 4

	Simulations 1-3 (2x2 easy, 2x2 hard, 3x3 mixed)
	Simulation 4 (model-selection)
	The case for multiple random initializations

	Discussion
	Optimization proofs for the VE and M steps of the BEM
	VE-step
	Optimizing w.r.t. ci(k)
	Optimizing w.r.t dj(g)

	M-step
	Optimizing w.r.t. k
	Optimizing w.r.t. g
	Optimizing w.r.t. gk

