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Abstract

This thesis investigates co-clustering in binary hypergraphs as a means to reduce

complexity and improve interpretability in higher-order network data. We adapt a

variational expectation–maximization (VEM) framework to jointly cluster nodes and

hyperedges, providing a parsimonious representation of latent structure. Through sim-

ulation studies, we show that the method recovers parameters with high accuracy when

group differences are pronounced, while closer parameter settings require larger sample

sizes for reliable performance.
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1 Introduction

Networks provide a fundamental framework for modeling and analyzing many real-world

systems, including transportation grids and biological processes. These systems are often

represented using graphs, which are mathematical structures composed of vertices (nodes)

and edges that capture pairwise relationships. Graph-based models have been studied exten-

sively, which has helped with understanding the behavior of a variety of complex networks

(Newman, 2003). However, as the systems we study become increasingly intricate, the limi-

tations of these tools become apparent.

A primary drawback of graphs is their inability to describe multi-way interactions, which

are essential in many domains. For instance, co-authorship networks, ecological interac-

tions and e-mail networks often involve multiple entities interacting simultaneously. In a

co-authorship network, for example, a graph would represent a paper co-authored by au-

thors A, B, and C as three pairwise edges (A–B, B–C, A–C), losing the information that

all three collaborated on the same paper. To capture these higher order interactions, hy-

pergraphs extend the graph framework by introducing hyperedges, a generalization of edges

that connect any number of nodes at once. This added flexibility has made hypergraphs a

powerful tool for modeling complex systems (Battiston et al., 2020).

Hypergraphs often exhibit some underlying structure which is not directly observable.

For instance, consider a hypergraph in which vertices are concert-goers, and the hyperedges

are the set of people who attended a particular concert. The genre of music being played

or the individual preferences of attendees directly influence the resulting hypergraph. If

this structure is not known or observable, it is referred to as latent. Modeling the latent

structure of hypergraphs is therefore of great interest, as it can reveal deeper mechanisms

governing how interactions are formed. Ng and Murphy (2022) focused on modelling the

latent structure of the hyperedges, by clustering the hyperedges based on which nodes partic-

ipated in them. On the other hand, Brusa and Matias (2024) addressed the latent structure

of the nodes, by clustering the nodes into communities with similar behaviours. Simulta-

neous clustering of both nodes and hyperedges, known as co-clustering, remains relatively

unexplored.

In this work, we develop a co-clustering approach for hypergraphs that simultaneously

models latent group structures of both nodes and hyperedges. An Expectation-Maximization

(EM) algorithm is first introduced to clarify the estimation procedure, but due to its in-

tractability, we proceed with a Variational EM (VEM) approach that makes estimation

feasible.
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1.1 Graphs

A network can be represented by a graph, which consists of nodes and the connections

between them, known as edges. Graphs provide a framework for modeling systems with

pairwise interactions, and are formally defined as follows:

Definition 1.1 (Graph). A graph G is the ordered pair G = (V,E),

where V = {v1, v2, . . . vN} is a set of N vertices (or nodes) and

E ⊆ {(vi, vj) | vi, vj ∈ V, i ̸= j} is the set of M edges, each defined as a pair of distinct

vertices.

If the edge (vi, vj) is an ordered pair, then the graph is called directed. In a directed graph,

an interaction is determined not only by the nodes involved but also by their ordering, so

(vi, vj) and (vj, vi) are distinct edges. If instead (vi, vj) is an unordered pair, the graph is

called undirected. In this case, an interaction is fully specified by the participating nodes,

and (vi, vj) and (vj, vi) represent the same edge. A common representation of a graph is

through its adjacency matrix, X. The adjacency matrix is a N ×N collection of indicator

functions denoting whether an interaction between two elements exists. Formally,

xij =

1, if (vi, vj) ∈ E

0, if (vi, vj) /∈ E.

Note that self-interactions are prohibited in this formulation, as xii = 0 by definition. This

restriction is meaningful in certain contexts, such as in a friendship network, where self-

interactions (e.g., someone being friends with themselves) are not considered. However, in

situations where self-interactions are relevant, i.e. when xii = 1 for some node i, the graph

would include self-loops. A graph that explicitly excludes self-loops is referred to as a simple

graph.

Another extension is that of weighted graphs. A weighted graph contains information

not only about which interactions occur, but also about the magnitude (weight) of that

interaction. These extensions can be found in supply chain networks (Arora and Ventresca,

2018), where each edge represents a flow of goods, with the weight of the edge representing

the amount of goods being transported. If such information is not included, then we have

an unweighted graph.

Despite the flexibility that graphs offer, they suffer from one major drawback. While

they can represent multiple types of pairwise interactions, they are not capable of modeling

higher-order interactions. For example, let us consider a co-authorship network in which
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the authors A, B and C all share a pairwise edge between each other. It is unclear whether

three co-authorships took place (A with B, B with C and C with A), or just a single one (A,

B and C all together), as those yield identical representations in a graph. This scenario is

illustrated in Figure 1. Hypergraphs are a natural extension of graphs which allow for this

specification of the participating nodes of the higher-order interactions.

Figure 1: A visualization of the coauthorship problem. In the first scenario, one paper is

coauthored by authors A-B, one paper is coauthored by B-C, and one paper is coauthored

by A-C. In the second scenario, a single paper is jointly coauthored by A, B and C. In the

graph representation, both scenarios result in the same graph representation.
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1.2 Hypergraphs

Definition 1.2 (Hypergraph). A hypergraph is an ordered pair G = (V,E), where V =

{v1, . . . , vN} is the set of N vertices, and

E = {ej = (vj1 , . . . , vjs)|vj1 , . . . , vjs have jointly interacted, j = 1, . . . ,M} is the set of M

hyperedges.

The index s within each hyperedge denotes the size of the hyperedge, i.e. the number of

nodes that interacted. The hyperedge set E is a subset of all the possible combinations of

the node set, V . Thus, we can see that E ⊆ P(V ), where P is the power set. Given that the

power set of a set of size N has cardinality equal to 2N , it follows thatM ≤ 2N . While graphs

typically use an adjacency matrix to represent pairwise connections, this does not extend

naturally to higher-order interactions. To accommodate these, the incidence matrix is used,

which is a generalization of the adjacency matrix that encodes higher-order interactions. It

is a M × N matrix where the rows represent the hyperedges, while the columns represent

the nodes. The entry in the j-th row and the i-th column is equal to 1 if the i-th node

participates in the j-th hyperedge, and 0 otherwise.

xji =

1, if vi ∈ ej

0, if vi /∈ ej

To aid in understanding this notation, we consider the following incidence matrix with 7

nodes and 3 hyperedges.

X =


1 1 1 0 0 0 0

0 0 0 1 1 1 0

1 0 0 0 0 1 1

 (1)

In equation (1), the first hyperedge is e1 = (1, 2, 3), the second hyperedge is e2 = (4, 5, 6),

and the last hyperedge is e3 = (1, 6, 7). We can visualize hypergraphs as overlapping subsets

of the node set, similarly to a Venn diagram. In our case, the visualization of the hypergraph

is in Figure 2.
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Figure 2: The visualization of the hypergraph with incidence matrix (1). Each colored shape

represents a hypergraph, while the orange circles represent the individual nodes.

In principle, a single node may appear multiple times in the same hyperedge, and there is

no minimum requirement on the number of nodes per hyperedge. If we enforce a maximum

of one appearance of each node per hyperedge and consider hyperedges of size m ≥ 2 (i.e. at

least a pairwise interaction), we construct a simple hypergraph. In such hypergraphs, each

hyperedge can only appear once.

Definition 1.3 (Simple hypergraph). A hypergraph G = (V,E) is called simple if every node

appears at most once per hyperedge, every hyperedge is at least of size 2, and no hyperedge

is repeated.

While the simplicity assumption is common in hypergraph-based models, especially in

applications such as social network analysis (Xiao et al., 2024), we do not impose it in this

thesis. Hyperedges may be of any size and may appear multiple times. We introduce the

notion of simple hypergraphs solely due to their prevalence in the literature. Nevertheless,

all derived results apply equally when restricted to simple hypergraphs.

1.3 EM Algorithm

The Expectation-Maximization (EM) algorithm, introduced by Dempster et al. (1977), is

an iterative maximum likelihood estimation procedure for statistical models that depend on

latent (i.e. unobserved) variables. These can be variables that influence the observed data

but can not be directly measured. Whereas maximum likelihood estimation models without

latent variables can be straightforward, the same procedure can not be directly applied into

latent models. An example is given below.

Definition 1.4 (Mixture distribution). Let f1(x), . . . , fK(x) be a collection of probability

density functions, and let c = (c1, . . . , cK) be a vector of non-negative mixture weights such
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that
∑K

k=1 ck = 1. A random variable X is said to follow a mixture distribution with

component densities f1, . . . , fk and weights c if its probability density function is given by:

fX(x) =
K∑
k=1

ckfk(x).

The mixture distribution reflects a scenario where each observation of a random variable

gets generated from density fk with probability ck. This can happen when the data is gen-

erated by several subpopulations, each with its own parameters, but we only observe the

overall result without knowing which subpopulation each observation came from.

Assume we have a random variable X which follows a Gaussian mixture distribution. This

means, that for mixture weights c1, . . . , cK and mixture parameters θ1 = (µ1, σ1), . . . , θK ,

each observation of X comes from N (µk, σk) with probability ck. Let fk denote the probabil-

ity density function of the k-th component normal distribution. Let Z = (Z1, . . . , Zn) be the

latent unobserved random variable of group assignments for the random vector (X1, . . . , Xn).

For the i− th observation Xi, Zi = k if-f the observation was generated by the k− th compo-

nent. This information is hidden, hence the characterization ”latent”. The density of each

observation Xi under the mixture is

P(Xi = xi) =
K∑
k=1

ckfk(xi)

=
K∑
k=1

ck
1√
2π σk

exp

(
−(xi − µk)

2

2σ2
k

)
, (2)

Using θ = (θ1, . . . , θk) and c = (c1, . . . , ck), the marginal log-likelihood of the entire vector

can be expanded as follows

logL(θ, c|X) = log(P(X1 = x1, . . . , Xn = xn))

= log

(
n∏

i=1

P(Xi = xi)

)

=
n∑

i=1

log(P(Xi = xi))

=
n∑

i=1

log

(
K∑
k=1

ckfk(xi)

)

=
n∑

i=1

log

(
K∑
k=1

ck
1√
2π σk

exp

(
−(xi − µk)

2

2σ2
k

))
. (3)
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Direct optimization of the likelihood in (3) w.r.t. µk, σk, and ck is infeasible because the

group assignments Z are unobserved. As a result, the likelihood involves a sum over all

possible group assignments, leading to a complicated, nonconvex surface. However, if we

had access to information about either the true parameter values or the exact component

that generates each observation, an analytical solution could be obtained. We present these

two situations.

If the component assignment of each observation was known, we could perform MLE in

the classical way. For example, assume that Z = (Z1, . . . , Zn) is known to us. For each

component k, we denote the set of observations generated by this component as

Ik = {i : Zi = k}.

Let the size of this set be denoted by nk = |Ik|. Since all of the observations whose index is in

Ik are generated from the same distribution, they represent an independent and identically

distributed (i.i.d) sample of length nk from a normal distribution with unknown mean µk

and unknown variance σ2
k. We define the marginal likelihood exclusively for the observations

that were generated by the k-th component as L(k), and its respective marginal log-likelihood

as l(k). We can decompose the model’s full marginal likelihood, L(θ|X), as

L(θ|X) =
K∏
k=1

L(k)(θk|X).

Similarly, we decompose the marginal log-likelihood, l(θ|X) as

l(θ|X) =
K∑
i=1

l(k)(θk|X).

This follows from the distinctness of the elements of the sets Ik. Each component specific

marginal log-likelihood, l(k), can be calculated

l(k)(θk|X) = logL(k)(θk|X) = log

(∏
i∈Ik

fk(Xi)

)

= log

(∏
i∈Ik

1√
2π σk

exp

(
−(Xi − µk)

2

2σ2
k

))

=
∑
i∈Ik

log

(
1√
2π σk

exp

(
−(Xi − µk)

2

2σ2
k

))
= −nk

2
log(2π)− nk log σk −

1

2σ2
k

∑
i∈Ik

(Xi − µk)
2.
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Maximization with respect to µk and σk respectively yields the maximum likelihood estimates

µ̂k, σ̂k

µ̂k = X =
1

nk

∑
i∈Ik

Xi,

σ̂k =
1

nk

∑
i∈Ik

(Xi −X)2.

This process can be repeated independently for every k, providing maximum likelihood

estimates for every parameter of interest.

Inversely, we assume that the true parameter values were known, but the group assignment

variable Z = (Z1, . . . , Zn) remained latent. We first give the definition of the posterior

distribution of the latent variable Z.

Definition 1.5 (Posterior distribution of the latent variable). Let X = (X1, . . . , Xn) be an

observation vector from a mixture distribution with K components. Let Z = (Z1, . . . , Zn)

denote the latent group assignment variable. The quantity P(Z|X) is called the posterior

distribution of the latent variable.

The posterior distribution of the latent variable is the probability that an observation

was generated from a certain component. We can expand it using Bayes’ formula

P(Zi = k|Xi) =
P(Zi = k)fk(Xi)

f(Xi)

=
ckfk(Xi)

K∑
k′=1

ck′fk′(Xi)

=
ck

1√
2π σk

exp
(
− (Xi−µk)

2

2σ2
k

)
K∑

k′=1

ck′
1√

2π σk′
exp

(
− (Xi−µk′ )

2

2σ2
k′

) . (4)

Since all of the parameters used in (4) are known, estimating P(Zi = k|Xi) only requires a

straightforward computation.

Thus, if we knew the latent group assignments, we could estimate each component’s parame-

ters. Similarly, if we knew each component’s parameters, we could estimate the latent group

assignments. The EM algorithm builds on top of these observations. Before we present it,

we introduce the complete data likelihood, which is the likelihood with the assumption that

Z is known.
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Definition 1.6 (Complete data likelihood). Let X = (X1, . . . , Xn) be an observation vector

generated by a k-component mixture. The complete data likelihood Lc(θ, c|X,Z) and the

complete data log-likelihood lc(θ, c|X,Z) are

Lc(θ, c|X,Z) =
N∏
i=1

K∏
k=1

(ckfk(Xi; θk))
Zi (5)

and

lc(θ, c|X,Z) = logLc(θ, c|X,Z) =
N∑
i=1

K∑
k=1

Zilog (ckfk(Xi; θk)) (6)

As the latent group assignments are not actually known, we work with the expectation

of the complete data log likelihood w.r.t. Z|X,

EZ|X [lc(θ, c|X,Z)] = EZ|X

[
N∑
i=1

K∑
k=1

Zilog (ckfk(Xi; θk))

]

=
N∑
i=1

K∑
k=1

EZ|X [Zi]log (ckfk(Xi; θk)) (7)

=
N∑
i=1

K∑
k=1

P(Zi = k|X)log (ckfk(Xi; θk)) .

It is important to distinguish between the complete data likelihood, and the marginal

likelihood as defined in (3). In terms of notation, L(·), l(·) are used to denote the marginal

likelihood and marginal log-likelihood respectively, whereas Lc(·) and lc(·) are used to denote

the complete-data likelihood and complete-data log-likelihood. The complete data likelihood,

Lc, assumes that the latent variable Z is observed, and includes that information in the

likelihood expression, resulting in a simpler form. In contrast, the marginal likelihood, L,

reflects the actual setting where Z is unobservable. It accounts for this uncertainty by

summing over all possible values, leading to a more complex expression. Although the

marginal likelihood is the true likelihood of interest for inference, it can be problematic to

work with directly, as shown in the normal mixture example. The EM addresses this issue

by working with the expected value of the complete data likelihood.

In essence, we pretend to know the component-specific parameters to calculate the expec-

tation of the complete data log-likelihood (E-step), and then we use that result to maximize

that same likelihood with respect to our parameters of interest (M-step). Dempster et al.

(1977) showed that the parameters of the mixture model can be estimated by iterating be-

tween the E and M steps multiple times. We now provide a formal description of the EM
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algorithm.

Let X = (X1, . . . , Xn) denote the observation vector generated by a mixture distribution

with K components. Let the expectation of the complete data log-likelihood be denoted by

Q(θ, c) = EZ|X [lc(θ, c|X,Z)]. The EM algorithm is now described as follows:

1. Set t = 0

2. Generate random starting estimates of the mixture weights, c(0), and the mixture

component parameters, θ(0).

3. E-Step

Evaluate Q(θ, c|θ(t), c(t)) = EZ|X [lc(θ
(t), c(t)|X,Z)]

4. M-Step

Update the mixture weights c and model parameters θ by maximizing Q

c(t+1) = argmax
c

Q(θ, c|θ(t), c(t))

and

θ(t+1) = argmax
θ

Q(θ, c|θ(t), c(t+1))

5. Increase t by 1

6. Repeat steps 3 to 5 with the new estimates until convergence, or until the maximum

number of iterations is reached.

The convergence of the EM algorithm can be determined by two different methods (Wu,

1983). The first approach is to check whether the change in the Q-function between iterations

falls below a predetermined threshold ϵ. The other approach is to monitor the change in the

parameter estimates and mixture weights, and declare convergence once these changes are

smaller than ϵ . In this thesis, we adopt the latter criterion, using the change in parameters

and weights to assess convergence. We will claim the EM algorithm has converged when

|θ(t+1)
k − θ

(t)
k | < ϵ, (8)

|c(t+1)
k − c

(t)
k | < ϵ, (9)

∀k ∈ {1, . . . , K}, (10)
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for any two consecutive iterations, for some chosen ϵ > 0. If that condition is not satis-

fied within the predetermined maximum number of iterations, Tmax, the algorithm is also

terminated, but it has not converged.

The EM algorithm has been proven to be correct (Rubin and Little, 1991), meaning that

increases in the complete data likelihood, Q(θ, c|θ(t), c(t)), guarantee increases in the model’s

marginal likelihood, L(θ(t), c(t)|X). Thus, since Q(θ, c|θ(t), c(t)) increases in every iteration,

the marginal likelihood also increases. However, this monotonic improvement property can

be problematic. Because the EM algorithm guarantees an increase in the expected complete

data log-likelihood at each iteration, it is a greedy algorithm. If it is initialized near an

underwhelming local maximum, it will converge to that point and cannot escape, since any

step away would reduce the objective function. This tendency of EM to get trapped in poor

local optima is well studied in the literature (Dempster et al., 1977), and several strategies

have been proposed to mitigate it. If prior knowledge about the approximate range or values

of the parameters is available, it can be used to guide initialization in a way that increases

the chance of converging to a better maximum. In certain cases, such as with a normal

mixture model, applying the k-means algorithm can yield parameter estimates that serve as

a reasonable starting point, capturing part of the underlying structure of the data (Shireman

et al., 2015). When such prior knowledge or techniques are not available, empirical studies

suggest that running the algorithm multiple times with different random initializations and

selecting the best outcome is an effective strategy (Biernacki et al., 2003).

In some cases, an analytical closed-form update rule for both the E and M steps can

be derived. The normal distribution mixture that we demonstrated in one such case. If

this derivation is too challenging for either step, a numerical optimization method may be

employed. Issues arise when even numerical optimization proves to computationally infeasi-

ble, in which case we arrive at a standstill. Multiple extensions of the EM algorithm have

been proposed to solve this issue, such as the Classification EM (CEM) and the Variational

EM (VEM). The former is employed when we only care about the group assignments, and

is a relaxation of the classical EM, whereas the latter uses an approximate distribution to

simplify the expression of Q, which it then optimizes.

1.3.1 Classification EM

The Classification EM (Celeux and Govaert, 1985) is a relaxation of the EM presented

in the previous section. Instead of using the soft clustering scheme of the EM, we hard

cluster each observation into a single group. In this way, a definitive clustering is obtained
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at each iteration, as opposed to the EM algorithm, which computes a vector of posterior

probabilities. The utility of this variant stems from two advantages. Firstly, it is much

simpler computationally, and runs significantly faster than a classical EM. Secondly, we

estimate the group assignment vector Z in every iteration, making use of the complete data

log-likelihood and not the expectation of it. As a result, it can be applied to problems

in which the expected complete data likelihood is difficult to compute or optimize. The

co-clustering problem of hypergraphs is one of those problems, and we will explore that in

more detail in Chapter 2. Let X = (X1, . . . , Xn) be an observation vector generated by a

k-component mixture. The CEM algorithm is described as follows:

1. Set t = 0.

2. Generate random starting estimates of the mixture weights, c
(0)
k , the mixture compo-

nent parameters, θ
(0)
k , and initial class assignments Z(0).

3. CE-Step (Classification E-Step)

For each data point Xi, assign it to the most likely component based on the current

parameters:

Z
(t+1)
i = argmax

k
P(Zi = k | Xi,θ

(t), c(t)),

i.e., assign each point to the component with the highest posterior probability.

4. M-Step

Update the parameters based on the hard assignments:

c(t+1) =
1

n

n∑
i=1

1{Z(t+1)
i = k},

and

θ(t+1) = argmax
θ

lc(θ, c
(t+1) | X,Z(t+1)),

where lc is the complete-data log-likelihood.

5. Increase t by 1.

6. Repeat steps 3 to 5 until convergence or until the maximum number of iterations is

reached.
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1.3.2 Variational EM

An important limitation of EM estimation is that it requires computing the posterior dis-

tribution of the latent variable, P(Z|X). In many cases, this posterior is either analytically

intractable or computationally infeasible to estimate. This makes the E-step, which uses

P(Z|X) to evaluate the expected complete-data log-likelihood, difficult or impossible to

perform. The Variational EM (Neal and Hinton, 2000) offers a solution by replacing the in-

tractable posterior with a more manageable approximation. The approximating distribution,

q(Z), is chosen from a restricted family of distributions typically defined to simplify computa-

tion, for example by assuming independence between latent variables. The goal is to find the

q(Z) that is closest to the true posterior. Closeness is measured using the Kullback-Leibler

(KL) divergence (Kullback and Leibler, 1951), which quantifies the difference between two

probability distributions:

Definition 1.7 (Kullback-Leibler divergence). Given distributions Q and P , the Kullback-

Leibler (KL) divergence from Q to P is defined as:

DKL[Q||P ] =

∫
Q log

Q

P

The KL divergence is always non-negative and equals zero only when the two distribu-

tions are identical (Kullback and Leibler, 1951). A larger KL divergence indicates greater

dissimilarity between the distributions, while a smaller value suggests that the distributions

are more similar. Thus, the search for a suitable approximation of P(Z|X) can be framed

as minimizing the KL divergence between the true posterior P(Z|X) and a set of candidate

distributions. This leads to the following optimization problem, where the goal is to find the

distribution q̂(Z) that minimizes the divergence:

q̂(Z) = argmin
q

DKL[q(Z)||P(Z|X)].

The minimization of the KL divergence is closely related to the maximization of the model’s

marginal likelihood, through a result known as theKullback-Leibler divergence decomposition.

Lemma 1.1 (Kullback-Leibler divergence decomposition). Let X be a random variable gen-

erated by a k-component mixture. Let Z denote the latent group assignment variable as-

sociated with X. Let q(Z) be a distribution over the latent variable. The Kullback-Leibler

divergence from q(Z) to P (Z|X) can be decomposed as

DKL[q(Z)||P(Z|X)] = Eq(Z)[log q(Z)]− Eq(Z)[logP(Z,X)] + logP(X)

where logP(X) is the marginal log-likelihood.
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Proof.

DKL[q(Z)||P(Z|X)] =

∫
q

q(Z) log
q(Z)

P(Z|X)

= Eq(Z)

[
log

q(Z)

P(Z|X)

]
= Eq(Z)[log q(Z)− logP(Z|X)]

= Eq(Z)[log q(Z)]− Eq(Z)[logP(Z|X)]

= Eq(Z)[log q(Z)]− Eq(Z)[log
P(Z,X)

P(X)
]

= Eq(Z)[log q(Z)]− Eq(Z)[logP(Z,X)] + logP(X).

Re-arranging the terms yields

logP(X) = Eq(Z)[logP(Z,X)]− Eq(Z)[log q(Z)] +DKL[q(Z)||P(Z|X)]. (11)

The first two terms of the right-hand side constitute the Evidence Lower Bound (ELBO)

of the variational distribution q(Z), namely

ELBO(q(Z)) = Eq(Z)[logP(Z,X)]− Eq(Z)[log q(Z)]

⇐⇒

logP(X) = ELBO(q(Z)) +DKL[q(Z)||P(Z|X) (12)

There are two main corollaries of this result. First, because the KL divergence is always

non-negative (Kullback and Leibler, 1951) the marginal log-likelihood is always larger than

the ELBO, i.e.

logP(X) ≥ ELBO(q(Z)) (13)

which establishes the ELBO as a lower bound for the marginal log-likelihood. Second,

because logP(X) does not depend on the choice of q(Z), the left-hand side of (12) remains

constant under the minimization of the KL divergence w.r.t. q(Z). As a result, the right hand

side must also remain constant. Therefore, any decrease in the KL divergence corresponds to

an equal increase in the ELBO. This implies that minimizing the KL divergence is equivalent

to maximizing the ELBO.

Building on these observations, the Variational EM (VEM) algorithm optimizes a lower

bound on the marginal likelihood by performing EM updates on the ELBO instead of the
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complete-data log-likelihood. The E-step is referred to as the Variational E-step to empha-

size this adjustment. This yields an increasing sequence of lower bounds, which becomes

tight when the variational approximation q(Z) closely matches the true posterior.

The VEM algorithm is described as follows:

1. Set t = 0.

2. Generate random starting estimates of the mixture weights, c
(0)
k , the mixture compo-

nent parameters, θ
(0)
k , and the variational parameters q(0)(Z).

3. VE-Step (Variational E-Step)

Update the variational distribution by solving:

q(t+1)(Z) = argmax
q(t)(Z)

Eq(t)(Z)

[
logP(X,Z | θ(t), c(t))

]
− Eq(t)(Z)[log q

(t)(Z)]

4. M-Step

Update the parameters by:

c(t+1) = argmax
c

Eq(t+1)(Z)

[
logP(X,Z | θ(t), c(t))

]
− Eq(t+1)(Z)[log q

(t+1)(Z)]

θ(t+1) = argmax
θ

Eq(t+1)(Z)

[
logP(X,Z | θ(t), c(t+1))

]
− Eq(t+1)(Z)[log q

(t+1)(Z)]

5. Increase t by 1.

6. Repeat steps 3–5 until convergence or the maximum number of iterations is reached.

Convergence is assessed in the same way as in the standard EM algorithm.

One advantage of the variational approach is that it can mitigate issues such as dependen-

cies between latent group assignments. It has been successfully applied in various settings,

including co-clustering problems (Keribin et al., 2012). However, the method yields only an

approximate solution, and the quality of this approximation cannot be quantified. This is

because evaluating the KL divergence requires access to exact probability values, which are

typically intractable in the VEM setting. Furthermore, like the classical EM algorithm, VEM

is sensitive to initialization and prone to convergence to local optima (Blei et al., 2017). For

this reason, non-random or carefully designed initialization strategies are often necessary.
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2 Model

The aim of this chapter is to provide an overview of previously studied models and to

introduce our extension. In Section 2.1, we review the existing models along with their

associated estimation methods. Section 2.2 then presents our model in detail, including

derivations of both its marginal and complete-data likelihood. Following this, Section 2.3

focuses on the application of the CEM and VEM algorithms to our model, obtaining a

re-estimation procedure. Finally, Section 2.4 addresses issues related to identifiability and

model selection.

2.1 The Latent Class Analysis model

We are interested in modeling the structure of the incidence matrix, X ∈ {0, 1}M×N , of a

hypergraph. A naive first step would be to assume that every node has the same probability

of joining any hyperedge, meaning that every binary entry Xji depends on a shared single

parameter, 0 ≤ θ ≤ 1. This would result in the data generating process

Xji ∼ Bernoulli(θ),∀i, j.

The marginal likelihood of this model can be computed and optimized, as it is a collection

of MN i.i.d. Bernoullis, making it a standard maximum likelihood estimation problem.

However, it lacks the complexity to model hyperedge size heterogeneity which is often present

in observed networks. A natural extension is the saturated hypergraph model, which models

each node-hyperedge interaction individually, replacing the single parameter θ with M · N
parameters, θji. We denote the θji matrix as θ =

(
θji
)
j=1,...,M ; i=1,...,N

The marginal likelihood
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of this model is

L(θ|X) =
M∏
j=1

P(ej)

=
M∏
j=1

P(Xj1, Xj2, . . . , XjN)

=
M∏
j=1

P(Xj1) . . .P(XjN) (14)

=
M∏
j=1

N∏
i=1

P(Xji)

=
M∏
j=1

N∏
i=1

θ
xji

ji (1− θji)
(1−xji)

This model not only involves a very large number of parameters that grows with both M,N ,

but also from the fact that only a single observation is available to estimate each parameter.

To overcome both of these issues, the LCA (Ng and Murphy, 2022) assumes a latent clustering

of G categories over the hyperedges. This idea is motivated from the fact that, in many

applications, the hyperedges may be categorized into intuitive groups. For instance, in a

co-authorship network, the group of a hyperedge may represent the field of the publication.

In this model, the event-joining probability depends only on the node and the group of the

hyperedge, reducing the number of parameters to G(N + 1) - 1. The group of each hyperedge

is randomly drawn from a multinomial distribution with parameter δ = (δ1, . . . , δG). By

denoting Z = (Z1, . . . , ZM) the latent group assignment vector, we have the following data

generation process

Zj ∼ Multinomial(δ), j = 1, . . . ,M

Xji|Zj ∼ Bernoulli(θZji
), ∀i, j

The marginal likelihood of this model is:

L(θ, δ|X) =
M∏
j=1

P(ej)

=
M∏
j=1

G∑
g=1

P(ej|Zj = g)P(Zj = g) (15)

=
M∏
j=1

G∑
g=1

δg

N∏
i=1

θ
xji

gi (1− θgi)
(1−xji),
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as P(Zj = g) = δg.

Direct maximum likelihood estimation of this model’s marginal likelihood is intractable. Ng

and Murphy (2022) overcame this challenge by introducing a re-estimation procedure based

on a modified Expectation-Maximization algorithm. Building on this, Brusa and Matias

(2024) proposed a similar approach focused exclusively on node clustering in hypergraphs.

Our work extends these methods by performing simultaneous clustering on both the nodes

and hyperedges.

2.2 Cocluster-LCA

We consider a hypergraph with N nodes and M hyperedges, X ∈ {0, 1}N×M . We assume

it has two independent latent clustering procedures, one for the nodes and one for the

hyperedges. The event joining probability depends only on the groups of the node and

the hyperedge. We select a fixed number of clusters for each procedure, namely G for the

hyperedges and K for the nodes. Let Z = (Z1, . . . , ZM),W = (W1, . . . ,WN) be the latent

cluster assignment variables for the hyperedges and nodes respectively, i.e.,

Zj = g ⇔ Hyperedge j belongs to group g,

Wi = k ⇔ Node i belongs to group k.

The a priori group assignment probabilities are denoted by δ = (δ1, . . . , δG) for the

hyperedge groups, and γ = (γ1, . . . , γK) for the node groups. These denote the probabilities

that any hyperedge (or, respectively, node) originated from a certain group, before the

information of X is incorporated.

P(Zj = g) = δg, j ∈ {1, . . . ,M}

with
G∑

g=1

δg = 1, δg ≥ 0

P(Wi = k) = γk, i ∈ {1, . . . , N}

with
K∑
k=1

γk = 1, γk ≥ 0.

Our aim is to simplify the LCA model of equation (15) by making the hyperedge-joining

probability parameter depend only on the clusters of each node-hyperedge pair. Thus, we

require G×K parameters for each combination:

P (Xji|Zj = g,Wi = k) = θgk,

25



which results in the following representation of the data-generating mechanism

Zj ∼ Multinomial(δ), j = 1, . . . ,M

Wi ∼ Multinomial(γ), i = 1, . . . , N

Xji|Zj,Wi ∼ Bernoulli(θZjWi
), ∀i, j.

The total number of parameters is KG+ (G− 1) + (K − 1). For relatively small choices

of K,G compared to N,M , this number of parameters can become much smaller than

the parameters of the saturated model, the hyperedge clustering model (15), and the node

clustering model (Brusa and Matias, 2024). This reduction results in a more parsimonious

model, whose interpretation is simpler. We denote the θgk matrix as θ =
(
θgk
)
g=1,...,G; k=1,...,K

.

The marginal likelihood of the model is

L(δ,γ,θ|X) =
M∏
j=1

P(ej)

=
M∏
j=1

G∑
g=1

P(ej|Zj = g)P(Zj = g)

=
M∏
j=1

G∑
g=1

P(Zj = g)
N∏
i=1

P(Xji|Zj = g)

=
M∏
j=1

G∑
g=1

P(Zj = g)
N∏
i=1

K∑
k=1

P (Xji|Wi = k, Zj = g)P (Wi = k)

=
M∏
j=1

G∑
g=1

δg

N∏
i=1

K∑
k=1

γkθ
xji

gk (1− θgk)
(1−xji). (16)

This marginal likelihood cannot be maximized in closed form. Numerical optimization

also proves to be infeasible for a reasonably sized dataset, as a single computation of the

marginal likelihood requires the summation of KN × GM terms. For example, for a hyper-

graph which contains M = 50 hyperedges, N = 50 nodes, and K = G = 2 latent groups, this

corresponds to summing over 2100 terms. In order to estimate the parameters, we attempt

to make use of the EM algorithm, which requires us to work with the complete data likeli-

hood. By defining the indicator variables corresponding to each node’s/hyperedge’s group

assignment

• Node-specific group assignment indicator: Wik = 1{Wi=k},

• Hyperedge-specific group assignment indicator: Zjg = 1{Zj=g},
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we can write the complete data likelihood LC , and the corresponding complete data log-

likelihood, lC as

LC(θ, δ,γ|X,Z,W ) =
M∏
j=1

G∏
g=1

δZjg
g

N∏
n=1

K∏
k=1

γWik
k

M∏
j=1

G∏
g=1

N∏
n=1

K∏
k=1

[θ
xji

gk (1− θgk)
1−xji ]ZjgWik (17)

lC(θ, δ,γ|X,Z,W ) =
M∑
j=1

G∑
g=1

Zjglog(δg) +
N∑

n=1

K∑
k=1

Wiklog(γk)

+
M∑
j=1

G∑
g=1

N∑
n=1

K∑
k=1

ZjgWiklog(θ
xji

gk (1− θgk)
1−xji). (18)

Finally, by taking the expectation of the complete data log-likelihood over Z,W |X, we derive

the Q-function

EZ,W |X [lC(θ, δ,γ|X,Z,W )] = EZ,W |X

[
M∑
j=1

G∑
g=1

Zjglog(δg) +
N∑

n=1

K∑
k=1

Wiklog(γk)

+
M∑
j=1

G∑
g=1

N∑
n=1

K∑
k=1

ZjgWiklog(θ
xji

gk (1− θgk)
1−xji)

]

=
M∑
j=1

G∑
g=1

EZ,W |X [Zjg]log(δg) +
N∑

n=1

K∑
k=1

EZ,W |X [Wik]log(γk)

+
M∑
j=1

G∑
g=1

N∑
n=1

K∑
k=1

EZ,W |X [ZjgWik]log(θ
xji

gk (1− θgk)
1−xji) (19)

The specification of the Q-function requires the calculation of the following posterior distri-

butions:

• EZ,W |X [Zjg] = P(Zj = g|Xj·),

• EZ,W |X [Wik] = P(Wi = k|X·i),

• EZ,W |X [ZjgWik] = P(Zj = g,Wi = k|X).

where X·i, Xj· denote the i-th column and j-th row of the incidence matrix X. The first two

quantities can be obtained by applying Bayes’ rule:
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P(Zj = g|Xj·) =
P(Xj·|Zj = g)P(Zj = g)

P(Xj·)

=

δg
N∏
i=1

K∑
k=1

γkθ
xji

gk (1− θgk)
1−xji

G∑
g′=1

δg′
N∏
i=1

K∑
k=1

γkθ
xji

g′k(1− θg′k)1−xji

, (20)

P(Wi = k|X·i) =
P(X·i|Wi = k)P(Wi = k)

P(X·i)

=

γk
M∏
j=1

G∑
g=1

δgθ
xji

gk (1− θgk)
1−xji

K∑
k′=1

γk′
M∏
j=1

G∑
g=1

δgθ
xji

gk′(1− θgk′)1−xji

. (21)

We apply Bayes’ rule to the third quantity,

P(Zj = g,Wi = k|X) =
P(X|Zg = g,Wi = k)P(Zj = g)P(Wi = k)

P(X)
. (22)

The denominator in (22), P(X), is the model’s marginal likelihood as defined in Equation

(16). Because this quantity is intractable to compute, estimating P(Zj = g,Wi = k | X)

becomes computationally infeasible. In the context of latent block models, earlier work by

Govaert and Nadif (2008) and Keribin et al. (2012) introduced two EM-based approaches

that can be adapted to our setting. The first, Block EM (BEM), generalizes the Variational

EM algorithm for coclustering by using a variational distribution as an approximation of the

posterior distribution. The second, Classification EM (CEM), takes a more direct route by

maximizing the complete-data log-likelihood without relying on such approximations. In the

next chapter, we explore these methods in detail and examine their properties in the context

of our model.

2.3 Estimation

2.3.1 Block EM (BEM)

The intractability of the posterior distribution P(Zj = g,Wi = k|X) can be solved with a

VEM approach. We search for a variational distribution qZ,W (Z,W ) which is the closest

approximation to the intractable posterior, in terms of the KL divergence. We restrict our

search to variational distributions with the property qZ,W (Z,W ) = qZ(Z)qW (W ), where
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qZ , qW are variational distributions that only depends on Z,W respectively. In addition, we

assume that these two distribution can be further factorized by

qZ(Z) =
M∏
j=1

qZj
(Zj),

qW (W ) =
N∏
i=1

qWi
(Wi).

These two simplifications are equivalent to assuming that Z and W are a posteriori inde-

pendent, and that all the Zj and all the Wi are pairwise independent among themselves.

Throughout the thesis we will use the notation

dj(g) := qZj
(Zj = g),

ci(k) := qWi
(Wi = k).

These are the approximate posterior distributions of node-specific latent assignment proba-

bility, and the hyperedge specific latent assignment probability. When referring to the entire

set of ci(k) for all i, k, or the entire set of dj(g), we use the notation c =
(
ci(k)

)
i=1,...,N ; k=1,...,K

and d =
(
dj(g)

)
j=1,...,M ; g=1,...,G

respectively. These two are the variational distributions that

we aim to optimize with the VEM. Govaert and Nadif (2008) proposed an optimization

criterion to be optimized, denoted Φ. This criterion coincides with the ELBO of the varia-

tional distribution qZ,W (Z,W ) with the posterior independence property between Z,W . The

proposed criterion is:

Φ(c,d,γ, δ,θ) = EZ,W |X [lC(θ, δ,γ|X,Z,W )] +H(c) +H(d) (23)

where H(c), H(d) denotes the entropy of c, d respectively, i.e.

H(c) = −
N∑
i=1

K∑
k=1

ci(k)log(ci(k)),

H(d) = −
M∑
j=1

G∑
g=1

dj(g)log(dj(g)).

Even with this variational approximation, performing a joint maximization of Φ for both

c,d analytically (E-step) remains difficult. Consequently, we will use a fixed point iteration

for the E-step, which iteratively maximizes Φ w.r.t. c with fixed d, and then maximizes it

w.r.t. d for fixed c. This process is repeated until convergence is met. Putting everything

together, we construct a VEM that uses alternating optimization on the VE-step, optimiz-

ing Φ w.r.t. c,d first (using the fixed point algorithm), with fixed θ,γ, δ (VE-step), and
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optimizing w.r.t. θ,γ, δ second, with fixed c,d (M-step).

The optimization of Φ with respect to c, for fixed θ,γ, δ,d yields

ĉi(k) =

γk
G∏

g=1

θ
qig
kg (1− θkg)

bg−qig

K∑
k′=1

γk′
G∏

g=1

θ
qig
k′g(1− θk′g)bg−qig

, (24)

The optimization of Φ with respect to d, for fixed θ,γ, δ, c yields

d̂j(g) =

δg
K∏
k=1

θ
yjk
kg (1− θkg)

sk−yjk

G∑
g′=1

δg′
K∏
k=1

θ
yjk
kg′ (1− θkg′)sk−yjk

, (25)

where

qig =
M∑
j=1

dj(g)xji, yjk =
N∑
i=1

ci(k)xji, bg =
M∑
j=1

dj(g), sk =
N∑
i=1

ci(k).

The optimization of G with respect to θ,γ, δ for fixed c,d yields

γ̂k =

N∑
i=1

ci(k)

N
, (26)

δ̂g =

M∑
j=1

dj(g)

M
, (27)

θ̂gk =

M∑
j=1

N∑
i=1

xjidj(g)ci(k)

M∑
j=1

N∑
i=1

dj(g)ci(k)

. (28)

The block EM algorithm is as follows:

1. Initialize c(0),d(0), δ(0),γ(0),θ(0)

2. For t = 1, . . . ,

2.1. VE-step

Estimate c(t+1),d(t+1) via a fixed point algorithm
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i. Initialize d̃
(0)

= d(t)

For s = 1, . . . ,

ii. Calculate c̃
(s)
i (k) given (d̃

(s−1)
,γ(t), δ(t),θ(t)) via (24) ∀i, k

iii. Calculate d̃
(s)
j (g) given (c̃(s),γ(t), δ(t),θ(t)) via (25) ∀j, g

iv. Increase s by 1

v. Repeat steps (ii) - (iv) until convergence

vi. Update d
(t+1)
j (g) = d̃

(s)
j (g)

Update c
(t+1)
i (k) = c̃

(s)
i (k)

2.2. M-step

Update δ(t+1),γ(t+1),θ(t+1) with formulas (26), (27), (28) using c(t+1),d(t+1)

2.3. Increase t by 1

3. Repeat steps 2.1-2.3 until convergence or until the maximum number of iterations has

been reached.

We consider the BEM algorithm to have converged when

|γ(t) − γ(t−1)| < ϵ,

|δ(t) − δ(t−1)| < ϵ,

|θ(t) − θ(t−1)| < ϵ,

for a specified tolerance ϵ > 0, i.e. each parameter shifts less than ϵ between two consecutive

iterations.

The re-estimation formulas are again obtained through the constrained optimization of

the new criterion, and the proofs are in appendix (A).

2.3.2 Classification EM (CEM)

The classification EM assigns a hard clustering in every iteration, instead of the probabilistic

clustering by the classical EM. Therefore, it uses the complete data log-likelihood directly

and not its expectation w.r.t. the latent grouping variables. This is particularly useful in the

hypergraph co-clustering context, as it avoids the need for any variational approximation.

The algorithm is as follows:

1. Initialize δ(0),γ(0),θ(0)
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2. For t = 1, . . . ,

2.1. E-step

Update the posterior probabilities c
(t)
i (k), d

(t)
j (g) via a fixed point algorithm, using

(24), (25)

2.2. Assign each node vi and each hyperedge ej, to the cluster which provides the

maximum posterior probability.

W
(t+1)
i = argmax

k
(c

(t)
i (k)),

Z
(t+1)
j = argmax

g
(d

(t)
j (g)),

2.3. M-step

Update estimates as:

γ
(t+1)
k =

# of nodes in cluster k

N
=

N∑
i=1

W
(t+1)
ik

N

δ(t+1)
g =

# of hyperedges in cluster g

M
=

M∑
j=1

Z
(t+1)
jg

M

θ
(t+1)
gk =

N∑
i=1

M∑
j=1

W
(t+1)
ik Z

(t+1)
jg Xji

N∑
i=1

M∑
j=1

W
(t+1)
ik Z

(t+1)
jg

2.4. Increase t by 1

2.5. Repeat until convergence or until the maximum number of iterations is reached.

We consider the CEM algorithm to have converged when

|γ(t) − γ(t−1)| < ϵ,

|δ(t) − δ(t−1)| < ϵ,

|θ(t) − θ(t−1)| < ϵ,

for a specified tolerance ϵ > 0, i.e. each parameter shifts less than ϵ between two consecutive

iterations.
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2.4 Model selection

While the Block EM algorithm takes on the task of estimating every parameter of the

model, two hyperparameters require our specification. Specifically, these are the number of

node groups, K, and the number of hyperedge groups, G. As their true sizes are latent,

we require a way to establish a set of candidate models, and then order them based on

some measure. Measures such as the Akaike Information Criterion (AIC) or the Bayesian

Information Criterion (BIC) are commonly used for such model selection problems. For a

given model m with estimated marginal likelihood L̂, a parameter set of size k and a sample

size of n, they are defined as:

BIC(m) = k · ln(n)− 2 ln(L̂)

AIC(m) = 2k − 2 ln(L̂)

However, in the case of Cocluster-LCA, the calculation of the marginal likelihood L̂ is in-

tractable, making both measures unusable. A potential approach to tackling this issue would

be to replace the real marginal likelihood with its variational approximation, through the

ELBO. However, the tightness of the bound between the real and variational likelihood is

unknown, making this an approximation of uncertain quality. To counter this problem,

Biernacki et al. (2000) introduced the Integrated Complete Likelihood (ICL).

2.4.1 ICL

The ICL is defined as the logarithm of the integrated complete likelihood. It is defined as

Definition 2.1 (Integrated Complete Likelihood). Given a Cocluster-LCA model, R with

parameter set Ω = (γ, δ,θ), the Integrated Complete Likelihood is

ICL(R) =

∫
p(X,Z,W |Ω;M)p(Ω;M)dΩ

The practicality of the ICL also lies in the ability to easily estimate it. Keribin et al.

(2012) have provided a closed-form solution for the ICL of a binary co-clustering model,

which is:

Theorem 1 (Closed form solution of the ICL (Keribin et al., 2012)). Given a Cocluster-

LCA model, R, with parameter set Ω = (γ, δ,θ), the Integrated Complete Likelihood can be
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computed in closed form as

ICL(R) = log Γ(G) + log Γ(M)− log Γ(N +G)− log Γ(K +M)

+
∑
k

log Γ(Nk + 1) +
∑
ℓ

log Γ(N g + 1) +
∑
k,g

log Γ(ng
k + 1)

+ log Γ(NkN
g − ng

k + 1)− log Γ(NkN
g + 2)

where Γ(·) is the Gamma function, K is the number of node clusters, G is the number of

hyperedge clusters, M is the number of observed hyperedges, N is the number of nodes and

Nk =
N∑
i=1

Wik, N g =
M∑
j=1

Zjg, ng
k =

N∑
i=1

M∑
j=1

WikZjgXji.

Zjg and Wik are obtained through the hard clustering of the nodes and hyperedges with

the maximization of dj(g) and ci(k), respectively.

2.4.2 Selection of K,G

A plethora search algorithms can be employed to search through the candidate models, such

as the one developed by Keribin et al. (2012). However, they come at a cost of information

loss, as not all possible configurations are examined. Therefore, we opt to use a brute force

method of exhausting every single predefined combination of K,G. To this end, we upper

and lower bound K,G on arbitrary but computationally feasible values, and fit a model for

every combination that falls within the permissible range. Then a ICL value is calculated

for each model, and the model with the highest ICL is chosen.

2.4.3 Identifiability and the trace maximization algorithm

The Cocluster-LCA is identifiable up to label permutation under very mild conditions (Brault

et al., 2014). These are:

1. γk > 0 ∀k ∈ {1, . . . , K}

2. δg > 0 ∀g ∈ {1, . . . , G}

3. N > 2K − 1

4. M > 2G− 1

5. K ≥ 2 and G ≥ 2
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6. The matrix product θγT yields a G× 1 vector with distinct entries.

7. The matrix product δθ yields a 1×K vector with distinct entries.

Conditions 6 and 7 ensure that each latent group corresponds to a distinct distribution.

Without these conditions, different parameter configurations could lead to indistinguishable

or nearly identical distributions, making the model non-identifiable. Condition 5 is necessary

because a Cocluster-LCA model with K = 1 or G = 1 reduces to a one-dimensional mixture

of Bernoulli distributions, which is generally non-identifiable (Gyllenberg et al., 1994). As

such, we will restrict the search space for K,G to values greater than or equal to 2.

Because The Cocluster-LCA is identifiable only up to label permutation, any reordering

of the group labels results in an equivalent model to the original. For example, assume a

model with the simple parameter set c = (c1, c2). The following two configurations represent

the same underlying model:

cA = (c2, c1), cB = (c1, c2).

This label ambiguity is not problematic in settings where the true labels are unknown,

such as in real data. However, in simulation studies, where the ground truth is known

and performance metrics such as classification accuracy are used, it becomes an important

limitation. If the estimated labels are permuted relative to the true labels, accuracy will be

artificially low, even when the clustering is otherwise correct. To remedy this, we will use the

trace maximization algorithm, which searches for the optimal permutation by maximizing

the number of correctly matched labels. We first define the confusion matrix.

For a clustering problem with G groups, let Z∗ be the true group labels and Ẑ the

estimated labels. We define the confusion matrix C as a G×G matrix where Cij counts the

number of samples assigned to group i in Z∗ and to group j in Ẑ. The trace of the confusion

matrix, Tr(C), gives the total number of observations for which the two clusterings have

assigned the same label. The trace maximization algorithm aims to maximize the trace of

the confusion matrix by permuting the estimated labels. The trace maximization algorithm

evaluates all possible label permutations and selects one that maximizes the trace of the

confusion matrix between the true and estimated labels. Formally,

1. Generate all G! permutations τ of the G group labels.

2. For each permutation τ , relabel the estimated labels as τ(Ẑ), and compute the confu-

sion matrix C(τ) between Z∗ and τ(Ẑ).
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3. Compute the trace of each confusion matrix, Tr(C(τ))

4. Select the permutation τ ∗ that maximizes the trace:

τ ∗ = argmax
τ

Tr(C(τ)).

5. Use τ ∗(Ẑ) as the relabeled estimated clustering for evaluation.

The trace maximization procedure is applied separately to the hypergraph labels (using Ẑ

and Z∗) and the node labels (using Ŵ and W ∗). While there is no theoretical guarantee that

this algorithm will recover the correct label order, particularly when parameter estimates

are poor, our empirical results show that it performs reasonably well in practice.
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3 Simulation study

The previous chapter established a modified VEM estimator (referred to as BEM) for the

estimation of a Cocluster-LCA model. This chapter complements that theoretical analysis

through a series of simulation studies aimed at evaluating the estimator’s performance in

controlled settings. Simulations allow us to test the estimator in settings where the true

parameters are known, the latent structure is fully specified, and certain aspects of the

difficulty, such as the level of separation between groups, can be varied.

Our objectives are as follows:

1. To assess the estimator’s ability to correctly recover the latent groups of the nodes/hyperedges

2. To measure the accuracy with which it estimates the parameters of group proportions

(γ, δ) and connecting probabilities (θ).

3. To examine its robustness and scalability as the problem gets more complex

4. To examine the effectiveness of the ICL in selecting the best model

To explore these objectives, we designed 4 Monte Carlo experiments, each constructed to

test the estimator under different conditions.

The first two focus on simple coclustering settings with two latent groups. In Experiment

1, the group structure is well-separated, serving as a baseline, while Experiment 2 reduces

group separability to challenge the estimator’s ability to distinguish similar components.

Experiment 3 increases model complexity by introducing three latent groups in both di-

mensions, with varying degrees of overlap across the group combinations, assessing how

performance degrades as the number of groups increases. Finally, Experiment 4 investigates

model selection: we simulate data from a three-by-three structure and evaluate whether the

ICL criterion correctly identifies this latent configuration when fitting models with varying

numbers of groups. To assess scalability, Experiments 1 and 2 are run across different sample

sizes, while Experiments 3 and 4 are conducted on a fixed moderate-size dataset. To this

end, we implemented the BEM in R and used the ALICE High Performance Computing

facility to run the simulations in parallel. The code is available in the GitHub repository

https://github.com/Liolios42/Coclustering-on-binary-hypergraphs.

Section 3.1 outlines the data generation process, while Section 3.2 introduces the eval-

uation metrics, and Section 3.3 describes the implementation choices. Section 3.4 presents

the results of Simulations 1–3, and Section 3.5 reports the results of Simulation 4. Finally,

Section 3.6 discusses the motivation for using multiple starting points.
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3.1 Data generating mechanism

In all experiments, we defined the number of nodes N , the number of observed hyperedges

M , the number of node/hyperedge groups K,G and their respective prior probabilities γ, δ,

and the connecting probabilities θ. The mechanism used to simulate the dataset is

1. For each node vi, i ∈ {1, . . . N} sample its latent group through Wi ∼ Multinomial(γ)

2. For each hyperedge ej, j ∈ {1, . . .M} sample its latent group through Zj ∼ Multinomial(δ)

3. For each hyperedge ej belonging to group g and each node vi belonging to group k,

perform a Bernoulli(θgk) trial to decide whether the node joins the hyperedge.

This procedure outputs an M ×N matrix X, an M × 1 hyperedge group assignment vector

Z∗, and an N × 1 node group assignment vector W ∗. The matrix X is used for inference, as

it is observable, whereas Z∗,W ∗ are used for evaluation, as they are latent.

The parameter sets used to generate the datasets are:

Experiment 1:

N ∈ {200, 1000}, M ∈ {200, 1000},

γ =

[
0.8

0.2

]
, δ =

[
0.7

0.3

]
,θ =

[
0.9 0.6

0.4 0.2

]
.

Experiment 2:

N ∈ {200, 1000}, M ∈ {200, 1000},

γ =

[
0.6

0.4

]
, δ =

[
0.6

0.4

]
,θ =

[
0.4 0.3

0.2 0.25

]
.

Experiment 3:

N = 500, M = 500,

γ =


0.6

0.3

0.1

, δ =


0.6

0.3

0.1

 ,θ =


0.9 0.6 0.4

0.2 0.8 0.4

0.2 0.7 0.1

 .
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Experiment 4:

N = 500, M = 500,

γ =


0.6

0.3

0.1

, δ =


0.6

0.3

0.1

 ,θ =


0.9 0.6 0.4

0.2 0.8 0.4

0.2 0.7 0.1

 .

For clarity, we also assign descriptive names to these experiments: 2x2 easy (Experiment 1),

2x2 hard (Experiment 2), 3x3 mixed (Experiment 3) and model-selection (Experiment

4).

3.2 Evaluation metrics

We evaluate the estimator’s performance using three metrics: mean absolute error (MAE) of

the parameter estimates, classification accuracy, and the adjusted Rand index (ARI). These

metrics assess both the quality of parameter recovery and the accuracy of inferred group

assignments for nodes and hyperedges.

The mean absolute error is measured using the average elementwise ℓ1 distance between

the estimated and true parameters:

l1(θ) =
∥θ̂ − θ∥1

KG
,

l1(γ) =
∥γ̂ − γ∥1

K
,

l1(δ) =
∥δ̂ − δ∥1

G
.

This metric captures how closely the true parameter values are recovered.

Classification accuracy refers to the proportion of nodes or hyperedges whose group labels

are correctly identified. For a given node group assignment vector W ∗ = (W ∗
1 , . . . ,W

∗
N)

and hyperedge group assignment vector Z∗ = (Z∗
1 , . . . , Z

∗
M), let Ŵ = (Ŵ1, . . . , ŴN) and

Ẑ = (Ẑ1, . . . , ẐM) be the respective estimated group assignment vectors. The node and

hyperedge classification accuracies are defined as:

Node Classification Accuracy =

N∑
i=1

1W ∗
i =Ŵi

N
,

Hyperedge Classification Accuracy =

M∑
j=1

1Z∗
j =Ẑj

M
,
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i.e. the number of nodes (or hyperedges) for which the estimated group is the correct one,

divided by the total number of nodes (or hyperedges). Because the Cocluster-LCA is a mix-

ture model, the labels of the estimated groups are arbitrary under permutation, i.e. what is

estimated as ”Node group 1” does not necessarily align with the group we defined as ”Node

group 1” in the generation of the data. Therefore, a direct comparison between W ∗ and Ŵ

(or between Z∗ and Ẑ) would be meaningless. To remedy this, we align the estimated labels

with the true ones by permuting them via the trace maximization algorithm (as described

in Chapter 2.4.3). We apply this algorithm to both Ŵ , Ẑ with reference to W ∗, Z∗ respec-

tively. The node and hyperedge classification accuracies are then reported after applying

this algorithm.

The adjusted Rand index (Rand, 1971) quantifies the similarity between the true and es-

timated clusterings, correcting for agreement by chance and accounting for arbitrary label

permutations. It is particularly appropriate for mixture models, where the group labels are

only identifiable up to permutation.

Let X = {X1, . . . , Xn} be n datapoints, and let C1, C2 represent two clusterings of X

into k distinct clusters. Let a represent the number of pairs of datapoints which are clustered

together in C1, and are clustered together in C2, and let b represent the number of pairs of

datapoints which belong to different clusters in C1 and different clusters in C2. For example,

we consider the case k = 2, n = 4. For a sample X = {X1, X2, X3, X4}, we consider the

clusterings C1 = {(X1, X4), (X2, X3)}, C2 = {(X1, X3, X4), (X2)}. In this case, C1 clusters

X1, X4 and X2, X3 together, whereas C2 clusters X1, X3, X4 together, and X2 separately.

The pair (X1, X4) is the only one which is clustered together in both C1 and C2, which

would result in a = 1. In constrast, the pairs that are clustered separately in both C1, C2

are (X1, X2) and (X4, X2), resulting in b = 2.

The Rand Index is then defined as

RI =
a+ b(

n
2

) .

The Adjusted Rand Index (ARI) adjusts this quantity for the expected value of RI under

random labeling:

ARI =
RI− E[RI]
1− E[RI]

,

where E[RI] denotes the expected RI under chance. This corresponds to the RI obtained if

we were to randomly guess each cluster. The calculation of this quantity requires the use of

an algorithm found in Vinh et al. (2009).
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The ARI takes values between −1 and 1, where 1 indicates perfect agreement between

clusterings, 0 corresponds to the expected similarity under random guessing, and negative

values indicate less agreement than expected by chance, i.e., systematic disagreement.

3.3 Experimental setup

3.3.1 Simulations 1, 2 and 3

The goal of the first three experiments is to evaluate the accuracy of parameter estimation

when the true latent structure is correctly specified. For each experiment, we generated data

according to a known configuration of latent groups and ran 500 Monte Carlo replicates.

Within each replicate, we used three random initializations on the BEM, and selected the

fit with the highest ICL for analysis.

3.3.2 Simulation 4

The goal of the fourth experiment is to assess the ability of the model to recover the correct

latent structure when it is not known in advance. In each of the 500 Monte Carlo replicates,

we fitted all 9 possible combinations of K ∈ {2, 3, 4} and G ∈ {2, 3, 4} (i.e., 9 models in

total). Each model was run with three random initializations, and the solution with the

highest ICL across all 27 fits was retained. The corresponding values of (K,G) were then

treated as the inferred group structure.

For all experiments, we imposed a limit of 20 BEM iterations, and selected a convergence

threshold of ϵ = 0.0001.

3.4 Simulations 1-3 (2x2 easy, 2x2 hard, 3x3 mixed)

Classification Accuracy

When the latent structure was correctly specified, the BEM algorithm consistently achieved

high accuracy in both parameter recovery and clustering performance across all settings. A

summary table for the accuracies and ARI for each experiment is given in Table 1.

In the 2x2 easy experiment, classification accuracy was almost perfect across all configu-

rations. The model achieved perfect hyperedge classification (100%) in all 500 replicates in

3 out of 4 settings, and maintained nearly perfect performance elsewhere (Table 1). Node

classification accuracy was similarly high, exceeding 99.4% in all cases, with ARIs also close

to 1, indicating close to perfect recovery of the true partitioning.
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Dataset N M Acc. nodes Acc. hyperedges ARI nodes ARI hyperedges

2x2 easy 200 200 0.998 (0.014) 1.000 (0.000) 0.992 (0.054) 1.000 (0.000)

2x2 easy 200 1000 0.996 (0.040) 0.999 (0.000) 0.987 (0.110) 0.999 (0.002)

2x2 easy 1000 200 0.994 (0.030) 1.000 (0.000) 0.980 (0.111) 1.000 (0.000)

2x2 easy 1000 1000 0.998 (0.016) 1.000 (0.000) 0.995 (0.060) 1.000 (0.000)

2x2 hard 200 200 0.852 (0.071) 0.987 (0.009) 0.511 (0.166) 0.952 (0.385)

2x2 hard 200 1000 0.980 (0.085) 0.981 (0.094) 0.951 (0.176) 0.962 (0.189)

2x2 hard 1000 200 0.840 (0.085) 0.991 (0.065) 0.488 (0.187) 0.981 (0.133)

2x2 hard 1000 1000 0.996 (0.004) 0.992 (0.004) 0.986 (0.018) 0.968 (0.018)

3x3 mixed 500 500 0.981 (0.094) 0.986 (0.094) 0.984 (0.064) 0.994 (0.042)

Table 1: Classification accuracy and Adjusted Rand Index (ARI) for the 2x2 easy, 2x2

hard, and 3x3 mixed experiments. Values are reported as the mean over 500 Monte Carlo

replicates, with standard deviations in parentheses. The best performing model in each

experiment is indicated in bold.

The 2x2 hard experiment introduced more overlap between the latent groups, resulting in

reduced separability. As expected, this posed a challenge in the small sample case. Specif-

ically, when M = 200, the classification accuracy and ARI of the nodes were substantially

lower, regardless of the number of nodes. For example, node accuracy was around 85.2%

(ARI: 0.511) for N = 200, and similarly 84.0% (ARI: 0.488) for N = 1000. In contrast,

when M was increased to 1000, performance greatly improved: accuracy rose to 99.6% and

98.0%, and ARI to 0.951 and 0.986 for N = 200 and N = 1000, respectively.

In the 3x3 mixed experiment, the model still performed remarkably well. Node and

hyperedge accuracies were 98.1% and 98.6%, respectively, with ARIs above 0.98, showcasing

the robustness of the BEM even as the number of latent groups increase.

Estimation error

Parameter estimation errors followed a similar pattern to classification accuracy. We

present these results in Table 2. In addition, we present 9 histograms (Figures 3 to 10),

which visualize the distribution of estimates for each of the 500 Monte Carlo replicates.
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Dataset N M ℓ1(γ) ℓ1(δ) ℓ1(θ)

2x2 easy 200 200 0.024 (0.021) 0.024 (0.019) 0.004 (0.004)

2x2 easy 200 1000 0.022 (0.023) 0.012 (0.008) 0.002 (0.003)

2x2 easy 1000 200 0.014 (0.027) 0.025 (0.019) 0.003 (0.010)

2x2 easy 1000 1000 0.013 (0.030) 0.011 (0.008) 0.001 (0.000)

2x2 hard 200 200 0.106 (0.088) 0.029 (0.022) 0.009 (0.007)

2x2 hard 200 1000 0.027 (0.080) 0.029 (0.092) 0.005 (0.025)

2x2 hard 1000 200 0.116 (0.101) 0.035 (0.063) 0.011 (0.020)

2x2 hard 1000 1000 0.027 (0.020) 0.012 (0.009) 0.001 (0.001)

3x3 mixed 500 500 0.020 (0.022) 0.016 (0.019) 0.011 (0.024)

Table 2: Average estimation errors of γ, δ, θ for the 2x2 easy, 2x2 hard, and 3x3 mixed

experiments. Values are reported as the mean over 500 Monte Carlo replicates, with standard

deviations in parentheses. The best performing model in each experiment is indicated in bold.
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Figure 3: Histogram of estimated parameters (γ, δ, and θ) from 500 Monte Carlo replicates

of the 2×2 easy experiment with N = 200, M = 200. The dotted line indicates the true

value of the respective parameter.
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Figure 4: Histogram of estimated parameters (γ, δ, and θ) from 500 Monte Carlo replicates

of the 2×2 easy experiment with N = 1000, M = 200. The dotted line indicates the true

value of the respective parameter.
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Figure 5: Histogram of estimated parameters (γ, δ, and θ) from 500 Monte Carlo replicates

of the 2×2 easy experiment with N = 200, M = 1000.
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Figure 6: Histogram of estimated parameters (γ, δ, and θ) from 500 Monte Carlo replicates

of the 2×2 easy experiment with N = 1000, M = 1000. The dotted line indicates the true

value of the respective parameter.
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Figure 7: Histogram of estimated parameters (γ, δ, and θ) from 500 Monte Carlo replicates

of the 2×2 hard experiment with N = 200, M = 200. The dotted line indicates the true

value of the respective parameter.
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Figure 8: Histogram of estimated parameters (γ, δ, and θ) from 500 Monte Carlo replicates

of the 2×2 hard experiment with N = 1000, M = 200. The dotted line indicates the true

value of the respective parameter.
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Figure 9: Histogram of estimated parameters (γ, δ, and θ) from 500 Monte Carlo replicates

of the 2×2 hard experiment with N = 200, M = 1000. The dotted line indicates the true

value of the respective parameter.
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Figure 10: Histogram of estimated parameters (γ, δ, and θ) from 500 Monte Carlo replicates

of the 2×2 hard experiment with N = 1000, M = 1000. The dotted line indicates the true

value of the respective parameter.
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Figure 11: Histogram of estimated parameters (γ, δ, and θ) from 500 Monte Carlo replicates

of the 3x3 mixed experiment with N = 500, M = 500. The dotted line indicates the true

value of the respective parameter.

In the 2x2 easy experiment (Figures 3 to 6), the average ℓ1 error remained consistently

low (below 0.025) across all sample sizes and parameters. As the number of nodes (N)

increased, estimation of γ improved, whereas an increase of the hyperedges (M) led to a

more accurate recovery of δ. Estimation of θ also improved with each increase in sample

size (in any direction), although its error was generally low from the start. As seen in the

monte carlo histograms (Figures 3 to 6), the estimates were generally centered around the

true value for all parameters, with only rare and small deviations.

In the 2x2 hard experiment (Figures 7 to 10), estimation errors for γ were substantially

higher when M was low, which is consistent with the drop of node clustering accuracy. In-

creasing M caused the error of γ to decrease, reaching levels comparable to the 2x2 easy

case. The errors of δ, θ followed similar but less pronounced trends. The histograms (Fig-
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ures 7 to 10) further illustrate this behavior, showing more dispersed estimates when M is

low. This spread is particularly noticeable for γ in the M = 200 case. When M = 1000, the

estimates for all parameters become tightly concentrated around their true values.

Finally, the 3x3 mixed experiment (Figure 11) resulted in slightly higher estimation er-

rors across all parameters, which was expected from the added model complexity. However,

this error increase was minor, suggesting that the BEM scales well in increased latent group

dimensions. The histograms (Figure 11) support this observation, showing only slight devi-

ations around the true parameter values.

3.5 Simulation 4 (model-selection)

In Simulation 4, we generated a hypergraph using a latent structure with K = 3 and G = 3.

We then fitted models with varying numbers of latent clusters and computed the Integrated

Complete-Data Likelihood (ICL) for each fitted model. The objective was to evaluate the

ICL as a model selection criterion, that is, to identify whether the model with the highest

ICL corresponds to the true latent structure.

The ICL criterion proved to be very effective selecting the correct number of latent group

dimensions. Table 3 shows the relative frequency of each combination ofK,G that maximized

the ICL. On 93% of replicates, the ICL was maximized by a model matching the true latent

structure. In the remaining cases, the selected model had a latent structure which differed

from the true one only in one dimension, with the other dimension correctly specified. In

addition, all misclassifications involved choosing a number of groups which was larger than

the real one. In many of those cases, the additional group had a prior probability very close

to zero, effectively resulting in a model which, in practice, has the correct number of groups.

K \ G 2 3 4

2 0 0 0

3 0 0.93 0.04

4 0 0.03 0

Table 3: Relative frequency of the latent structure that maximized the ICL over 500 Monte

Carlo replicates.

54



3.6 The case for multiple random initializations

The BEM, as an EM variant, is prone to getting trapped in local maxima. To account for

this, we used three random initializations for each replicate, and retained only the run that

achieved the highest ICL value. This increases the chance of selecting a starting point which

is not surrounded by poor local maxima.

Relying on a single initialization is risky and ill-advised. To illustrate the importance of

multiple runs, we also report results for the three simulation scenarios (2x2 easy, 2x2 hard,

and 3x3 mixed) using only the first BEM run in each replicate.

Dataset N M Acc. Nodes Acc. Hyperedges ARI Nodes ARI Hyperedges

2x2 easy 200 200 0.940 (0.146) 0.997 (0.034) 0.821 (0.352) 0.994 (0.077)

2x2 easy 200 1000 0.900 (0.226) 0.956 (0.205) 0.695 (0.528) 0.989 (0.099)

2x2 easy 1000 200 0.916 (0.170) 0.974 (0.117) 0.741 (0.402) 0.942 (0.233)

2x2 easy 1000 1000 0.937 (0.172) 0.982 (0.105) 0.789 (0.455) 0.995 (0.049)

2x2 hard 200 200 0.764 (0.131) 0.957 (0.108) 0.336 (0.248) 0.881 (0.217)

2x2 hard 200 1000 0.944 (0.078) 0.942 (0.090) 0.435 (0.646) 0.696 (0.460)

2x2 hard 1000 200 0.758 (0.139) 0.948 (0.151) 0.266 (0.299) 0.760 (0.427)

2x2 hard 1000 1000 0.951 (0.146) 0.971 (0.162) 0.721 (0.727) 0.916 (0.194)

3x3 mixed 500 500 0.944 (0.149) 0.908 (0.189) 0.947 (0.119) 0.918 (0.153)

Table 4: Classification accuracy and Adjusted Rand Index (ARI) for the 2x2 easy, 2x2 hard,

and 3x3 mixed experiments, using only the first BEM run. Values are reported as the mean

over 500 Monte Carlo replicates, with standard deviations in parentheses.

In Tables 4 and 5, we observe how using a single BEM initialization resulted in per-

formance drops ranging from mild to severe. This decline was most evident in both node

classification accuracy and parameter estimation error for the 2x2 hard experiment. Even in

scenarios where mean performance was only slightly affected, the standard deviations were

consistently much higher. This suggests that relying on a single run leads to unstable and

less reliable estimates.
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Dataset N M ℓ1(γ) ℓ1(δ) ℓ1(θ)

2x2 easy 200 200 0.067 (0.13) 0.026 (0.25) 0.006 (0.005)

2x2 easy 200 1000 0.103 (0.222) 0.029 (0.104) 0.035 (0.078)

2x2 easy 1000 200 0.078 (0.15) 0.049 (0.110) 0.040 (0.080)

2x2 easy 1000 1000 0.075 (0.164) 0.016 (0.049) 0.021 (0.054)

2x2 hard 200 200 0.195 (0.139) 0.055 (0.104) 0.024 (0.032)

2x2 hard 200 1000 0.062 (0.143) 0.068 (0.158) 0.015 (0.044)

2x2 hard 1000 200 0.198 (0.143) 0.076 (0.143) 0.028 (0.040)

2x2 hard 1000 1000 0.040 (0.077) 0.032 (0.088) 0.007 (0.029)

3x3 mixed 500 500 0.129 (0.142) 0.165 (0.166) 0.122 (0.090)

Table 5: Average estimation errors of γ, δ, θ for the 2x2 easy, 2x2 hard, and 3x3 mixed

experiments, using only the first BEM run. Values are reported as the mean over 500 Monte

Carlo replicates, with standard deviations in parentheses.



4 Discussion

In this work, we derived a model-based approach for the co-clustering of binary hypergraphs

with two latent structures, referred to as the Cocluster-LCA model. This model generalizes

previous approaches that focused solely on clustering either the nodes or the hyperedges.

In the Cocluster-LCA model, each node and hyperedge is assigned to a latent group, and

the probability that a node participates in a hyperedge depends solely on their respective

group memberships. This structure offers greater modeling flexibility and increases the in-

terpretability of the resulting parameter estimates.

Such model-based co-clustering approaches have been studied in the literature (Govaert and

Nadif, 2008). Our contribution lies in providing an extensive set of Monte Carlo simulations

to compare the estimator’s behavior under a wide range of settings, as well as a detailed,

step-by-step analytical derivation of the re-estimation formulas, offering reproducibility for

future applications.

The Cocluster-LCA takes the form of a finite mixture model, enabling the use of the Ex-

pectation Maximization for parameter estimation. However, because of the intractability

of the E-step, a variational approximation (VEM) is instead used. A generalization of the

VEM for co-clustering is implemented, referred to as the BEM. To further reduce the com-

putational complexity of the variational E-step, a fixed-point update scheme is introduced,

resulting in a more efficient estimation procedure. A number of Monte Carlo experiments

were conducted to assess the estimator’s ability to recover the true clustering structure and

underlying parameter values.

The estimator’s performance was strongly influenced by the sample sizes of both the nodes

(N) and hyperedges (M). Specifically, increasing M improved the estimation of δ, while

increasing N enhanced the estimation of γ. As θ depends on both nodes and hyperedges, its

estimation improved with increases in either sample. Clustering accuracy for nodes and hy-

peredges followed a similar trend. Another factor affecting performance was the separability

of the parameter values of the groups. Easily identifiable parameter configurations resulted

in highly accurate estimates regardless of sample size, whereas more difficult to separate

configurations ended up in poor estimation for smaller samples. Additionally, increasing

the number of latent groups had a slight negative impact on both accuracy and parameter

estimation. Lastly, the Integrated Complete Likelihood (ICL) criterion demonstrated strong

performance in selecting the correct model structure.

There are several directions in which this work could be extended. First, the model could

be augmented by allowing the node-joining probability to depend not only on the group
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memberships of the node and the hyperedge, but also on the groups of the other nodes par-

ticipating in the hyperedge. This extension would enable the modeling of interactions where

participation depends on both the nature of the event and the composition of its partici-

pants. Second, a temporal extension of the model could be considered, in which hyperedges

are observed over time and the underlying parameters are either static or allowed to vary

dynamically. In such a case, tools from survival analysis could be employed to model the

timing of the hyperedge formation. This would allow the model to be applied to timestamped

data, adding an extra layer of information to help understand how participation and group

structure evolve over time.
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A Optimization proofs for the VE and M steps of the

BEM

The Φ criterion we aim to optimize in both VE and M steps of the BEM algorithm is

Φ(c,d,γ, δ,θ) = EZ,W |X [LC(θ, δ,γ|X,Z,W )] +H(c) +H(d)

where

H(c) = −
N∑
i=1

K∑
k=1

ci(k)log(ci(k))

H(d) = −
M∑
j=1

G∑
g=1

dj(g)log(dj(g))

Expanding the terms we get

Φ(c,d,γ, δ, θ) =
M∑
j=1

G∑
g=1

dj(g)log(δg) +
N∑
i=1

K∑
k=1

ci(k)log(γk)

+
M∑
j=1

G∑
g=1

N∑
i=1

K∑
k=1

dj(g)ci(k)log(θ
xji

gk (1− θgk)
1−xji)

−
N∑
i=1

K∑
k=1

ci(k)log(ci(k))−
M∑
j=1

G∑
g=1

dj(g)log(dj(g))

A.1 VE-step

A.1.1 Optimizing w.r.t. ci(k)

We assume that d,γ, δ,θ, are constant. As we have constrained optimization, we use the

method of Lagrangian multipliers. Specifically, we have the N constraints:

gi(c) = 1−
K∑
k=1

ci(k) = 0 (29)

∀i = 1, . . . , N

The Lagrangian function, Λ(c, λ) them becomes the sum of the N + 1 terms:

Λ(c, λ) = Φ(c|d,γ, δ,θ) +
N∑
i=1

gi(c)λi
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We take the derivative w.r.t. ci(k):

∂Λ(c, λ)

∂ci(k)
=

∂Φ(c|d,γ, δ,θ)
∂ci(k)

+

∂

(
N∑
i=1

gi(ci)λi

)
∂ci(k)

=

∂
M∑
j=1

G∑
g=1

dj(g)log(δg)

∂ci(k)
+

∂
N∑
i=1

K∑
k=1

ci(k)log(γk)

∂ci(k)

+

∂
M∑
j=1

G∑
g=1

N∑
i=1

K∑
k=1

dj(g)ci(k)log(θ
xji

gk (1− θgk)
1−xji)

∂ci(k)

−
∂

N∑
i=1

K∑
k=1

ci(k)log(ci(k))

∂ci(k)
−

∂
M∑
j=1

G∑
g=1

dj(g)log(dj(g))

∂ci(k)
+

N∑
i=1

λi

K∑
k=1

(1− ci(k))

= 0 + log(γk) +
M∑
j=1

G∑
g=1

dj(g)log(θ
xji

gk (1− θgk)
1−xji)− (1 + log(ci(k)))− λi

= log(γk) + log

(
M∏
j=1

G∏
g=1

θ
xji

gk (1− θgk)
1−xji

)dj(g)

− 1− log(ci(k))− λi

= log(γk) + log

(
M∏
j=1

G∏
g=1

θ
dj(g)xji

gk (1− θgk)
dj(g)(1−xji)

)
− 1− log(ci(k))− λi

= log

(
γk

M∏
j=1

G∏
g=1

θ
dj(g)xji

gk (1− θgk)
dj(g)(1−xji)

)
− 1− log(ci(k))− λi

Setting the obtained quantity equal to 0 yields:

cik = e
log

(
γk

M∏
j=1

G∏
g=1

θ
dj(g)xji
gk (1−θgk)

dj(g)(1−xji)

)
−1−λi
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Returning to the constraint equation, (29),

1−
K∑
k=1

ci(k) = 0

1−
K∑
k=1

e
log

(
γk

M∏
j=1

G∏
g=1

θ
dj(g)xji
gk (1−θgk)

dj(g)(1−xji)

)
−1−λi

= 0

e−λi−1

K∑
k=1

e
log

(
γk

M∏
j=1

G∏
g=1

θ
dj(g)xji
gk (1−θgk)

dj(g)(1−xji)

)
= 1

e−λi−1

K∑
k=1

(
γk

M∏
j=1

G∏
g=1

θ
dj(g)xji

gk (1− θgk)
dj(g)(1−xji)

)
= 1

e−λ1−1 =
1

K∑
k=1

γk
M∏
j=1

G∏
g=1

θ
dj(g)xji

gk (1− θgk)dj(g)(1−xji)

λi = −log

 1
K∑
k=1

γk
M∏
j=1

G∏
g=1

θ
dj(g)xji

gk (1− θgk)dj(g)(1−xji)

− 1

λi = log

(
K∑
k=1

γk

M∏
j=1

G∏
g=1

θ
dj(g)xji

gk (1− θgk)
dj(g)(1−xji)

)
− 1

Plugging the λi back to the derived solution we obtain:

ĉi(k) = e
log

(
γk

M∏
j=1

G∏
g=1

θ
dj(g)xji
gk (1−θgk)

dj(g)(1−xji)

)
−1−λi

= e
log

(
γk

M∏
j=1

G∏
g=1

θ
dj(g)xji
gk (1−θgk)

dj(g)(1−xji)

)
−
[
log

(
K∑

k=1
γk

M∏
j=1

G∏
g=1

θ
dj(g)xji
gk (1−θgk)

dj(g)(1−xji)

)
−1

]
−1

=
e
log

(
γk

M∏
j=1

G∏
g=1

θ
dj(g)xji
gk (1−θgk)

dj(g)(1−xji)

)

e
log

(
K∑

k=1

γk
M∏
j=1

G∏
g=1

θ
dj(g)xji
gk (1−θgk)

dj(g)(1−xji)

)

=

γk
M∏
j=1

G∏
g=1

θ
dj(g)xji

gk (1− θgk)
dj(g)(1−xji)

K∑
i=1

γk
M∏
j=1

G∏
g=1

θ
dj(g)xji

gk (1− θgk)dj(g)(1−xji)

A.1.2 Optimizing w.r.t dj(g)

The proof is equivalent to the one for ci(k).
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We assume that c,γ, δ,θ are constant. As we have constrained optimization, we use the

method of Lagrangian multipliers. Specifically, we have the M constraints:

hj(d) = 1−
G∑

g=1

dj(g) = 0 (30)

∀j = 1, . . . ,M

The Lagrangian function, Λ(d, λ) then becomes the sum of the M + 1 terms:

Λ(d, λ) = Φ(d|c,γ, δ,θ) +
M∑
j=1

hj(d)λj

We take the derivative w.r.t. dj(g):

∂Λ(d, λ)

∂dj(g)
=

∂Φ(d|c,γ, δ,θ)
∂dj(g)

+

∂

(
M∑
j=1

hj(d)λj

)
∂dj(g)

=

∂
N∑
i=1

K∑
k=1

ci(k) log(γk)

∂dj(g)
+

∂
G∑

g=1

dj(g) log(δg)

∂dj

+

∂
N∑
i=1

K∑
k=1

M∑
j=1

G∑
g=1

dj(g)ci(k) log(θ
xji

gk (1− θgk)
1−xji)

∂dj

−
∂

G∑
g=1

dj(g) log(dj(g))

∂dj
−

∂
N∑
i=1

K∑
k=1

ci(k) log(ci(k))

∂dj(g)
+

M∑
j=1

λj

G∑
g=1

(1− dj(g))

= 0 + log(δg) +
N∑
i=1

K∑
k=1

ci(k) log(θ
xji

gk (1− θgk)
1−xji)− (1 + log(dj(g)))− λj

= log(δg) + log

(
N∏
i=1

K∏
k=1

θ
ci(k)xji

gk (1− θgk)
ci(k)(1−xji)

)
− 1− log(dj(g))− λj

= log

(
δg

N∏
i=1

K∏
k=1

θ
ci(k)xji

gk (1− θgk)
ci(k)(1−xji)

)
− 1− log(dj(g))− λj

Setting equal to 0 yields:

djg = e
log

(
δg

N∏
i=1

K∏
k=1

θ
ci(k)xji
gk (1−θgk)

ci(k)(1−xji)

)
−1−λj
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Returning to the constraint equation (30):

1−
G∑

g=1

dj(g) = 0

1−
G∑

g=1

e
log

(
δg

N∏
i=1

K∏
k=1

θ
ci(k)xji
gk (1−θgk)

ci(k)(1−xji)

)
−1−λj

= 0

e−λj−1

G∑
g=1

e
log

(
δg

N∏
i=1

K∏
k=1

θ
ci(k)xji
gk (1−θgk)

ci(k)(1−xji)

)
= 1

e−λj−1

G∑
g=1

(
δg

N∏
i=1

K∏
k=1

θ
ci(k)xji

gk (1− θgk)
ci(k)(1−xji)

)
= 1

e−λj−1 =
1

G∑
g=1

δg
N∏
i=1

K∏
k=1

θ
ci(k)xji

gk (1− θgk)ci(k)(1−xji)

λj = − log

 1
G∑

g=1

δg
N∏
i=1

K∏
k=1

θ
ci(k)xji

gk (1− θgk)ci(k)(1−xji)

− 1

λj = log

(
G∑

g=1

δg

N∏
i=1

K∏
k=1

θ
ci(k)xji

gk (1− θgk)
ci(k)(1−xji)

)
− 1

Plugging λj back into the derived solution we obtain:

djg = e
log

(
δg

N∏
i=1

K∏
k=1

θ
ci(k)xji
gk (1−θgk)

ci(k)(1−xji)

)
−1−λj

= e
log

(
δg

N∏
i=1

K∏
k=1

θ
ci(k)xji
gk (1−θgk)

ci(k)(1−xji)

)
−
[
log

(
G∑

g=1
δg

N∏
i=1

K∏
k=1

θ
ci(k)xji
gk (1−θgk)

ci(k)(1−xji)

)
−1

]
−1

=
e
log

(
δg

N∏
i=1

K∏
k=1

θ
ci(k)xji
gk (1−θgk)

ci(k)(1−xji)

)

e
log

(
G∑

g=1
δg

N∏
i=1

K∏
k=1

θ
ci(k)xji
gk (1−θgk)

ci(k)(1−xji)

)

=

δg
N∏
i=1

K∏
k=1

θ
ci(k)xji

gk (1− θgk)
ci(k)(1−xji)

G∑
g=1

δg
N∏
i=1

K∏
k=1

θ
ci(k)xji

gk (1− θgk)ci(k)(1−xji)
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A.2 M-step

A.2.1 Optimizing w.r.t. γk

This is a constrained optimization problem with the single constraint: h(γ) := 1−
K∑
k=1

γk = 0.

Define the Langrangian Λ(γ, λ) = Φ(γ|c,d, δ,θ) + h(γ)λ

∂Λ(γ, λ)

∂γk
=

∂Φ(γ|c,d, δ,θ)
∂γk

+
∂ (h(γ)λ)

∂γk

=

∂

(
N∑
i=1

K∑
k=1

ci(k)log(γk)

)
∂γk

+ λ

∂

(
1−

K∑
k=1

γk

)
∂γk

=

N∑
i=1

ci(k)

γk
− λ

Setting it equal to 0, solving for γk and replacing it in the constraint yields:

γk =

N∑
i=1

ci(k)

λ
⇔ 1−

K∑
k=1

N∑
i=1

ci(k)

λ
= 0 ⇔ λ =

K∑
k=1

N∑
i=1

ci(k)

Note that
K∑
k=1

ci(k) = 1 for all i, and thus λ = N , which we replace in the original solution

to get

γ̂k =

N∑
i=1

ci(k)

N

A.2.2 Optimizing w.r.t. δg

A constrained optimization problem with constraint h(δ) = 1 −
G∑

g=1

δg = 0. Define the

Langrangian Λ(δ, λ) = Φ(δ|c,d,γ,θ) + h(δ)λ

∂Λ(δ, λ)

∂δg
=

∂Φ(δ|c,d,γ,θ)
∂δg

+
∂ (h(δ)λ)

∂δg

=

∂

(
M∑
j=1

G∑
g=1

dj(g)logδg)

)
∂δg

+ λ

∂

(
1−

G∑
g=1

δg

)
∂δg

=

M∑
j=1

dj(g)

δg
− λ
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Setting it equal to 0, solving for δg and replacing it in the constraint yields:

δg =

M∑
j=1

dj(g)

λ
⇔ 1−

G∑
g=1

M∑
j=1

dj(g)

λ
= 0 ⇔ λ =

G∑
g=1

M∑
j=1

dj(g)

Note that
G∑

g=1

dj(g) = 1 for all i, and thus λ = M , which we replace in the original solution

to get

δ̂g =

M∑
j=1

dj(g)

M

A.2.3 Optimizing w.r.t. θgk

This problem is an unconstrained optimization problem. Thus we solve it by taking the

partial derivative w.r.t. θgk and setting it equal to 0.

∂Φ(γ, δ,θ|c,d)
∂θgk

=
N∑
i=1

M∑
j=1

dj(g)ci(k)
∂
[
log(θ

xji

gk (1− θgk)
1−xji)

]
∂θgk

=
N∑
i=1

M∑
j=1

dj(g)ci(k)

[
∂
xjilog(θgk)

∂θgk
+ ∂

(1− xji)log(1− θgk)

∂θgk

]

=
N∑
i=1

M∑
j=1

dj(g)ci(k)

[
xji

θgk
− (1− xji)

1− θgk

]

=
N∑
i=1

M∑
j=1

dj(g)ci(k)

[
xji − θgk

θgk(1− θgk)

]

=
N∑
i=1

M∑
j=1

dj(g)ci(k)
xji

θgk(1− θgk)
−

N∑
i=1

M∑
j=1

dj(g)ci(k)
θgk

θgk(1− θgk)

=
1

θgk(1− θgk)

[
N∑
i=1

M∑
j=1

dj(g)ci(k)xji − θgk

N∑
i=1

M∑
j=1

dj(g)ci(k)

]
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And by setting the obtained quantity equal to 0 we obtain:

1

θ̂gk(1− θ̂gk)

[
N∑
i=1

M∑
j=1

dj(g)ci(k)xji − θ̂gk

N∑
i=1

M∑
j=1

dj(g)ci(k)

]
= 0

⇒
N∑
i=1

M∑
j=1

dj(g)ci(k)xji − θ̂gk

N∑
i=1

M∑
j=1

dj(g)ci(k) = 0

⇒ θ̂gk

N∑
i=1

M∑
j=1

dj(g)ci(k) =
N∑
i=1

M∑
j=1

dj(g)ci(k)xji

⇒ θ̂gk =

N∑
i=1

M∑
j=1

dj(g)ci(k)xji

N∑
i=1

M∑
j=1

dj(g)ci(k)
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