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1 Introduction

Be it population growth [16], particles moving in a space [22] or mixing liquids [19]
- many physical processes display a change over time. Since the early 1930s math-
ematicians have modelled these processes using (discrete) dynamical systems [5]
having a measure, to quantify an amount of people or an amount of particles for
instance, and an operator to model how the measure changes over time. Natural
questions then arise on the long term behaviour of these processes, such as: will our
population amount stabilize? Can we predict the size of a volume by following how
much time an individual particle spends in the volume on average? Will the liquids
mix homogeneously?

Typically, an invariant measure is a measure which describes the long term be-
haviour of our system. A common approach to finding invariant measures is by fix-
ing a reference measure, letting the system run for infinitely long and seeing how the
reference measure averages over time [23, Chapter 2]. This asymptotically averaged
measure is then likely to be an invariant measure.

If we want to be able to answer questions like the ones written earlier however, it
is clear that not just any reference measure defined on a dynamical system will yield
an invariant measure that yields relevant information. Instead, we likely need the ref-
erence measure to have some kind of physical meaning, moreover, we then need to
be able to describe our invariant measure in terms of this reference measure. Math-
ematically speaking, we want to find an absolutely continuous invariant measure for
our reference measure. Or specifically in this thesis, an absolutely continuous invari-
ant probability measure also known as (acip).

Turning to a more abstract setting than the physical processes above, in the 1970s
it was shown that dynamical systems in which small distances grow uniformly ad-
mit acips [1]. These systems are called uniformly expanding. The uniform expansion
allows us to describe the system as a shift over a (possibly infinite) alphabet while
still respecting ergodic and measure-theoretic properties such as absolute continu-
ity. For the uninitiated reader, we have added a prototypical example of a uniformly
expanding system at the end of this section, seen in Figure 3.1.

However, physical reality is seldom as nice as to assure us of uniformly expanding
behaviour in dynamical systems. Hence, Lai-Sang Young in [25] and [24] developed
a method stating conditions shared by a wide class of non-uniformly expanding sys-
tems under which acips exist. Crucially, she showed these non-uniformly expanding
systems can be analysed successfully by defining an induced scheme (in this thesis re-
ferred to as a tower base) and a Young Tower. Conceptually, the tower base is a small
part of the original system where the dynamics are sped up. On a tower base, a Young
Tower can then be constructed, which under certain conditions induces an acip for
our original (non-uniformly expanding) system.

Since Young’s discovery, mathematicians have tried studying random dynamical
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systems based on non-uniformly expanding dynamical systems through Young Tow-
ers [2],[3],[13], [4]. Random dynamical systems are constructed using a base dynamic
and a dynamical system we refer to as a random dynamic. The base dynamic consists
of a family of operators acting on the same set where at every time step an operator
is chosen according to the random dynamic. In the literature, there exist two lead-
ing paradigms to apply Young Towers to random dynamical systems which are called
the annealed approach [13], [3] and the quenched approach [4], [2]. The annealed
approach essentially constructs a Young Tower directly on the random dynamical
system allowing us to analyse it with the existing theory on Young Towers. This does
force the random dynamic to be subjected to similar conditions as the base dynamic,
limiting its applicability to random dynamical systems with a random dynamic that
expands. As the annealed approach has already undergone a rigorous treatise in the
paper [13] we shall focus ourselves on the quenched approach.

The quenched approach was first introduced in [4]. In a nutshell, the quenched
approach constructs a Young Tower like structure for almost every element of the
random dynamic. This allows for greater flexibility in our choice for a random dy-
namic, but the construction is much more delicate. To illustrate, the original method
as seen in [4] has been reworked several times in papers such as [26], [2] and [7] the
latter two being published as recent as 2023. However, each of these approaches is
hard to make rigorous, either due to missing measurability of the density of an acip
such as in [4], [26], relying on topological conditions not generally satisfied in the
context of random Young Towers and/or basing themselves on bounds not applying
to typical standard examples such as Young Towers based on the doubling map [1],
[7].

The main aim of this text is finding a mathematically rigorous way to use the
quenched approach to prove the existence of an absolutely continuous invariant
probability measure (acip) for random dynamical systems with a non-uniformly ex-
panding base dynamic and a random dynamic not displaying any form of expand-
ingness.

This thesis is structured as follows. In Section 2, the preliminaries introduce ele-
mentary measure-theoretical concepts to the reader necessary to prove the existence
of an acip using deterministic Young Towers as seen in Section 3. Section 3 is based
on papers [25], [24] and the book [1] where we try to make the conditions as imposed
by Young as intuitive as possible. Moreover, several proofs on the ergodic proper-
ties of the acip have been reworked in hopes of providing a clearer exposition than
was done in [25]. In Section 3.6 two elementary examples of Young Towers are given,
the first one being deterministic and the second being an example of the previously
mentioned annealed approach.

Sections 4.1–5.6 are aimed at proving the existence of an acip for quenched ran-
dom dynamical system. In particular, in Section 4.1 we develop the functional an-
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alytic background necessary for our proof from which we in Section 4.1.1 derive an
original proof for the deterministic case as well. We do so using a novel measure-
theoretical counterpart of the celebrated Arzelà-Ascoli Theorem obtaining L1 con-
vergence and almost everywhere convergence, without requiring compactness. In
Sections 4.2 and 4.3 we shall lay out the measure theoretical foundations necessary
to describe Young Towers. Notably, an adapted version of the treatise of Jacobians
in [23] is given and subsequently generalised to describe Random Young Towers, or
more generally, random dynamical systems. In Sections 5.1-5.3 we shall carefully
build up the theory of Random Young Towers to prove the existence of an acip for
Random Young Towers in Section 5.4. To our knowledge, our approach is novel but
does borrow some ideas from papers such as [2] or [7].

Finally, in Section 5.5 we have proven a novel Disintegration Theorem gener-
ally applicable to random dynamical systems as it only relies on absolute continuity,
avoiding complicated disintegration theorems such as [9, Corollary 6.13] used by [1]
that may or may not apply to our setting. We conclude the thesis by presenting an ex-
ample in Section 5.6 to which the quenched approach applies. The non-expanding
random dynamic there will take shape in the form of the irrational rotation.
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Figure 1: The doubling map
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2 Preliminaries

We start with some general definitions and notations used in this thesis. The material
present here has been written with the help of [6], [23], [1], to which a few results have
been added. The material here presented is sufficient for all proofs in Section 3.

2.1 Dynamical Systems

This subsection is structured as follows: In Definition 2.1.1 through Example 2.1.3
first we shall introduce dynamical systems briefly. After that from Definition 2.1.6
through Theorem 2.1.11 we shall then lay out some elementary measure-theoretical
concepts, necessary to study dynamical systems. After that we shall formally define
an acip and for the rest of the section present tools to study these.

We shall generally only consider dynamical systems of positive σ-finite measures
with a non-singular operator. Non-singularity we shall require for the Radon-Nikodym
Theorem.

Definition 2.1.1. Given a measure space (X ,F ,µ) with µ a σ-finite positive measure
and an F -measurable mapping T : X → X , we call T non-singular if for all A ∈ F

with µ(A) = 0 we have µ(T −1 A) = 0. If T is non-singular, we refer to the quadruple
(X ,F ,µ,T ) as a dynamical system with T the operator.

In ergodic theory we often want to investigate the relation between µ and T by
means of the following definitions.

Definition 2.1.2. Given a dynamical system (X ,F ,µ,T ) with µ(X ) ∈ (0,∞) we say the
measure µ is invariant (for T ) if for all A ∈F we have µ(A) =µ(T −1 A). If so, we call T
measure preserving. For measure-preserving T we say, T is:

1. ergodic, if for all A ∈F with T −1 A = A we have µ(A) = 0 or µ(X \ A) = 0;

2. mixing, if for all A,B ∈F we have

lim
n→∞µ(T −n A∩B) =µ(A)µ(B);

3. exact, if we have {
µ(A) : A ∈ ⋂

n≥0
T −nF

}
= {

0,µ(X )
}

.

We have an order of implications 3 ⇒ 2 ⇒ 1, see [10].

Example 2.1.3. The following dynamical systems will be used as examples in Sec-
tions 3.6 and 5.6.
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Bernoulli shift Given a finite indexed set Γ = {
γ
}
γ∈Γ with a vector P = (pγ)γ∈Γ of

probabilities, pγ > 0,
∑
γ∈Γpγ = 1, we can define (ΓZ≥0 ,FΓZ≥0 ,P,σ) where FΓZ≥0

is the infinite product σ-algebra based on Γ, P the product measure and σ the
left shift. We shall refer to Γ as an alphabet.

Rotation Given some θ ∈R, the rotation

σθ : [0,1) → [0,1) σθ(x) = x +θ mod 1,

makes ([0,1),B[0,1),λ,σθ) into a dynamical system where B([0,1)) is the Borel
σ-algebra and λ the Lebesgue measure.

Doubling map Given the Borel space ([0,1),B[0,1),λ) equipped with the Lebesgue
measure, we can define the doubling map as given by

T : [0,1) → [0,1) x 7→ 2x mod 1.

It is well known that Bernoulli shifts, the doubling map and rotations are measure
preserving. On top of that, Bernoulli shifts and the doubling map are exact and rota-
tions σθ are not mixing, but σθ ergodic if and only if θ ∈R\Q.

As said previously, we present some measure-theoretical tools necessary to study
dynamical systems. We incorporated these as they will used extensively and for ease
of reference. Functions whose inverse images map a collection of generators into a
σ-algebra are measurable, see [21, Lemma 7.2]

Lemma 2.1.4. Let (X ,FX ) and (Y ,FY ) be measurable spaces with T : X → Y some
mapping. Suppose we have W ⊆ FY with σ(W ) = FY and T −1(W ) ⊆ FX . Then T is
measurable.

The following Lemma is also known as the π-λ Theorem. It states that if two mea-
sures on a measure space are equal on an intersection stable collection of generators
for their σ-algebra, they agree on the entire σ-algebra. See [21, Theorem 5.7].

Lemma 2.1.5. Let (X ,F ) be some measurable space and suppose we have finite mea-
sures µ,ν ∈M (X ) such that µ(X ) = ν(X ) and a π-system Π⊆F so that σ(Π) =F , and
µ(P ) = ν(P ) for each P ∈Π. Then µ= ν.

We shall see many instances of dynamical systems constructed by restricting a
measure space to a measurable subset on which on an operator is defined.

Definition 2.1.6. [6, pg 8, 56] Given a measure space (X ,F ,µ) with µ a σ-finite non-
negative measure and an A ∈ F with µ(A) ∈ [0,∞) we can define the trace σ-algebra
(of A)

FA := {A∩B ⊆ X : B ∈F }
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and the restricted measure (to A)

µA : FA → [0,µ(A)] A 7→µ(A∩B).

Similarly we call (A,FA,µA) the restricted measure space (to A).

In particular, we shall often use the notion of a restricted measure space when
considering product spaces - in fact this is exactly how we will define Young Towers
in Section 3.4. The following Proposition will then be useful.

Proposition 2.1.7. [6, Proposition 3.3.2.] Let (X ,FX ) and (Y ,FY ) be measurable spaces
and construct the measurable space (X ×Y ,FX×Y ). Then for each A ∈FX×Y , x ∈ X and
y ∈ Y we have

Ay := {x ∈ X : (x, y) ∈ A} ∈FX and Ax := {y ∈ X : (x, y) ∈ A} ∈FY (1)

In addition, for every FX×Y -measurable function f and every x ∈ X the mapping y 7→
f (x, y) is FY -measurable.

Lastly, for any finite measure ν on FY the mapping x 7→ ν(Ax) is FY -measurable.

We refer to the sets Ax and Ay as in Equation (1) as sections. Proposition 2.1.7 tells
us that product measurable sets have measurable sections. The following Theorem
will play an important role in Sections 4.2 and 5.5.

Theorem 2.1.8. [6, Theorem 3.4.4. Fubini] Let µ and ν be σ-finite non-negative mea-
sures on the spaces X and Y respectively. Suppose that a function f on X ×Y is in-
tegrable with respect to the product measure µ×ν. Then, the function y 7→ f (x, y) is
integrable with respect to ν for µ-a.e. x, the function x 7→ f (x, y) is integrable with
respect to µ for ν-a.e. y, the functions

x 7→
∫

Y
f (x, y)dν(y) and y 7→

∫
X

f (x, y)dµ(x)

are integrable on X and Y respectively, and one has∫
X×Y

f d(µ×ν) =
∫

Y

∫
X

f (x, y)dµ(x)ν(y) =
∫

X

∫
Y

f (x, y)ν(y)dµ(x).

To study how measures of dynamical systems change under their operator we
define the pushforward measure.

Definition 2.1.9. Suppose we have a measure space (X ,F ,µ) with µ a positive mea-
sure and a measurable space (Y ,Y ) with a measurable mapping T : X → Y . We shall
refer to the measure T⋆µ on Y defined by

T⋆µ(B) =µ(T −1B), for B ∈Y ,

as the pushforward measure of µ under T .
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If A ∈ F and T : A → Y is measurable we will often simply write T⋆µ instead of
T⋆µA. Note that measure-preservingness of a T : X → X with respect to some µ sim-
plifies notationally to T⋆µ = µ, and non-singularity of T with respect to µ simplifies
to requiring T⋆µ≪µ.

We now present a technical tool for evaluating pushforward measures.

Lemma 2.1.10 (Change of variables). Let (X ,F ,µ) be a measure space, and let (Y ,Y )
be a measurable space. Let f : X → Y and g : Y → R∪ {∞} be measurable mappings.
We have g ∈ L1(Y , f⋆µ) if and only if g ◦ f ∈ L1(X ,µ). In this case, we have∫

A
g d( f⋆µ) =

∫
f −1(A)

g ◦ f dµ for all A ∈Y .

See [6, Theorem 3.6.1] for a proof.
A useful consequence of assuming absolute continuity of a pushforward measure

with respect to reference measure is the ability to define densities using the Radon
Nikodym Theorem [6, Theorem 3.2.2.]. The theorem itself, taken from [6, Theorem
3.2.2], is only phrased there for finite measures but the generalisation we phrase here
is mentioned in words later in the corresponding section. Note that any measure
absolutely continuous with respect to a σ-finite measure is σ-finite.

Theorem 2.1.11 ([6], Theorem 3.2.2). Let (X ,F ,µ) be a σ-finite measure space. For
any positive measure ν : F → [0,∞] the following statements are equivalent:

1. The measure ν is absolutely continuous with respect to µ.

2. There exists a measurable function f : X →R≥0∪{∞} such thatν(·) = ∫
· f (x)dµ(x).

If such f exists, we refer to it as the Radon-Nikodym derivative of ν with respect to µ
and write f = dν

dµ . The Radon-Nikodym derivative is unique up to a µ-measure zero

set. We have dν
dµ ∈ L1(X ,µ) if and only if ν is a finite measure.

Having established the necessary measure-theoretical background, we return to
our discussion of dynamical systems. The main goal of this thesis will be finding
sufficient conditions under which the following object exists and whether this object
is unique in that setting.

Definition 2.1.12. Given a dynamical system (X ,F ,µ,T ) we say that ν is an abso-
lutely continuous invariant probability measure (with respect to µ and T ) if ν is a
probability measure satisfying ν≪µ and T⋆ν= ν. We shall refer to such a measure ν
as an acip for short.

The following proposition is useful for proving uniqueness of acips with the same
support. See [1] for a proof.
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Proposition 2.1.13. Let (X ,F ,µ,T ) be a dynamical system and A ∈ F be such that
µ(A) > 0. Now let ν be an ergodic acip ν≪µwith µA ≪ νA ≪µA. Then ν is the unique
acip with ν≪µ satisfying ν(A) > 0.

Combining Theorem 2.1.11 with the non-singularity of dynamical systems, we
can study densities of pushforward measures. The following lemma asserts that we
can find acip’s by these densities. In the proof the L1 convergence along a subse-
quence does the heavy lifting.

Lemma 2.1.14. Suppose we have a dynamical system (X ,F ,µ,T ) with µ(X ) ∈ (0,∞)
and suppose in writing

φn = 1

n

n−1∑
i=0

d(T i )⋆µ

dµ
, for n ∈Z≥1,

we have a subsequence (φnk )k≥0 converging in || · ||L1(X ) to some φ ∈ L1(X ) as k →∞.
Then there exists an acip ν ≪ µ on X . Furthermore, if we have a C > 1 such that
for all n ∈ Z≥1 we have φn ∈ [ 1

C ,C ] µ-almost surely and φnk → φ pointwise µ-almost
everywhere as k →∞, then there exists an acip ν≪µ such that

1

C
≤ dν

dµ
≤C µ-almost everywhere.

Proof. Let (nk )k∈Z≥1 ⊆ Z≥1 be a sequence increasing in k ∈ Z≥1 such that for φ ∈
L1(X ), φnk → φ in || · ||L1(X ) as k → ∞. In noting ||φnk ||1 = 1 and φnk ≥ 0 µ-almost
surely for all k ∈Z≥1 we see ||φ||1 = 1 andφ≥ 0 µ-almost surely as well, which implies
ν(·) := ∫

·φdµ is a probability measure. Absolute continuity of ν follows by Theorem
2.1.11. For T -invariance of ν, let B ∈F and note that for all k ∈Z≥1 we have

|ν(B)−T⋆ν(B)| =
∣∣∣∣∫

B
φdµ−

∫
T −1B

φdµ

∣∣∣∣
≤

∣∣∣∣∫
B
φdµ−

∫
B
φnk dµ

∣∣∣∣
+

∣∣∣∣∫
B
φnk dµ−

∫
T −1B

φnk dµ

∣∣∣∣+ ∣∣∣∣∫
T −1B

φnk dµ−
∫

T −1B
φdµ

∣∣∣∣
≤

∣∣∣∣∫
B
φdµ−

∫
B
φnk dµ

∣∣∣∣
+ 1

nk

∣∣µ(B)−µ(T nk−1B)
∣∣+ ∣∣∣∣∫

T −1B
φnk dµ−

∫
T −1B

φdµ

∣∣∣∣ ,

where in taking the limit of k →∞ we obtain

|ν(B)−T⋆ν(B)| = 0.
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This implies T⋆ν= ν, provingν is an acip. If (φnk )k≥1 also converges pointwise almost
everywhere and φnk ⊆ [ 1

C ,C ] for all k ∈Z≥1, we obtain 1
C ≤ dν

dµ ≤C µ-almost surely as
desired.

The notion of ergodic equivalence below is adopted from[23, Chapter 8].

Definition 2.1.15. Let (X ,F ,µ,T ), (Y ,B,ν,U ) be dynamical systems with µ(X ) =
ν(Y ) <∞. We say they are ergodically equivalent if one can find A ∈ F , Y ∈ B with
µ(X \ A) = 0, ν(Y \ B) = 0, and a mapping φ : A → B that is bijective, FA-BB measur-
able and has a measurable inverse satisfying

φ⋆µ= ν and φ◦T =U ◦φ.

We call the mapping φ an ergodic isomorphism.

Remark 2.1.16. 1. There is slight abuse of notation in Definition 2.1.15 as copied
from [23, Chapter 8], in that φ : A → B is not defined on the entirety of X and
Y , hence writing

φ⋆µ= ν and φ◦T =U ◦φ.

is technically not well-defined. As µ(X \ A) = 0, and ν(Y \ B) = 0 and hence
µ(C∩A) =µ(C ) for all C ∈F and ν(D∩B) = ν(D) for all D ∈B we shall overlook
this matter.

2. In [23, Chapter 8] it is also pointed out that the sets A and B in Definition 2.1.15
can be chosen such that T (A) ⊆ A and U (B) ⊆ B , allowing us to construct er-
godically equivalent dynamical systems

(A,FA,µA,T ) and (B ,BB ,νB ,U ),

where φ : A → B serves as an ergodic isomorphism. This will play a role in the
proof of Corollary 2.1.19.

The lemma below states that ergodic properties are shared between ergodically
equivalent systems. As we shall only need the claim holding for measure-preservingness
and exactness we have only included those proofs.

Lemma 2.1.17. Suppose (X ,F ,µ,T ), (Y ,B,ν,U ) are dynamical systems satisfyingµ(X ) =
ν(Y ) <∞ and that they are ergodically equivalent. Then (X ,F ,µ,T ) is measure-preserving/
ergodic/mixing/exact if and only if (Y ,B,ν,U ) is measure-preserving/ergodic/mixing/exact.

Proof. Let A ∈F ,B ∈B satisfy µ(X \ A) = 0, ν(Y \ B) = 0 and φ : A → B be an ergodic
isomorphism. We shall without loss of generality assume our ergodic properties hold
on (X ,F ,µ,T ) and show these transfer to (Y ,B,ν,U ).

11



Measure-Preservingness Assume (X ,F ,µ,T ) is measure-preserving, and let K ∈B.
Note we have

(U⋆ν)(K ) = (U⋆ν)(K ∩B)

= (U⋆(φ⋆µ))(K ∩B) (2)

=µ((U ◦φ)−1(K ∩B)

=µ((φ◦T )−1(K ∩B) (3)

=φ⋆µ(K ∩B) (4)

= ν(K ),

so that we see U⋆ν = ν. For clarification, in Equation (2) we used φ⋆µ = ν;
in Equation (3) we used φ ◦T = U ◦φ and in Equation (4) we used measure-
preservingness of T .

Exactness Suppose (X ,F ,µ,T ) is exact and suppose K ∈⋂
n≥0U−nB. Then note

φ−1K ∈φ−1 (∩n≥0U−nB
)

= ⋂
n≥0

(
φ−1U−nB

)
= ⋂

n≥0

(
T −nφ−1B

)
(using φ◦T =U ◦φ, n times)

⊆∩n≥0(T −nF ),

so that ν(K ) =µ(φ−1K ) ∈ {0,∞} proving exactness of ν.

A canonical (non-trivial) example of an ergodic equivalence between two dynam-
ical systems are the doubling map with the instance of the Bernoulli shift given in
Lemma 2.1.18 below. The result is considered ‘standard theory’. The author was un-
able to find a complete proof in existing literature however and hence incorporated
a proof in Appendix A.2 or more specifically, below Lemma A.2.4.

Lemma 2.1.18. Let ([0,1),B[0,1),λ,D) be the standard Borel measure space equipped
with the doubling map and ({0,1}Z≥0 ,F{0,1},P,σ) be the Bernoulli shift with for all i ∈
Z≥0

P({x ∈ {0,1}Z≥0 : xi = 1) =P({x ∈ {0,1}Z≥0 : xi = 0) = 1

2
.

Then
([0,1),B[0,1),λ,D) and ({0,1}Z≥0 ,F{0,1}Z≥0 ,P,σ)

are ergodically equivalent.

We now prove that acips on dynamical systems induce acips on ergodically equiv-
alent dynamical systems, maintaining additional properties if present, such as the
acip having an essentially bounded density or exactness.

12



Corollary 2.1.19. Let (X ,F ,µ,T ), (Y ,B,ν,U ) be dynamical systems withµ(X ) = ν(Y ) <
∞ that are ergodically equivalent. Suppose we have an acip η≪µ. Then there exists an

acip ζ≪ ν on (Y ,B,ν,U ). Moreover, if ∥ dη
dµ∥∞ ≤ M for some M ∈R>0 then ∥ dζ

dν∥∞ ≤ M
and if η is exact then so is ζ.

Proof. For sake of technical ease we shall first assume we have a mapping φ : X → Y
that is bi-measurable satisfying

φ⋆µ= ν and φ◦T =U ◦φ.

and comment on the more general case, whereφ is defined on subsets of full measure
as in Definition 2.1.15, at the end of the proof.

Using the acip η≪ µ, define ζ := φ⋆η. We first want to show ζ≪ ν. To start, let
N ∈B and note

ζ(N ) = (φ⋆η)(N )

=
∫
φ−1N

dη

dµ
(x)dµ(x)

=
∫
φ−1N

dη

dµ
(φ−1 ◦φ(x))dµ(x).

In noting dη
dµ ∈ L1(µ), we see by Lemma 2.1.10 that dη

dµ ◦φ−1 ∈ L1(φ⋆µ). Again by
Lemma 2.1.10 we may then write,∫

φ−1N

dη

dµ
(φ−1 ◦φ(x))dµ(x) =

∫
N

dη

dµ
(φ−1(y))d(φ⋆µ)(y)

=
∫

N

dη

dµ
(φ−1(y))dν(y),

so that

ζ(N ) =
∫

N

dη

dµ
(φ−1(y))dν(y).

Applying Theorem 2.1.11 we then have ζ≪ ν and dζ
dν =

dη
dµ ◦φ−1, ν-almost surely.

We now show (Y ,B,ζ,U ) is a dynamical system to apply Lemma 2.1.17. To do so,
we need U⋆ζ≪ ζ. Let N ∈B and suppose ζ(N ) = 0, which is rewritten, η(φ−1(N )) = 0.
Then note

U⋆ζ(N ) =U⋆φ⋆η(N )

= η((U ◦φ)−1(N ))

= η((φ◦T )−1(N ))

= T⋆η(φ−1(N )) = 0

13



as T⋆η≪ η, showing U⋆ζ≪ ζ. Having shown non-singularity for ζwe see (Y ,B,ζ,U )
is a dynamical system. In noting ζ = φ⋆η, we see φ is an ergodic isomorphism be-
tween (Y ,B,ζ,U ) and (X ,F ,η,T ). We may then apply Lemma 2.1.17 so that the in-
variance of η implies invariance of ζ. Similarly, if η is exact then so is ζ.

Lastly, if ∥ dη
dµ∥∞ ≤ M for some M ∈R>0, we have a set Ẋ ∈F such that µ(X \ Ẋ ) = 0

and dη
dµ (x) ≤ M for each x ∈ Ẋ . Then note φ(Ẋ ) = (φ−1)−1(Ẋ ) ∈B and

ν(φ(Ẋ )) =φ−1
⋆ ν(Ẋ ) =µ(Ẋ ) =µ(X ) = ν(Y ).

Consequently, we can see that for N ∈B we have

ζ(N ) =
∫

N

dη

dµ
(φ−1(y))dν(y)

=
∫

N∩φ(Ẋ )

dη

dµ
(φ−1(y))dν(y)

≤ Mν(N ∩φ(Ẋ ))

= Mν(N ),

proving ∥ dζ
dη∥∞ ≤ M .

Now finally, if φ would have only existed between measure-dense subsets of A ⊆
X and B ⊆ Y respectively, we could use Remark 2.1.16 and apply the above proof
to (A,FA,µA,T ) and (B ,BB ,νB ,U ). The resulting measure ζ (defined on FA) then
induces a measure ζ̇ : F →R≥0 defined by ζ̇(N ) = ζ(N ∩A). Using µ(X \ A) = 0, we can
directly derive that invariance, non-singularity, absolute continuity (with a uniform
upper bound on the density) and exactness of ζ̇ are preserved from ζ.

2.1.1 Partitions and Separation Times

Next, we see the first example (of many) where considering partitions of dynamical
systems can be useful. We first phrase a slightly more general claim.

Lemma 2.1.20. Let (X ,F ,µ) and (Y ,B,ν) be σ-finite measure spaces and f : X → Y a
measurable mapping so that f⋆µ≪ ν. Let X0 ∈F and P ⊆F be a countable partition
of X0. Then

d( f |X0 )⋆µ

dν
= ∑

P∈P

d( f |P )⋆µ

dν
holds ν-a.s. (5)

14



Proof. Let B ∈B be given arbitrarily. We simply note∫
B

d( f |X0 )⋆µ

dν
(y)dν(y) =µ(X0 ∩ f −1B)

=µ(
⊔

P∈P

P ∩ f −1B)

= ∑
P∈P

µ(P ∩ f −1B)

= ∑
P∈P

∫
B

d( f |P )⋆µ

dν
(y)dν(y)

=
∫

B

∑
P∈P

d( f |P )⋆µ

dν
(y)dν(y), (6)

where in Equation (6) we used the monotone convergence theorem. As B ∈ B was
given arbitrarily this implies Equation (5).

Specified to dynamical systems this reads as follows.

Lemma 2.1.21. Let (X ,F ,µ,T ) be a dynamical system with µ(X ) ∈ (0,∞). Suppose
that X0 ∈F and P ⊆F is a countable partition of X0. Then

d(T |X0 )⋆µ

dµ
= ∑

A∈P

d(T |A)⋆µ

dµ
holds µ-a.e.. (7)

Also, if there exists an M > 0 such that for all A ∈P ,∣∣∣∣∣∣∣∣d(T |A)⋆µ

dµ

∣∣∣∣∣∣∣∣
∞
≤ M µ(A) for some M > 0,

then
∣∣∣∣∣∣d(T |X0 )⋆µ

dµ

∣∣∣∣∣∣∞ ≤µ(X ) ·M.

Proof. Equation (7) is a special case of Lemma 2.1.20. The second statement follows
suit by noting that forB ∈F ,∫

B

d(T |X0 )⋆µ

dµ
(x)dµ(x) = ∑

A∈P

∫
B

d(T |A)⋆µ

dµ
(x)dµ(x)

≤ ∑
A∈P

∫
B

Mµ(A)dµ(x)

= ∑
A∈P

Mµ(A)µ(B)

= Mµ(X )µ(B).

Now in fixing

B :=
{

x ∈ X :
d(T |X0 )⋆µ

dµ
(x) > M

}
∈F ,
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and assuming µ(B) > 0 we have

Mµ(B)µ(X ) <
∫

B

d(T |X0 )⋆µ

dµ
(x)dµ(x) ≤ Mµ(X )µ(B),

showing a contradiction, which implies µ(B) = 0, proving the claim.

In having a partition for some dynamical system, we often want to construct
a new partition consisting of smaller sets as these will often be better behaved for
higher iterates of an operator. How to do so, we explain below.

Definition 2.1.22. Given a dynamical system (X ,F ,µ,T ) and a countable partition
P ⊆ F of X consisting of sets of positive measure, we say that for n ∈ Z≥1 the parti-
tion

P n :=
n−1∨
i=0

T −i P = {P0 ∩T −1P1 ∩ ...∩T −n+1Pn−1 : P0, ...,Pn−1 ∈P } \ {;},

is the n’th refinement of P , and

P ∞ :=
{ ∞⋂

n=0
T −nPn : (Pn)n≥0 ⊆P

}
,

is the asymptotic refinement. Furthermore, we say P is generating for F if the set⋃∞
n=1 P n is generating for F , that is σ(

⋃∞
n=1 P n) = F . We say P is separating if P ∞

is the trivial partition of X into singletons. Here we denote for k ∈Z≥1 and A ∈F ,

T −k A = {x ∈ X : T k (x) ∈ A}.

When dealing with partitions and refinements thereof, the following standard set
identity is very useful.

Lemma 2.1.23. Suppose we have a function f : X → Y with A ⊂ X and B ⊆ Y . Then

f (A∩ f −1(B)) = f (A)∩B.

The Lemma below will be useful to relate the measure of some measurable set to
the measure of some element of a generating and separating partition [1, Corollary
2.3] for a proof.

Corollary 2.1.24. Let (X ,F ,µ,T ) be a dynamical system with µ(X ) ∈ (0,∞) and let P

be a countable generating partition for F . Then for all δ> 0 and A ∈F with µ(A) > 0,
there are n ≥ 1 and P ∈∨n−1

i=0 T −i P such that µ(P \ A) < δµ(P ).
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The following lemma (see [1, Lemma 2.7]) gives a useful criterion for finding
whether a partition is generating and separating. We define for metric spaces (X ,d)
with a countable partition P ⊆ X ,

diam(P ) := sup{ sup
x,y∈P

d(x, y) : P ∈P }.

Whenever we refer to a Borel space of a metric space, we mean a measure space where
the σ-algebra is a Borel σ-algebra induced by the topology of the metric and with its
measure a Borel measure.

Lemma 2.1.25. Given a metric space (X ,d), let (X ,F ,µ,T ) be a dynamical system with
(X ,F ,µ) a Borel space and let P ⊆F be a countable partition. Then P is generating
and separating if

diam(P n) → 0 as n →∞.

The Bernoulli shift naturally admits a generating and separating partition. We
shall introduce some terminology to explain this also used for instance in Section
3.6.

Example 2.1.26. Consider a Bernoulli shift (ΓZ≥0 ,FΓZ≥0 ,P,σ) as given by Example
2.1.3. Given n ∈Z≥1 and a0, . . . , an−1 ∈ Γwe can define a cylinder of depth n by

[a0 · · ·an−1] := {(γk )k≥0 ∈ ΓZ≥0 : γ0 = a0, . . . ,γn−1 = an−1}.

Cylinders can be seen as the building blocks of (ΓZ≥0 ,FΓZ≥0 ) as the set of cylinders

C := {[a0 . . . an−1] : n ∈Z≥1, i ∈ {0, . . . ,n −1}, ai ∈ Γ, } ⊆FΓZ≥0 ,

generates FΓZ≥0 by definition. Moreover, for any n ∈Z≥1, the collection

C n := {[a0 . . . an−1] : i ∈ {0, . . . ,n −1}, ai ∈ Γ}},

partitions ΓZ≥0 . We can see C n is the n’th refinement of C 1, so that our notation
is consistent with Definition 2.1.22. To show C 1 is generating and separating for
(ΓZ≥0 ,FΓZ≥0 ,P,σ), we first note the function

dΓZ≥0 :Z≥0 ×Z≥0 → [0,1] (8)

(γ,γ′) 7→
{

sup{2−n : γ′n ̸= γn ,n ∈Z≥0} if γ ̸= γ′
0 if γ= γ′.

defines a metric on ΓZ≥0 . In fact, FΓZ≥0 can be seen as the Borel σ-algebra on ΓZ≥0

induced by dΓZ≥0 . Then note that for n ∈Z≥1 we have

diam(C n) = sup{ sup
x,y∈C

dΓZ≥0 (x, y) : C ∈C n} = 2−n .

Applying Lemma 2.1.25, then shows that C 1 is generating and separating for
(ΓZ≥0 ,FΓZ≥0 ,P,σ).
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In this text we shall apply Lemma 2.1.25 to various dynamical systems such as
Bernoulli shifts and the doubling map. We postpone formalising this for now. To
understand better what it means to have a generating and separating partition for a
dynamical system we now show how we can use it to naturally define a metric. For
this we require the separation time which we will define below.

Definition 2.1.27. Let (X ,F ,µ,T ) be some dynamical system with µ(X ) ∈ (0,∞) and
P ⊆F a countable partition of X . We define the mapping

α : X →P , x 7→ P for the unique P ∋ x,

and the separation time s : X ×X →Z≥0 ∪ {∞} as the mapping

s(x, x ′) = inf
{
n ∈Z≥0 :α

(
T n(x)

) ̸=α(
T n(x ′)

)}
.

We shall now show the separation time induces a metrisable topology on X if
the partition it is based on is generating and separating. We start with a preliminary
lemma.

Lemma 2.1.28. Let (X ,F ,µ,T ) be some dynamical system with µ(X ) ∈ (0,∞) and let
P ⊆F be a countable partition of X . Let n ∈Z≥1 and let x, y ∈ X be such that there is
a P ∈P n with x, y ∈ P. Then for i ∈ {0, . . . ,n} we have

s
(
T i (x),T i (y)

)
= s(x, y)+ i . (9)

Proof. First, note that if Q ∈P we have for a,b ∈Q that α(a) =α(b) so

s(a,b) = inf{k ∈Z≥0 :α(T k (a)) ̸=α(T k (b))}

= inf{k ∈Z≥1 :α(T k (a)) ̸=α(T k (b))}

= inf{k ∈Z≥1 :α(T k−1(T (a))) ̸=α(T k−1(T (b)))}

= inf{k ∈Z≥0 :α(T k (T (a))) ̸=α(T k (T (b)))}+1

= s(T (a),T (b))+1. (10)

Now since P ∈P n , we have some P0, . . . ,Pn−1 ∈P such that

P = P0 ∩T −1P1 ∩·· ·∩T −n+1Pn−1.

Note then that for each i ∈ {0, . . . ,n −1} we have α(T i (x)) =α(T i (y)) as

T i (x),T i (y) ∈ T i [P0 ∩·· ·∩T −i+1Pi−1]∩Pi ∩T i [T −i−1Pi+1 ∩·· ·∩T −n−1Pn+1] ⊆ Pi ,

where we applied the set identity Lemma 2.1.23. Knowing this, we can apply Identity
(10) i times to obtain

s(T i (x),T i (y)) = s(x, y)+ i .

Equation (9) follows.
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Lemma 2.1.29. Let (X ,F ,µ,T ) be some dynamical system withµ(X ) ∈ (0,∞) and P ⊆
F a generating and separating partition and let s : X×X →Z≥0∪{∞} be the separation
time associated with P . For any C ∈R>0,β ∈ (0,1) the mapping

dβ,C :X ×X → [0,C ]

(x, y) 7→
{

Cβs(x,y), s(x, y) ̸=∞
0, else.

is a metric.

Proof. Fix β ∈ (0,1) and C ∈ R>0. For notational convenience we write d := dβ,C . To
show d [X ×X ] ⊆ [0,C ] first let x, y ∈ X and note that if s(x, y) =∞ we have d(x, y) = 0.
If s(x, y) ̸=∞ we have s(x, y) ∈Z≥0 so βs(x,y) ≤ 1 and thus d(x, y) =Cβs(x,y) ≤C so that
indeed d [X ×X ] ⊆ [0,C ].

We shall now prove d is a metric and to do so let x, y, z ∈ X be arbitrary.

Positive Definiteness We already know d(x, y) ≥ 0. Suppose d(x, y) = 0. We know
this implies s(x, y) = ∞ and so we have for all n ∈ Z≥0, α(T n(x)) = α(T n(y)).
Then write (Pn)n≥0 = (α(T n(y))n≥0 and note by construction this implies x, y ∈⋂∞

n=0 T −nPn . As P is separating we then have x = y .

Symmetry We immediately see d(x, y) =Cβs(x,y) =Cβs(y,x) = d(y, x).

Triangle Inequality We discern, without loss of generality, three cases:

α(x) =α(y), α(z) ̸=α(x) (11)

α(x) ̸=α(y), α(y) ̸=α(z), α(x) ̸=α(z) (12)

α(x) =α(y) =α(z) (13)

In Case (11) we can see α(z) ̸=α(y) so βs(y,z) = 1,

d(x, y)+d(y, z) =C (βs(x,y) +βs(y,z)) =Cβs(x,y) +C ≥C =Cβs(x,z) = d(x, z).

In Case (12) we see s(x, y) = s(y, z) = s(x, z) = 0 so

d(x, y)+d(y, z) =C (βs(x,y) +βs(y,z)) = 2C ≥C =Cβs(x,z) = d(x, z).

For Case (13), write m := min
{

s(x, y), s(y, z), s(x, z)
}

and note we have m ≥ 1. As
this m represents the highest integer such that there is a P ∈P m with x, y, z ∈ P ,
this is then also the highest integer m such that there is

P ′ ∈P with T m−1(x),T m−1(y),T m−1(z) ∈ P ′,
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so that α(T m(x)),α(T m(y)),α(T m(z)) fall into either one of Cases (11) or (12).
We then derive,

d(x, y)+d(y, z) =βm (
d(T m(x),T m(y))+d(T m(y),T m(z)

)
(14)

≥βmd(T m(x),T m(z)) (15)

= d(x, z)

where in (14) we used Lemma 2.1.28 and in (15) we used either Case (11) or
Case (12). We have shown the triangle inequality.

We conclude d = dβ,C is a metric.

Remark 2.1.30. In Section 4.1.1 we shall show that for general dynamical systems
(X ,F ,µ,T ) with a generating and separating partition the topology T induced by
the separation time is complete and separable, making (X ,T ) a Polish Space, µ a
Borel measure and F a Borel σ-algebra. We have postponed proving this to avoid
stretching the preliminaries for too long and as it is not necessary for Section 3.

To the knowledge of the author the statement is seemingly missing from texts
such as [25], [24] or [1]. We shall use the Polish space structure to give an alternative
proof for Proposition 3.3.2, one of the cornerstones of Section 3.

2.2 Jacobians

The notion of a Jacobian, well-known from analysis, can be adapted to dynamical
systems, purely relying on measure theoretical concepts. Relying on measure the-
ory instead of analytical arguments is advantageous as we will frequently encounter
mappings that have discontinuities on their domain - or mappings defined on spaces
lacking a topology altogether.

Shortly put, in our setting a Jacobian of some mapping is a locally integrable
function describing how much a small area gets stretched under applying the map-
ping. Similar to the Radon-Nikodym derivative we shall require some notion of non-
singularity, which we call pbn-singularity, to be defined in Definition 2.2.3. Addi-
tionally, we shall require forward measurability of an operator, warranting the need
for local invertibility as defined in Definition 2.2.1. These conditions may seem heavy
for general dynamical systems but turn out to fit our situation perfectly.

The statements in this section are phrased as a special case of the more general
results proven in Section 4.3 where additional results also have been phrased. To
elaborate a bit more on this, see Remark 2.2.12 at the end of this section. We included
the references to the more general statements in the headers of their respective defi-
nitions and claims.

Definition 2.2.1 (4.3.1). Let (X ,F ) be a measurable space and let T : X → X be a
measurable mapping.
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1. If T : X → X is measurable, bijective and has a measurable inverse, we call T
bi-measurable.

2. If A ∈ F is so that T (A) ∈ F and T |A : A → T (A) is bi-measurable (onto its
image) then we call A an invertibility domain for T .

3. If there exists a countable partition P of X consisting of invertibility domains
for T , then we call T locally invertible.

Locally invertible mappings map measurable sets to measurable sets and mea-
surable subsets of invertibility domains are again invertibility domains.

Lemma 2.2.2 (4.3.3). Let (X ,F ,µ,T ) be a dynamical system. Then,

1. if A ∈ F is an invertibility domain for T then every B ∈ F with B ⊆ A is an
invertibility domain for T ;

2. if T : X → X is bi-measurable, then for any A ∈ F , we have that T |A : A → T (A)
is bi-measurable;

3. if T : X → X is locally invertible, then for any A ∈F , we have that T (A) ∈F .

Now we are in the position to define pullback non-singularity for locally invertible
transformations on finite measure spaces.

Definition 2.2.3 (4.3.4). Let (X ,F ,µ,T ) be a dynamical system withµ(X ) ∈ (0,∞) and
let T : X → X be a locally invertible mapping. We say T is pullback non-singular or
pbn-singular if for every invertibility domain A ∈F , µ(A) = 0 implies µ(T (A)) = 0.

We can verify pullback non-singularity using a single partition consisting of in-
vertibility domains.

Lemma 2.2.4 (4.3.6). Let (X ,F ,µ,T ) be a dynamical system with µ(X ) ∈ (0,∞) and
T be a locally invertible mapping. Then T is pullback non-singular if and only if for
some partition P of invertibility domains for T we have

(T |P )−1
⋆ µT (P ) ≪µP for each P ∈P . (16)

We now present an easy example to explain the difference between pbn-singularity
and non-singularity.

Example 2.2.5. Define the Borel space ([0,1],B[0,1],λ+δ{1}) with λ+δ{1} being the
sum of the Lebesgue measure and the Dirac measure supported on {1} respectively.
Define

G : [0,1] → [0,1] T : [0,1] → [0,1]

x 7→
{

x, x ∈ (0,1]

1, x = 0,
x 7→

{
x, x ∈ [0,1)

0, x = 1.
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We show G is not pbn-singular but is non-singular, and that T is non-singular but not
pbn-singular.

Note both T and G are measurable and PG = {{0}, (0,1]} and PT = {[0,1), {1}} par-
tition [0,1] into invertibility domains for G and T respectively.

Note that
(λ+δ{1})({0}) = 0, (λ+δ{1})(G{0}) = 1,

showing that G is not pbn-singular, however for A ∈B[0,1] we have

(λ+δ{1})(T (A)) =λ(A) ≤ (λ+δ{1})(A),

so T is pbn-singular. As for non-singularity, note that for A ∈B[0,1]

G−1(A) =
{

{0}∪ A, 1 ∈ A

A \ {0}, 1 ∉ A
T −1(A) =

{
{1}∪ A, 0 ∈ A

A \ {1}, 0 ∉ A
.

We then see

(λ+δ{1})(G−1(A)) = (λ+δ{1})(A) and (λ+δ{1})(T −1({0})) = 1 while (λ+δ{1})({0}) = 0,

showing non-singularity of G and that T is not non-singular.

We are now ready to define the Jacobian. The Jacobian is used to describe how
much invertibility domains get ‘stretched’ under the operator of a dynamical system.

Definition 2.2.6 (4.3.7). Let (X ,F ,µ,T ) be a dynamical system with µ(X ) ∈ (0,∞)
and let T : X → X be a locally invertible, pullback non-singular mapping. A function
JT : X → [0,∞) such that JT · 1P ∈ L1(X ) and

µ(T (P )) =
∫

P
JT (x)dµ(x), for every invertibility domain P ∈F (17)

is called a Jacobian of T .

The following lemma is an existence and uniqueness result for Jacobians in our
setting.

Lemma 2.2.7 (4.3.8). Let (X ,F ,µ,T ) be a dynamical system with µ(X ) ∈ (0,∞) and let
T : X → X be a locally invertible, pullback non-singular mapping. Then a Jacobian
JT : X → [0,∞) exists and is unique up to a measure zero set. Furthermore, in assum-
ing P ⊆ F is a countable partition of X consisting of invertibility domains for T we
have for P ∈P ,

(JT · 1P )(x) =


d(T |−1
P )⋆µ

dµ (x), x ∈ P

0, else,
µ-a.s.,

and
JT = ∑

P∈P

JT · 1P , µ-a.s..
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We conclude our discussion of Jacobians with two technical characterisations of
Jacobians.

Lemma 2.2.8 (4.3.11). Let (X ,F ,µ,T ) be a dynamical system with µ(X ) ∈ (0,∞) and
T a locally invertible, pullback non-singular mapping. Suppose for some invertibility
domain A ∈F we have JT > 0, µA-almost surely. Then

(JT (x))−1 = d(T |A)⋆µ

dµ
(T (x)), for µA-almost every x ∈ A.

As hinted at before, refinements of partitions consisting of invertibility domains
are well-behaved with higher iterates of operators of dynamical systems.

Lemma 2.2.9 (4.3.13). Let (X ,F ,µ,T ) be some dynamical system with µ(X ) ∈ (0,∞)
and suppose T : X → X is a locally invertible and pullback non-singular mapping
with a partition P consisting of invertibility domains. Then for each n ∈Z≥1 and each
k ∈ {1, . . . ,n} the n-th refinement P n consists of invertibility domains for T k . Moreover,
T k is pullback non-singular.

Finally, we phrase the Chain Rule for Jacobians.

Proposition 2.2.10 (4.3.16, Chain Rule For Jacobians). Let (X ,F ,µ,T ) be a dynamical
system with µ(X ) ∈ (0,∞) and let T be locally invertible and pullback non-singular.
Then we have for each n ∈Z≥1 that J (T n) exists and that

J (T n) =
n−1∏
i=0

J (T )◦T i holds µ-a.e..

Below we present a non-trivial example of a Jacobian associated with a locally
invertible mapping. We postpone the proof until Lemma 4.3.17 to avoid clouding
this subsection with statements we shall not need for any other purpose than this
lemma.

Lemma 2.2.11. Let (ΓZ≥0 ,FΓZ≥0 ,P,σ) be some Bernoulli shift with weights P = (pγ)γ∈Γ.
Then for each n ≥ 1 and k ∈ {1, . . . ,n} the collection

C n = {
[γ0 · · ·γn−1] ⊆ ΓZ≥0 : γ0, . . . ,γn−1 ∈ Γ

}
of cylinders of depth n consists of invertibility domains for σk : ΓZ≥0 → ΓZ≥0 . Moreover,
σk : ΓZ≥0 → ΓZ≥0 is locally invertible and pbn-singular with a Jacobian satisfying

Jσk ≡ 1

pγ0 · · ·pγk−1

, P-almost everywhere.
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Remark 2.2.12. 1. For a different treatise of the subject, [23, Chapter 9.7] is a
good reference, but many proofs are missing there. Moreover, in Section 4.3
we shall need to generalise the notion of a Jacobian in a measure-theoretic set-
ting slightly which is why we have omitted proofs in this section. We point out
that our notion of local invertibility is a bit more strict than what is done in
[23, Chapter 9.7] where only a countable cover of invertibility domains instead
of countable partition is assumed. We believe that our convention leads to an
easier understanding of Jacobians however and is sufficient in many cases, in
particular for our purpose.

2. In some literature, such as [23, Chapter 9.7], non-singularity is defined as we
define pullback non-singularity. We make a distinction between the two to
avoid any confusion with the more common definition of non-singularity

3 The Deterministic Case

As said in Section 1 the main goal of this thesis is finding conditions for which random
dynamical systems with a non-uniformly expanding base dynamic admit absolutely
continuous invariant probability measures. Our method is built upon a framework
developed by Lai-Sang Young in the papers [25] and [24] to describe deterministic
dynamical systems. We shall start by sketching this method in Section 3.1. After that,
we shall formally define a Tower Base in Section 3.2 and prove it admits an acip in
Section 3.3. Subsequently, in Section 3.4 we shall formalise the notion of a Young
Tower and in Section 3.5 prove it admits an acip. We shall close Section 3 with two
easy examples to which Young Tower Theory can be applied. Sections 3.2 - 3.5 have
been written with the help of [1],[25] and [24].

3.1 Intuition for Young’s Theory

In this (sub)section, we shall do our best to explain what kind of systems Young’s
theory applies to, why finding acip’s can be subtle and why we need Young Towers.
To narrow our point of focus we shall mainly consider dynamical systems
([0,1),B[0,1),λ,T ) where ([0,1),B[0,1),λ) is the standard Borel space on [0,1),
equipped with the Lebesgue measure and T : [0,1) → [0,1) is some operator.

We shall start easy. Consider the doubling map from Example 2.1.3. Lemma
2.1.18 states that the doubling map ([0,1),B[0,1),λ,D) is ergodically equivalent with
a Bernoulli shift on {0,1}, written as ({0,1}Z≥0 ,F{0,1}Z≥0 ,P,σ). To sketch the proof, we
partition the interval [0,1) in P = {[0, 1

2 ), [ 1
2 ,1)} up to a set of measure one. Subse-

quently, we show that refinements of P can be naturally identified by the cylinders
in {0,1}Z≥0 through an ergodic isomorphism π. The fact that there exists an acip
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for Bernoulli shifts then implies the existence of an acip for the doubling map (i.e.
as follows from Lemma 2.1.17). If we want to find acip’s for more general systems
([0,1),B[0,1),λ,T ), the natural question then arises, how big is the class of dynami-
cal systems where ([0,1),B[0,1),λ,T ) is ergodically isomorphic with some Bernoulli
shift? Or, more generally, to what extent does the behaviour of some cleverly chosen
partition predict the existence of an acip?

At the very least, we know that if ([0,1),B[0,1),λ,T ) for some T is ergodically
equivalent with some Bernoulli shift (ΓZ≥0 ,FΓZ≥0 ,P,σ) we should be able to encode
the dynamics of T symbolically. That is, we should be able to construct a finite par-
tition PT on [0,1) having similar properties as a partition of ΓZ≥0 into cylinder sets.
Specifically, we would have

1. For each P ∈PT the mapping T |P : P → [0,1) is bi-measurable.

2. The partition PT is generating and separating for ([0,1),B[0,1),λ,T ).

The next natural question then arises. Are these properties sufficient for obtaining
an acip for ([0,1),B[0,1),λ,T )? As is well known, we can answer this negatively by
looking at the instance of the LSV-map ([0,1),B[0,1),λ, fLSV ) below.
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As shown in [18], the LSV-map does not admit an acip, yet it can be shown the par-
tition PLSV = {[0, 1

2 ), [ 1
2 ,1)} does satisfy the properties just mentioned. A property the

doubling map has, however, which the LSV map lacks, is (uniform) expandingness.
When systems are uniformly expanding we expect distances between points that are
close to grow uniformly. The LSV-map lacks this property as f ′

LSV (x) ↓ 1 approaches
1 as x ↓ 0. As a first mention, in [15, Theorem 2.4.6] partitions satisfying the pre-
viously mentioned properties are constructed explicitly for expanding maps on the
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circle. Two other key results linking (a notion of) expandingness and the existence of
an acip are [17] and, more generally applicable, [23, Theorem 11.1.2].

Keeping this in mind, one might then assume that being ‘expanding’ is necessary
for the existence of acip for systems of the form ([0,1),B[0,1),λ,T ). But again, the
problem is more subtle: the logistic map as graphed below does admit an acip with
respect to the Lebesgue measure. Despite not being uniformly expanding.
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Hence, we need more sophisticated tools to successfully analyse systems such as
([0,1),B[0,1),λ, flog ) and ([0,1),B[0,1),λ, fLSV ).

The crucial remark to make is that even if fl og and fLSV are not ‘expanding’ ev-
erywhere, the maps will still separate arbitrarily close points when applied a large
amount of times. To use this, Lai-Sang Young defined in [25] and [24] an induced
domain Λ⊆ [0,1) and a return time

R :Λ→Z≥1 ∪ {∞}, x 7→ inf
{
n ∈Z≥1 : g n(x) ∈Λ}

.

Assuming the return time indeed takes values in Z≥1 we can define an induced dy-
namical system (Λ,FΛ,µΛ,T R ), which we shall refer to as a tower base. Young then
assumes there exists a partition PΛ with properties similar to the following:

(Constant Return Time) For each P ∈PΛ the mapping R|P is constant.

(Markov Property) For each P ∈PΛ, g R |P : P →Λ is bi-measurable and (g R |−1
P )⋆µΛ≪

µΛ.

(Generating and Separating) the partition PΛ is generating and separating.

Note as we can not expect that R : Λ→ Z≥1 is bounded the partition PΛ will likely
be countably infinite instead of finite. This will complicate finding an acip but it is
something we can overcome.

26



Finally, this construction allows us to control the distortion of the Jacobian in
terms of time it takes points to separate using the separation time from Lemma 2.1.27.
On our ‘naive’ partition of {[0, 1

2 ), [ 1
2 ,1)} we could define a separation time, but we

can not use this to analyse the distortion of the Jacobian in flog due to the fact that
f ′

l og (x) → 0 as x ↑ 1
2 .

Finding an acip for the induced systems (Λ,FΛ,µΛ, g R ) will be the contents of Sec-
tions 3.2 - 3.3. In Sections 3.4-3.5 we will phrase conditions under which this acip
implies the existence of an acip on the base system where we shall introduce the
concept of a Young Tower.

3.2 The Tower Base

For this section we fix a dynamical system (X ,F ,m, g ) with m(X ) ∈ (0,∞]. Our first
goal is to formalise the notion of a Tower Base as mentioned in Section 3.1, and start
by defining the return time and induced domain.

Definition 3.2.1. Suppose we have Λ ∈F with m(Λ) ∈ (0,∞), if the map

R :Λ→Z≥1 ∪ {∞}, x 7→ inf
{
n ∈Z≥1 : g n(x) ∈Λ}

,

takes values in Z≥1 we call R a return time andΛ its induced domain.

If we have a return time R and induced domain Λ for (X ,F ,m, g ), we consider
the mapping g R :Λ→Λ, as given by g R (x) = g (x)R(x) for x ∈Λ. Then define µ= m

m(Λ) .

In restricting (X ,F ,µ) to Λ we can then define the tuple (Λ,FΛ,µΛ, g R ), where µΛ is
a probability measure. The following lemma asserts this tuple is a dynamical system.

Lemma 3.2.2. Let (X ,F ,µ, g ) be some dynamical system and let Λ ∈ F be such that
µ(Λ) = 1 and suppose we have an integer valued measurable mapping R : Λ→ Z≥1

such that g (x)R(x) ∈Λ for each x ∈Λ. Then (Λ,FΛ,µΛ, g R ) is a dynamical system.

Proof. As Λ is a measurable set of finite measure we can define the finite measure
space (Λ,FΛ,µΛ). We need to show g R is FΛ-measurable. To do so, define

PR = {R−1{n} : n ∈Z≥1},

and note this is a countable collection consisting of FΛ-measurable sets.
We then note that for an arbitrary A ∈FΛ we have

(g R )−1(A) = ⊔
n∈Z≥1

(g R |R−1{n})
−1(A) = ⊔

n∈Z≥1

R−1{n}∩ (g n)−1(A) ∈FΛ,

by measurability of g .
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Similarly assuming we have µΛ(A) = 0 we can see using the non-singularity of g
that

µΛ((g R )−1 A) = ∑
n∈Z≥1

µΛ(R−1{n}∩ (g n)−1(A)) ≤ ∑
n∈Z≥1

µ((g n)−1 A) = 0,

proving (Λ,FΛ,µΛ,T R ) is a dynamical system.

In the sequel until and including Section 3.4 we fix a dynamical system (X ,F ,m, g )
and assume there exists a return time R with induced domain Λ such that m(Λ) ∈
(0,∞). We then call (X ,F ,m, g ) the base dynamics. We will focus on the dynamical
system (Λ,FΛ,µΛ, g R ) and analyse its properties.

We shall only refer to the underlying base dynamics (X ,F ,m, g ) implicitly until
we are readily equipped to analyse it. For now, we focus on the dynamical system
(Λ,FΛ,µΛ, g R ), where a return time and induced domain are implicit. We shall fix
(Λ,FΛ,µΛ, g R ) until and including Section 3.5.

Definition 3.2.3. Suppose we have a countable partition PΛ ⊆FΛ consisting of sets
of positive measure ofΛwith the following properties:

(Constant Return Time) For each P ∈PΛ the mapping R|P is constant.

(Markov Property) For each P ∈PΛ, g R |P : P →Λ is bi-measurable and (g R |−1
P )⋆µΛ≪

µΛ.

(Generating and Separating) the partition PΛ is generating and separating.

Then we call PΛ a principal partition for (Λ,FΛ,µΛ, g R ).

Remark 3.2.4. Typically, in the literature, such as in [24] or [1], the Markov property
merely assumes the bi-measurability onto a Λ, not also pullback non-singularity. In
this text the pullback non-singularity is there to guarantee the existence of the Jaco-
bian. This existence is in the literature usually assumed as part of bounded distortion,
seen in Definition 3.2.6, without phrasing conditions for which this object can actu-
ally exist. Outside of Young Tower theory the Markov Property is commonly phrased
even more leniently, for instance as in [15], for instance not requiring surjectivity. The
author is aware of this deviation.

The curious reader can skip ahead to Section 3.6 to see an elementary exam-
ple of a principal partition. For the rest of this section we shall assume our system
(Λ,FΛ,µΛ, g R ) has a principal partition PΛ. By definition, PΛ consists of invertibil-
ity domains for g R so g R is locally invertible and by the Markov Property we can apply
Lemma 2.2.4 to see g R is pbn-singular as well. By Lemma 2.2.7 we then see J g R exists
and is unique up to a µΛ-measure zero set.

The bijective property in the Markov property can be extended inductively to re-
finements of PΛ.
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Lemma 3.2.5. For each n ∈Z≥1, and A ∈P n
Λ

1. the mapping (g R )n |A : A →Λ is bi-measurable, and

2. we have µΛ(A) > 0.

Proof. 1. By Lemma 2.2.9 we only need to prove surjectivity. In the case n = 1
the statement follows directly from the Markov Property. In supposing we have
for some p ∈ Z≥1 that for any A′ ∈ P

p
Λ we have (g R )p (A′) =Λthat for A ∈ P

p+1
Λ

there exist A0 . . . , Ap ∈PΛ such that

A = A0 ∩·· ·∩ (g R )−p Ap ).

Consequently, we have

(g R )p+1(A) = (g R )p+1(A0 ∩·· ·∩ (g R )−p+1(Ap−1)∩ (g R )−p Ap )

= g R (
(g R )p (A0 ∩·· ·∩ (g R )−p+1(Ap−1))∩ Ap )

)
(18)

= g R (Ap ) (19)

=Λ, (20)

where in Equation (18) we used Lemma 2.1.23, in Equation (19) we used the
induction hypothesis and in Equation (20) we used the Markov property.

2. Note that for general n ∈ Z≥1 and A ∈ P n
Λ we know A is an invertibility do-

main for (g R )n by Lemma 2.2.9 and that (g R )n(A) = Λ, so if we would have
µ(A) = 0 then µΛ(Λ) = µΛ((g R )n(A)) = 0 by pullback non-singularity. As we
know µΛ(Λ) = 1 we then must have µΛ(A) > 0.

As mentioned in Section 3.1 we need to be able to control the distortion of the
Jacobian in terms of the separation time metric as defined in Definition 2.1.27. To do
so, we shall for the rest of this section fix a β ∈ (0,1) and C ∈ R>0 and the separation
time metric dβ,C induced by PΛ. Without proof for now, we shall assume the joint
measurability of dβ,C , see Remark 2.1.30.

We remind the reader that J g R exists and is unique up to a measure zero set.

Definition 3.2.6. If for the dynamical system (Λ,FΛ,µΛ, g R ) for each A ∈ PΛ the Ja-
cobian J(g R )|A : A → [0,∞) is strictly positive µA-almost everywhere and satisfies∣∣∣∣ J g R (x)

J g R (y)
−1

∣∣∣∣≤ dβ,C (x, y) for almost every x, y ∈ A,

we say the dynamical system has bounded distortion.
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If the dynamical system (Λ,FΛ,µΛ, g R ) has bounded distortion, we refer to it as a
tower base. From here on out we shall assume (Λ,FΛ,µΛ, g R ) is a tower base. We use
the non-singularity of g R to extend bounded distortion to (g R )n as follows for general
n ∈Z≥1.

Lemma 3.2.7. Let (Λ,FΛ,µΛ, g R ) be a tower base and let n ∈Z≥1. For each A ∈P n
Λ , we

have a set Ȧ ∈FA such that µΛ(A \ Ȧ) = 0 and for each i ∈ {0, . . . ,n −1}∣∣∣∣ J (g R )((g R )i (x))

J (g R )((g R )i (y))
−1

∣∣∣∣≤ dβ,C ((g R )i (x), (g R )i (y)), for every x, y ∈ Ȧ. (21)

Proof. Let A ∈ P n
Λ . First we will construct the set Ȧ, show it satisfies Equation (21)

and then show why it satisfies µA(A \ Ȧ) = 0. Let A(0), . . . , A(n−1) ∈PΛ be such that

A = A(0) ∩·· ·∩ (g R )−(n−1) A(n−1).

By bounded distortion, we can find for each i ∈ {0, . . . ,n −1} an Ȧ(i ) ∈ FA(i ) such that
µA(i ) (A(i ) \ Ȧ(i )) = 0 and∣∣∣∣ J g R (x)

J g R (y)
−1

∣∣∣∣≤ dβ,C (g R (x), g R (y)) for all x, y ∈ Ȧ(i ).

More so, by non-singularity of g R we have

µΛ((g R )−i A(i ) \ (g R )−i Ȧ(i )) = (g R )i
⋆µΛ(A(i ) \ Ȧ(i )) = 0. (22)

Then define
Ȧ = Ȧ(0) ∩·· ·∩ (g R )−(n−1) Ȧ(n−1)

and note that using Lemma 2.1.23 we have

(g R )i Ȧ = (g R )i (Ȧ(0) ∩·· ·∩ (g R )−(i−1) Ȧ(i−1))∩ Ȧ(i ) ∩ (g R )−1 Ȧ(i+1) ∩ . . . (g R )−(n−1)+i Ȧ(n−1)

⊆ Ȧ(i ),

so that ∣∣∣∣ J g R ((g R )i (x))

J g R ((g R )i (y))
−1

∣∣∣∣≤ dβ,C ((g R )i (x), (g R )i (y)) for all x, y ∈ Ȧ.

More so, as Ȧ(i ) ⊆ A(i ) for i ∈ {0, . . . ,n − 1} we can derive using general set identities
that we have

A \ Ȧ = (A(0) \ Ȧ(0))∪·· ·∪ (g R )−(n−1)(A(n−1) \ Ȧ(n−1)).

By Equation (22),A \ Ȧ is the union of a finite amount of measure-zero sets, so that
indeed µΛ(A \ Ȧ) = 0.

30



Remark 3.2.8. For tower bases (Λ,FΛ,µΛ, g R ) one can show using the chain rule in
Proposition 2.2.10 and the positivity phrased in bounded distortion that for A ∈ PΛ

J ((g R )n) is strictly positive for n ∈ Z≥0, µA-almost everywhere. As the proof is very
similar to the proof of Lemmas 3.2.7 and 5.3.6 we shall omit proving this now.

We will see in Proposition 3.3.2 that for each n ∈Z≥0 the density
d(g R )n

⋆µΛ
dµΛ

displays
a remarkable Lipschitz property with respect to the separation time metric. This con-
cept will also return in Section 4.1.1.

Definition 3.2.9. We call a function f ∈ L1(Λ) Lipschitz on a set of full measure if there
exists aΛ f ∈FΛ with µ(Λ\Λ f ) = 0 and a L ∈R>0 such that for each x, y ∈Λ f we have

| f (x)− f (y)| ≤ L ·dβ,C (x, y).

Remark 3.2.10. As for the well-definedness of Definition 3.2.9 we want that the prop-
erty ‘Lipschitz on a set of full measure’ is representation independent. To do so let
g ,h be two representations of some f ∈ L1(Λ) such that there exists a Λg ∈ FΛ with
µ(Λ\Λg ) = 0 and that for each x, y ∈Λg

|g (x)− g (y)| ≤ L ·dβ,C (x, y).

As we know g is equal almost everywhere to h, say on some set Xh ∈FΛ we know that
g |Xh∩Λg = h|Xh∩Λg , so that

|h(x)−h(y)| ≤ L ·dβ,C (x, y),

for each x, y ∈ Xh ∩Λg . As we know µΛ(Xh ∩Λg ) = µΛ(Λ) we conclude that being
Lipschitz on a set of full measure indeed is a property shared on equivalence classes
in L1(Λ).

In the situation of a tower base, we are particularly interested in functions that
are Lipschitz on a set of full measure with respect to dβ,C and that are essentially
bounded, as denoted by

Lβ,C (Λ) := {
φ ∈ L∞(Λ) :φ is Lipschitz on a set of full measure

}
. (23)

We can equip this space with

|φ|β = esssupx ̸=y
|φ(x)−φ(y)|

dβ,C (x, y)
and ||φ||β = |φ|β+||φ||∞,

which are easily verified to be a seminorm and norm, respectively. As Λ is of finite
measure, we obtain the inclusions Lβ,C (Λ) ⊆ L∞(Λ) ⊆ L1(Λ).
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3.3 The Tower Base Acip

3.3.1 The Existence Of An Acip

For this section, we remain having fixed a tower base (Λ,FΛ,µΛ, g R ) with principal
partition PΛ and separation time metric dβ,C for some β ∈ (0,1), and C ∈R>0.

We shall start by proving that a sequence in Lβ,C (Λ) consisting of functions that are
Lipschitz with the same constant and share a uniform upper bound admits an accu-
mulation point in Lβ,C (Λ). The space Lβ,C (Λ) will later be shown to contain (convex

combinations of) the densities
d(g R )n

⋆µΛ
dµΛ

for n ∈Z≥0. We will then be able to use Propo-
sition 3.3.2 for proving the existence of an invariant measure in Theorem 3.3.7. The
proof of Proposition 3.3.2 below is based on [1] where a diagonalization argument is
used. We make this explicit and for ease of reading we state this before phrasing the
Lemma.

Lemma 3.3.1 (Diagonalisation Argument [20]). Suppose we have for each n ∈ Z≥1,
functions fn :Z≥1 →R and consider ( fn)n∈Z≥1 . Assume there exists a C ∈R>0 such that
| fn(l )| ≤ C for all l ,n ∈ Z≥1. Then there exists a subsequence ( fnk )k≥0 of ( fn)n≥0 such
that ( fnk (l ))k≥0converges for each l ∈Z≥1.

We now prove the promised sequential compactness.

Proposition 3.3.2. Suppose we have a tower base (Λ,FΛ,µΛ, g R ), and a sequence
(φn)n∈Z≥1 ⊆ Lβ,C (Λ) satisfying for some M > 1,

sup
n∈Z≥1

||φn ||β ≤ M and inf
n∈Z≥1

ess inf
x∈Λ

φn(x) ≥ 1

M
.

Then (φn)n≥1 converges pointwise almost everywhere and in L1(Λ) to a function φ ∈
Lβ,C (Λ) with ||φ||β ≤ M and essinfx∈Λφ(x) ≥ 1

M .

Proof. First, for each n ∈ Z≥1, let Λ̇n ∈ FΛ be a set for which µΛ(Λ̇n) = 1 and that for
each x, y ∈ Λ̇n we have |φn(x)−φn(y)| ≤ M ·dβ,C (x, y) and φ(x) ≤ M . Note then that
on Λ̇ :=⋂∞

n=1 Λ̇n we have |φn(x)−φn(y)| ≤ M ·dβ,C (x, y) for each x, y ∈ Λ̇ and n ∈Z≥1

and thatµΛ(Λ̇) = 1. We keep in mind that any FΛ-measurable set of positive measure
has an intersection of positive measure withΛ.

In the proof we shall start by picking a representative of each set in the principal
partition and apply Lemma 3.3.1 to find a first statement on convergence. To do so,
for each N ∈Z≥1 we let ψN :Z≥1 →P N

Λ denote an enumeration of P N
Λ . Then define

a (countable) choice function

χ : P N
Λ → Λ̇, P 7→ x (s.t . x ∈ P ),
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and define (xl ,N )l∈Z≥1 := (χ ◦ψN (l ))l∈Z≥1 . Note then for all N ∈ Z≥1 we obtain a se-
quence of sequences (φn(x�,N ))n≥1, such that

|φn(xl ,N )| ≤ sup
n∈Z≥1

||φn ||β ≤ M for all n, l ∈Z≥1.

By Lemma 3.3.1 we then obtain a sequence (nk )k≥0 ⊆Z≥1 with (φnk (xl ,N )k≥0 converg-
ing for all l ∈Z≥1 (in terms of Lemma 3.3.1 we take fn(l ) :=φn(xl ,N )).

Now we use the Lipschitz continuity of φn on Λ̇ for each n ∈ Z≥1 to extend this
convergence to all elements of Λ̇. In doing so, let x ∈ Λ̇ and ϵ ∈ R>0 be arbitrary and
N ∈ Z≥1 be such that M ·CβN < 1

3ϵ. Note we can find exactly one P ∈ P N
Λ such that

for some l ∈Z≥1 we have x, xl ,N ∈ P . We then have for each k ∈Z≥1,

|φnk (x)−φnk (xl ,N )| ≤ M ·dβ,C (x, xl ,N ) < ϵ

3
.

Now as (φnk (xl ,N ))k≥1 is converging in k ≥ 1 for all l ∈Z≥1, we may pick k0 ∈Z≥1 such
that for all k,m ≥ k0 we have

|φnk (xl ,N )−φnm (xl ,N )| < ϵ

3
.

Consequently,

|φnk (x)−φnm (x)| ≤ |φnk (x)−φnk (xl ,N )|+ |φnk (xl ,N )−φnm (xl ,N )|
+ |φnm (x)−φnm (xl ,N )|
< ϵ,

which shows (φnk (x))k≥0 is Cauchy in R for each x ∈ Λ̇. Now define for x ∈Λ,

φ′(x) =
{

limk→∞φnk (x), x ∈ Λ̇
0, else.

,

which as a limit of measurable functions is measurable. Now in noting that for x, y ∈
Λ̇we have

|φ′(x)−φ′(y)|
dβ,C (x, y)

= lim
k→∞

|φnk (x)−φnk (y)|
dβ,C (x, y)

≤ sup
n∈Z≥1

|φn |β ≤ M ,

and
|φ(x)| = lim

k→∞
|φnk (x)| ≤ sup

n∈Z≥1

∥φn∥∞ ≤ M ,

we see φ ∈ Lβ,C (Λ). The L1-convergence then follows by the dominated convergence
theorem. Lastly, as (φnk (x)) ≥ 1

M , for all k ∈Z≥0 and x ∈ Λ̇, we can easily see

φ(x) = lim
k→∞

φnk (x) ≥ 1

M
,

so that indeed essinfx∈Λφ′(x) ≥ 1
M . Letting φ denote the equivalence class of mea-

surable functions agreeing with φ′ µΛ-almost everywhere proves our claim.
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Remark 3.3.3. 1. It is worth noting that even though the limit point of the se-
quence is in Lβ,C (Λ), we do not have || · ||β-convergence.

In order to apply Proposition 3.3.2 to the densities d(g Rn
)⋆µΛ

dµΛ
for n ∈ Z≥0 we need

to find a uniform upper bound in || · ||β-norm. Conceptually, Lemma 3.3.4 below
ensures us that the ‘symbolic encoding’ as mentioned in Section 3.1 can actually lead
to an absolutely continuous (invariant probability) measure by showing the bounds
in Equation (25)..

A technical difficulty with the proof of Lemma 3.3.4 below is that given n ∈ Z≥1,
A ∈ P n

Λ we need to find a single set Ȧ ∈ FA so that we can apply the bounded dis-
tortion property 3.2.6, the reciprocal formula in Lemma 2.2.8 and the chain rule in
Proposition 2.2.10. For this, we shall need the non-singularity and pullback non-
singularity of the mapping g R . Constructing such a set Ȧ will be the first task in the
lemma.

Lemma 3.3.4. Suppose we have a tower base (Λ,FΛ,µΛ, g R ). Then for C ′ = e
C

1−β and
n ∈ Z≥1, and A ∈ P n

Λ we have a set Λ̇ ∈ FΛ such that µΛ(Λ \ Λ̇) = 0 and so that the

density φn,A := d(g Rn |A)⋆µΛ
dµΛ

satisfies for all x, y ∈ Λ̇∣∣∣∣log
φn,A(y)

φn,A(x)

∣∣∣∣≤βn dβ,C (x, y)

1−β , (24)

and
1

C ′µΛ(A) ≤φn,A(x) ≤C ′µΛ(A) for all x ∈ Λ̇. (25)

Proof. Let n ∈ Z≥1 and A ∈ P n
Λ . First note that A is an invertibility domain for (g R )n

by Lemma 3.2.5. By Remark 3.2.8 we may apply Lemma 2.2.8 to claim we have an
A′ ∈FΛ with A′ ⊆ A such that µA(A \ A′) = 0 and

φn,A((g R )n(x ′)) = (J(g R )n(x ′))−1, for each x ′ ∈ A′. (26)

Furthermore, by Proposition 2.2.10 we can find a setΛ′ ∈FΛ such that µΛ(Λ\Λ′) = 0
and

J ((g R )n)(x ′) =
n−1∏
i=0

(J g R )◦ (g R )i (x ′) for x ′ ∈Λ′. (27)

Lastly, by Lemma 3.2.7 we can find a A′′ ∈ FA such that µΛ(A \ A′′) = 0 and for each
i ∈ {0, . . . ,n −1}∣∣∣∣ J (g R )((g R )i (x ′))

J (g R )((g R )i (y ′))
−1

∣∣∣∣≤ dβ,C ((g R )i (x ′), (g R )i (y ′)), for every x ′, y ′ ∈ A′′. (28)

Then define
Ȧ = A′∩ A′′∩ (g R )−nΛ′ ∈FΛ.
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By non-singularity of g R we then see µA(A \ Ȧ) = 0. Moreover, in taking Λ̇ = (g R )n Ȧ,
we see by Lemma 2.2.2 Λ̇ ∈FΛ. By Lemma 3.2.5 we have (g R )n(A) =Λ so

Λ\ Λ̇=Λ\ (g R )n(Ȧ) ⊆ (g R )n(A \ Ȧ).

Using pbn-singularity of (g R )n we then have

µΛ(Λ\ Λ̇) ≤µΛ((g R )n(A \ Ȧ))) = 0.

Now we can start with the proof. Proceeding, we find for general x, y ∈ Λ̇ unique
x ′, y ′ ∈ Ȧ with (g Rn |Ȧ)−1(y) = y ′ and (g Rn |Ȧ)−1(x) = x ′ so that∣∣∣∣log

(
φn,A(x)

φn,A(y)

)∣∣∣∣=
∣∣∣∣∣log

(J (g R n
)(x ′))−1

(J (g R n)(y ′))−1

∣∣∣∣∣ (29)

=
∣∣∣∣∣log

J (g R n
)(x ′)

J (g R n)(y ′)

∣∣∣∣∣ (30)

=
∣∣∣∣∣log

∏n−1
i=0 (J g R )((g R )i (x ′))∏n−1
i=0 (J g R )((g R )i (y ′))

∣∣∣∣∣ (31)

≤
n−1∑
i=0

∣∣∣∣log
(J g R )((g R )i (x ′))

(J g R )((g R )i (y ′))

∣∣∣∣
≤

n−1∑
i=0

max

{∣∣∣∣1− (J g R )((g R )i (y ′))

(J g R )((g R )i (x ′))

∣∣∣∣ ,

∣∣∣∣1− (J g R )((g R )i (x ′))

(J g R )((g R )i (y ′))

∣∣∣∣} (32)

=
n−1∑
i=0

dβ,C

(
g R i

(x ′), g R i
(y ′)

)
(33)

= dβ,C (x, y)
n−1∑
i=0

βi (34)

≤ dβ,C (x, y)

1−β , (35)

showing Equation (24). For clarification, in Equation (29) we used Equation (26); in
Equation (30) we used the identity

∣∣log(z)
∣∣ = ∣∣(log(z−1))

∣∣ for z ∈ (0,∞); in Equation
(31) we used Equation (27); in Equation (32) we used | log(z)| ≤ max

{∣∣1− 1
z

∣∣ , |1− z|}
for z ∈ (0,∞); in Equation (33) we used Equation (28); in Equation (34) we used
Lemma 2.1.28; and finally Equation (35) was derived using the expression for a ge-
ometric series.

To show Equation (24) we now only need to apply Lemma 2.1.28 and note∣∣∣∣log

(
φn,A(x)

φn,A(y)

)∣∣∣∣≤ dβ,C (x, y)

1−β .
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To prove Equation (25) note that as dβ,C takes values in [0,C ], we have

log

(
φn,A(x)

φn,A(y)

)
≤

∣∣∣∣log

(
φn,A(x)

φn,A(y)

)∣∣∣∣≤C (1−β)−1

and

log

(
φn,A(y)

φn,A(x)

)
≤

∣∣∣∣log

(
φn,A(x)

φn,A(y)

)∣∣∣∣≤C (1−β)−1,

so that after exponentiating both equations and rearranging we obtain for all x, y ∈ Λ̇

(C ′)−1φn,A(y) ≤φn,A(x) ≤C ′φn,A(y), for C ′ = e
C

1−β .

Integrating both sides with respect to y on Λ̇ then shows

(C ′)−1µΛ(A) ≤φn,A(x) ≤C ′µΛ(A).

As x ∈ Λ̇was given arbitrarily, we have proven our claim.

Ancillary, we following result useful for finding bounds in Section 3.3.2.

Corollary 3.3.5. Let (Λ,FΛ,µΛ, g R ) be a tower base, then there exists some C ′ > 1 such
that, for all n ≥ 1, A ∈P n

Λ and almost every x ∈ A we have

1

C ′µΛ(A) ≤ 1

J (g R )n(x)
≤C ′µΛ(A). (36)

Proof. Let C ′ ∈R>1 be as in Lemma 3.3.4 and let n ∈Z≥1, A ∈P n
Λ . As seen in the proof

of Lemma 3.3.4 we have a Ȧ ∈FΛ such that µΛ(A \ Ȧ) = 0,

φn,A((g R )n(x ′)) = (J(g R )n(x))−1, for each x ′ ∈ Ȧ, (37)

and
(C ′)−1µΛ(A) ≤φn,A(x) ≤C ′µΛ(A), for each x ∈ (g R )n(Ȧ). (38)

Combining Equations (37) and (38) then yields Equation (36), proving our claim.

We are now ready to show the densities d(g Rn
)⋆µΛ

dµΛ
are in Lβ,L for some L ∈ R>1. A

statement similar to the Lemma below is made in [1, Lemma 3.9] - we provide differ-
ent bound however.

Conceptually we shall ‘sum’ the bounds obtained Lemma 3.3.4 over the principal
partition.

Lemma 3.3.6. Suppose (Λ,FΛ,µΛ, g R ) is a tower base. We have a M ∈ R>1 such that
for each n ≥ 0 we have,

d(g Rn
)⋆µΛ

dµΛ
∈ Lβ,C (Λ),

∣∣∣∣∣
∣∣∣∣∣d(g Rn

)⋆µΛ
dµΛ

∣∣∣∣∣
∣∣∣∣∣
β

≤ M and ess inf
x∈Λ

d(g Rn
)⋆µΛ

dµΛ
≥ 1

M
. (39)
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Proof. First note for n = 0 we have

d(g R n
)⋆µΛ

dµΛ
= dµΛ

dµΛ
≡ 1, µΛ-almost everywhere,

for which we immediately see the claims in Equation (39) hold for any M ∈R>1. Now
write for n ∈Z≥1 and A ∈P n

Λ the densities

φn,A := d(g Rn |A)⋆µΛ
dµΛ

, φn := d(g Rn
)⋆µΛ

dµΛ
.

We shall start by showing infn∈Z≥1 essinfx∈Λφn(x) is positive and that supn∈Z≥1
||φn ||∞

is bounded.
Let C ′ ∈ R>1 be the constant given by Lemma 3.3.4. For n ∈ Z≥1 and A ∈ P n

Λ let
Λn,A ⊆Λ be the set such that for each x, y ∈Λn,A,

1

C ′µΛ(A) ≤φn,A(x) ≤C ′µΛ(A), (40)

and ∣∣∣∣log
φn,A(y)

φn,A(x)

∣∣∣∣≤ dβ,C (x, y)

1−β . (41)

By Lemma 3.3.4 we knowΛn,A ∈FΛ and µΛ(Λ\Λn,A) = 0, so µΛ(Λ\(
⋂

A∈P n
Λ
Λn,A)) = 0.

More so, we have by Lemma 2.1.21 aΛ′ ∈FΛ such that µΛ(Λ\Λ′) = 0 and∑
A∈P n

Λ

φn,A(x) =φn(x) for each x ∈Λ′. (42)

We conclude that for Λ̇ = ⋂
A∈P n

Λ
Λn,A ∩Λ′ we have µΛ(Λ \ Λ̇) = 0 and by combining

Equation (40) with Equation (42) we see

1

C ′ ≤φn(x) ≤C ′, for every x ∈ Λ̇. (43)

As this holds for arbitrary n ∈Z≥1 and know C ′ > 1 we have indeed shown
infn∈Z≥1 essinfx∈Λφn(x) is positive and that supn∈Z≥1

||φn ||∞ is bounded. To show
there exists an M ∈R>1 such that

sup
n∈Z≥1

∣∣∣∣∣
∣∣∣∣∣d(g Rn

)⋆µΛ
dµΛ

∣∣∣∣∣
∣∣∣∣∣
β

≤ M

let n ∈Z≥1 be arbitrary and construct Λ̇ again as above. Let x, y ∈ Λ̇. Following from
Equation (41) we have that

φn,A(x) ≤ exp

(
dβ,C (x, y)

1−β
)
φn,A(y),
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and

φn,A(y) ≤ exp

(
dβ,C (x, y)

1−β
)
φn,A(x).

Summing over P n
Λ as before and rearranging then yields that∣∣∣∣log

φn(x)

φn(y)

∣∣∣∣≤ dβ,C (x, y)

1−β .

Furthermore, as by Equation (43) we have that φn (x)
φn (y) ∈

[
1

(C ′)2 , (C ′)2
]

and since |z −1| ≤
(C ′)2| log(z)| for z ∈

[
1

(C ′)2 , (C ′)2
]

we can derive

|φn(x)−φn(y)| ≤C ′
∣∣∣∣1− φn(x)

φn(y)

∣∣∣∣≤ (C ′)3
∣∣∣∣log

φn(x)

φn(y)

∣∣∣∣≤ (C ′)3

1−βdβ,C (x, y).

As x, y ∈ Λ̇ and n ∈ Z≥1 were given arbitrarily we have supn≥1 |φn |β ≤ (C ′)3

1−β . Fixing

M = (C ′)3

1−β +C ′ we see M > 1, which yields our claim.

Finally, we obtain our acip for tower bases.

Theorem 3.3.7. Suppose (Λ,FΛ,µΛ, g R ) is a tower base. Then there exists an acip νΛ
with µΛ≪ νΛ≪µΛ. Furthermore, the density dνΛ

dµΛ
satisfies

1

M
≤ dνΛ

dµΛ
≤ M , µΛ-almost surely, (44)

for some M ∈R>1.

Proof. Let n ∈Zn≥1 and define φi := d(g Ri
)⋆µΛ

dµΛ
for i ∈ {0, . . . ,n −1} write . Then define

ψn := 1
n

∑n−1
i=0 φi . The bounds onφi , i ∈ {0, ...,n−1}, from Lemma 3.3.6 are maintained

under convex combination of {φi }0≤i≤n−1 and hence hold for ψn as well. Thus, we
obtain

ψn ∈ Lβ,L(Λ),
∣∣∣∣ψn

∣∣∣∣
β ≤ M and essinfψn ≥ 1

M
(45)

for M ,L ∈ R>1 as in Lemma 3.3.6. As Equation (45) holds for all n ∈ Z≥1 we obtain
using Proposition 3.3.2 we obtain an accumulation point ψ ∈ L1(Λ), with ||ψ||β ≤ M
and ψ ≥ 1

M of the sequence (ψn)n≥1. As ||ψ||∞ ≤ ||ψ||β ≤ M we obtain by Lemma
2.1.14 an acip νΛ ≪ µΛ satisfying Equation (44). Consequently, we see that we have
for all A ∈FΛ that νΛ(A) ≥ 1

MµΛ(A) so we obtain µΛ≪ νΛ.
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3.3.2 The uniqueness of the acip

The general strategy for proving uniqueness of the acip found in Theorem 3.3.7, is to
prove it is ergodic and rely on Lemma 2.1.13. In doing so, we will prove our acip is
exact. It is a nice ancillary result but we will not revisit similar properties in Sections
4 - 5.6, which can be considered the bulk of this thesis.

Remark 3.3.8. The key point to exactness is ‘expanding’ behaviour. In constructing a
Bernoulli shift (Γ,FΓ,P,σ) based on an alphabet Γ= {0,1} with weights { 1

2 , 1
2 } we can

see a cylinder can never be an element of
⋂

n≥0σ
−nFΓ. This is most easily illustrated

by seeing
σ[10] = [1] but σ−1[1] = [10]⊔ [01].

That is, the expanding nature of shift forces that there is no set acting as the inverse
of [10]. In contrast, as rotations on the circle ([0,1),B[0,1),λ,σθ) are bi-measurable
we have

⋂
n≥0σ

−n
θ

B[0,1) =B[0,1).

The corollary below is largely inspired by [1, Corollary 3.6] where we have also
provided a lower bound we need later on.

Corollary 3.3.9. Let (Λ,FΛ,µΛ, g R ) be a tower base. Then there exists a C2 > 1 such
that for all n ≥ 1, A ∈P n

Λ and measurable sets A1, A2 ⊆ A, with µ(A2) > 0 we have,

1

C2

µΛ(A1)

µΛ(A2)
≤ µΛ(g Rn

(A1))

µΛ(g Rn (A2))
≤C2

µΛ(A1)

µΛ(A2)
. (46)

Proof. First let C ′ ∈R>0 be as given in Corollary 3.3.5. Let n ≥ 1, A ∈P n
Λ , and A1, A2 ∈

FA, be such that µ(A2) > 0. By Lemma 2.2.9 we know µΛ(g R n
(A2)) > 0.

Rearranging Equation (36) from Corollary 3.3.5 we obtain a C ′ > 1 such that for
almost every x ∈ A

1

C ′
1

µΛ(A)
≤ J(g R )n(x) ≤C ′ 1

µΛ(A)
. (47)

Integrating Equation (47) over A1 yields

1

C ′
µΛ(A1)

µΛ(A)
≤µΛ(g R n

(A1)) ≤C ′µΛ(A1)

µΛ(A)
, (48)

Integrating Equation (47) over A2 and taking the reciprocal of both sides yields

1

C ′
µΛ(A)

µΛ(A2)
≤µΛ(g R n

(A2))−1 ≤C ′ µΛ(A)

µΛ(A2)
. (49)

Multiplying Equations (48) and (49) then yields Equation (46) for C2 = (C ′)2.
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Without relying on invariance, we can show that
⋂

n≥0(g R )−nFΛ consists of
measure-zero and measure-one sets. The proof is largely inspired by [1, Theorem
3.13], where we have included the (necessary) lower bound in Equation (50). Intu-
itively the proof relies on the fact that any A ∈ P n

Λ will be blown up to Λ under n
iterations of g R . We shall make use of the bounds in Corollary 2.1.24 and Corollary
3.3.9 to extend this to more elements of FΛ.

Lemma 3.3.10. Suppose we have a tower base (Λ,FΛ,µΛ, g R ). We then have for all
A ∈⋂∞

n≥0(g R )−nFΛ that µΛ(A) = 0 or µΛ(A) = 1.

Proof. Fix A ∈ ⋂∞
n=0(g R )−nFΛ and suppose µ(A) > 0. Fix C2 > 1 as in Corollary 3.3.9.

By Corollary 2.1.24 we may for all ϵ ∈R>0 pick an n ∈Z≥1 and P ∈P n
Λ for which

µΛ(P \ A)

µΛ(P )
< ϵ

C 2
2

.

Define B = (g R n
)−1 A and note we have by Lemma 2.1.23 that (g R )n(P \ A) =Λ \ B so

that by Corollary 3.3.9 we obtain

µΛ(Λ\ B)

µΛ(Λ)
≤C2

µΛ(P \ A)

µΛ(P )
.

Now note by Lemma 2.1.23 we have for all P̃ ∈P n
Λ that g Rn

(P̃ \ A) =Λ\B . In applying
Corollary 3.3.9, we then see for each P̃ ∈P n

Λ

1

C2

µΛ(P̃ \ A)

µΛ(P̃ )
≤ µΛ(Λ\ B)

µΛ(Λ)
, (50)

from which follows
µΛ(P̃ \ A)

µΛ(P̃ )
≤C 2

2
µΛ(P \ A)

µΛ(P )
< ϵ.

Multiplying both sides by µΛ(P̃ ) and summing over P n
Λ then shows

µΛ(Λ\ A) = ∑
P̃∈P n

Λ

µΛ(P̃ \ A) < ϵ ∑
P̃∈P n

Λ

µΛ(P̃ ) = ϵ.

As ϵ> 0 was given arbitrarily we may hence conclude µΛ(Λ\ A) = 0 meaning
µΛ(A) = 1, which proves the statement.

Corollary 3.3.11. Suppose (Λ,FΛ,µΛ, g R ) is a tower base. The acip νΛ≪µΛ obtained
in Theorem 3.3.7 is exact and is the unique acip νΛ≪µΛ.
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Proof. Let νΛ≪µΛ be an acip given by Theorem 3.3.7. We have by Lemma 3.3.10 for
any A ∈⋂

n=0(g R )−nFΛ that µΛ(A) = 1 or µΛ(A) = 0. In the case of the former we have
as νΛ≪µΛ

µΛ(Λ\ A) = 0 ⇒ νΛ(Λ\ A) = 0 ⇒ νΛ(A) = 1,

and in case of the latter (also using νΛ≪µΛ)

µΛ(A) = 0 =⇒ νΛ(A) = 0,

so that
{νΛ(A) : A ∈ ⋂

n=0
(g R )−nFΛ} = {0,1}.

As we know νΛ is invariant under g R , we can conclude νA is exact. As we have µΛ≪
νΛ≪µΛ as well, it is the unique acip νΛ≪µΛ by Proposition 2.1.13.

3.4 The Tower Framework

For this section we remain having fixed the dynamical system(X ,F ,m, g ) and tower
base (Λ,F ,µΛ, g R ). As promised in Section 3.1, for the remaining sections 3.4-3.5 we
shall complete our exposition on Young’s theory by defining a tower and giving con-
ditions under which we can find an acip for our original system (X ,F ,m, g ) in Corol-
lary 3.5.6. Lemma 3.5.2 through Theorem 3.5.5 cover the ergodic properties of the
acip for a tower and are not necessary for understanding the theory in Sections 4 and
5. We have incorporated these results however, as the further ergodic properties of
the acip (e.g. the rates of mixing, see for instance [25] or [2]) are central to the theory
of Young Towers, and that important bounds necessary to prove this were not found
in pieces such as [25] and [24].

As suggested by the notion of a tower base, we shall now define a tower. We en-
courage the reader to take a brief look at Proposition 2.1.7 for some adopted measure-
theoretical conventions.

Conceptually, a tower is a tool to store points of Λ before mapping them back to
X . Having found an acip for (Λ,FΛ,µΛ, g R ) and assuming R ∈ L1(Λ), showing this
induces an acip on the tower is a small step. This acip then induces an acip on our
original system (X ,F ,m, g ).

Definition 3.4.1. We say

1. ∆ := {(x, l ) ∈Λ×Z≥0 : 0 ≤ l ≤ R(x)−1} is a tower;

2. ∆l = {x ∈Λ : R(x) > l } for l ∈Z≥1 is floor l of ∆;

3. ∆0 =Λ is the ground floor of ∆; and
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4. P∆ := {P × {l } ⊆Λ×Z≥0 : P ∈PΛ,R[P ] > l } is the principal partition of ∆.

If we endow Z≥0 with the power set 2Z≥0 as its σ-algebra and the counting mea-
sure N we can construct the σ-finite measure space (Λ×Z≥0,FΛ×Z≥0 ,µΛ × N ). In
writing

R>l := {x ∈Λ : R(x) > l }

we can see that
∆l = R>l and ∆= ⊔

l≥0
R>l × {l } ∈FΛ×Z≥0 , (51)

so that ∆ ∈ FΛ×Z≥0 . We can then define the restricted measure space (∆,F∆,µ∆).
Using this construction we can see that

G∆ := ⋃
l∈Z≥0

{A× {l } ⊆F∆ : A ⊆ R>l , A ∈FΛ}, (52)

is a set of generators for F∆. We shall fix (∆,F∆,µ∆) for the rest of the section, along-
side its naturally associated collection P∆. We get the following technicalities sorted.

Lemma 3.4.2. The following claims hold:

1. The collection P∆ consists of measurable sets and partitions ∆.

2. If R ∈ L1(Λ) we have ||R||1 =µ∆(∆).

Proof. First we check P∆ ⊆ F∆. For Item 1 note that for any P ∈ P∆ we have an
unique A ∈PΛ, l ∈Z≥0 such that A ⊆ R≥l so that A× {l } ⊆∆ and A× {l } ∈FΛ×2Z≥0 ⊆
FΛ×2Z≥0 and so P = A× {l } ∈F∆.

To show P∆ coves ∆, recall α :Λ→ PΛ from Definition 2.1.27, we similarly have
for any (x, l ) ∈∆ that x ∈α(x) ∈PΛ and x ∈ R>l so that (x, l ) ∈α(x)× {l } ∈P∆. Finally,
for P,P ′ ∈ P∆ we have A × {l } = P, A′× {l ′} = P ′ and so P ∩P ′ ̸= ; implies l = l ′ and so
A = A′ as PΛ is a partition. This implies P = P ′. We have shown P∆ covers ∆ and
consists of pairwise disjoint measurable sets, proving our claim.

For Item 2 we note

µ∆(∆) =
∞∑

l=0
µΛ(R>l )×N ({l })

=
∞∑

l=0
µΛ(R>l )

= ||R||1,

where we used a standard probabilistic equality (e.g. seen in [14, Lemma 4.4]) in the
last line. This proves the claim in Item 2.
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We now the define an operator on (∆,F∆,µ∆) called a tower map and show this
results in a dynamical system.

Definition 3.4.3. Given a tower ∆ and its associated measure space (∆,F∆,µ∆) we
define the tower map G :∆→∆ as

G(x, l ) =
{

(x, l +1), if l +1 < R(x)

(g R (x),0), otherwise,
(53)

Lemma 3.4.4. The tuple (∆,F∆,µ∆,G) is a dynamical system.

Proof. We need to show measurability and non-singularity.

Measurability Let l ∈Z≥0 and define

G∆ := ⋃
l∈Z≥0

{A× {l } ⊆F∆ : A ⊆ R>l , A ∈FΛ},

as in Equation (52). We shall show G−1 (G∆) ⊆ F∆ to use Lemma 2.1.4 and dis-
tinguish between the cases l > 0 and l = 0.

First for l > 0, consider an arbitrary A× {l } ∈G∆. Note

G−1(A× {l }) = {(x,k) ∈∆ : G(x,k) ∈ A× {l },k +1 < R(x)}

∪ {(x,k) ∈∆ : G(x,k) ∈ A× {l },k +1 = R(x)}

= {(x,k) ∈∆ : (x,k +1) ∈ A× {l },k +1 < R(x)}

∪ {(x,k) ∈∆ : (g R x,0) ∈ A× {l },k +1 = R(x)}

= {(x, l −1) ∈∆ : x ∈ A∩R>l }∪;
= (A∩R>l )× {l −1} using Equation (51)

= A× {l −1} as A ⊆ R>l

As A ⊆ R>l we see A ⊆ R>l−1 and so as A ∈FΛ we see A× {l −1} ∈F∆.

For arbitrary A× {0} ∈G∆ we see

G−1 (A× {0}) = ⊔
P∈PΛ,R|P≡l

((g R )−1(A)∩P )× {l } ∈F∆.

We have shown G−1 (G∆) ⊆F∆ proving G is measurable by Lemma 2.1.4.

Non-singularity Similarly, for B ∈F∆ with µ∆(B) = 0 we see µΛ(Bl ) = 0 for all l ∈Z≥0.
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In writing for P ∈PΛ, rP ∈Z≥1 for the integer satisfying R|P ≡ rP we see

µ∆(G−1(B0 × {0})) = ∑
P∈PΛ

µ∆((P ∩ (g R )−1(B0))× {rP −1})

= ∑
P∈PΛ

µΛ(P ∩ (g R )−1(B0))

≤ ∑
P∈PΛ

(g R )⋆µΛ(B0)

= 0, by non-singularity of µΛ. (54)

Moreover for l > 0,

µ∆(G−1(Bl × {l })) =µ∆(Bl × {l −1}) =µΛ(Bl ) = 0. (55)

Combining Equation (54) and (55) we see

G⋆µ∆(B) =
∞∑

l=0
G⋆µ∆(Bl × {l }) = 0,

proving non-singularity.

Having shown non-singularity and measurability of G we have shown (∆,F∆,µ∆,G)
is a dynamical system.

We refer to the dynamical system (∆,F∆,µ∆,G) as a tower. The following Corol-
lary simplifies questions on measurability greatly.

Corollary 3.4.5. Let (∆,F∆,µ∆,G) be a tower. Then the following holds.

1. The tower map G :∆→∆ is locally invertible;

2. For each k ∈Z≥0 and each A ∈F∆ we have that Gk (A) ∈F∆.

Proof. We prove P∆ consists of invertibility domains for∆. Note that by definition we
have for each P ∈ P∆ an A ∈ PΛ and l ∈ Z≥0 such that A × {l } = P and A ⊆ R>l . Note
that for z ∈Z the mapping cl ,z : {l } → {l + z}, l 7→ l + z is bi-measurable and Id : A → A
is bi-measurable as well. If A ⊆ R>l+1 we have

G|A×{l }(x, l ) = (x, l +1) = (Id×cl ,1)(x, l ),

which is bi-measurable by Lemma 4.3.18. If A ⊆ R−1(l +1) we have

G|A×{l }(x, l ) = (g R (x),0) = (g R |A ×cl ,−l )(x, l ),

which again by Lemma 4.3.18 is bi-measurable. We conclude that P∆ indeed is a
partition into invertibility domains and so G is locally invertible. Item 2 is direct con-
sequence of local invertibility.

In the next section we will prove existence and uniqueness of an acip for this sys-
tem.
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3.5 The Tower Acip

We can directly use the acip νΛ obtained in Theorem 3.3.7 to obtain an acip ν∆ for
(∆,F∆,µ∆,G) - assuming an integrable return time.

Theorem 3.5.1. Let (∆,F∆,µ∆,G) be the tower as fixed in Section 3.4 and assume we
have R ∈ L1(Λ). Then there exists an acip ν∆≪µ∆ and an M∆ ∈R>0 such that

1

M∆
≤ dν∆

dµ∆
≤ M∆, holds µ∆-almost everywhere. (56)

Proof. Let νΛ be the acip for (Λ.FΛ,µΛ, g R ) obtained in Theorem 3.3.7 and M ∈ R>1

the constant satisfying Equation (44). Define the measure ν′∆ on ∆ by

ν′∆(B) :=
∞∑

l=0
νΛ(Bl ) for B ∈F∆. (57)

Again, writing for P ∈ PΛ, rP ∈ Z≥1 for the integer satisfying R|P ≡ rP we have for
arbitrary B ∈F∆ as in the proof of Lemma 3.4.4,

ν′∆(G−1(B0 × {0})) =
∞∑

l=0
νΛ((G−1(B0 × {0}))l )

=
∞∑

l=0
νΛ

(
(

⊔
P∈PΛ

(P ∩ (g R )−1(B0))× {rP −1})l

)

=
∞∑

l=0
νΛ

( ⊔
P∈PΛ,rP−1=l

(P ∩ (g R )−1(B0))

)

= νΛ
( ⊔

P∈PΛ

P ∩ (g R )−1(B0)

)
= νΛ(B0)

= ν′∆(B0 × {0}), (58)

and for l ′ ∈Z≥1 we see

ν′∆(G−1(Bl ′ × {l ′})) = ν′∆(Bl ′ × {l ′−1})

=
∞∑

l=0
νΛ((Bl ′ × {l ′−1})l )

= νΛ(Bl ′)

=
∞∑

l=0
νΛ((Bl ′ × {l ′})l )

= ν′∆(Bl ′ × {l ′}). (59)
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Combining Equations (58) and (59) we see

ν∆(G−1B) = ν∆(G−1(B0×{0})+
∞∑

l=1
ν∆(G−1[Bl×{l }]) = ν∆(B0×{0})+∑

l≥1
ν∆(Bl×{l }) = ν∆(B),

proving G⋆ν∆ = ν∆. Furthermore, note that

ν′∆(∆) =
∞∑

l=0
νΛ(∆l ) =

∞∑
l=0

νΛ(R>l ) ≤ M
∞∑

l=0
µΛ(R>l ) ≤ M ||R||1 <∞,

so ν′∆ is a finite measure. Then define the G-invariant probability measure ν∆ =
(ν′∆(∆))−1 ·ν′∆. Note that as R(Λ) ⊆Z≥1 we have ||R||1 ≥ 1.

Lastly, note that for any B ∈F∆ we have

ν′∆(B) =
∞∑

l=0
νΛ(Bl ) ≤ M

∞∑
l=0

µΛ(Bl ) = Mµ∆(B),

and similarly

ν′∆(B) =
∞∑

l=0
νΛ(Bl ) ≥ 1

M

∞∑
l=0

µΛ(Bl ) = 1

M
µ∆(B),

which implies ν′∆(B) ∈ [ 1
Mµ∆(B), Mµ∆(B)

]
, so that we have for

M∆ := max

{
ν′∆(∆) ·M ,

M

ν′∆(∆)

}
, that ν∆(B) ∈

[
1

M∆
µ∆(B), M∆µ∆(B)

]
.

Consequently we have µ∆≪ ν∆≪µ∆, with

1

M∆
≤ dν∆

dµ∆
≤ M∆, µ∆-almost surely,

proving our claims.

Similar to the acip for the tower base, we shall now prove uniqueness of the acip
obtained in Theorem 3.5.1. We again opt to use Lemma 2.1.13 and for that require
ergodicity. In Lemma 3.3.10 we showed this for (Λ,FΛ,µΛ, g R ) by proving exactness
and did so by showing arbitrary small non-trivial sets can saturate the tower base
under enough iterations of g R . There is one caveat however for applying this method
to (∆,F∆,µ∆,G). If the return times have a greatest common divisor greater than 1,
periodic behaviour can occur leading to multiple distinct acips with disjoint support.
More precisely in Lemma 3.5.3, we shall rely on the following lemma. The writer was
unable to find an explicit reference and has hence proved it - note it is more algebraic
in nature than other claims in this thesis.
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Lemma 3.5.2. Suppose we have a countable set N ⊆ Z≥1 such that gcd(N ) = 1. Then
there exists n,d ∈Z≥1 and a finite set {a1, . . . , an} ⊆ N such that

Z≥d ⊆ {z ∈Z≥1 : z =
n∑

i=1
ai xi , for xi ≥ 0}.

Proof. As gcd(N ) = 1 we can find finitely many integers {a1, . . . , an} ⊆ N for some n ≥ 1
such that

∑n
i=1 ai xi = 1 for some xi ∈ Z, i ∈ {1, . . . ,n}. Write K = {i ∈ {1, . . . ,n} : xi < 0}

and define

C := {z ∈Z≥1 : z =
n∑

i=1
ai x ′

i , for x ′
i ≥ 0}.

We seek a d ∈Z≥1 such that Z≥d ⊆C . We claim for

d = 1− ∑
k∈K

ak xk −
∑

k∈K
(
∑
i∈K

ai )ak xk

that we we have Z≥d ⊆C .
First note that for l ∈ {0, . . . ,

∑
k∈K ak } we have

d + l = 1− ∑
k∈K

ak xk −
∑

k∈K
(
∑
i∈K

ai )ak xk + l

= ∑
k∈K c

ak xk −
∑

k∈K
(
∑
i∈K

ai )ak xk + l
n∑

i=1
ai xi

= ∑
k∈K

ak

(
−l + ∑

i∈K
ai

)
(−xk )+ ∑

k∈K c

ak (l +1)xk

(60)

so that indeed d + l ∈C , for each l ∈ {0, . . . ,
∑

k∈K ak }. Moreover, note that d ∈C and so
(d +n

∑
k∈K ak )n≥0 ⊆C . Now as C is closed under addition we can see

Z≥d ⊆ {d + l +n
∑

k∈K
ak }n≥0,l∈{0,···∑k∈K ak } ⊆C ,

proving our claim.

We now move on to proving our acip is unique. A slightly different version of
the following Lemma is made as a claim by Young in her [25] paper in the proof of
Lemma 5. The claim is made without proof however, which is why we have proven
the statement below. In [1] a different approach can be found.

Our proof below goes in two steps: first we derive a bound based on elements di-
rectly from our principal partition and thereafter approximate this with a more gen-
eral set. The statement relies on our ability to saturate ∆ with an arbitrarily small set
in finite time. In the proof we shall rely on the forward measurability of G :∆→∆ as
seen in Corollary 3.4.5 implicitly.
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Lemma 3.5.3. Let (∆,F∆,µ∆,G) be a tower with return time R ∈ L1(Λ) and
gcd(R(Λ)) = 1. Then for all ϵ ∈ R>0 there exists a t = t (ϵ) ∈ Z≥0 and δ = δ(t ,ϵ) ∈ R>0

such that all B ∈F∆ with µΛ(∆0 \ B0) < δ satisfy µ∆(∆\G t (B)) < ϵ.

Proof. Let ϵ ∈ R>0 be arbitrary. As R ∈ L1(Λ) we have µ∆(∆) = ||R||1 by Lemma 3.5.2
and so we may find an n ∈Z≥1 such that

µ∆

(
∆\

n−1⋃
i=0

∆i × {i }

)
= ||R||1 −

n−1∑
i=0

µΛ(R>n) < 1

2
ϵ.

We shall find a t = t (ϵ) and δ= δ(t ,ϵ) ∈R>0 such that for any B ∈F∆ with µΛ(∆0 \
B0) < δ we have

µ∆

(
n−1⋃
k=0

∆k × {k} \G t (B0 × {0})

)
< 1

2
ϵ.

(Claim) There exists a d ∈Z≥1 and Pi ∈∨d+i
j=0 G− j P∆ for i ∈ {0, . . . ,n −1} such that

µ∆

(
∆\

n−1⋃
i=0

Gn−1+d (Pi )

)
< 1

2
ϵ.

Firstly, as gcd(R(Λ)) = 1, we have a finite set L and a collection ∆L
0 := {P ′

l }l∈L ∈
PΛ such that gcd{R(P ′

l ) : l ∈L } = 1. For l ∈L write rP ′
l
∈Z≥1 for the integer satisfying

R|P ′
l
≡ rP ′

l
. By Lemma 3.5.2 we can then find d ∈ Z≥1 such that for all i ∈ {0, . . . ,n −1}

we have positive integers (al ,i )l∈L ⊆Z≥1 with d + i =∑
l∈L al ,i ·RP ′

l
.

In particular, this means for each i ∈ {0, . . . ,n − 1} there is an li ∈ L and Pi ∈∨d+i
j=0 G− j P∆, Pi ⊆ P ′

li
×{0} such that Gd+i Pi =∆0×{0}. Now as, G−l (∆l×{l }) =∆l×{0} ⊆

∆0 × {0} we have
n−1⋃
i=0

∆i × {i } ⊆
n−1⋃
i=0

Gn−1−i (∆0 × {0}).

Thus we can see

n−1⋃
i=0

∆i × {i } ⊆
n−1⋃
i=0

Gn−1−i (∆0 × {0}) =
n−1⋃
i=0

(Gn−1−i ◦Gd+i )(Pi ) ⊆
n−1⋃
i=0

Gn−1+d (Pi ),

so that

µ∆

(
∆\

n−1⋃
i=0

Gn−1+d (Pi )

)
≤µ∆(∆\

n−1⋃
i=0

∆i × {i }) < 1

2
ϵ,

proving our claim.
To proceed with the second part of the proof define Pi ,0 ∈FΛ for the 0-section of

Pi , that is Pi = Pi ,0 × {0}, we note

Pi ,0 ∈
d+i⋃
j=0

g R− j
PΛ, for i ∈ {0, . . . ,n −1}. (61)
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Then define
δ2 := min

i∈{0,...,n−1}
µΛ(Pi ,0) and δ := ϵ

2 ·C2 ·n ·δ2
,

where C2 ∈R>1 is as in Lemma 3.3.9.

(Claim) For all B ∈F∆ with µΛ(∆0 \ B0) < δ we have

µΛ(∆0 \ g d+i (B0 ∩Pi ,0)) ≤C2
δ

δ2
, for i ∈ {0, . . . ,n −1}.

Let B ∈F∆. First note

δ>µΛ(∆0 \ B0) ≥µΛ(∪n−1
i=0 Pi ,0 \ B0) ≥ max

i∈{0,...,n−1}
µΛ(Pi ,0 \ B0). (62)

Now by Equation (61) we may for each i ∈ {0, . . . ,n − 1} find a ni ∈ Z≥1 such that
g d+i [Pi ,0] = g Rni [Pi ,0] = ∆0, consequently, we may apply Lemma 3.3.9 and Lemma
3.2.5 and find

µΛ(g R ni (Pi ,0 \ B0))

µΛ(g R ni (Pi ,0))
≤C2

µΛ(Pi ,0 \ B0)

µΛ(Pi ,0)
. (63)

As by construction g d+i (Pi ,0) = g Rni (Pi ,0) =∆0, and as g d+i |Pi ,0 : Pi ,0 →∆0 is bijective,
we can see

∆0 \ g d+i (B0 ∩Pi ,0) = g d+i (Pi ,0 \ (B0 ∩Pi ,0)) = g Rni (Pi ,0 \ B0 ∩Pi ,0) = g Rni (Pi ,0 \ B0),

so that µΛ(∆0 \ (g d+i (B0 ∩Pi ,0)) = µΛ(g Rni (Pi ,0 \ B0)). Combining this with Equation
(63) shows

µΛ(∆0 \ g d+i (B0 ∩Pi ,0))

µΛ(∆0)
≤C2

µΛ(Pi ,0 \ B0)

µΛ(Pi ,0)
,

which implies

µΛ(∆0 \ g d+i (B0 ∩Pi ,0)) ≤C2
δ

δ2
, for i ∈ {0, . . . ,n −1}, (64)

proving our second claim.
Proceeding, we see for i ∈ {0, . . . ,n − 1} that using the general set identity f (A) \

f (B) ⊆ f (A \ B) that

∆n−i−1 × {n − i −1} \ (Gd+n−1(B0 × {0})) ⊆Gn−i−1(∆n−i−1 × {0} \Gd+i (B0 × {0}))

⊆Gn−i−1(∆0 × {0} \Gd+i (B0 × {0})).
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Using this bound we then arrive at

µ∆

(
∆n−i−1 × {n − i −1} \ Gd+n−1(B0 × {0})

)
≤µ∆

(
∆0 × {0} \ Gd+i (B0 × {0})

)
≤µ∆

(
∆0 × {0} \ Gd+i ((B0 ∩Pi ,0)× {0})

)
=µΛ(∆0 \ g d+i (B0 ∩Pi ,0))

≤C2
δ

δ2
, (65)

where in Line (65) we used Inequality (64). Then finally (please bear with us), we note

µ∆

((
n−1⋃
i=0

∆n−i−1 × {n − i −1}

)
\ Gd+n−1(B0 × {0})

)
=

n−1∑
i=0

µ∆

(
∆n−i−1 × {n − i −1} \Gd+n−1(B0 × {0})

)
≤C2

n ·δ
δ2

< 1

2
ϵ,

which implies

µ∆(∆\Gd+n−1(B0×{0})) ≤µ∆
(
∆\

n−1⋃
i=1

∆i × {i }

)
+µ∆

(
n−1⋃
i=1

∆i × {i } \Gd+n−1(B0 × {0})

)
< ϵ.

Finally, in noting

µ∆(∆\Gd+n−1B) ≤µ∆(∆\Gd+n−1(B0 × {0})),

we can see the claim follows (for t = d +n −1).

Finally, we need the following result to prove exactness of G .

Lemma 3.5.4. Let G :∆→∆ be a tower map with R ∈ L1(Λ). If gcd(R(Λ)) = 1, then for
all A ∈F∆ withµ∆(A) > 0 we have for each ϵ> 0 an n ∈Z≥1 such thatµ∆(∆\Gn(A)) < ϵ.

Proof. First let A ∈ F∆ with µ∆(A) > 0 and let ϵ > 0 be given arbitrarily. Now by
Lemma 3.5.3 there exists a δ ∈R>0 and t ∈Z≥0 be such that for all B ∈F∆ with

µΛ(∆0 \ B0) < δ we have µ∆(∆\G t (B)) < ϵ.

If we can find an m(A,δ) ∈Z≥1 such thatµΛ(∆0\Gm(A)0) < δ thenµ∆(∆\(Gm+t (A))) <
ϵ, proving our claim for n = m + t .

To prove existence of such an m ∈ Z≥1, we start by pointing out that as a con-
sequence of pbn-singularity we can pick an l ∈ Z≥0 such that µΛ((G l A)0) > 0. Fix
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δ2 = δ
C2

where C2 is as given by Corollary 3.3.9. Then by Corollary 2.1.24 there exists

an q ∈Z≥0 and P ∈P
q
Λ be such that

µΛ(P \ (G l A)0)

µΛ(P )
< δ2.

Using Corollary 3.3.9 we then have

µΛ(g Rq
(P \ ((G l A)0))

µΛ(g Rq (P ))
≤C2

µΛ(P \ (G l A)0)

µΛ(P )
.

In noting g Rq
(P ) =Λwe see µΛ(g Rq

(P )) = 1 and

Λ\ g Rq
((G l A)0) ⊆ g Rq

(P \ ((G l A)0).

Combining all the above, we see

µΛ(Λ\ g Rq
((G l A)0)) ≤µΛ(g Rq

(P \ ((G l A)0))

≤C2
µΛ(P \ (G l A)0)

µΛ(P )

<C2δ2

= δ.

Upon fixing R̃ ∈ Z≥1 to be the (smallest) integer satisfying g R̃ (P ) = ∆0 we can see (as
Λ=∆0) that

µΛ(∆0 \ (Gm A)0) < δ, for m = R̃ + l ,

so that indeed µ∆(∆\ (Gn(A))) < ϵ for n = m + t .

Theorem 3.5.5. Let (∆,F∆,µ∆,G) be a tower with gcd(Λ) = 1 and R ∈ L1(Λ), the acip
ν∆≪µ∆ obtained in Theorem 3.5.1 is exact and unique.

Proof. We shall first prove that for each A ∈ ⋂∞
n=0 G−nF∆, with ν∆(A) > 0 we have

ν∆(A) = 1. First, note that by Lemma 3.5.4 we have for all ϵ ∈R>0 an n ∈Z≥1 such that
µ∆(∆ \ Gn(A)) < ϵ. Continuing, by Theorem 3.5.1 there exists a M∆ ∈ R>1 such that
µ∆(A) ≥ 1

M∆
ν∆(A) > 0 so that we may see

ϵ>µ∆(∆\Gn(A)) ≥ 1

M∆
ν∆(∆\Gn(A)),

which implies
ν∆(Gn(A)) > ν∆(∆)−M∆ϵ.
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Consequently, as A ∈G−nF∆ there exists A′ ∈F∆ such that A =G−n A′. Hence

ν∆(A) = ν∆(A′) = ν∆(Gn(A)) > ν∆(∆)−M∆ϵ. (66)

As M∆ ∈ R>0 is fixed and ϵ > 0 was chosen arbitrarily, we may conclude ν∆(A) =
ν∆(∆) = 1.

Sinceν∆ is invariant under G as well, we conclude thatν∆ is exact. Using Equation
(56) with

0 < 1

M∆
µ∆(∆) < ν∆(∆) < M∆µ∆(∆),

we see it is also the unique ergodic acip ν∆ ≪ µ∆ with ν∆(∆) > 0 for (∆,F∆,µ∆,G) by
Proposition 2.1.13.

To conclude the section, we end it with a small corollary to show how the results
on the tower can be expanded to the rest of the system. Note that relevance of the
resulting measure within X depends on the size of Λ. The idea stems from Lemma
4.1 in [13].

Corollary 3.5.6. Suppose the tower (∆,F∆,µ∆,G) fixed in Section 3.4 satisfies R ∈ L1(Λ)
and gcd(R(Λ)) = 1. Then we can find an exact acip for its base dynamics (X ,F ,m, g ).

Proof. Write ν∆ for the exact acip found in Theorem 3.5.5. In defining

π :∆→ X (z, l ) 7→ g l (z), (67)

we note we have for (z, l ) ∈∆, R(z) > l +1,

(π◦G)(z, l ) =π(z, l +1) = g l+1(z) = (g ◦π)(z, l )

and if (z, l ) ∈∆,R(z) = l +1,

(π◦G)(z, l ) =π(g l+1(z),0) = g l+1(z) = (g ◦π)(z, l )

holds, showingπ◦G = g ◦π. In noting that for A ∈FX we haveπ−1(A) =⊔
l≥0(g−l (A)∩

Λ)× {l }, we can see that π is F∆-measurable. We define mg := π⋆ν∆ and show this is
a acip.

To show mg ≪ m, we assume m(A) = 0 and see

mg (A) = ν∆(π−1(A)) = ∑
l≥0

ν∆((g−l (A)∩Λ)× {l })

≤ M∆

∑
l≥0

µ∆((g−l (A)∩Λ)× {l })

= M∆

∑
l≥0

µΛ(g−l (A)∩Λ)

= M∆

∑
l≥0

m(Λ) ·m(g−l (A)∩Λ)

≤ M∆m(Λ)
∑
l≥0

(g l )⋆m(A)
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so that by non-singularity of g we see mg ≪ m. Finally, we see

g⋆mg = g⋆(π⋆ν∆) =π⋆(G⋆ν∆) =π⋆ν∆ = mg ,

and for K ∈⋂
n≥0 g−nFX we see

π−1K ∈π−1
[ ⋂

n≥0
g−nFX

]
= ⋂

n≥0
G−n[π−1FX ] (68)

⊆ ⋂
n≥0

G−nF∆, (69)

where in Equation (68) we usedπ◦G = g◦π, in Equation (69) we used measurability of
π. Using the exactness of ν found in Theorem 3.5.5 we can claim mg (K ) = ν∆(π−1K ) ∈
{0,∞}, proving exactness of mg .
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3.6 Two Examples

In this subsection we give two examples of dynamical systems where Young Towers
can be used. The theory thus far has already been used in many different contexts
see for instance [13] and [3]. It is for the reasons that

1. Young Tower Theory can seem ‘inaccessible’ by its many conditions and struc-
tures involved as seen in Sections 3.2 and 3.4;

2. Young Tower Theory is still undergoing development in various (stochastic)
generalisations such as [2] and [7]; and

3. The literature seems to lack easy paradigm examples to test developed theory
against;

that the author feels that the literature may be aided by giving simple paradigm ex-
amples already describable by existing theory. Finally, we shall revisit these Examples
in a new context in Section 5.6. In this section, after introducing some standard the-
ory and terminology, we shall use Young Towers to construct an exact acip for the
doubling map in Section 3.6.1 and in Section 3.6.2 we shall construct an exact acip
for the so-called stalling system (defined in Equation (74)). The stalling system will
be our the occurrence of a random dynamical system. We remind the reader of the
adopted conventions on the Bernoulli shift in Examples 2.1.3 and 2.1.26 and of the
definition of the doubling map in Examples 2.1.3.

3.6.1 The Doubling Map

The following two elementary lemmas allow us to study the doubling map through
the Bernoulli shift. The results are by no means new and are used throughout ergodic
theory but the author was unable to find a source with a full proof and believed it
to be instructive to provide one. As it is rather lengthy, the proof can be found in
Appendix A.2. The results essentially state we can find binary number expansions
for every real in [0,1), that these are unique up to a measure zero set and that binary
shifting behaves similarly as multiplication by a factor 2.

Lemma 3.6.1 (A.2.2). Let

X := {
(xn)n≥0 ∈ {0,1}Z≥0 : for all i ∈Z≥0 there is a j ≥ i such that x j = 0

}
,

π : X → [0,1)

(xn)n≥0 7→
∞∑

n=0
xn2−n−1
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and

φ : [0,1) → X

x 7→
(

n 7→
{

0, if 2n x −⌊2n x⌋ < 1
2

1, if 2n x −⌊2n x⌋ ≥ 1
2

)
.

Then φ and π are well-defined on their respective domains and we have

φ◦π= IdX π◦φ= Id[0,1).

Recall the definition of the Doubling map ([0,1),B[0,1),λ,D) from Example 2.1.3.

Lemma 3.6.2 (A.2.4). Let ([0,1),B[0,1),λ,D) be the doubling map and
({0,1}Z≥0 ,F{0,1}Z≥0 ,P,σ) be the Bernoulli shift with

P({x ∈ {0,1}Z≥0 : x0 = 1}) =P({x ∈ {0,1}Z≥0 : x0 = 0}) = 1

2
.

Then the mapping π from Lemma 3.6.1 is an ergodic isomorphism between

([0,1),B[0,1),λ,D) and ({0,1}Z≥0 ,F{0,1}Z≥0 ,P,σ).

We shall now construct a tower on the Bernoulli shift ({0,1}Z≥0 ,F{0,1}Z≥0 ,P,σ) with
P as seen in Lemma 3.6.2, and fix this system for the rest of this section.

For this system, the pick for an induced domain is not unique: rather any cylinder
set can be used to construct such a collection. In particular, the easiest choice would
be to take the trivial ‘cylinder’ {0,1}Z≥0 . For sake of future study (and to adopt literary
convention e.g. [13] and [3]) our induced domain shall be a subset of the cylinder

[10] = {(γn)n≥0 ∈ {0,1}Z≥0 : γ0 = 1,γ1 = 0} ∈F{0,1}Z≥0

of full measure. Specifically we restrict this cylinder to the sequences that are not
eventually constant to make sure the return time takes finite values1.

Lemma 3.6.3. In fixing the set

Y := {
x ∈ {0,1}Z≥0 : for all i ∈Z≥0 there is a j ∈Z≥1 such that xi ̸= x j

}
, (70)

we have Y ∈F{0,1}Z≥0 , P(Y ) = 1, σ(Y ) = Y and the return time

R : Y ∩ [10] →Z≥1

x 7→ inf
{
n ∈Z≥1 :σn(x) ∈ Y ∩ [10]

}
,

exists on Y ∩ [10] and satisfies

R(x) = inf{n ∈Z≥2 : xn = 1, xn+1 = 0}. (71)
1For a systematic approach in finding suitable induced domains in various non-uniformly expand-

ing systems see [25, Page 29]

55



Proof. First we show Y is a measurable set. To do so, note that

Y =
∞⋂

i=1

{
x ∈ {0,1}Z≥0 : there exists a j > i , xi ̸= x j

}
=

∞⋂
i=1

∞⋃
j=i+1

{
x ∈ {0,1}Z≥0 : xi ̸= x j

}
=

∞⋂
i=1

∞⋃
j=i+1

{
x ∈ {0,1}Z≥0 : xi = 1, x j = 0

}∪{
x ∈ {0,1}Z≥0 : xi = 0, x j = 1

}
∈F{0,1}Z≥0 .

Looking at its complement, we see

Y c :=
∞⋃

i=0

(
{x ∈ {0,1}Z≥0 : x j = 1, for all j ≥ i }∪ {x ∈ {0,1}Z≥0 : x j = 0, for all j ≥ i }

)
is the countable union of measure-zero sets, hence P(Y ) = 1. Finally note that every
sequence is eventually constant if and only if it is eventually constant considered
starting the first (or any) index, which implies σ(Y ) = Y .

To show Equation (71) holds, note that for x ∈ Y we have x ∈ [10] if and only if
x0 = 1, x1 = 0, so that

R(x) ≥ inf{n ∈Z≥2 : xn = 1, xn+1 = 0},

moreover we see for such x ∈ [10]∩Y that x ∈ [1] and σ(x) ∈ [0], so σ(x) ∉ [10]. Hence

R(x) = inf{n ∈Z≥2 : xn = 1, xn+1 = 0}.

Lastly, as x ∈ Y we have R(x) <∞ proving the statement.

We shall now fixΛ := [10]∩Y , and define the measure space (Λ,FΛ,µΛ) as the re-
striction of ({0,1}Z≥0 ,F{0,1}Z≥0 ,4·P) toΛ. The factor 4 is necessary to ensure (Λ,FΛ,µΛ)
is a probability space, as P(Λ) = 1

4 .

Remark 3.6.4. Technically, Λ as a subset of Y does not contain any cylinders of
{0,1}Z≥0 but whenever we write [a0a1...ak−1] ⊆ Y for some cylinder [a0a1...ak−1] ⊆
{0,1}Z≥0 , we actually mean [a0a1...ak−1]∩Y . As Y is closed under σ this slight abuse
of notation causes no issues: Lemma 4.3.17 applies to these ‘cylinders’ as well for in-
stance. We shall do the same for [a0a1...ak−1] ⊆Λ, that is, if [a0a1...ak−1] ⊆Λ then we
mean the resctricted cylinder [a0a1...ak−1]∩Λ.

We remind the reader the return time is measurable and so by Lemma 3.2.2, we
can define the dynamical system (Λ,FΛ,µΛ,σR ). We need to fix a principal partition
to prove it is a tower base.
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Lemma 3.6.5. Consider the system (Λ,FΛ,µΛ,σR ) as above. Define for each l ∈ Z≥2

the collections Il ⊆ 2Λ as given by

I2 := {[1010]}, I3 := {[10110], [10010]}, and for l ≥ 3

Il :=
{

[10a10] ⊆Λ : a ∈ {0,1}l−2, ai ai+1 ̸= 10, i ∈ {0, ..., l −3}
}

. (72)

Then the collection PΛ := ⊔
l∈Z≥2 Il is a principal partition in the sense of Definition

3.2.3 for (Λ,FΛ,µΛ,σR ). Moreover, for l ∈Z≥2 and Il ∈Il we have R|Il ≡ l .

Proof. Let I ∈PΛ be given and let l ∈Z≥2 be such that I ∈Il . Note that I is a cylinder
of depth l + 2 so that by Lemma 4.3.17 we know that σl : Il → Λ is bi-measurable.
Furthermore by Lemma 3.6.3 we see that R|Il ≡ l . To show PΛ partitions Λ, note as
x ∈ Λ we know (xn)n≥0 is not eventually constant and x ∈ [10]. We can then see we
have either x ∈ [1010] or there must exist a smallest l ≥ 3 and an a ∈ {0,1}l−2 with
ai ai+1 ̸= 10 for i ∈ {0, ..., l −3} such that x ∈ [10a10]. We conclude PΛ coversΛ.

Finally, for I , J ∈ PΛ of depth l ,m ∈ Z≥4, we have I ∩ J ̸= ; only if the cylinders
consist of sequences that correspond on the first min(l ,m) terms, so that either I ⊆ J
or J ⊆ I . Assuming I ⊆ J without loss of generality implies that l ≥ m. To show why
l = m must hold, write I = [10a10] and J = [10b10] for a ∈ {0,1}l−4,b ∈ {0,1}m−4 so that
we have [10a10] ⊆ [10b10]. Now if l > m we see this implies that [a] ⊆ [b10] which is
a contradiction as I ∈Il . Hence we see that PΛ indeed consists of disjoint elements.

Looking at the n’th refined partition P n
Λ as seen in Definition 2.1.22, we can in-

ductively show every Ī n ∈P n
Λ has some a1, ..., an ∈⋃∞

k=0{0,1}k such that

Ī n = [10a110a2...10an10].

Using the metric as defined in Equation (8) we have supx,y∈Ī n d{0,1}Z≥0 (x, y) ≤ 2−n for

any Ī n ∈P n
∆0

so by Lemma 2.1.24 we have that PΛ is generating and separating as in
Definition 3.2.3. We conclude PΛ is indeed a principal partition.

Lemma 3.6.6. The dynamical system (Λ,FΛ,µΛ,σR ) with PΛ as in Lemma 3.6.5 is a
tower base. Moreover we have R ∈ L1(Λ) and gcd(R(Λ)) = 1 and there exists an exact
acip ν≪P for ({0,1}Z≥0 ,F{0,1}Z≥0 ,P,σ)

Proof. In order for (Λ,FΛ,µΛ,σR ) to be a tower base it remains to prove (Λ,FΛ,µΛ,σR )
satisfies bounded distortion according to Definition 3.2.6. By Lemma 4.3.17 we can
see, that given some P ∈PΛ the Jacobian satisfies J(σR )|P ≡µΛ(P ) so we have

for all x, y ∈ P,

∣∣∣∣ J (σR |P )(x)

J (σR |P )(y)
−1

∣∣∣∣= 0.

So (Λ,FΛ,µΛ,σR ) is then a tower base and we may construct a tower (∆,F∆,µ∆,G) as
in Definition 3.4.1.
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To show the integrability of the return time R, simply note that for any l ≥ 2, we
have #Il = l −1 (see Equation (72) for the definition). For each Il ∈Il we then have,
as they are cylinders of depth l +2, that µΛ(Il ) = 4 ·2−l−2 and RIl ≡ l by Lemma 3.6.5.
Consequently, we see

||R ||1 =
∞∑

l=2

∑
Il∈Il

l ·4 ·P(Il )

= 4 ·
∞∑

l=2
(l −1) · l ·2−l−2

= 4,

so that R ∈ L1(Λ). Finally we have [1010], [10110] ∈PΛ and R|[1010] ≡ 2, R|[10110] = 3 so
clearly we have gcd(R(Λ)) = 1.

By Theorem 3.5.1 we then obtain an exact acip ν∆ for (∆,F∆,µ∆,G) with a uni-
formly bounded density dν∆

dµ∆
such that 1

C ≤ dν∆
dµ∆

≤ C for some C ∈ R>1. By Corollary

3.3.11 we then obtain an exact acip for ({0,1}Z≥0 ,F{0,1}Z≥0 ,P,σ). As this system is er-
godically equivalent with ([0,1),B[0,1),λ,D) we know the latter has an exact acip
with a uniformly bounded density as well by Corollary 2.1.19.

3.6.2 Annealed Stalling System

We shall now showcase how Young Tower Theory can be applied to random dynami-
cal systems. The approach in this example is called annealed in the literature, see for
instance [3] and [13]. The annealed approach is to incorporate the random dynam-
ics into the Young tower. When having a mixing base dynamic this can work rather
well - the base dynamic is well-behaved to the extent that is does not interfere with
the construction of the Young tower. This method typically fails when considering
systems with a non-mixing random dynamic such as the (irrational) rotation. De-
veloping theory to analyse these systems will be done in Sections 4 and 5. The main
purpose of this section is to provide a concrete example of the annealed approach to
compare with the in Section 5.6 which follows the quenched approach.

To keep the example as simple as possible we build upon our previous example
in Section 3.6.1. We shall refer to this system as the (annealed) stalling system.

Define on the standard Borel space ([0,1),B[0,1),λ) with Lebesgue measure two
mappings

fg : [0,1) → [0,1), fs : [0,1) → [0,1) (73)

x 7→ 2x mod 1, x 7→
{

x, x ∈ [0, 1
2 )∪ [ 3

4 ,1)

2x −1, x ∈ ( 1
2 , 3

4 )
,
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where we refer to fg as a ‘go’ map and fs as a ‘stall’ map. We shall assume non-
singularity of fg and fs without proof and define the (natural) dynamical systems
([0,1),B[0,1),λ, fg ) and ([0,1),B[0,1),λ, fs).

To construct a random dynamical system, we consider the Bernoulli shift
(Ω,FΩ,P,σ) based on an alphabet Σ = {s, g } with weights { 1

2 , 1
2 } respectively, so that

Ω := {s, g }Z≥0 . Now we construct the tuple

(Ω× [0,1),FΩ×[0,1)],P×λ,S), S(ω, x) = (σω, fω0 (x)), (74)

where we refer to S as the skew product. To prove the System (74) is a dynamical sys-
tem we shall make use of the following lemma. In Section 4.2 we shall see a stronger
version with a proof.

Lemma 3.6.7. Let (Ω,FΩ,P,σ) be a dynamical system with σ :Ω→Ω bi-measurable
and P(Ω) = 1 and let (X ,FX ,µ) be a σ-finite measure space. Suppose that we have a
measurable mapping

f :Ω×X → X

(ω, x) 7→ fω(x)

with ( fω)⋆µ≪µ for ω ∈Ω and then define (Ω×X ,FΩ×X ,P×µ,S) with

S :Ω×X →Ω×X

(ω, x) 7→ (
σω, fω(x)

)
.

Then the mapping S is measurable and non-singular and hence (Ω×X ,FΩ×X ,P×µ,S)
is a dynamical system.

We introduce some terminology for the objects in Lemma 3.6.7. We shall define
this in greater generality in Definition 4.2.3.

Definition 3.6.8. We call systems (Ω× X ,FΩ×X ,P×µ,S) as in Lemma 3.6.7 random
dynamical systems. More so, we call the mapping S :Ω× X →Ω× X a skew product,
the family (X ,F ,µ, fω)ω∈Ω the base dynamic and the dynamical system (Ω,FΩ,P,σ)
the random dynamic.

Applying Lemma 3.6.7, we see the following.

Lemma 3.6.9. The system (Ω×[0,1),FΩ×[0,1),P×λ,S) in Equation (74) is a dynamical
system.

Proof. In order to apply Lemma 3.6.7, we first need to show the mapping f : (ω, x) 7→
fω0 (x) is measurable and non-singular, so let A ⊆ [0,1) be some measurable set. Then
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we see f −1(A) = ([g ]× f −1
g (A))∪ ([s]× f −1

s (A)) ∈FΩ×{0,1}Z≥0 . In assuming λ(A) = 0 we
see similarly,

(P×λ)( f −1 A) = (P×λ)([g ]× f −1
g (A))+(P×λ)([s]× f −1

s (A)) ≤λ( f −1
g (A))+λ( f −1

s (A)) = 0.

Secondly, the Bernoulli shift is bi-measurable by Lemma 4.3.17 and so by Lemma
3.6.7 we have proven our statement.

We shall construct a Young Tower on the system (74). We start by transcribing it
to a shift system and to do so, use the following Lemma.

Lemma 3.6.10. Suppose we have dynamical systems (X ,FX ,µ,Ti ), (Y ,FY ,ν,Ui ) for
i ∈ {0,1} and suppose we have sets U ∈ FX , V ∈ FY with µ(U ) = ν(V ) < ∞ and an
ergodic isomorphism α : U →V for (X ,FX ,µ,Ti ) to (Y ,FY ,ν,Ui ) for i ∈ {0,1}. Now let
(Ω,FΩ,P,σ) be some dynamical system with P(Ω) = 1 and let γ :Ω→ {0,1} be measur-
able and the mappings

Ω×X → X , (ω, x) 7→ Tγ(ω)(x), Ω×Y → Y , (ω, y) 7→Uγ(ω)(y)

be measurable. Lastly suppose that for P-a.e. ω ∈ Ω we have (Tγ(ω))⋆µ ≪ µ and
(Uγ(ω))⋆ν≪ ν. Then the random dynamical systems

(Ω×X ,FΩ×X ,P×µ,T ) and (Ω×X ,FΩ×X ,P×µ,U ), (75)

with T ,U skew products, are ergodically isomorphic.

The proof of Lemma 3.6.10 is straightforward: we can directly verify

Id×α :Ω×U →Ω×V (ω, x) 7→ (ω,α(x))

is an ergodic isomorphism, checking the measurability conditions using Lemma 2.1.4.
We have omitted giving a full proof not to interrupt the flow of the text. We now show
the system (74) is ergodically equivalent with a shift system.

Lemma 3.6.11. Define the product measure space ({0,1}Z≥0 ,F{0,1}Z≥0 ,µ) with weights
(p0, p1) = (1

2 , 1
2

)
. Now define the mappings

σg : {0,1}Z≥0 → {0,1}Z≥0 σs : {0,1}Z≥0 → {0,1}Z≥0

(xn)n≥0 7→ (xn+1)n≥0 (xn)n≥0 7→
{

(xn+1)n≥0, (xn)n≥0 ∈ [10]

(xn)n≥0, (xn)n≥0 ∈ [0]∪ [11],

then

(Ω× {0,1}Z≥0 ,FΩ×{0,1}Z≥0 ,P×µ,U ) and (Ω× [0,1),FΩ×[0,1),P×λ,S),

with U ,S as given by,

U (ω, x) = (σω,σω0 (x)) S(ω, x) = (σω, fω0 (x))

are ergodically equivalent.
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Proof. We can see that by Lemma A.2.4 we have

([0,1),B[0,1),λ,D) and ({0,1}Z≥0 ,F{0,1}Z≥0 ,µ,σg )

are ergodically equivalent and by Lemma A.2.5 the systems

([0,1),B[0,1),λ, fs) and ({0,1}Z≥0 ,F{0,1}Z≥0 ,µ,σs)

are ergodically equivalent. We can then use Lemma 3.6.10 to show that the random
dynamical systems

(Ω× [0,1),FΩ×[0,1),P×λ,S) and (Ω× {0,1}Z≥0 ,FΩ×{0,1}Z≥0 ,P×µ,U )

are indeed ergodically equivalent.

We can equip bothΩ and {0,1}Z≥0 with natural product metrics dΩ and d{0,1}Z≥0 as
in Equation (8) and define the metric

dΩ×{0,1}Z≥0 : (Ω× {0,1})× (Ω× {0,1}) →R

((ω, x), (ω′, x ′)) 7→ dΩ(ω,ω′)+d{0,1}Z≥0 (x, x ′)

inducing FΩ×{0,1}Z≥0 .

For the rest of this section we fix (Ω× {0,1}Z≥0 ,FΩ×{0,1}Z≥0 ,P×µ,U ) as in Lemma
3.6.11.

In defining an induced domain Λ⊆Ω×{0,1}Z≥0 (not to be confused withΛ) and a
principal partition PΛ an obvious starting point is the set [10]∩Y and the collection
PΛ from Lemma 3.6.5. In fact, we shall fix

Λ= Ω̇× ([10]∩Y )

for some large measurable Ω̇⊆Ω as defined in Lemma 3.6.12. Further up in Lemma
3.6.14, we shall show we can construct a principal parition PΛ consisting of products
between elements I ∈PΛ and cylinders O ∈FΩ inΩ.

Lemma 3.6.12. Let Y ∩ [10] =Λ⊆ {0,1}Z≥0 be as in Lemma 3.6.5 and define

Ω̇ := {
(ωn)n≥0 ∈Ω :ωi = g for infinitely many i ∈Z≥0

}
. (76)

Then Λ := Ω̇×Λ is measurable, (P×µ)(Λ) = 1
4 and σ(Ω̇) = Ω̇.
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Proof. First note we may write

Ω̇= limsup
n→∞

{
(ωi )i≥0 ∈Ω :ωn = g

}
,

so that Ω̇ ∈FΩ. Furthermore

P(Ω\ Ω̇) =P
( ∞⋃

m=0

⋂
i≥m

{ω ∈Ω :ωi = s}

)

≤
∞∑

m=0
P

( ⋂
i≥m

{ω ∈Ω :ωi = s}

)
= 0,

so that P(Ω̇) = 1. We then see

(P×µ)(Λ) =P(Ω̇)µ([10]∩Y ) = 1

4
.

Now by Lemma 3.6.3 we have Λ ∈ F{0,1}Z≥0 so that Λ = Ω̇×Λ ∈ FΩ×{0,1}Z≥0 . Lastly, as
sequences in Ω have infinitely many terms equal to g starting at index 0 if and only
they have infinitely many terms equal to g starting at index 1, we see σ(Ω̇) =Ω.

We restrict the measure space (Ω×{0,1}Z≥0 ,FΩ×{0,1}Z≥0 ,4·P×µ) to Λ from Lemma
3.6.12 to obtain the restricted measure space (Λ,FΛ, (4 ·P×µ)Λ). We shall write 4µΛ :=
(4 ·P×µ)Λ for notational convenience. The factor 4 here once again ensures us we
obtain a probability space. In Lemma 3.6.13 below we show there exists a return time
on Λ as in Definition 3.2.1 for the dynamical system (Ω× {0,1}Z≥0 ,FΩ×{0,1}Z≥0 ,4 ·P×
µ,U ). In proving this, we also give a convenient expression for R .

Lemma 3.6.13. In letting R :Λ→Z≥2 be the return time from Lemma 3.6.3 and defin-
ing for k ∈Z≥2 the measurable mapping

#k (ω) := #{i ∈ {1, . . . ,k −1} :ωi = g }+1, (77)

we have a return time R :Λ→Z≥1 which is given by

R(ω, x) = inf{k ∈Z≥2 : R(x) = #k (ω)}. (78)

Proof. We recall for l ∈ Z≥2 the definition of Il and the relation to R|Il ≡ l from
Lemma 3.6.5. Now let (ω, x) ∈ Λ and fix l ∈ Z≥2 such that x ∈ Il for some Il ∈ Il .
First note that by Lemma 3.6.12 we have σl (ω) ∈ Ω̇ for each l ∈ Z≥0 so that R is only
dependent on the second component of U j (ω, x), for j ∈ Z≥1. It is then clear that
R(ω, x) is the lowest value k ∈Z≥2 such that there are l = R(x) elements g seen in the
first k indices of ω = (ω0,ω1, ...) ∈ Ω̇, excluding ω0 as σg |[10] = σs |[10]. We conclude
that

R(ω, x) = inf{k ∈Z≥2 : R(x) = #k (ω)},

proving our claim.
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Having shown the return time R : Λ → Z≥1 exists we can define the dynamical
system

(Λ,FΛ,4µΛ,U R ) (79)

as seen by Lemma 3.2.2. In proving this system is a tower base, we now construct
a principal partition. As mentioned earlier, PΛ is constructed by taking Cartesian
products between elements in PΛ with cylinders in Ω̇.

Lemma 3.6.14. Let (Λ,FΛ,4µΛ,U R ) be the dynamical system as in Equation (79). Let
l ∈Z≥2, Il ⊆F{0,1}Z≥0 be as in Lemma 3.6.5. Then for all k ≥ l define

Kk,l := {
[ω0 · · ·ωk−1] ⊆ #−1

k (l ) :ωk−1 = g
}

.

We have for each k, l ∈Z≥2, k ≥ l that R |Kk,l×Il ≡ k and

JU R (ω, x) = 1

P(Kk,l )
· 1

µΛ(Il )
(ω, x) ∈ Kk,l × Il , 4µKk,l×Il − almost surely . (80)

Moreover PΛ := ⊔
l≥2

⊔
k≥l

⊔
P∈Kk,l×Il

{P } is a principal partition for (Λ,FΛ,4µΛ,U R )
as in Definition 3.2.3.

Proof. We shall show the conditions as phrased in Definition 3.2.3 and in the process
show PΛ partitions Λ into measurable sets, alongside Identity (80).

(Constant Return Time) Note for general k ≥ 2 we can write by Lemma 3.6.13

R−1(k) = {
(ω, x) ∈Λ : k = inf{k ′ ≥ 2 : R(x) = #k ′(ω)}

}
= ⊔

l≥2

⊔
Il∈Il

{
(ω, x) ∈ Ω̇× Il : k = inf{k ′ ≥ 2 : R(x) = #k ′(ω)}

}
= ⊔

l≥2

⊔
Il∈Il

{
(ω, x) ∈ Ω̇× Il : R(x) = #k (ω),ωk−1 = g

}
= ⊔

l≥2

⊔
Il∈Il

⊔
Kk,l∈Kk,l

Kk,l × Il .

In noting that for k, l ∈ Z≥2 we have Kk,l ̸= ; if and only if k ≥ l we can see as
Λ= R−1(Z≥2),

Λ= ⊔
k≥2

R−1(k) = ⊔
l≥2

⊔
k≥l

⊔
Il∈Il

⊔
Kk,l∈Kk,l

Kk,l × Il ,

so that
PΛ := ⊔

l≥2

⊔
k≥l

⊔
Il∈Il

⊔
Kk,l∈Kk,l

{Kk,l × Il },

is a partition. Note it consists of measurable sets as it consists of cylinders (in-
tersected with a measure 1 set closed under U R ).
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(Markov Property) Let k, l ∈Z≥2, and Kk,l × Il ∈Kk,l ×Il be given. First note that as
Kk,l , Il are cylinders of depth k, l respectively, we have σk [Kk,l ] = Ω̇, σl

g [Il ] =Λ.
Now recalling σ as defined just above Equation (74) we apply Lemma 4.3.17
and see σk : Kk,l → Ω̇ and σl

g : Il → Λ are bi-measurable and pbn-singular.

Moreover, we see Jσk ≡ 1
P(Kk,l ) , PKk,l -almost surely and Jσl

g ≡ 4 ·µ(Il ), 4 ·µIl

almost surely. By Lemma 4.3.18 we then see σk ×σl
g is pbn-singular and that

Identity (80) holds.

(Generating and Separating) for n ∈Z≥1 the sets A ∈∨n−1
i=0 (U R )−i PΛ consist of prod-

ucts of cylinders of depth at least n, meaning that diam(
∨n

i=0(U R )−i PΛ) → 0 as
n →∞. Consequently, we see PΛ generates FΛ and P ∞

Λ
is the trivial partition

into points by Lemma 2.1.25.

We have shown PΛ is a principal partition.

We now show (Λ,FΛ,4µΛ,U R ) is a tower base.

Lemma 3.6.15. The dynamical system (Λ,FΛ,4µΛ,U R ) with PΛ as in Lemma 3.6.5 is
a tower base. Moreover we have R ∈ L1(Λ) and gcd(R(Λ)) = 1 and there exists a unique
mixing acip ν ∈P (Ω× [0,1)Z≥0 ) for (Ω× [0,1),FΩ×[0,1),P×λ,S).

Proof. Bounded Distortion We shall first show bounded distortion. To do so, let P ∈
PΛ. By Equation (80) in Lemma 3.6.14 we then have l ∈ Z≥2, k ∈ Z≥l with P =
Kk,l × Il for some Kk,l ∈Kk,l and Il ∈PΛ, and

JU R (ω, x) = 1

P(Kk,l )
· 1

µΛ(Il )
(ω, x) ∈ Kk,l × Il , 4µKk,l×Il -almost surely ,

so that ∣∣∣∣ J (U R |P )(ω, x)

J (U R |P )(ω′, y)
−1

∣∣∣∣= 0

holds for (ω, x), (ω′, y)-almost every 4µKk,l×Il .

Aperiodic Return Times Note that [g g g g ] × [1010], [g g g g g ] × [10110] ∈ PΛ, both
have positive measure and R |[g g g g ]×[1010] ≡ 2, R |[g g g g g ]×[10110] = 3 so clearly we
have gcd(R(Λ)) = 1.

Integrability of R We shall now calculate the expectation of the return time. Note
for k ∈ {0,1}, R−1{k} =; and for k ≥ 2 we have by the proof of Lemma 3.6.14,

R−1{k} = ⊔
l≥2

⊔
Il∈Il

⊔
Kk,l∈Kk,l

Kk,l × Il . (81)

We then see for l ≥ 2, k ≥ l and Kk,l ∈Kk,l , Il ∈Il that Kk,l is a cylinder of depth
k, and Il is a cylinder of depth l + 2 so that P(Kk,l ) = 2−k and µ(Il ) = 2−l−2.
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Consequently, we have 4µΛ(Kk,l × Il ) = 4 ·2−k ·2−l−2 = 2−k ·2−l . Also, we note
in writing for γ ∈ {g , s} that K

γ

k,l := {[ω0 · · ·ωk−1] ∈Kk,l :ω0 = γ}, we see #K
γ

k,l =(k−2
l−2

)
, so that #Kk,l = 2 · (k−2

l−2

)
. As seen in the proof of Lemma 3.6.6 we have

#Il = l −1. Using this, we see∫
Λ

R(ω, x)d4µΛ(ω, x) =
∞∑

k=2

∫
R−1{k}

R(ω, x)d4µΛ(ω, x)

=
∞∑

k=2

k∑
l=2

∑
Il∈Il

∑
Kk,l∈Kk,l

∫
Kk,l×Il

R(ω, x)d4µΛ(ω, x)

=
∞∑

k=2

k∑
l=2

∑
Il∈Il

∑
Kk,l∈Kk,l

k ·4µΛ(Kk,l × Il )

=
∞∑

k=2

k∑
l=2

∑
Il∈Il

∑
Kk,l∈Kk,l

k ·2−k ·2−l

=
∞∑

k=2

k∑
l=2

2 ·
(

k −2

l −2

)
k ·2−k ·2−l (l −1)

=
∞∑

k=2
2−k+1 ·k

k∑
l=2

(
k −2

l −2

)
2−l (l −1). (82)

Focussing on the inner sum, we see

k∑
l=2

(
k −2

l −2

)
2−l (l −1) =

k−2∑
l ′=0

(
k −2

l ′

)
2−l−2(l ′+1)

≤ k −1

4
·

k−2∑
l ′=0

(
k −2

l ′

)
2−l ′

= k −1

4

(
1+ 1

2

)k−2

,

which we substitute in Equation (82) to see

∞∑
k=2

2−k+1 ·k
k∑

l=2

(
k −2

l −2

)
2−l (l −1) ≤

∞∑
k=2

2−k+1 ·k · k −1

4

(
1+ 1

2

)k−2

=
∞∑

k=2
k · k −1

4
·2

(
3

2

)−2

·
(

3

4

)k

≤
∞∑

k=0
k2

(
3

4

)k

,

which we can show converges using the Ratio Test [12, Theorem 2.31]. Hence
we see R ∈ L1(Λ).

65



As the system (Λ,FΛ,4µΛ,U R ) satisfies bounded distortion it is a tower base, so
that we can construct a tower (∆,F∆,µ∆,G) as in Section 3.4. As we have shown
the return times are aperiodic and that return time is integrable we then can ap-
ply Theorem 3.5.1 to obtain an exact acip ν∆ for (∆,F∆,µ∆,G) such that there ex-
ists a M∆ > 1 with 1

M∆
≤ dν∆

dµ∆
≤ M∆. By Corollary 3.3.11 we then obtain an exact

acip for (Ω× {0,1}Z≥0 ,FΩ×{0,1}Z≥0 ,P×µ,U ). As this system is ergodically equivalent
with (Ω× [0,1),FΩ×[0,1),P×λ,S) we know this has an exact acip as well, by Lemma
2.1.17.
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4 Preliminaries for the Quenched Case

As mentioned in Section 1, the quenched approach allows us to study random dy-
namical systems as defined in Section 4.2 with a non-uniformly expanding base dy-
namic. To motivate the quenched approach we revisit the annealed approach as seen
in Section 3.6.2.

In Section 3.6.2, we applied Young Towers as introduced in Sections 3.2 and 3.3
to show the existence of an acip on the (annealed) stalling system. As we constructed
our Young Tower directly on

(Ω× {0,1}Z≥0 ,FΩ×{0,1}Z≥0 ,P×µ,U ),

we essentially interpret it as a deterministic dynamical system. As Young Towers are
designed to analyse non-uniformly expanding dynamical systems, we can then rea-
sonably expect that the annealed approach only applies to random dynamical sys-
tems with a non-uniformly expanding random dynamic, such as a Bernoulli shift.
This limits the possible applications for the annealed way of analysing random dy-
namical systems.

The quenched approach tackles this issue, by constructing a Young Tower-like
structure ∆ω for each ω ∈Ω individually, yielding a random Young Tower

∆= {(ω, x) ∈Ω×X ×Z≥0 : x ∈∆ω}.

This way, we can make sure Young’s conditions only have to apply to the Ω-sections
of∆, rather than to the entirety of∆ itself. This construction is very delicate, however
as technical conditions such as measurability are no longer guaranteed.

The outline of this section is then as follows. In Section 4.1 we will show using
functional analytic arguments that a sequence of measures with a uniformly bounded
density admits an accumulation point in the topology of setwise convergence. Ob-
taining this convergence argument is important as we will not be able to generalise
the notion of a tower base effectively to the quenched setting. This makes us unable
to make use of a potentially generalised version of Proposition 3.3.2. In the adjacent
Section 4.1.1 we shall also use this convergence argument to phrase an alternative
proof for Proposition 3.3.2. After that, we shall continue with Section 4.2 where we
shall define a random dynamical system as was already hinted at in Section 3.6.2. Im-
portantly, Lemma 4.2.7 allows us to describe the density associated with skew prod-
ucts through its Ω-sections. As our analysis in Section 5 will mainly happen on the
Ω-sections of ∆, this will be vital. Lastly, in Section 4.3 we shall generalise the notion
of a Jacobian in order to fit our random dynamical systems framework. As Jacobians
are heavily interlinked with Young Towers through bounded distortion, and as in the
literature authors commonly assume a Jacobian exists without stating conditions un-
der which they actually do, they are deserving of their own section.
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4.1 Uniform Integrability and Weak-* Compactness

Definition 4.1.1. Let (X ,T ) be a topological vector space over the field R. We call

1. the space X ′ of bounded linear functionals φ : X → R the dual (vector space) of
X ;

2. the topology σ(X , X ′) ⊆ T being the weakest topology on X so that all φ ∈ X ′

are continuous, the weak topology on X ; and

3. the topology σ(X ′, X ), being the weakest topology on X ′ so that for all x ∈ X
the mappings x ′ : X ′ → R as given by x ′(φ) = φ(x) are continuous, the weak-*
topology on X ′.

Note that X ′ with the weak star topology is again a topological vector space, so we
may define X ′′ = (X ′)′. We shall refer to this space as the bidual of X .

Remark 4.1.2. 1. Whenever X is a normed vector space, we can equip X ′ with the
norm ||φ||X ′ = sup||x||≤1 |φ(x)|. Similarly we can endow X ′′ with a norm based
on X ′. It is known that whenever X is a normed space, X ′ and (hence) X ′′ are
Banach spaces.

2. Chapter V of [8] hosts an extensive treatise of these topologies and spaces, but
we shall only discuss the material essential for our application.

Example 4.1.3. Let (X ,F ,µ) be a measure space, let p, q ∈ (1,∞) with 1/p +1/q = 1
and define their associated Lp (X ) and Lq (X ). By Hölders inequality, we know that for
f ∈ Lp (X ), g ∈ Lq (X ) we have || f g ||1 ≤ || f ||p ||g ||q , and it is then not hard to see that
for every f ∈ Lp (X ) we have

F f : Lq (X ) →R

g 7→
∫

X
f g dµ,

to be a bounded linear functional on Lq (X ). The fact that the mapping f 7→ F f is
actually an isometric isomorphism from Lp (X ) to Lq (X )′, is the content of Theorem
A.3.1.

Building on Example 4.1.3, given again some p, q ∈ (1,∞) with 1
p + 1

q = 1, we can

apply Theorem A.3.1 to Lq (X ,µ). In doing so, we obtain an isomorphism Jp from
Lp (X ,µ) to Lp (X ,µ)′′. such that for f ∈ Lp (X ) and for all g ∈ Lq (X ,µ) we have

Jp ( f )(Fg ) = Fg ( f ) =
∫

X
f g dµ.

We generalise this to arbitrary Banach Spaces.
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Definition 4.1.4. [8, Definition III.11.2] Let (X , || · ||) be a Banach space over a field R,
and let X ′′ := (X ′)′ be its bidual. If the mapping

JX : X → X ′′

x 7→
(

x ′ : X ′ →R

φ 7→φ(x)

)
,

is an isometric isomorphism from (X , || · ||) onto (X ′′, || · ||(X ′)′) then we call X reflexive.

The main reason we are interested in weak and weak-∗ topologies is the weak
sequential compactness of (norm bounded) balls in reflexive Banach spaces. We
will quickly go over the method for proving this and assume X is a reflexive Banach
space. Firstly, assuming reflexivity, we can show the mapping JX : X → X ′′ is a weak
to weak-** continuous linear isomorphism. To prove this, we shall rely on nets, (see
[8, Appendix A.2]). Additionally the Banach-Alaoglu Theorem A.3.2 allows to show
norm-bounded balls in X ′′ are weakly compact. Using the Eberlein-Smulian Theo-
rem A.3.3 then implies the weak sequential compactness of these balls. The (just es-
tablished) properties of JX can then show the weak sequential compactness of (norm
bounded) unit balls in X . Generally, for sequences (xn)n≥0 we shall write xn ⇝ x to
say (xnk )k≥0 → x as k →∞ for some sequence (nk )k≥0. That is, x is an accumulation
point of (xn)n≥0.

Proposition 4.1.5. Let (X , || · ||) be a normed vector space. Then JX : X → JX [X ] is a
weak to weak-∗∗ continuous linear isomorphism.

Moreover if (X , || · ||) is a reflexive Banach space, we have for each M ∈R>0 the unit
ball BM := {x ∈ X : ||x|| ≤ M } to be weakly compact.

Proof. For the proof we rely on net convergence. Let (xα)α∈A ⊆ X be some net con-
vergent to some x ∈ X in the weak topology on X . Note by definition we then have
φ(xa) →φ(x) for each φ ∈ X ′.

Consequently, we see that for each φ ∈ X ′ we have

JX (xα)(φ) =φ(xα) →φ(x) = J(x)(φ)

proving weak to weak-** continuity of JX . To prove invertibility of JX : X → JX [X ],
note that JX is injective as it is an isometry and so every element y ∈ JX [X ] is uniquely
determined by some x ∈ X with y = JX (x). In letting (ya)a∈A be some net in X ′′ weak-
** convergent to some y ∈ X ′′ we then have unique (xa)a∈A ⊆ X and x ∈ X such that
J−1

X (ya) = x and J−1
X (y) = x. We can then show continuity of J−1

X in seeing that for any
φ ∈V we have

φ(J−1
X (ya)) =φ(xα) = J(xa)(φ) → J(x)(φ) =φ(J−1

X (y)),
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so J−1
X (ya) → J−1

X (y) weakly which implies (JX )−1 : JX [X ] → X is indeed weak-** to
weak continuous. As JX : X → JX [X ] is now a continuous linear mapping with con-
tinuous inverse we can claim it is a continuous linear isomorphism.

Assuming (X , || · ||) is a reflexive Banach space, we then see JX : X → X ′′ is surjec-
tive as well, so JX : X → X ′′ is a weak to weak-** isomorphism and for each M ∈ R>0

we then have
JX [BM ] = {x ′′ ∈ X ′′ : ||x ′′||X ′′ ≤ M },

as JX is an isometry. In knowing that by the Banach-Alaoglu Theorem A.3.2 we have
BM to be weak-** compact, we then may conclude BM is weakly compact.

Corollary 4.1.6. Let (X , ||·||) be a reflexive Banach space over the fieldR and let (xn)n≥0

be some sequence such that supn≥0 ||xn || ≤ M for some M ∈ R>0. Then there exists a
x ∈ X such that xn⇝ x weakly.

Proof. Immediate in combining Theorem A.3.3 and Proposition 4.1.5 on the ball BM :=
{x ∈ X : ||x|| ≤ M }.

Remark 4.1.7. 1. Should it be the case that in Corollary 4.1.6 we would have ||xn || =
M for all n ∈Z≥1, one might be tempted to think the accumulation point x ∈ X
obtained in Corollary 4.1.6 also has a norm ||x|| = M . It is a well-known fact,
however that the spheres in infinite dimensional normed vector spaces are not
weak-* compact and that the accumulation point x may even be the zero vec-
tor.

2. An important class of examples for reflexive Banach spaces are when given
some σ-finite measure space (X ,F ,µ), and p ∈ (1,∞) the spaces Lp (X ,µ), see
[8, Examples III.1.8 and III.11.2)]

The following Proposition will be a main tool in finding accumulation points of
sequences of the densities of the measures as mentioned at the start of this section.

Proposition 4.1.8. Let (X ,F ,µ0) be a measure space with µ0(X ) ∈ (0,∞) and suppose
we have a sequence of finite (positive) measures (µn)n≥1 for which there exists M ∈R>0

such that for all n ∈Z≥1 we have µn ≪µ0 and∥∥∥∥dµn

dµ0

∥∥∥∥
∞
≤ M .

Then there exists a finite positive measure µ ∈ M (X ) such that µn ⇝ µ set-wise. Fur-

thermore, we have µ≪µ0 and
∥∥∥ dµ

dµ0

∥∥∥∞ ≤ M.

Proof. Let (X ,F ,µ0) be a finite measure space and p, q ∈ (1,∞) such that 1
p + 1

q = 1.
Firstly, note that for any g ∈ L∞(X ,µ0) we have

||g ||q ≤ ||g ||∞µ0(X )
1
q , (83)

70



so g ∈ Lq (X ,µ0) and in particular all indicator functions are contained in Lq (X ,µ0).
Using Hölders inequality we can then see for any f ∈ Lp (X ,µ0) that

|| f ||1 = || f · 1X ||1 ≤ || f ||p ||1X ||q = || f ||p ·µ0(X )
1
q <∞ (84)

and so Lp (X ,µ0) ⊆ L1(X ,µ0) holds. Now let (µn)n≥0 be a sequence of finite measures
with for each n ∈Z≥1 :

µ0 ≪µn and sup
n≥1

∣∣∣∣∣∣∣∣dµn

dµ0

∣∣∣∣∣∣∣∣
∞
≤ M for some M > 0.

Note then, as seen by Equation (83) that we have{
dµn

dµ0
: n ∈Z≥1

}
⊆

{
g ∈ Lp (X ,µ0) : ||g ||p ≤ Mµ0(X )

1
p

}
,

so that we can invoke Corollary 4.1.6 to claim there exists a g ∈ Lp (X ,µ0) such that
dµn
dµ0
⇝ g , by reflexivity of Lp (X ,µ0). As follows from Equation (84) we then have g ∈

L1(X ,µ0) as well and may define the finite measure µ(·) = ∫
· g dµ0.

Note for the q ∈ (1,∞) as before we have L∞(X ,µ0) ⊆ Lq (X ,µ0) so any A ∈F sat-
isfies

µn(A) =
∫

X

dµn

dµ0
· 1Adµ0⇝

∫
X

g · 1A dµ0 =µ(A),

showing set-wise convergence and that µ(A) ≥ 0 for all A ∈F .
Lastly, note that for all A ∈F ,n ≥ 1 we have

µn(A) =
∫

X

dµn

dµ0
(x)1A(x)dµ0(x) ≤ Mµ0(A),

and as µn ⇝ µ set-wise we have a sequence (nk )k≥0 ⊆ Z≥1 such that then for any
A ∈F we have

µ(A) = lim
k→∞

µnk (A) ≤ Mµ0(A)

which in turn implies µ≪µ0 and
∣∣∣∣∣∣ dµ

dµ0

∣∣∣∣∣∣∞ ≤ M .

The above proof will be sufficient in proving the existence of an acip, but con-
sidering densities as objects of Lp spaces for p ∈ (1,∞) may seem a bit artificial as
densities of finite measures can be just L1. The issue with expanding this argument
to L1 is, however, that for measure spaces (X ,F ,µ) whenever a space L1(X ,µ) is in-
finite dimensional we do not have reflexivity. Instead we have (L1(X ,µ))′ ∼= L∞(X ,µ),
but L1(X ,µ) ⊊ (L∞(X ,µ))′. That is, JX is not surjective as can be seen in [8, Section
V.4]. Assuming µ is a finite measure, we can still obtain a beautiful characterisation
of the weak closure of subsets of L1(X ,µ) however.
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Definition 4.1.9. [6, Definition 4.5.1] Suppose (X ,F ,µ) is a finite measure space. We
call a collection A ⊆ L1(X ,µ) uniformly integrable if

lim
C→∞

sup
f ∈A

∫
{| f |>C }

| f | dµ= 0.

The Dunford-Pettis Theorem below now gives us the topological characterisation
we are looking for. We point out once more that the dual of L1(X ,µ) is L∞(X ,µ).

Theorem 4.1.10. [6, Theorem 4.7.18] Suppose we have a finite measure space (X ,F ,µ)
and let A ⊆ L1(X ,µ). Then A is uniformly integrable if and only if it has compact
closure in the weak topology of L1(X ,µ).

This way, we obtain an alternative proof of Proposition 4.1.8. Note that we make
a much stronger assumption than strictly necessary by assuming the densities are
uniformly bounded in || · ||∞ instead of just uniformly integrable.

Alternative proof of 4.1.8. First we show uniform integrability of
(

dµn
dµ0

)
n≥1

. Note that

we have by assumption

sup
n≥1

∣∣∣∣∣∣∣∣dµn

dµ0

∣∣∣∣∣∣∣∣
∞
≤ M ,

so that supn≥1

∣∣∣∣∣∣dµn
dµ0

∣∣∣∣∣∣
1
≤ Mµ0(X ) and, in particular, dµn

dµ0
∈ L1(X ,µ0) for n ∈Z≥1. Now

we see for any C > M that

sup
n≥1

∫{
| dµn

dµ0
|>C

}
∣∣∣∣dµn

dµ0

∣∣∣∣ dµ0 = 0.

So the set
{

dµn
dµ0

: n ≥ 1
}

is uniformly integrable.

Combining Theorem 4.1.10 with Theorem A.3.3 we then obtain an accumulation

point f ∈ L1(X ,µ0) for
{

dµn
dµ0

: n ≥ 1
}

in the weak topology on L1(X ,µ0). In defin-

ing µ(·) = ∫
· f dµ0 we may claim f = dµ

dµ0
by (almost everywhere) uniqueness of the

Radon-Nikodym derivative, and then have for any A ∈F ,

µn(A) =
∫

X

dµn

dµ0
· 1Adµ0⇝

∫
X

g · 1A dµ0 =µ(A),

showing set-wise convergence as requested. Moreover µ is a positive measure.

The bound dµ
dµ0

≤ M is derived perfectly analogously to the last paragraph of Propo-
sition 4.1.8.
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4.1.1 An alternative proof for Proposition 3.3.2

In this section we shall give an alternative proof to Proposition 3.3.2. While the proof
of Proposition 3.3.2 is valid, it relies on conditions specific to that of a tower base and
it hides some of the more general structure. The alternative proof will also give us
more insight into the relationship between weak-* convergence and L1-convergence
and the topological nature of the tower base.

Before starting rigorously, we shall briefly go over the method. Fix some tower
base (Λ,FΛ,µΛ, g R ) with a metric dβ,C as in Definition 2.1.29. Firstly, it is clear by

Lemma 3.3.6 that for each n ∈ Z≥0 we have
∥∥∥d(g R n

)⋆µΛ
dµΛ

∥∥∥∞ ≤ M for some M ∈ R>1, in-

dependent of n. By Proposition 4.1.8 we then see that

(
1
n

∑n−1
k=0

d(g R k
)⋆µΛ

dµΛ

)
n≥0

has got

an accumulation point µ so that 1
n

∑n−1
k=0

d(g R k
)⋆µΛ

dµΛ
⇝ µ set-wise. To get some intu-

ition on how to strengthen this convergence to obtain L1-convergence we include an
example where this can not be done.

Example 4.1.11. We define for n ∈Z≥1,

fn : (0,1) → (0,1)

x 7→ 1

2
sin(2nπx).

Figure 2: Graph of f1
Figure 3: Graph of
f1, f2, f3

Figure 4: Graph of
f1, f2, f3, f50

We can interpret curves ( fn)n≥1 as densities d fn
dλ of measures taken with respect

to the Lebesgue measure λ on (0,1). We then know we have an accumulation point
µ such that fndλ⇝ µ set-wise. One can prove that due to the ever increasing speed
of oscillations the areas below and above the line y = 1

2 will even out when integrated

over, so that µ(·) = ∫
·

1
21(0,1)(x)dλ(x). One can show however that

∫ 1
0

∣∣ fn − 1
21(0,1)

∣∣ dλ
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will be bounded away from zero uniformly in n ∈ Z≥0, so L1-convergence can not
happen.

The question then remains, is oscillatory behaviour the only way in which weak-*
convergence can not lead to L1-convergence. We shall answer this question through
the following concepts, as seen in [6, Page of Theorem 4.7.29.].

Definition 4.1.12. Let (X ,F ,µ) be a finite measure space, let f ∈ L1(µ) and let A ∈F

be such that µ(A) > 0. The quantity

osc( f |A) :=µ(A)−1
∫

A

∣∣∣∣ f (x)−µ(A)−1
∫

A
f (y)dµ(y)

∣∣∣∣ dµ(x),

is called the average oscillation of the function f on A.

Now we present the main tool of this section (see [6, Theorem 4.7.29.] for a proof).

Theorem 4.1.13. Suppose we have a finite measure space (X ,F ,µ) with µ(X ) ∈ (0,∞)
and suppose that a set F ⊆ L1(µ) has compact closure in the weak topology. Then, the
closure of F is compact in the norm of L1(µ) precisely when F satisfies the following
condition:

For every ϵ ∈ R>0 and every set A ∈ F of positive µ-measure there exists a finite
collection of sets A1, . . . , An ⊆ A of positive measure such that every function f ∈ F has
the average oscillation less than ϵ on at least one of the sets A j , j ∈ {1, . . . ,n}.

Returning to the setting of a tower base, we also know as a consequence of Lemma

3.3.6 that the convex combinations

(
1
n

∑n−1
k=0

d(g R k
)⋆µΛ

dµΛ

)
n≥1

are Lipschitz on a set of full

measure with a uniform bound on the Lipschitz constant. It is then likely we can use
Theorem 4.1.13 to prove L1-convergence. To do so, we do need to be able to relate
the measure of measurable sets to distances. A common class of topological spaces
where this is possible are Polish Spaces.

Definition 4.1.14. A Polish space (X ,T ) is a separable topological space for which
there exists a metric that is complete.

A strength of Polish spaces is that any finite Borel measure µ on a Borel space
(X ,F ) is outer regular, that is for any A ∈F we have

µ(A) = inf{µ(O) : O ⊇ A,with O open},

see [11]. We shall now prove that any dynamical system with a generating and sepa-
rating partition can be equipped with a natural topology making it Polish. To do so,
we recap the separation time from Definition 2.1.27.
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Definition 4.1.15. Let (X ,F ,µ,T ) be some dynamical system with µ(X ) ∈ (0,∞) and
P ⊆F a countable finite partition of X . We define the mapping

α : X →P , x 7→ P for the unique P ∋ x,

and the separation time s : X ×X →Z≥0 ∪ {∞} as the mapping

s(x, x ′) = inf
{
n ∈Z≥0 :α

(
T n(x)

) ̸=α(
T n(x ′)

)}
.

Recall that if for some dynamical system (X ,F ,µ,T ) with µ(X ) ∈ (0,∞) we have
a countable generating and separating partition P ⊆ F then by Lemma 2.1.29, we
know that for any β ∈ (0,1),C ∈R>1 that

dβ,C (x, y) :=Cβs(x,y)

is a metric on X and we denote the topology it induces by T . We shall characterise
the open balls in this topology. We use the notation

Bx(ϵ) := {y ∈ X : dβ,C (x, y) < ϵ},

for an open ball with radius ϵ ∈R>0 around a point x ∈ X .

Lemma 4.1.16. Let (X ,F ,µ,T ) be a dynamical system and let P be a generating and
separating partition as in Definition 2.1.22. And let ϵ ∈ R>0, C ∈ R>1, β ∈ (0,1) and
x ∈ X . If ϵ≤C there exists an n ∈Z≥1 and an A ∈P n such that

x ∈ A and A = {y ∈ X : dβ,C (x, y) < ϵ}. (85)

If ϵ>C then we have
X = {y ∈ X : dβ,C (x, y) < ϵ}. (86)

Proof. First note the sequence (Cβn)n≥0 is strictly decreasing to zero and has a max-
imum C for n = 0.

Now suppose ϵ≤C and let n ∈Z≥1 be such that ϵ ∈ (Cβn ,Cβn−1]. Let ζ ∈ (0,Cβn−1−
Cβn] be so that ϵ=Cβn +ζ. Then let A ∈P n be such that x ∈ A. Note

Bx(ϵ) := {y ∈ X : dβ,C (x, y) < ϵ}

= {y ∈ X : Cβs(x,y) <Cβn +ζ}

= {y ∈ X :βs(x,y) <βn−1+logβ(β+β−n+1ζ/C )}

= {y ∈ X : s(x, y) > n −1+ logβ(β+β−n+1ζ/C )}, (87)

where in Equation (87) we used the fact that logβ is strictly decreasing. To show

{y ∈ X : s(x, y) > n −1+ logβ(β+β−n+1ζ/C )} = {y ∈ X : s(x, y) > n −1}, (88)
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note that β+β−n+1ζ/C ∈ (β,1] so that logβ(β+β−n+1ζ/C ) ∈ [0,1) implying

{y ∈ X : s(x, y) > n −1+ logβ(β+β−n+1ζ/C )} = {y ∈ X : s(x, y) > n −1},

as s takes values in the (extended) non-negative integers.
Now note that for y ∈ X we have that

s(x, y) > n −1 if and only if α(T k (x)) =α(T k (y)) for each k ∈ {0, . . . ,n −1}.

As we have A = A0 ∩ ·· · ∩T −n+1 An−1 for some A0, . . . , An−1 ∈ P we can see having
α(T k (x)) =α(T k (y)) for each k ∈ {0, . . . ,n−1} is equivalent with having Ak =α(T k (y))
for each k ∈ {0, . . . ,n −1}, which is equivalent with y ∈ A. We conclude Bx(ϵ) = {y ∈ X :
s(x, y) > n −1} = A, proving Equation (89).

Now in supposing ϵ > C , we simply note that dβ,C takes values in [0,C ] so that
X = {y ∈ X : dβ,C (x, y) < ϵ} holds for each x ∈ X .

From the proof of Lemma 4.1.16 we obtain the following Corollary if we consider
the case ϵ=Cβn−1 for n ∈Z≥1.

Corollary 4.1.17. Let (X ,F ,µ,T ) be a dynamical system and let P be a generating
and separating partition as in Definition 2.1.22. And let n ∈ Z≥1, C ∈ R>1, β ∈ (0,1)
and x ∈ X . Then for ϵ=Cβn−1 there exists an A ∈P n such that we have

x ∈ A and A = {y ∈ X : dβ,C (x, y) < ϵ}. (89)

We now apply Lemma 4.1.16 to prove we can equip dynamical systems with a
generating and separating partition with a Polish topology.

Proposition 4.1.18. Let (X ,F ,µ,T ) be a dynamical system and let P be a generating
and separating partition as in Definition 2.1.22. Then for any β ∈ (0,1) and C > 1,
(X ,dβ,C ) is a complete separable metric space. Moreover, F is a Borel σ-algebra for
this topology and µ is outer regular.

Proof. Let β ∈ (0,1),C ∈ R>1 be arbitrary. We show (X ,dβ,C ) is a complete, separable
metric space. To do so, let (xn)n≥0 be a Cauchy sequence in X . We shall use the
separating property of P to show (xn)n≥0 converges.

As (xn)n≥0 is Cauchy, we have for all ϵ ∈R>0 an N ∈Z≥0 such that for all n,m ≥ N (l )
we have dβ,C (xn , xm) < ϵ. Now, in letting (ϵl )l∈Z≥1 be such that ϵl =Cβl−1 for l ∈Z≥1,
we see that we have for each l ∈ Z≥1 an N (l ) ∈ Z≥0 such that for all n,m ≥ N we
have dβ,C (xn , xm) < ϵl . In particular, by Corollary 4.1.17 we have for each l ∈Z≥1 and
xN (l ) ∈ X an Al ∈P l such that

Al = {y ∈ X : dβ,C (xN (l ), y) < ϵl } (90)
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and (xn)n≥N (l ) ∈ Al for each n ≥ N (l ). We now show Al ⊇ Al+1 for any l ∈Z≥1, with Al

and Al+1 as constructed in Equation (90).
To do so, let l ∈Z≥1 and note we have dβ,C (xN (l ), xN (l+1)) < ϵl so that xN (l+1) ∈ Al .

As P l is a partition for X , we then know this Al satisfies xN (l+1) ∈ Al uniquely for P l ,
so then, again by Corollary 4.1.17, we know that

Al = {y ∈ X : dβ,C (xN (l+1), y) < ϵl }.

As we have
Al+1 = {y ∈ X : dβ,C (xN (l+1), y) < ϵl+1},

we then see as ϵl > ϵl+1 that Al ⊇ Al+1. As this holds for general l ∈Z≥1 and as Al ∈P l

we can see
⋂∞

l=0 Al ∈ P ∞. As P is separating, we then know
⋂∞

l=0 Al = {x} for some
x ∈ X . The limit limn→∞ xn = x follows directly. As (xn)n≥0 was a given arbitrarily,
we can conclude every Cauchy sequence converges in this metric space. Hence the
space is complete.

As for separability note that by Lemma (4.1.16), the collection
⋃∞

l=0 P l consists
of the open balls in T , so that T is clearly second countable. As metric spaces are
separable if and only if they are second countable, the separability of T follows.

Having shown dβ,C endows X with a topology that is separable and completely
metrisable (as dβ,C is complete), we conclude X is a Polish space.

Finally, by definition the collection
⋃∞

l=0 P l generates F , that is, F is generated
by the open balls in T and as such is the Borel σ-algebra. As any finite signed Borel
measure on a Polish space is outer regular, µ is outer regular.

We now provide two auxillary results to apply Theorem 4.1.13.

Lemma 4.1.19. Let (X ,d) be a separable metric space with topology T . Then for every
δ ∈R>0 there exists a countable collection of open balls Bδ ⊆ X of radius δ covering X .

Proof. Let δ ∈R>0 be given, and let (xn)n≥0 be a dense subset of X . We claim Bδ(xn) ⊆
T is an open cover for X . Note that for any y ∈ X we have xn ∈ Bδ(y) for some n ∈Z≥0

as (xn)n≥0 is a dense in X . Consequently, we see y ∈ Bδ(xn) proving our claim.

Remark 4.1.20. The concept of an equicontinuous collection of continuous func-
tions can be interpreted as ‘continuous in the same way’, meaning that rather than
imposing a stronger notion of continuity (such as Lipschitz continuity) it is about the
relation between the continuous functions themselves. Under the euclidian metric
on (0,1), functions as x → xα for α ∈ (−1,1), and x 7→ p

x for x ∈ (0,1) can hence be
part of equicontinuous collections but neither of them are Lipschitz.

Lemma 4.1.21. Let X be some Polish space and let (X ,F ,µ) be a finite measure space
with F the Borel σ-algebra. Then for any set A ∈ F with µ(A) > 0 and any δ ∈ R>0

there exists an open ball Bδ ⊆F such that µ(Bδ∩ A) > 0.
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Proof. Suppose we have A ∈ F with µ(A) > 0 and suppose there exists a δ > 0 such
that µ(A∩Bδ) = 0 for every open ball Bδ ⊆ X .

Then, using Lemma 4.1.19, there is a countable cover (Bδ,n)n≥0 of X consisting of
open balls of radius δ and

0 = ∑
n≥0

µ(Bδ,n ∩ A) ≥µ
(

A∩ ⋃
n≥0

Bδ,n

)
=µ(A) > 0,

which leads to a contradiction meaning that µ(A ∩Bδ) > 0 for at least one open ball
of radius δ> 0.

To make our convergence result as generally applicable as possible, we use the
concept of equicontinuity. Readers acquainted with Arzela-Ascoli’s Theorem (see for
example [8, Theorem IV.3.8]), a Theorem ubiquitous throughout functional analysis,
will be familiar with it. Note, as opposed to Arzela-Ascoli’s Theorem, we do not re-
quire compactness of our topological space.

Definition 4.1.22. Let X be some Polish space and let (X ,F ,µ) be its standard Borel
space. We say a collection F ⊆ L0(X ) is equicontinuous on a set of full measure if there
exists a complete separable metric d on X , an Xe ∈F , µ(X \Xe ) = 0 such that for each
ϵ ∈R>0 and x ∈ Xe there exists a δ ∈R>0 such that for each y ∈ Xe , with d(x, y) < δ we
have for each f ∈ F , | f (x)− f (y)| < ϵ.

We quickly prove that every countable set of functions that are Lipschitz on a set
of full measure with the same Lipschitz constant, is equicontinuous on a set of full
measure.

Lemma 4.1.23. Let X be some Polish space, let (X ,F ,µ) be its standard Borel space
and let d be some complete separable metric on X . Fix L ∈ R>1. Any countable set C ⊆
L1(X ) consisting of Lipschitz functions on a set of full measure with Lipschitz constant
at most L is equicontinuous on a set of full measure.

Proof. For every f ∈C , write X f ⊆ X for a setµ(X \X f ) = 0 upon which we have | f (x)−
f (y)| < Ld(x, y) for every x, y ∈ X f . Then, note Ẋ =⋂

f ∈C X f is a set with µ(X \ Ẋ ) = 0
for which for each f ∈C we have

| f (x)− f (y)| < Ld(x, y) for every x, y ∈ Ẋ .

Then note for arbitrary ϵ ∈ R>0 we have for δ = ϵ/L that for each x, y ∈ Ẋ , d(x, y) < δ

that
| f (x)− f (y)| < Ld(x, y) < ϵ,

proving our claim.
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Finally we arrive at our ‘measure-theoretical version’ of the Arzela-Ascoli Theo-
rem, not requiring compactness.

Theorem 4.1.24. Let X be a Polish space and let (X ,F ,µ) be some standard Borel
space, with µ(X ) ∈ (0,∞). Now let {φn}n≥0 ⊆ L1(µ) be a uniformly integrable, equicon-
tinuous on a set of full measure, sequence. Then there exists a subsequence (φnk )k≥0

and a φ ∈ L1(µ) such that limk→∞φnk =φ in L1 and µ-almost everywhere.

Proof. By Theorem 4.1.10, we know that (φn)n≥0 has compact closure in the weak
topology of L1(X ,µ). Now let ϵ ∈ R>0 and let A ∈ F with µ(A) > 0. Now fix a metric
d for X , inducing the topology on X . As (φn)n≥0 is equicontinuous on a set of full
measure we have a set Ẋ ∈F with µ(Ẋ ) = 1 and a δϵ ∈R>0 such that

for each x, y ∈ Ẋ with d(x, y) < δϵ we have |φn(x)−φn(y)| < ϵ.

Next, as X is Polish andµ(A) > 0 we can by Lemma 4.1.21 find an open ball Bδ ⊆ X
such that µ(A ∩Bδ) > 0. In writing Aδ = A ∩Bδ∩ Ẋ , we can directly verify that the

probability measure PAδ =
µAδ
µ(Aδ) satisfies PAδ ≪ µAδ and

dPAδ
dµAδ

≡ 1
µAδ

(Aδ) , µAδ-almost

surely. Having verified this, we see that for each n ∈Z≥0 we obtain

osc(φn |Aδ) =µ(Aδ)−1
∫

Aδ

∣∣∣∣φn(x)−µ(Aδ)−1
∫

Aδ
φn(y)dµ(y)

∣∣∣∣ dµ(x)

=µ(Aδ)−1
∫

Aδ

∣∣∣∣φn(x)−µ(Aδ)−1
∫

Aδ
φn(y)dµAδ(y)

∣∣∣∣ dµ(x)

=µ(Aδ)−1
∫

Aδ

∣∣∣∣φn(x)−
∫

Aδ
φn(y)dPAδ(y)

∣∣∣∣ dµ(x)

≤µ(Aδ)−1
∫

Aδ

∫
Aδ

∣∣φn(x)−φn(y)
∣∣ dPAδ(y)dµ(x) (91)

<µ(Aδ)−1
∫

Aδ

∫
Aδ
ϵdPAδ(y)dµ(x)

=µ(Aδ)−1 ·ϵ ·µ(Aδ) ·PAδ(Aδ)

= ϵ.

In Equation (91) we used Jensens Inequality [6, Theorem 2.12.19.] using the convex
function

Ψy :R→R

x →|x − y |,

for any y ∈ R. Using Theorem 4.1.13 we then see (φn)n≥0 has compact closure in
L1(µ). As L1(µ) is a metric space, we then obtain a subsequence (φnl )l≥0 converging
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to some φ ∈ L1(µ) as l → ∞ in L1-norm. As this implies that φnl → φ in measure
(see e.g. [6, Definition 2.2.3]), we can use [6, Theorem 2.2.5] to obtain a subsequence
(φnlk

)k≥0 of (φnl )l≥0 which converges toφ pointwise almost everywhere and in L1(µ).
We have proven our claim.

Finally we rephrase Proposition 3.3.2.

Proposition 4.1.25. Suppose we have a tower base (Λ,FΛ,µΛ, g R ), and a sequence
(φn)n∈Z≥1 ⊆ Lβ,C (Λ) satisfying for some M > 1,

sup
n∈Z≥1

||φn ||β ≤ M and inf
n∈Z≥1

ess inf
x∈Λ

φn(x) ≥ 1

M
.

Then (φn)n≥1 converges pointwise almost everywhere and in L1(Λ) to a function φ ∈
Lβ,C (Λ) with ||φ||β ≤ M and essinfx∈Λφ≥ 1

M .

Proof. (Sketch) By Lemma 4.1.18 we see that for (Λ,FΛ,µΛ, g R ) there exists a natural
topology T ⊆FΛ such that (X ,T ) is Polish space, FΛ is the Borel σ-algebra, and µΛ
is a Borel measure.

By Lemma 3.3.6 we can then as in the (alternative) proof of Proposition 4.1.8 at
the end of Section 4.1 obtain uniform integrability of (φn)n∈Z≥1 with respect to µΛ.
Then, as (φn)n∈Z≥1 are Lipschitz on a set of full measure with the same Lipschitz con-
stant, we can apply Theorem 4.1.24 to obtain a φ ∈ L1 and a subsequence (φnk )k≥0

such that (φnk )k≥0 → φ in L1 and almost everywhere as k → ∞. Having obtained
L1-convergence and convergence a.e., the other claims in the statement can then be
verified as in the proof of Proposition 3.3.2.

4.2 Random Dynamical Systems

In this section we define a notion of a random dynamical system (RDS) and prove
all measure-theoretical properties to fit our Random Young Towers framework later.
The author has put special care into defining the RDS in such a way that its conditions
suffice for our application, are easy to check and apply as general as reasonable.

The proofs in this section are rather dry and technical, but have been incorpo-
rated for sake of completeness and for a lack of convenient overview elsewhere. Con-
ceptually it is important to note that

1. bi-measurability of the random dynamic plays a central role in the construction
of RDS’s; and

2. joint integrability and measurability are stronger than integrability and mea-
surability over the sections, but we can use sections to derive statements in the
joint setting.
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We start by constructing a Random Dynamical System in Definition 4.2.3 and to
do so we verify basic properties on measurability and non-singularity in Lemmas
4.2.1 and 4.2.2. As mentioned before, for functions f : X ×Y → Z and elements x ∈ X

fx : Y → Z : y 7→ f (x, y).

Lemma 4.2.1. Let (Ω,FΩ,P,σ) be a dynamical system with σ :Ω→Ω bi-measurable
and P(Ω) = 1 and let (X ,FX ,µ) be a σ-finite measure space. Suppose we have a set
∆ ∈ FΩ×X such that 0 < (P×µ)(∆) <∞ and a measurable function f : ∆→ X so that
for each ω ∈Ω we have fω[∆ω] ⊆∆σω, then for every ω ∈Ω the mapping

fω :∆ω→∆σω, x 7→ f (ω, x).

is F∆ω-F∆σω-measurable.

Proof. First define

f̃ :Ω×X → X

(ω, x) 7→
{

fω(x), x ∈∆ω
x, x ∉∆ω.

Then, note that for arbitrary A ∈FX we have f̃ −1(A) = f −1(A)⊔(∆c ∩(Ω×A)) ∈FΩ×X ,
as f −1(A) ∈ F∆ ⊆ FΩ×X and ∆c ∈ FΩ×X . By Proposition 2.1.7 we then have for each
ω ∈Ω that x 7→ f̃ω(x) is FX -measurable. Finally, note that for B ⊆F∆σω we have

f −1
ω (B) = f̃ −1

ω (B) \ (B ∩∆c
ω) ∈F∆ω ,

from which we may conclude F∆ω-F∆σω measurability of fω.

We remind the reader of our notation on restricted measures as defined in Defi-
nition 2.1.6.

Lemma 4.2.2. Let (Ω,FΩ,P,σ) be a dynamical system with σ :Ω→Ω bi-measurable
and P(Ω) = 1 and let (X ,FX ,µ) be a σ-finite measure space. Suppose we have a set
∆ ∈ FΩ×X such that 0 < (P×µ)(∆) <∞ and a measurable function f : ∆→ X so that
for each ω ∈ Ω we have fω[∆ω] ⊆ ∆σω and ( fω)⋆µ∆ω ≪ µ∆σω for almost every ω ∈ Ω.
Define (∆,F∆,µ∆) as the finite measure space obtained by restricting Ω× X to ∆ and
define

S : ∆→∆

(ω, x) 7→ (
σω, fω(x)

)
.

Then the mapping S is measurable and non-singular and hence (∆,F∆,µ∆,S) is a dy-
namical system.
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Proof. We start by proving F∆-measurability of S. Note we may write S : ∆→Ω× X
as ∆⊆Ω×X . For general O ∈FΩ, B ∈FX we have

S−1(O ×B) = {(ω, x) ∈∆ : (σω, fω(x)) ∈O ×B}

= (σ−1O ×X )∩ f −1[B ] (92)

∈FΩ×X

so S−1(FΩ×FX ) ⊆FΩ×X . As we know S−1[Ω×X ] ⊆∆we can then see S−1(FX ×FΩ) ⊆
F∆ so that by Lemma 2.1.4 the mapping S : ∆→Ω× X is F∆-FΩ×X measurable. As
S[∆] ⊆∆ and F∆ ⊆FΩ×X , the F∆-measurability of S follows.

We now note by Lemma 2.1.7 for eachω ∈Ω the mapping x 7→ f (ω, x) is F∆ω-F∆σω

measurable.
We write for fixed ω ∈Ω x 7→ fω(x) for x 7→ f (ω, x). To prove non-singularity of S

note that for A ∈FΩ×X , ω ∈Ω we have

(S−1(A))ω = {(ω̇, x) ∈∆ : S(ω̇, x) ∈ A}ω
= {(ω̇, x) ∈∆ : fω̇(x) ∈ Aσω̇}ω

= f −1
ω (Aσω). (93)

Then note that by Fubini’s Theorem 2.1.8, if (P×µ)(A) = 0 we have µ(Aω) = 0, P-
almost surely. Assuming (P×µ)(A) = 0, we then see

S⋆(P×µ)(A) = (P×µ)(S−1 A)

=
∫
Ω
µ((S−1 A)ω)dP(ω)

=
∫
Ω

( fω)⋆µ(Aσω)dP(ω)

=
∫
Ω

( fσ−1ω)⋆µ(Aω)dP(ω) (94)

= 0, (95)

where in Equation (94) we used Proposition 2.1.10 and the invariance of σ. As Equa-
tion (95) holds for general A ∈ FΩ×X with (P×µ)(A) = 0 we may conclude S⋆µ∆ =
S⋆(P×µ) ≪ P×µ. As µ∆ is the restriction of P×µ to ∆, we may conclude S⋆µ∆ ≪
µ∆.

Definition 4.2.3. We shall call a dynamical system (∆,F∆,µ∆,S) as constructed in
Lemma 4.2.2 a random dynamical system or RDS for short. The mapping S : ∆→ ∆

is called a skew product, the family (∆ω,F∆ω ,µ∆ω , fω)ω∈Ω the base dynamic and the
dynamical system (Ω,FΩ,P,σ) the random dynamic.
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Remark 4.2.4. Whenever we define an RDS (∆,F∆,µ∆,S) and omit mentioning the
spaces (Ω,FΩ,P,σ), (X ,FX ,µ) or the function f : ∆→ X used to construct it as in
Lemma 4.2.2, we shall assume these exist implicitly. For this f , we shall often write
for (ω, x) ∈∆ and n ≥ 1 that

f n
ω (x) = fσn−1ω ◦ · · · ◦ fω(x),

which is well-defined as we assume that fω(∆ω) ⊆∆σω. Furthermore, we define f 0
ω(x) =

Id|∆ω . In similar vein, we shall often want to define ω-sections of partitions P of ∆.
That is, given a partition P ⊆F∆, we write

Pω := {Pω ∈FX : Pω ̸= ;,P ∈P }. (96)

In Lemma 4.2.5 we prove Pω partitions ∆ω. A final notational comment is that for
ω ∈Ω we shall often write µ∆ω := (µ)∆ω . That is, µ∆ω is the restriction of the measure
µ to ∆ω.

Lemma 4.2.5. Let (Ω,FΩ) and (X ,FX ) be measurable spaces and suppose for ∆ ∈
FΩ×X we have a countable partition P ⊆F∆ for ∆. Then for each ω ∈Ω with ∆ω ̸= ;
the collection Pω as defined in Equation (96) is a countable partition for∆ω consisting
of F∆ω-measurable sets.

Proof. Letω ∈Ω and with∆ω ̸= ;. Note then for each x ∈∆ω we have (ω, x) ∈∆ so that
there is a unique P ∈P with (ω, x) ∈ P so that x ∈ Pω. We show Pω consists of disjoint
sets. To do so assume that Pω∩Qω ̸= ; for some Q ′ ∈ P∆ω and note by definition of
Pω we have a Q ∈P such that Qω =Q ′. Note we have ; ̸= Pω∩Qω = (P ∩Q)ω so that
P ∩Q ̸= ; and so P =Q, so that Pω =Qω. Finally, as every element of P gives rise to
at most one element of Pω, we see Pω is countable as well.

We extend the map σ of an RDS to a mapping σΩ :Ω×X →Ω×X . We will see this
mapping σΩ many times in Section 5.

Lemma 4.2.6. Let (∆,F∆,µ∆,S) be an RDS and define

σΩ :Ω×X →Ω×X

(ω, x) 7→ (σω, x).

This mapping σΩ is bi-measurable, (P×µ)-invariant and has a (P×µ)-invariant in-
verse.

Proof. Note that σ : Ω→Ω is by definition invariant, bi-measurable with an invari-
ant inverse (which is then also bi-measurable). Similarly, the identity on X is bi-
measurable, µ-invariant and has an invariant inverse. We can then apply Lemma
4.3.18 to both σΩ = σ× Id and σ−1

Ω = σ−1 × Id to find both are bi-measurable and
P×µ-invariant.
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Our analysis of Deterministic Young Towers relied heavily on densities associated
with dynamical systems. The following lemma relates the density of the operator of a
RDS to ‘section-wise’ densities. The proof relies on (corollaries of) Fubini’s Theorem
2.1.8 and once again explicitly on the bi-measurability of σ. In Section 5.5 we will
develop a tool to making these derivations easier, which we, for didactical purposes,
have postponed.

Lemma 4.2.7. Let (∆,F∆,µ∆,S) be a random dynamical system, let ∆0 ∈F∆ be so that
µ∆(∆0) > 0 and let n ∈ Z≥1. For every ω ∈ Ω, write ∆0,ω := (∆0)ω. Then we have for
almost every ω ∈Ω and µ∆ω-almost every x ∈∆ω

dSn
⋆µ∆0

dµ∆
(ω, x) =

d( f n
σ−nω)⋆µ∆0,σ−nω

dµ∆ω
(x)

dσn
⋆P

dP
(ω). (97)

Moreover if σ is measure-preserving we obtain for almost every ω ∈Ω and µ∆ω-almost
every x ∈∆ω,

dSn
⋆µ∆0

dµ∆
(ω, x) =

d( f n
σ−nω)⋆µ∆0,σ−nω

dµ∆ω
(x). (98)

Proof. Recall that ∆ ⊆Ω× X and hence we may write Sn : ∆→Ω× X by embedding
its codomain (so that (Sn)−1[Ω×X \∆] =;). In doing so, note that by non-singularity
of S we have

Sn
⋆µ∆0 ≪ Sn

⋆µ∆≪µ∆≪P×µ.

Moreover, as Sn
⋆µ∆0 is a finite measure we know

dSn
⋆µ∆0

dP×µ ∈ L1(P×µ). We shall prove
Equation (97). To do so, note that for O ∈FΩ, A ∈FX we have

S−n(O × A) = {(ω, x) ∈∆ : Sn(ω, x) ∈O × A}

= {(ω, x) ∈∆ : (σn(ω), f n
ω (x)) ∈O × A}

= {(ω, x) ∈∆ : f n
ω (x) ∈ A}∩ {(ω, x) ∈∆ :σnω ∈O}.

Now define for ω ∈Ω the mapping

F n
ω,A : X →R

x 7→
{
1A( f n

ω (x)), x ∈∆ω
0, x ∉∆ω.
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and note that 1S−n [O×A](ω, x) = 1O(σn(ω)) ·F n
ω,A(x). Knowing this we can see∫

O×A

dSn
⋆µ∆0

dP×µ (ω, x)d(P×µ)(ω, x) = Sn
⋆µ∆0 (O × A)

=
∫
Ω×X

dµ∆0

dP×µ (ω, x) · 1S−n [O×A](ω, x)d(P×µ)(ω, x)

=
∫
Ω

∫
X
1∆0 (ω, x) ·F n

ω,A(x) · 1O(σn(ω))dµ(x)dP(ω)

(99)

=
∫
Ω
1O(σn(ω))

∫
X

F n
ω,A(x)dµ∆0,ω(x)dP(ω) (100)

=
∫
Ω
1O(σn(ω))d( f n

ω )⋆µ∆0,ω(A)dP(ω) (101)

where in Equation (99) we applied Theorem 2.1.8. As a consequence of Theorem 2.1.8
we also know that ω 7→ ( f n

ω )⋆µ∆0,ω(A) is in L1(Ω). So we may apply Lemma 2.1.10 and
continue writing Equation (101) by

=
∫
Ω
1O(ω) · ( f n

σ−nω)⋆µ∆0,σ−nω
(A)dσn

⋆P(ω)

=
∫

O

∫
A

d( f n
σ−nω)⋆µ∆0,σ−nω

dµ
(x)

dσn
⋆P

dP
(ω)dµ(x)dP(ω).

To conclude, we can see for every O ∈FΩ, A ∈FX∫
O×A

dSn
⋆µ∆0

dP×µ (ω, x)d(P×µ)(ω, x)

=
∫

O

∫
A

d( f n
σ−nω)⋆µ∆0,σ−nω

dµ
(x)

dσn
⋆P

dP
(ω)dµ(x)dP(ω). (102)

Define

S̃(ω, x) =
{dSn

⋆µ∆0
dµ∆

(ω, x), if (ω, x) ∈∆
0, else,

and

f̃ (ω, x) =


d( f n
σ−nω

)⋆µ∆0,σ−nω
dµ∆ω

(x)
dσn

⋆P

dP (ω), x ∈∆ω
0, else.

Furthermore we note that for any O ∈ FΩ, A ∈ FX we have following from Theorem
2.1.8 that∫

O

∫
A

S̃(ω, x)dµ(x)dP(ω) = Sn
⋆µ∆0 (O × A) =

∫
O

∫
A

dSn
⋆µ∆0

dP×µ (ω, x)dµ(x)dP(ω), (103)
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and similarly we see that∫
O

∫
A

d( f n
σ−nω)⋆µ∆0,σ−nω

dµ
(x)

dσn
⋆P

dP
(ω)dµ(x)dP(ω)

=
∫

O

dσn
⋆P

dP
(ω)( f n

σ−nω)⋆µ∆0,σ−nω
(A)dP(ω)

=
∫

O

dσn
⋆P

dP
(ω)( f n

σ−nω)⋆µ∆0,σ−nω
(A∩∆ω)dP(ω)

+
∫

O

dσn
⋆P

dP
(ω)( f n

σ−n )⋆µ∆0,σ−nω
(A∩∆c

ω)dP(ω) (104)

=
∫

O

∫
A∩∆ω

d( f n
σ−nω)⋆µ∆0,σ−nω

dµ∆ω
(x)

dσn
⋆P

dP
(ω)dµ∆ω(x)dP(ω)

=
∫

O

∫
A

f̃ (ω, x)dµ(x)dP(ω), (105)

where the term in Equation (104) equals zero. Combining Equations (102), (103) and
(105) we see that we have∫

O

∫
A

S̃(ω, x)dµ(x)dP(ω) =
∫

O

∫
A

f̃ (ω, x)dµ(x)dP(ω). (106)

As A ∈FX ,O ∈FΩ we given arbitrarily we see S̃(ω, x) = f̃ (ω, x) for almost every ω ∈Ω
and almost every x ∈ X and in particular for almost every ω ∈ Ω and almost every
x ∈∆ω, which yields Equation (97).

As for Equation (98), if P is invariant under σ we have
dσn

⋆P

dP ≡ 1 and Equation (98)
follows.

Remark 4.2.8. It is tempting to claim Equation (98) hold µ∆-almost everywhere but
there is no guarantee the right-hand side of the equation is jointly F∆-measurable
implying the set

B =
{

(ω, x) ∈∆ :
dSn

⋆µ∆0

dµ∆
(ω, x) =

d( f n
σ−nω)⋆µ∆0,σ−nω

dµ∆ω
(x)

}

may not be measurable. Contrarily, in fixingω ∈Ω, the mapping x 7→ d( f n
σ−nω

)⋆µ∆0,σ−nω
dP×µ (x)

is FX -measurable (and integrable) as a consequence of the Radon-Nikodyn theo-
rem. Phrased differently, Lemma 4.2.7 asserts that for almost every ω ∈ Ω we have
µ∆ω(B c

ω) = 0.

The following rather straightforward lemma is an elementary example of a disin-
tegration. In Proposition 4.1.8 we require a uniform upper bound on densities to find
an acip. In the RDS setting, this means the uniform upper bound needs be found on
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the density associated with the skew product - just obtaining the bound section-wise
is not enough. The lemma below together with Lemma 4.2.7 above are exactly what
is necessary to make this translation happen.

Lemma 4.2.9. Let (∆,F∆,µ∆,G) be a RDS and let ∆0 ∈F∆ be some set of (finite) posi-
tive measure. Then for any n ∈Z≥1, A ∈F∆ we have∫

A

d(Gn)⋆µ∆
dµ∆

(ω, x)dµ∆(ω, x) =
∫
Ω

∫
Aω

d(Gn)⋆µ∆
dµ∆

(ω, x)dµ∆ω(x)dP(ω).

Proof. Let n ∈Z≥1 and A ∈F∆, then define

G̃ :Ω×X → [0,∞)

(ω, x) 7→
{d(Gn )⋆µ∆

dµ∆
(ω, x) if (ω, x) ∈∆

0 else.

Now note we have∫
A

d(Gn)⋆µ∆0

dµ∆
(ω, x)dµ∆(ω, x) =

∫
A

G̃(ω, x)d(P×µ)(ω, x)

=
∫
Ω

∫
Aω

G̃(ω, x)dµ(x)dP(ω) (107)

=
∫
Ω

∫
Aω

G̃(ω, x) · 1∆ω(x)dµ(x)dP(ω) (108)

=
∫
Ω

∫
Aω

d(Gn)⋆µ∆0

dµ∆
(ω, x)dµ∆ω(x)dP(ω),

proving the lemma. In Equation (107) we used Theorem 2.1.8 and in Equation (108)
we simply note that for x ∈ Aω, we have 1∆ω(x) = 1.

We conclude the section with the following Lemma, allowing us to integrate effi-
ciently over subsets of RDS’s.

Lemma 4.2.10. Let (∆,F∆,µ∆,G) be a RDS and let ∆0 ∈ F∆ be such that µ(∆0) <∞.
Then we have

µ∆(∆0) =
∫
Ω
µ∆ω(∆0,ω)dP(ω).

Proof. First note that 1∆0 ∈ L1(∆) so that 1∆0 ∈ L1(Ω×X ). In noting that

µ∆ω(∆0,ω) =
∫
∆ω

1∆0,ω(x)dµ∆ω(x) =
∫
∆ω

1∆0 (ω, x)dµ∆ω(x) =
∫

X
1∆0 (ω, x)dµ(x),

we can apply Fubini’s Theorem 2.1.8 to seeω 7→µ∆ω(∆0,ω) is in L1(Ω). More so, we see∫
Ω

∫
X
1∆0 (ω, x)dµ(x) = (P×µ)(∆0) =µ∆(∆0),

proving the statement.
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4.3 Jacobians With Distinct Domains

In Definition 2.2.6 we defined the Jacobian as a locally integrable function JT of a
locally invertible, pbn-singular measurable transformation T : X → X on a (σ-finite)
measure space (X ,F ,µ). In the quenched approach however, we are more interested
in the densities associated with the sections Sω :∆ω→∆σω so we need to define a Ja-
cobian for suitable measurable mappings not necessarily having an identical domain
and codomain.

Finally it is worth noting that local invertibility of the section of a mapping S does
necessarily translate to the local invertibility of S in its entirety. Luckily, the material
developed in Section 4.2 makes the potential local invertibility of S irrelevant for our
theory.

We start with some preliminary definitions.

Definition 4.3.1. Let (X ,F ) and (Y ,G ) be measurable spaces and let T : X → Y be a
measurable mapping.

1. If T : X → Y is measurable, bijective and has a measurable inverse, we call T bi-
measurable;

2. If A ∈ F is so that T (A) ∈ G and T |A : A → T (A) is bi-measurable (onto its im-
age) then A is called an invertibility domain for T ;

3. If there exists a countable partition P of X consisting of invertibility domains
for T , then we call T locally invertible.

Remark 4.3.2. In definition 4.3.1 we assume that X admits a partition of invertibility
domains. This is slightly more restrictive than what is done in Section 9.7.3 of [23] but
is more easily understood, shortens our exposition on Jacobians significantly, and is
sufficient for our theory. It seems our approach is novel and we provide more details
than given in [23].

We shall now prove three basic statements on invertibility domains.

Lemma 4.3.3. Let (X ,F ) and (Y ,G ) be measurable spaces, and let T : X → Y be a
measurable mapping. Then,

1. if A ∈ F is an invertibility domain for T then every measurable B ∈ F , B ⊆ A is
an invertibility domain for T ;

2. if T : X → Y is bi-measurable, then for any A ∈ F , we have that T |A : A → T (A)
is bi-measurable;

3. if T : X → Y is locally invertible, then for any A ∈F , we have that T (A) ∈G .
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Proof. 1. Suppose A ∈F is an invertibility domain for T . Then note for any mea-
surable B ⊆ A, we have T |B : B → T (B) to be bijective and (T |A)−1|T (B) to be an
inverse for T |B . We only need show that T (B) ∈ G . To do so, note that T |−1

A is
measurable and T (B) ⊆ T (A) so we can see T (B) = (T |−1

A )−1(B) ∈G .

2. If T : X → Y is bi-measurable, item 1 shows that any A ∈ F is an invertibility
domain for T , making T |A : A → T (A) bi-measurable.

3. If T : X → Y is locally invertible, let P ⊆ F be a partition into invertibility do-
mains, and note that for A ∈F we have

T (A) = T (⊔P∈P A∩P ) =∪P∈P T (A∩P ) ∈G ,

as by Item 1 we have T (A∩P ) ∈G for each P ∈P .
We have shown our claim.

Now we are in the position to define pbn-singularity for locally invertible trans-
formations on finite measure spaces. Be aware that this notion of pbn-singularity is
different from Definition 2.2.3.

Definition 4.3.4. Let (X ,F ,µ) and (Y ,G ,ν) be finite measure spaces and let T : X →
Y be a measurable, locally invertible mapping. We say T is pullback non-singular
or pbn-singular if for every invertibility domain A ∈ F we have µ(A) = 0 to imply
ν(T (A)) = 0.

Remark 4.3.5. In the context of Definition 4.3.4 we can by Lemma 4.3.3 rewrite pbn-
singularity as the property (T |−1

P )⋆ν≪µ|P for any invertibility domain P ∈F .

Lemma 4.3.6. Let (X ,F ,µ) and (Y ,G ,ν) be finite measure spaces and let T : X → Y be
a measurable, locally invertible mapping. Then we have T to be pbn-singular if and
only if for some partition P of invertibility domains for T we have

(T |−1
P )⋆ν≪µP for each P ∈P . (109)

Proof. The implication assuming T is pbn-singular is trivial. So assume we have a
partition P of invertibility domains for T for which Equation (109) holds. Then let
A ∈F be some invertibility domain such that µ(A) = 0. Then note,

µ(A) = 0 =⇒ ∑
P∈P

µ(A∩P ) = 0

=⇒ ∑
P∈P

ν(T (A∩P )) = 0 (110)

=⇒ ν(T (A)) = 0, (111)

where we used Equation (109) in Line (110) and the injectivity of T |A in line (111).
This proves our claim.
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We now define the Jacobian.

Definition 4.3.7. Let (X ,F ,µ) and (Y ,G ,ν) be finite measure spaces and let T : X →
Y be a measurable, locally invertible, pbn-singular mapping. A function JT : X →
[0,∞) such that JT · 1P ∈ L1(µ) and

ν(T (P )) =
∫

P
JT (x)dµ(x), for every invertibility domain P ∈F (112)

is called a Jacobian of T .

Our Definition 4.3.1 of local invertibility allows us to give a concise characteri-
sation of the Jacobian. Included within the proof is an existence and uniqueness
condition up to a measure zero set.

Lemma 4.3.8. Let (X ,F ,µ) and (Y ,G ,ν) be finite measure spaces and let T : X → Y
be a measurable, locally invertible, pbn-singular mapping. Then a Jacobian JT : X →
[0,∞) exists and is unique up to a measure zero set. Furthermore, in assuming P ⊆F

is a countable partition of X consisting of invertibility domains for T we have for every
P ∈P ,

(JT · 1P )(x) =


d(T |−1
P )⋆ν

dµ (x), x ∈ P

0, else,
for µ-a.e. x ∈ X , (113)

and
JT = ∑

P∈P

JT · 1P , µ-a.e.. (114)

Proof. Let P ⊆ F be a countable partition of X consisting of invertibility domains
for T . We shall first give a characterisation of a Jacobian for T .

In doing so, fix P ∈P and let B ∈F with B ⊆ P . Note we have by Lemma 4.3.3, B to
be an invertibility domain so T (B) ∈G and note we may write ν(T (B)) = (T |−1

P )⋆ν(B).
Using pbn-singularity as seen in Remark 4.3.5 yields

(T |−1
P )⋆ν(B) =

∫
B

d(T |−1
P )⋆ν

dµ
(x)dµ(x),

from which we conclude

ν(T (B)) =
∫

B

d(T |−1
P )⋆ν

dµ
(x)dµ(x), for arbitrary measurable B ⊆ P . (115)

As the measure ν is finite, we see (T |−1
P )⋆ν is a finite measure as well and so 1P ·

d(T |−1
P )⋆ν

dµ ∈ L1(µ) and 1P · d(T |−1
P )⋆ν

dµ <∞ µ-almost everywhere. As the countably many
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elements of P are disjoint, we may then assume
∑

P∈P 1P · d(T |−1
P )⋆ν

dµ takes finite values
µ-almost everywhere.

Now for an arbitrary invertibility domain B ∈F we can see

ν(T (B)) = ∑
P∈P

ν(T (P ∩B)) (116)

= ∑
P∈P

∫
P∩B

d(T |−1
P )⋆ν

dµ
(x)dµ(x) (117)

= ∑
P∈P

∫
B
1P (x) · d(T |−1

P )⋆ν

dµ
(x)dµ(x)

=
∫

B

∑
P∈P

1P (x) · d(T |−1
P )⋆ν

dµ
(x)dµ(x), (118)

where in Equation (116) we used injectivity of T on B and σ-additivity of measures
over disjoint measurable sets; in Equation (117) we applied Equation (115); and Equa-
tion (118) follows from the monotone convergence theorem, summing over non-
negative elements.

From Equation (118) then follows

J̃T := ∑
P∈P

1P · d(T |−1
P )⋆ν

dµ

is a Jacobian for T , from which Equations (113) and (114) follow immediately
Having found this, we show Equation (112) defines Jacobians up to a measure-

zero set uniquely. To do so, note that any measurable function f : X → [0,∞) satisfy-
ing

ν(T (P )) =
∫

P
f (x)dµ(x), for every invertibility domain P ∈F ,

satisfies for arbitrary B ∈F ,∫
B

J̃T (x)dµ(x) = ∑
P∈P

∫
B∩P

J̃T (x)dµ(x) (119)

= ∑
P∈P

ν(T (B ∩P )) (120)

= ∑
P∈P

∫
B∩P

f (x)dµ(x) (121)

=
∫

B
f dµ(x), (122)

so that f and J̃T differ up to a measure zero set. Here in Equations (119) and (122)
we used the Monotone Convergence Theorem and in Equations (120) and (121) we
used Lemma 4.3.3, item 1.
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Remark 4.3.9. Using the uniqueness property proven in Lemma 4.3.8 we can show
Equations (113) and (114) hold for any Jacobian JT of T .

The Corollary below shows that Equation (114) is independent of a choice for a
partition of invertibility domains, in the sense that J only depends on the points x on
which it is evaluated.

Corollary 4.3.10. Let (X ,F ,µ) and (Y ,G ,ν) be finite measure spaces and let T : X → Y
be a measurable, locally invertible, pbn-singular mapping with Jacobian JT . Let A ∈
F be some invertibility domain for T . We then have

JT (x) = d(T |−1
A )⋆ν

dµ
(x), for almost every x ∈ A. (123)

Proof. By Lemma 4.3.8 we have the Jacobian JT to exist. Now fix an invertibility do-
main A ∈F , and suppose B ∈F ,B ⊆ A. The Jacobian then satisfies∫

B
JT (x)dµ(x) = ν(T (B)) = ν(T (A∩B)) = (T |−1

A )⋆ν(B) =
∫

B

d(T |−1
A )⋆ν

dµ
(x)dµ(x).

That is, JT − d(T |−1
A )⋆ν

dµ integrates to zero on any measurable subset of A and hence
Equation (123) holds.

We conclude our discussion of Jacobians with three technical characterisations of
Jacobians. The first in Lemma 4.3.11 characterises the Jacobian in terms of a Radon-
Nikodym Derivative. After we show the Chain Rule generalises to Jacobians in Propo-
sition 4.3.16 and that - under the right conditions - the Jacobian factors on product
spaces in Lemma 4.3.18.

Lemma 4.3.11. Let (X ,F ,µ) and (Y ,G ,ν) be finite measure spaces and let T : X → Y
be a measurable, locally invertible, pbn-singular mapping with Jacobian JT . Suppose
for some invertibility domain A ∈F for T we have JT > 0, µA-almost surely. Then

(JT (x))−1 = d(T |A)⋆µ

dν
(T (x)), for µ-a.e. x ∈ A. (124)

Proof. We shall show that on any B ∈F , B ⊆ A we have

µ(B) =
∫

B

d(T |A)⋆µ

dν
(T (x))

d(T |−1
A )⋆ν

dµ
(x)dµ,

so that
d(T |A)⋆µ

dν
◦T · d(T |−1

A )⋆ν

dµ
≡ 1 µ−a.e. on A, (125)
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by Corollary 4.3.10. To do so, note∫
B

d(T |A)⋆µ

dν
(T (x))

d(T |−1
A )⋆ν

dµ
(x)dµ(x) =

∫
B

d(T |A)⋆µ

dν
(T (x))d(T |−1

A )⋆ν(x)

=
∫

B

d(T |A)⋆µ

dν
((T |−1

A )−1(x))d(T |−1
A )⋆ν(x)

=
∫

T (B)

d(T |A)⋆µ

dν
(y)dν(y) (126)

= ((T |A)⋆µ)(T (B))

=µ(B),

where in Equation (126) we relied on Lemma 2.1.10, pulling back (T |−1
A ) which we

may do as d(T |A)⋆µ
dν ∈ L1(ν) following from µ being a finite measure. As B ⊆ A, B ∈ F

was taken arbitrarily we may conclude Equation (125), as JT = d(T |−1
A )⋆ν

dµ by Corollary
4.3.10.

The following lemma shows that local invertibility and pbn-singularity as defined
in Definitions 4.3.1 and 4.3.4 are preserved under composition. This is central to
proving the Chain Rule in Proposition 4.3.16

Lemma 4.3.12. Let (X ,F ,µ), (Y ,G ,ν), and (Z ,H ,η) be finite measure spaces with
T : X → Y and U : Y → Z locally invertible mappings. In letting PX ,PY be partitions
of X and Y into invertibility domains, respectively, then the collection

PU◦T := {
A∩T −1B : A ∈PX ,B ∈PY

}
\ {;} (127)

partitions X into invertibility domains for U ◦T , so that U ◦T is a locally invertible
measurable mapping. Additionally, if U and T are pbn-singular then U ◦T is pbn-
singular.

Proof. Let (X ,F ,µ), (Y ,G ,ν), and (Z ,H ,η) be measurable spaces with T : X → Y
and U : Y → Z locally invertible, pbn-singular mappings. The measurability of U ◦T
is imminent as composition of measurable mappings.

Now let PX ,PY be partitions of X and Y consisting of invertibility domains for T
and U respectively. Define the collection PU◦T as in Equation (127) which partitions
X and consists of F -measurable sets. Furthermore, we have for arbitrary A ∈PX ,B ∈
PY with A∩T −1B ∈PU◦T , that A∩T −1B ⊆ A and T (A∩T −1B) = T (A)∩B ⊆ B so that
by Lemma 4.3.3, item (1) we have A ∩T −1B to be an invertibility domain for T and
T (A∩T −1B) to be an invertibility domain for U . This implies

(T |A∩T −1B )−1 : T (A)∩B → A∩T −1B
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and
(U |T (A)∩B )−1 : U (T (A)∩B) → T (A)∩B

are well-defined measurable bijections and it is then easily seen that

((U ◦T )|A∩T −1B )−1 = (T |A∩T −1B )−1 ◦ (U |T (A∩T −1B))
−1,

holds. Hence ((U ◦T )|A∩T −1B )−1 is a measurable bijection onto its image as a compo-
sition of measurable bijections. Lastly as (U ◦T )(A ∩T −1B) = U (T (A)∩B) ∈ H the
partition PU◦T indeed consists of invertibility domains for U ◦T . We conclude U ◦T
is locally invertible. We now only need to show pbn-singularity of U ◦T .

To do so, let P ∈F be an arbitrary invertibility domain for U◦T such thatµ(P ) = 0.
Then note we can immediately derive

η(U ◦T (P )) = η(U ◦T (
⊔

A∈PU◦T

P ∩ A))

= η(
⊔

A∈PU◦T

U ◦T (P ∩ A) (128)

= ∑
A∈PU◦T

η(U ◦T (P ∩ A))

= 0, (129)

where in Equation (128) we used the injectivity of U ◦T on P . Equation (129) is seen
by noting

µ(P ) = 0 =⇒ µ(A∩P ) = 0 =⇒ ν(T (A∩P ) = 0 =⇒ η(U ◦T (A∩P )) = 0,

using the pbn-singularity of T and U consecutively.

We swiftly extend the above inductively.

Corollary 4.3.13. Let n ∈ Z≥1, (Xi ,Fi ,µi )0≤i≤n be finite measure spaces, let Ti : Xi →
Xi+1 for i ∈ {0, . . . ,n−1} be locally invertible and let for i ∈ {0, . . . ,n−1}, P i be partitions
of Xi consisting of invertibility domains. Then we have for each k ∈ {1, . . . ,n},

PT n := {
A0 ∩T −1 A1 ∩·· ·∩T −n+1 An−1 : Ai ∈P i , i ∈ {0, . . . ,n −1}

}
\ {;} (130)

to consist of invertibility domains for T k := Tk−1 ◦ · · · ◦T0, so that T k : X0 → Xk is a
locally invertible measurable mapping. Additionally, if for each i ∈ {0, . . . ,n −1}, Ti is
pbn-singular then T k is pbn-singular as well.

Proof. First we prove that PT n consists of invertibility domains for T n and that T n is
pbn-singular. We will use this to show that PT n also consists of invertibility domains
for T k for each k ∈ {1, . . . ,n} proving local invertibility and pbn-singularity of T k . We
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proceed inductively. The case n = 1 is trivial. Furthermore, note the case n = 2 is
proven in Lemma 4.3.12.

In case n > 2, we assume PT n−1 consists of invertibility domains for T n−1 and that
T n−1 is pbn-singular. We can then conclude again by Lemma 4.3.12, T n := Tn−1 ◦
· · · ◦T0 = Tn−1 ◦T n−1, that T n is locally invertible, pbn-singular as a composition of
locally invertible, pbn-singular mappings. Similarly, by Lemma 4.3.12, we see PT n =
PT n−1 ∨Pn−1 is indeed a partition of invertibility domains for T n . Having shown
the induction step and the initial case n = 2 we have shown consists of invertibility
domains for T n and that T n is pbn-singular for general n ∈Z≥1

In particular for 1 ≤ k < n, note that, applying the above on T k , we now know T k

is locally invertible and pbn-singular with PT k consisting of invertibility domains. As
for every P ∈PT n we have a Q ∈PT k such that P ⊆Q we can see by Lemma 4.3.3 PT n

partitions X into invertibility for T k as well, as PT n partitions X .

The following Corollary is a direct consequence of Corollary 4.3.13 combined with
Lemma 4.3.3.

Corollary 4.3.14. Let n ∈ Z≥1, (Xi ,Fi ,µi )0≤i≤n be finite measure spaces, let Ti : Xi →
Xi+1 for i ∈ {0, . . . ,n − 1} be locally invertible. Then for each A ∈ F0 and each i ∈
{1, . . . ,n} we have T i (A) ∈Fi .

The following Corollary is of no relevance to Jacobians per se, but is useful for
future reference.

Corollary 4.3.15. Let for n ∈ Z≥1, (Xi ,Fi ,µi )0≤i≤n be finite measure spaces, Ti : Xi →
Xi+1 be locally invertible mappings, P i be partitions of Xi consisting of invertibil-
ity domains for i ∈ {0, . . .n − 1} and PT n as defined in Equation (130). For every k ∈
{0, . . . ,n −1} and for each Bn ∈PT n we have exactly one Ak ∈Pk so that T k Bn ⊆ Ak .

Proof. In case n = 1 simply pick for arbitrary B0 ∈ P0, A0 = B0 so that T 0B0 ⊆ A0 for
A0 ∈P0.

Let k ∈ {1, . . . ,n −1} and Bn ∈PT n . By construction we have

Bn = A0 ∩·· ·∩T −n+1 An−1, with Ai ∈P i , for i ∈ {0, . . . ,n −1}.

Consequently, we see that

T k [Bn] = T k [A0 ∩·· ·∩T −n+1 An−1]

= T k [A0 ∩·· ·∩T −k+1 Ak−1 ∩T −k (Ak ∩·· ·∩T −n+k+1
k An−1)]

= T k [A0 ∩·· ·∩T −k+1 Ak−1]∩ Ak ∩T −1
k Ak+1 ∩·· ·∩T −n+k+1

k An−1 (131)

⊆ Ak ∈Pk , (132)

where in Equation (131) we used the general set identity f (A ∩ f −1[B ]) = f (A) ∩ B
which holds for all functions f and subsets A,B of the domain and codomain of f
respectively.
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We shall now show the chain rule for Jacobians holds.

Proposition 4.3.16 (Chain Rule For Jacobians). Let n ∈Z≥2, (Xi ,Fi ,µi )0≤i≤n be finite
measure spaces and let Ti : Xi → Xi+1 for i ∈ {0, . . . ,n − 1} be locally invertible, pbn-
singular mappings. Then J(Tn−1 ◦ · · · ◦T0) exists and

J (Tn−1 ◦ · · · ◦T0) =
n−1∏
i=0

J (Ti )◦ (Ti−1 ◦ · · · ◦T0) holds µ-a.e., (133)

where we interpret Ti−1 ◦ · · · ◦T0 = Id for i = 0.

Proof. First we will prove the statement for the case n = 2. Extending it to a general
finite amount comes down to applying the case n = 2 and Lemma 4.3.12 n −1 times.

So let (X ,F ,µ), (Y ,G ,ν), and (Z ,H ,η) be finite measure spaces with T : X → Y
and U : Y → Z locally invertible, pbn-singular mappings. Then by Lemma 4.3.12 we
know U ◦T to be locally invertible and pbn-singular so we may apply Lemma 4.3.8 as
well to claim the Jacobian J (U ◦T ) exists, as the measure spaces involved are finite.

Now let A ∈ F be such that A is an invertibility domain for T and T (A) is an
invertibility domain for U . Then we see∫

A
J (U ◦T )(x)dµ(x) = η(U ◦T (A))

=
∫

T (A)
JU (y)dν(y) (134)

=
∫

A
JU (T (x))d(T |−1

A )⋆ν(x) (135)

=
∫

A
JU (T (x))

d(T |−1
A )⋆ν

dµ
(x)dµ(x) (136)

=
∫

A
JU (T (x))JT (x)dµ(x), (137)

where Equation (134) is by definition of the Jacobian; Equation (135) follows from
Lemma 4.3.11; Equation (136) holds by pbn-singularity of T; and (137) follows from
Corollary 4.3.10.

Now in fixing PU◦T as in Lemma 4.3.12, we see that the conditions under which
Equation (137) holds, applies by Lemma 4.3.3 to all measurable sets A ∈F such that
there is a P ∈PU◦T with A ⊆ P . Using this, we can see that for an arbitrary B ∈F we
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have ∫
B

J (U ◦T )(x)dµ(x) =
∫

X

∑
P∈PU◦T

1B∩P (x)J(U ◦T )(x)dµ(x)

= ∑
P∈PU◦T

∫
B∩P

J (U ◦T )(x)dµ(x) (138)

= ∑
P∈PU◦T

∫
B∩P

JU (T (x))JT (x)dµ(x) (139)

=
∫

X

∑
P∈PU◦T

1B∩P (x)JU (T (x))JT (x)dµ(x) (140)

=
∫

B
JU (T (x))JT (x)dµ(x),

to hold, where in Equations (138), (140) we have used the Monotone Convergence
Theorem, and in Equation (139) we applied Equation (137) to the sets B∩P . As B ∈F

was given arbitrarily, we may conclude

J (U ◦T ) = (JU ◦T ) · JT, to hold µ-a.e.. (141)

Now for general n > 2 let (Xi ,Fi ,µi )0≤i≤n be finite measure spaces and let Ti : Xi →
Xi+1 for i ∈ {0, . . . ,n −1} be locally invertible, pbn-singular mappings. We then have
by Corollary 4.3.13 and Lemma 4.3.8 the Jacobian J(Tn−1 ◦ · · · ◦T0) to exist. Assuming
Equation (133) holds for the case n −1, we can see

J (Tn−1 ◦ · · · ◦T0) = J(Tn−1 ◦ (Tn−2 ◦ . . .T0))

= (JTn−1 ◦Tn−2 ◦ · · · ◦T0) · J (Tn−2 ◦ · · · ◦T0) (142)

= (JTn−1 ◦Tn−2 ◦ · · · ◦T0) ·
n−2∏
i=0

JTi ◦ (Ti−1 ◦ · · · ◦T0)

=
n−1∏
i=0

JTi ◦ (Ti−1 ◦ · · · ◦T0) (143)

holds µ-a.e.., where in Equation (142) we used the case n = 2 and in Equation (143)
we used our induction hypothesis. Note that - like in the claim of the Proposition -
we say Ti−1 ◦ · · · ◦T0 = Id for i = 0. We conclude the statement.

The following lemma showcases nicely the efficiency that can be achieved in cal-
culating Jacobians when standard results have been established. For notation on
cylinders see Section 3.6.

Lemma 4.3.17. Let (ΓZ≥0 ,FΓ,P,σ) be some Bernoulli shift with weights P = (pγ)γ∈Γ.
Then for each n ≥ 1 and k ∈ {1, . . . ,n} we have the collection

C n := {
[γ0 · · ·γn−1] ⊆ ΓZ≥0 : γ0, . . . ,γn−1 ∈ Γ

}
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of cylinders of depth n to consist of invertibility domains for σk : ΓZ≥0 → ΓZ≥0 . More-
over, σk : ΓZ≥0 → ΓZ≥0 is locally invertible and pbn-singular with a Jacobian satisfying

Jσk (x) = 1

pγ0 · · ·pγk−1

, for almost every x ∈ ΓZ≥0 . (144)

Proof. First fix the cylinders of depth 1, C 1 := {[γ] ⊆ ΓZ≥0 : γ ∈ Γ}, and note for any
γ0 ∈ Γwe have

σγ0 : ΓZ≥0 → [γ0]

(ξn)n≥0 7→
(

n 7→
{
γ0, n = 0

ξn−1, n ≥ 1

)
to satisfy (σγ0 ◦σ)|[γ0] = Id|[γ0], σ ◦σγ0 = Id. We shall show the measurability of σγ0 .

In doing so, note that for any n′ ≥ 1 and (γ′i )0≤i≤n′−1 ⊆ Γn′
such that γ′0 = γ0 we have

σ−1
γ0

[γ′0 · · ·γ′n′−1] = [γ′1 · · ·γ′n′−1] ∈FΛ,

proving σγ0 is measurable by Lemma 2.1.4 and so σ|[γ0] is bi-measurable. As C 1 par-
titions ΓZ≥0 we haveσ to be locally invertible. To prove pbn-singularity, we derive the
Jacobian directly. That is, note that for a γ0 ∈ Γ and a cylinder [γ0γ

′
1 · · ·γ′n′−1] ⊆ [γ0] we

have

(σ|−1
[γ0])⋆P|[γ0]

(
[γ0γ

′
1 · · ·γ′n−1]

)=P(σ[γ0γ
′
1 · · ·γ′n−1])

=P([γ′1 · · ·γ′n−1])

= 1

pγ0

P(
(
[γ0γ

′
1 · · ·γ′n−1]

)
. (145)

The cylinders starting with γ0 are a generating collection for the restricted σ-algebra
F[γ0], so we can apply Lemma 2.1.5 to show (σ|−1

[γ0])⋆P[γ0] = 1
pγ0
P. Using Equation

(145) we have for A ∈F[γ0] that

P(σ(A)) = (σ|−1
[γ0])⋆P[γ0](A) = 1

pγ0

P[γ0](A) =
∫

A

1

pγ0

dP(ω),

so that as γ0 was given arbitrary we see by pbn-singularity and Jσ|[γ0] ≡ 1
pγ0

, P-almost

surely. Now for n ≥ 1, k ∈ {1, . . . ,n} the collection C n is exactly the n’th refined par-
tition of C 1 and so by Lemma 4.3.15 C n consists of invertibility domains of σk and
hence we may apply Proposition 4.3.16 to see for [γ0 · · ·γn−1] ∈C that

Jσk (x) =
k−1∏
i=0

(Jσ)(σi (x)) = 1

pγ0 · · ·pγk

for almost every x ∈ [γ0 . . .γn−1].
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The lemma below is one of the few instances in which measure theoretic proper-
ties of sections are maintained on their product.

Lemma 4.3.18. For each i ∈ {0,1} let (Xi ,Fi ,µi ), (Yi ,Fi ,νi ) be finite measure spaces
and fi : Xi → Yi mappings. Define

H : X0 ×X1 → Y0 ×Y1

(x, y) 7→ ( f0(x), f1(y)).

Then we have

1. H is FX0×X1 -measurable if f0 and f1 are measurable;

2. H is bi-measurable if f0 and f1 are bi-measurable;

3. H is measure-preserving if f0 and f1 are measure-preserving and measurable.

Moreover, if f0 and f1 are pbn-singular and bi-measurable the mapping H is pbn-
singular and bi-measurable, so that J H exists, and we have J H(x, y) = J f0(x)J f1(y),
for µ0 ×µ1 almost every (x, y) ∈ X0 ×X1.

Proof. The first claim follows from [6, Lemma 2.12.5] phrased for general measurable
spaces.

Now assuming bi-measurability of f0 and f1, we can see H is bijective with H−1 =
f −1

0 × f −1
1 , which then as a product of measurable mappings is measurable by [6,

Lemma 2.12.5]. We then conclude H is bi-measurable.
If f0 and f1 are measure-preserving (and measurable), we can show

D := {C ∈FX0×X1 : H⋆(µ0 ×µ1)(C ) = (µ0 ×µ1)(C )}

contains the π-system

I := {A0 × A1 ∈F0 ×F1 : A0 ∈F0, A1 ∈F1}.

As D is also a Dynkin system, we can apply Lemma 2.1.5 to show D =FX0×X1 , proving
H⋆(µ0 ×µ1) =µ0 ×µ1.

For the remaining statements, assuming f0 and f1 are bi-measurable and pbn-
singular, we see the Jacobians J f0, J f1 to exist by Lemma 4.3.8 and be integrable.
We can directly verify joint measurability of (x, y) 7→ J f0(x) · J f1(y) and the mapping
(x, y) 7→ J f0(x) · J f1(y) satisfies J f0 · J f1 ∈ L1(X0 × X1) follows by Theorem 2.1.8. Con-
sequently, we see

ν : FX0×X1 → [0,∞)

A 7→
∫

A
J f0(x)J f1(y)d(µ0 ×µ1)(x, y)
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to be a measure by the Radon Nikodym Theorem 2.1.11. Moreover, by bi-measurability
of H , we can see that

(ν0 ×ν1)(H(·)) := (H−1)⋆(µ0 ×µ1)

is a measure as well.
Finally, on the π-system

I := {A0 × A1 ∈F0 ×F1 : A0 ∈F0, A1 ∈F1},

we see that for any A0 × A1 ∈I we have

(ν0 ×ν1)(H(A0 × A1)) = (ν0 ×ν1)( f0[A0]× f1[A1])

= ν0( f0[A0]) ·ν1( f1[A1])

=
∫

A0

J f0(x)dµ0(x) ·
∫

A1

J f1(y)dµ1(y)

=
∫

A0×A1

J f0(x)J f1(y)d(µ0 ×µ1)(x, y),

by Theorem 2.1.8. Applying Lemma 2.1.5 then shows

(ν0 ×ν1)(H(·)) =
∫
·
J f0(x)J f1(y)d(µ0 ×µ1)(x, y),

from which we can directly derive pbn-singularity of H . To conclude, J H indeed
exists and J H(x, y) = J f0(x)J f1(y), for µ0 ×µ1-almost every (x, y) ∈ X0 ×X1.

A (trivial) application of Lemma 4.3.18 is Lemma 4.3.19 below. We have put it here
to avoid repeating the same claim later on.

Lemma 4.3.19. Let (X ,F ,µ) be some finite measure space and let (Z,2Z,c) be the in-
tegers with the counting measure. Let k, l ∈Z and define the restricted measure spaces
({k}, {;, {k}},c{k}) and ({l }, {;, {l }},c{l }). Then the mapping

Id× tk : X × {k} → X × {l }

(x,k) 7→ (x, l ),

is FX×{k}-FX×{l } measurable, bi-measurable and satisfies (Id× tk )⋆(µ× c{k}) =µ× c{l }.
Moreover, J (Id× tk ) exists and we have J (Id× tk ) ≡ 1,µ×c{k}-almost surely.
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5 Quenched Random Young Towers

In this section we finally start our study of Random Young Towers in a quenched
setting. At the start of Section 4 we have motivated the necessity for the quenched
approach for describing certain random dynamical systems and now focus on its
method. To the knowledge of the author, the quenched setting was first introduced
in [4] and later discussed again in papers such as [26], [2] and [7].

As mentioned in Section 4, in the quenched approach the random tower ∆ is de-
fined on a random dynamical system (Ω× X ,FΩ×X ,P×µ,S) in such a way that its
Ω-sections ∆ω are Young Tower-like structures. In doing so, we shall also need to de-
fine a (random) induced domain Λ, a (random) principal partition P∆, a (random)
tower map and a (random) return time R. In order to find an acip for the resulting
(random) tower system

(∆,F∆,µ∆,G),

we will then subject the Ω-sections of Λ, P∆, R and ∆ to adapted versions of Young’s
conditions. As mentioned in Section 4, this allows for more flexibility than in the
annealed approach.

The price we pay for this is that we lack typical properties on (∆,F∆,µ∆,G) such
as local invertibility as we are no longer sure if P∆ partitions ∆ into invertibility do-
mains. More so, as we can not assume a constant return time on the elements of P∆,
finding a useful expression of

d(GR )⋆µΛ
dµΛ

is hard, if not impossible. This forces us to abandon the concept of a quenched tower
base and forces us to conduct our analysis on the random tower directly.

Effectively, this will result in us being able to show the acip ν∆ we obtain for
(∆,F∆,µ∆,G) in Section 5.4 has a density with a uniform lower bound. This also
makes us unable extend the ergodic properties found in Section 3.5 to ν∆ nor are
we able to find ν∆ as a limit point in total variation norm. Even though a stronger
result is commonly accepted in the literature, its proofs in [4], [26], [2] and [7] are sig-
nificantly lacking in mathematical rigour. We used intuitive concepts presented [2],
formalised them to precise definitions and give rigorous proofs for according results.
The argument in Section 5.4 is to our knowledge novel. Section 5.5 proves and identi-
fies a disintegration theorem perfectly fitted to Random Towers as it essentially only
on absolute continuity instead of topological arguments.

To make sure the reader is not overwhelmed by the technicalities and conditions
we shall introduce the (random) Markov property and (random) bounded distortion
as late as possible in the text.
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5.1 The Core Definitions

In this section we start building our theory necessary for treating random towers.
Definition 5.1.1 through Proposition 5.1.9 show the construction of a random tower
system and prove this is a random dynamical system in the sense of Definition 4.2.3.
After doing this, we will define the random principal partition in Definition 5.1.10
and characterise its sections in Corollary 5.1.12. We close the section with two tech-
nical results showing we can embed higher floors of random towers into lower floors.
In the section thereafter we shall impose extra conditions on random tower systems
to guarantee the existence of Jacobians for the sections of the tower map.

Suppose we have a measure-preserving dynamical system (Ω,FΩ,P,σ) withP(Ω) =
1, σ :Ω→Ω bi-measurable and P-invariant with bi-measurable P-invariant inverse,
a finite measure space (X ,FX ,µ) and a measurable setΛ ∈FΩ×X , such thatµ(Λω) = 1
for P-almost every ω ∈Ω. Furthermore, suppose we have a measurable mapping

g : Ω×X → X

(ω, x) 7→ gω(x)

such that for P-almost every ω ∈Ω we have (gω)⋆µ≪ µ so that we may construct a
skew product S and a random dynamical system

(Ω×X ,FΩ×X ,P×µ,S), (146)

as seen by Lemma 4.2.2 and Definition 4.2.3. We shall refer to (146) as the Base RDS.
Furthermore suppose we have an integrable return time

R : Λ→Z≥1

(ω, x) 7→ inf
{
n ∈Z≥1 : Sn

ω(x) ∈Λσnω

}
,

and suppose we have a countable partition PΛ ⊆FΩ×X ofΛ such that for everyω ∈Ω
and every P ∈ PΛ such that Pω ̸= ; we have Rω|Pω ≡ cPω for some cPω ∈ Z≥0. That is,
for every P ∈ PΛ the return time R is constant on the ω-sections of P . We then call
Λ the (random) induced domain, PΛ the (random) principal partition (of Λ) and the
family (gω)ω∈Ω the random map. We shall fix all objects thus far defined until Section
5.6. For sake of notational brevity we shall omit the adjective ‘random’ whenever it is
clear from the context we are not dealing with an exclusively deterministic system. To
define a random tower in Definition 5.1.1 concisely and correctly we need the objects,

σΩ :Ω×X →Ω×X

(ω, x) → (σω, x),
R>l := {(ω, x) ∈Λ : R(ω, x) > l } , for l ∈Z≥0. (147)

Recall Lemma 4.2.6 for the properties of σΩ and note that for any l ∈Z≥0 we have

R>l =Z≥1 \ R−1{1, . . . , l } ∈FΛ by measurability of R.
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Below we define a random tower. The definition may seem rather contrived but
turns out to be useful when interpreted in the context of a random dynamical system.

Definition 5.1.1. Define
∆ := ⊔

l∈Z≥0

σl
Ω(R>l )× {l }. (148)

We call ∆ a (random) tower, for l ∈ Z≥0, ∆l a (random) floor of ∆ and ∆0 = Λ, the
(random) ground floor of ∆.

Remark 5.1.2. 1. Note that for each l ∈Z≥0 we have ∆l =σl
Ω(R>l ).

2. For the rest of this section, when mentioning towers, we shall refer to towers as
defined in Definition 5.1.1, with its associated objects PΛ,R, (gω)ω∈Ω.

We endow ∆with a σ-algebra and a finite measure.

Lemma 5.1.3. Let (Z≥0,FZ≥0 ,c) be the integers equipped with the σ-algebra FZ≥0 :=
2Z≥0 and the counting measure c. Let∆⊆Ω×X ×Z≥0 be a tower as in Definition 5.1.1.
Then ∆ is FΩ×X×Z≥0 -measurable with (P×µ× c)(∆) ∈ [1,∞) and hence we may define
(∆,F∆,µ∆) as a (restricted) finite measure space.

Proof. Note that for l ∈Z≥0 we have R>l ∈FΛ. As Λ⊆Ω×X we then see R>l ∈FΩ×X

and so by bi-measurability of σΩ we have for each l ∈Z≥0 that ∆l =σl
Ω(R>l ) ∈FΩ×X .

We then see∆=⊔
l∈Z≥0∆l ×{l } is a countable union of FΩ×X×Z≥0 -measurable sets and

hence it is FΩ×X×Z≥0 -measurable. We conclude we may construct (∆,F∆,µ∆) as the
restricted measure space of

(Ω×X ×Z≥0,FΩ×X×Z≥0 ,P×µ×c) to ∆.

What remains to be proven is that µ∆(∆) = [1,∞). Note

µ∆(∆) = ∑
l∈Z≥0

(P×µ)(∆l ) = ∑
l∈Z≥0

(P×µ)(σl
Ω[R>l ]) = ∑

l∈Z≥0

(P×µ)(R>l ),

by invariance of the mapping σ−1
Ω . By using a standard probabilistic equality (e.g.

seen in [14, Lemma 4.4]) we see∑
l∈Z≥0

(P×µ)(R>l ) = ∥R∥1 <∞,

As by construction we haveΛ× {0} ⊆∆,Λ ∈FΩ×X and µ(Λω) = 1, P-almost surely,
we can use Proposition 2.1.7 to show

µ∆(∆) ≥ (P×µ)(Λ) =
∫
Ω
µ(Λω)dP(ω) = 1,

so that indeed µ∆(∆) ∈ [1,∞).
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We call the measure space (∆,F∆,µ∆) as seen in Lemma 5.1.3 a random tower
(space). As mentioned, most of the analysis on random tower spaces takes place their
sections. We make a quick notational comment.

Remark 5.1.4. When taking multiple sections on the same set, we adopt the following
notation. For ω̇ ∈Ω and l̇ ∈Z≥0 we write

∆ω̇ := {(x, l ) ∈ X ×Z≥0 : (ω̇, x, l ) ∈∆} and ∆ω̇,l̇ := {x ∈ X : (ω̇, x, l̇ ) ∈∆}.

Similarly, we write for A ∈F∆, ω̇ ∈Ω and l̇ ∈Z≥0 that,

Aω̇ = {(x, l ) ∈∆ω̇ : (ω̇, x, l ) ∈ A}, and Aω̇,l̇ = {x ∈∆ω̇,l̇ : (ω̇, x, l̇ ) ∈ A}.

By Lemma 2.1.7 we see that Aω̇ ∈ F∆ω̇ , and Aω̇,l̇ ∈ F∆ω̇.l̇
. We can similarly define for

l̇ ∈ Z≥0 and ω̇ ∈Ω A l̇ ,ω̇ first taking the l̇-section and then the ω̇-section. As we then
see A l̇ ,ω̇ = Aω̇,l̇ we are free to use both notations interchangeably.

Note we only have required µ(Λω) = 1 and (gω)⋆µ ≪ µ, to hold P-almost ev-
erywhere. This has been done to accommodate random dynamical systems where
the random dynamic behaves abnormally for particular ω ∈Ω. An example of such
an ω ∈ Ω is for instance in the annealed example in Section 3.6.2 a sequence ω =
(ωn)n≥0 ∈ {s, g }Z≥0 where ω is eventually constant s. This disrupts the dynamics as
points are no longer sure to return to their induced domain.

Like in the annealed approach, this is not a problem in the quenched approach
if these ‘abnormal’ ω only add up to a measure zero set. We shall formalise this by
defining a set Ω̇⊆Ω of full measure, consisting of well-behaved points inΩ.

Remark 5.1.5. Given a random tower space (∆,F∆,µ∆) we have by construction for
almost every ω ∈ Ω, µ∆ω(∆ω) ≥ µ(Λω) = 1. Moreover, as a consequence of Lemma
5.1.3 we have µ∆ω(∆ω) < ∞ for almost every ω ∈ Ω. Lastly we now by construction
(gω)⋆µ≪µ for almost every ω ∈Ω. Combined, we can see

Ω̃ := {ω ∈Ω :µ∆ω(∆ω) ∈ [1,∞), (gω)⋆µ≪µ} ∈FΩ,

and P(Ω\ Ω̃) = 0. Finally we close Ω̃ under σ by writing

Ω̇ :=
∞⋂

n∈Z
σn(Ω).

Note again we have Ω̇ ∈ FΩ and P(Ω \ Ω̇) = 0. As we now have (gω)⋆µ≪ µ for each
ω ∈ Ω̇, and Ω̇ is closed under σ, we can see that for any ω ∈ Ω̇ and any m ∈ Z≥0 and
l ∈ Z we have (g m

σlω
)⋆µ ≪ µ as g m

σlω
is a composition of measurable, non-singular

mappings. The set Ω̇ will be useful in almost every statement onwards and will save
us many technical complications. As there are no drawbacks for us to use Ω̇ instead
ofΩ, we shall do so consistently.
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Remark 5.1.6. Below we have provided a schematic representation of (a part of) a
random tower (∆,F∆,µ∆). On the last row of the figure we have specified which Ω-
section of the tower is being shown in the column above. As can be seen each row
represents a floor of the tower.

. . . . . . . . .

. . . ∆σ−1ω,3 × {3} ∆ω,3 × {3} ∆σω,3 × {3} . . .

. . . ∆σ−1ω,2 × {2} ∆ω,2 × {2} ∆σω,2 × {2} . . .

. . . ∆σ−1ω,1 × {1} ∆ω,1 × {1} ∆σω,1 × {1} . . .

. . . ∆σ−1ω,0 × {0} ∆ω,0 × {0} ∆σω,0 × {0} . . .

∆σ−1ω ∆ω ∆σω

Figure 5: A schematic representation of a part of a random tower

To make some more comments on how the sections of a tower in the figure relate,
it can be useful to rewrite the above figure in term of the return time. That is, forω ∈ Ω̇
and l ∈Z≥0,k ∈Zwe can directly derive from the definition of ∆ that

∆σkω,l × {l } = (R>l )σk−lω× {l } (149)

yielding the figure
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. . . . . . . . .

. . . (R>3)σ−4ω× {3} (R>3)σ−3ω× {3} (R>3)σ−2ω× {3} . . .

. . . (R>2)σ−3ω× {2} (R>2)σ−2ω× {2} (R>2)σ−1ω× {2} . . .

. . . (R>1)σ−2ω× {1} (R>1)σ−1ω× {1} (R>1)ω× {1} . . .

. . . (R>0)σ−1ω× {0} (R>0)ω× {0} (R>0)σω× {0} . . .

∆σ−1ω ∆ω ∆σω

.

Figure 6: Figure 5 reimagined using Identity (149)

Looking at this figure intent-fully we can make two important remarks

1. The individual floors of an Ω-section of a tower do not have to be related. For-
malising this, suppose ω ∈ Ω̇ and l , l ′ ∈Z≥0 and note that the sets ∆ω,l and ∆ω,l ′

are floors in the sameΩ-section ∆ω however, we have

∆ω,l = (R>l )σ−lω ⊆Λσ−lω, ∆ω,l ′ = (R>l ′)σ−l ′ω ⊆Λσ−l ′ω.

Conceptually, the setsΛσ−l ′ω andΛσ−lω may be unrelated other than both being
subsets of X . For instance in restricting the skew product S toΛwe can see that

S|Λ(σ−lω, ·) = Sσ−lω|Λσ−lω
(·) and S|Λ(σ−l ′ω, ·) = Sσ−l ′ω|Λσ−l ′ω

(·),

which can be very different functions.

2. Rather that the floors of an individual Ω-section of ∆, there is a more direct
connection along the diagonals in the figures above. Indeed, we clearly have
(R>l )ω ⊇ (R>k+l )ω for each k, l ∈Z≥0 so

∆ω,0 = (R>0)ω ⊇ (R>1)ω ⊇ (R>2)ω ⊇ . . . .

By Equation (149) we have ∆σiω,i = (R>i )ω, so that

Λω =∆ω,0 ⊇∆σω,1 ⊇∆σ2ω,2 ⊇ . . .
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Embedding floors ∆σkω,l into ∆σk−lω,0 will be central to our to our theory and
will be formalised in Lemma 5.1.13 and Corollary 5.1.14.

Now we will equip a random tower with a mapping making it into a dynamical
system.

Definition 5.1.7. Let (∆,F∆,µ∆) be a (random) tower. Then define the (random)
tower map by

G : ∆→∆

(ω, x, l ) 7→ (σω,Gω(x, l ))

where for ω ∈Ω, with ∆ω ̸= ;, Gω :∆ω→∆σω is such that for (x, l ) ∈∆ω we have

Gω(x, l ) =
{

(x, l +1), if Rσ−lω(x) > l +1,

(g l+1
σ−lω

(x),0), if Rσ−lω(x) = l +1.

Remark 5.1.8. Before proving the measure-theoretical properties of a random tower
map on a technical level, we explain the way the tower map acts on the tower using
the Figures 7 and 8. Both figures are based on Figure 6 where we use for l ,k ∈Z≥0 the
identity

(R>l )σkω× {l } = (R>l+1)σkω× {l }⊔ (R−1(l +1))σkω× {l }.

As we have ∆σk+lω× {l } = (R>l )σkω× {l } by Equation (149) we can then write

Gσk+lω|∆σk+lω,l×{l } :∆σk+lω,l × {l } →∆σk+l+1ω

(x, l ) 7→
{

(x, l +1), x ∈ (R>l+1)σkω

(g l+1
σkω

(x),0), x ∈ (R−1(l +1))σkω

In the Figures 7 and 8 the arrows represent the action of

Gσiω :∆σiω→∆σi+1ω, i ∈ {−1,0,1}

restricted to the sets as specified in the figures.

107



. . . . . . . . .

. . . (R−1{4})σ−4ω× {3} (R−1{4})σ−3ω× {3} (R−1{4})σ−1ω× {3} . . .

. . . (R−1{3})σ−3ω× {2} (R−1{3})σ−2ω× {2} (R−1{3})σ−1ω× {2} . . .

. . . (R−1{2})σ−2ω× {1} (R−1{2})σ−1ω× {1} (R−1{2})ω× {1} . . .

. . . (R>0)σ−1ω× {0} (R>0)ω× {0} (R>0)σω× {0} . . .

Figure 8: Subsets of floors mapped to the ground floor under the tower map

. . . . . . . . . . . .

. . . (R>4)σ−4ω× {3} (R>4)σ−3ω× {3} (R>4)σ−1ω× {3} . . .

. . . (R>3)σ−3ω× {2} (R>3)σ−2ω× {2} (R>3)σ−1ω× {2} . . .

. . . (R>2)σ−2ω× {1} (R>2)σ−1ω× {1} (R>2)ω× {1} . . .

. . . (R>1)σ−1ω× {0} (R>1)ω× {0} (R>1)σω× {0} . . .

Figure 7: Subsets of floors mapped to a higher floor under the tower map

The following lemma affirms the quadruple (∆,F∆,µ∆,G) is a random dynamical
system. We refer to it as a random tower system.

Proposition 5.1.9. Let (∆,F∆,µ∆) be a tower, with G :∆→∆ a tower map as in Defini-
tion 5.1.7. Then the mapping G is measurable and non-singular so that (∆,F∆,µ∆,G)
is a random dynamical system as seen in Definition 4.2.3. Moreover, we have (Gω)⋆µ∆ω ≪
µ∆σω , for each ω ∈ Ω̇.
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Proof. Let (∆,F∆,µ∆) be a random tower and let G be its random tower map. We first
prove measurability of G . So let A ∈ F∆ and write A = (A0 × {0})⊔⊔

l≥1 Al × {l }. First
we calculate G−1(A0 × {0}). Note that (keeping Figure 8 in mind)

G−1(A0 × {0}) = {(ω, x, l ) ∈∆ : (σω,Gω(x, l )) ∈ A0 × {0}}

= {(ω, x, l ) ∈∆ : (σω, g l+1
σ−lω

(x)) ∈ A0, Rσ−lω(x) = l +1}

= {(ω, x, l ) ∈∆ : Sl+1(σ−lω, x) ∈ A0, x ∈ (R−1(l +1))σ−lω}

= {(ω, x, l ) ∈∆ : Sl+1(σ−l
Ω (ω, x)) ∈ A0, σ−l

Ω (ω, x) ∈ R−1(l +1)}

= {(ω, x, l ) ∈∆ : (ω, x) ∈σl
Ω(S−(l+1)(A0)∩R−1(l +1))}

= ⊔
l∈Z≥0

σl
Ω(S−(l+1)(A0)∩R−1(l +1))× {l } ∈FΩ×X×Z≥0 ,

as a countable union of measurable sets. Note we have

σl
Ω(S−(l+1)(A0)∩R−1(l +1))× {l } ⊆∆l × {l } for l ∈Z≥0

as well, so that

G−1(A0 × {0}) = ⊔
l∈Z≥0

σl
Ω(S−(l+1)(A0)∩R−1(l +1))× {l } ∈F∆, (150)

and for l ∈Z≥1 we see (keeping Figure 7 in mind)

G−1(Al × {l }) =σ−1
Ω (Al )× {l −1} ∈F∆. (151)

Combining Equations (150) and (151) we obtain

G−1 A =G−1(A0 × {0})∪G−1

(⊔
l≥1

Al × {l }

)
∈F∆. (152)

To show non-singularity of G we calculate the inverse images of the tower map sec-
tion wise. Let ω ∈ Ω̇ and suppose we have a B ∈F∆σω . We can derive

G−1
ω (B0 × {0}) = ⊔

l ′∈Z≥0

(
(g l ′+1
σ−l ′ω

)−1(B0)∩ (Rσ−l ′ω)−1{l ′+1}
)
× {l ′}, (153)

and for l ∈Z≥1

G−1
ω (Bl × {l }) = Bl × {l −1}.

Now assuming µ∆σω(B) = 0 we see µ∆σω(Bl × {l }) = 0 for each l ∈Z≥0.
We then see using Equation (153) that

µ∆ω(G−1
ω (B0 × {0})) ≤ ∑

l ′∈Z≥0

µ∆ω

(
(g l ′+1
σ−l ′ω

)−1(B0)∩ (Rσ−l ′ω)−1{l ′+1}× {l ′}
)

≤ ∑
l ′∈Z≥0

µ
(
(g l ′+1
σ−l ′ω

)−1(B0)
)
= 0, (154)
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as (g l ′+1
σ−l ′ω

)⋆µ≪ µ and µ(B0) = µ∆σω(B0 × {0}) = 0. Similarly we can obtain using c to

denote the counting measure

µ∆ω(G−1
ω (Bl × {l })) =µ∆ω(Bl × {l −1})

=µ(Bl ) · c({l −1})

=µ(Bl ) · c({l })

=µ∆σω(Bl × {l })

= 0. (155)

Combining Equations (154) and 155 we then see

(Gω)⋆µ∆ω(B) = ∑
l∈Z≥0

(Gω)⋆µ∆ω(Bl × {l }) = 0,

proving (Gω)⋆µ∆ω ≪µ∆σω for each ω ∈ Ω̇. Applying Proposition 4.2.2 then shows that
(∆,F∆,µ∆,G) is a random dynamical system.

As mentioned in the introduction of this section, we now turn to defining a (ran-
dom) principal partition for P∆. We do so using the collection PΛ at the start of this
section, similar to the deterministic case. In Lemma 5.1.11 and Corollary 5.1.12 the
namesake of the objects defined in Definition 5.1.10 below will be justified.

Definition 5.1.10. Let (∆,F∆,µ∆,G) be a random tower system. We say the collection

P∆ := {σl
Ω[P ∩ R>l ]× {l } : P ∈PΛ, l ∈Z≥0} \ {;} (156)

is the (random) principal partition for ∆ and for ω ∈ Ω̇ we say its ω-section P∆ω as
defined in (96) is the (random) principal partition for ∆ω.

We now prove the random principal partition P∆ for a random tower system ∆ is
a countable partition for ∆ consisting of measurable sets.

Lemma 5.1.11. Let (∆,F∆,µ∆) be a random tower. Then the collection P∆ as defined
in Definition 5.1.10 partitions ∆, is countable and consists of F∆-measurable sets.

Proof. To start, the countability of P∆ follows from countability of PΛ and Z≥0. We
proceed with the proof.

(1: P∆ covers∆) Let (ω, x, l ) ∈∆. This implies (σ−lω, x) ∈Λ and R(σ−lω, x) > l so that
we may fix the unique P ∈ PΛ with (σ−lω, x) ∈ P . We note (σ−lω, x) ∈ P ∩R>l

so (ω, x) ∈ σl
Ω(P ∩R>l ) and hence (ω, x, l ) ∈ σl

Ω(P ∩R>l )× {l }. We then have by
definition σl

Ω(P ∩R>l )× {l } ∈P∆.
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(2: P∆ consists of disjoint sets) Suppose we have Q, Q ′ ∈P∆, Q ∩Q ′ ̸= ; then there
must exist P,P ′ ∈PΛ and l , l ′ ∈Z≥0 such that

Q =σl
Ω[P ∩R>l ]× {l }, Q ′ =σl ′

Ω[P ′∩R>l ′]× {l ′}.

Clearly Q ∩Q ̸= ; implies l = l ′ and as σl
Ω is a bijection on Ω× X we can see

P ∩P ′ ̸= ; so P = P ′ as P,P ′ ∈ PΛ. We conclude Q = Q ′, and so P∆ consists of
disjoint elements of ∆

(3: P∆ ⊆F∆) Finally, in noting that by construction PΛ ⊆FΛ and that for any l ∈Z≥0

we have R>l ∈FΛ by measurability of R, we can see P ∩R>l ∈FΛ. In particular
P ∩R>l ∈ FΩ×X and σl

Ω(P ∩R>l ) ∈ FΩ×X , by bi-measurabilty of σΩ, Lemma
4.2.6. We finally see σl

Ω(P ∩R>l )×{l } ∈F∆ as σl
Ω(P ∩R>l )×{l } ⊆∆l ×{l } ⊆∆ and

σl
Ω(P ∩R>l )× {l } ∈FΩ×X×Z≥0 .

We have shown the claims in the Lemma.

To conclude our discussion on principal partitions we show that forω ∈ Ω̇ the col-
lection P∆ω is a partition of ∆ω and give an explicit characterisation of its elements.

Corollary 5.1.12. Let (∆,F∆,µ∆) be a random tower. For eachω ∈ Ω̇ the collection P∆ω

is a countable partition of P∆ω consisting of F∆ω-measurable. Moreover, we have

P∆ω =
{

Pσ−lω× {l } ∈F∆ω : Rσ−lω|Pσ−lω
> l ,P ∈PΛ

}
. (157)

Proof. Let ω ∈ Ω̇. Lemma 5.1.11 and Lemma 4.2.5 together imply that P∆ω ⊆ F∆ω ,
that P∆ω partitions ∆ω and that it consist of countably many sets.

To prove Equation (157), we first derive that for any P ∈ PΛ and l ∈ Z≥0 we have
that Q =σl

Ω(P ∩R>l )× {l } satisfies

Qω = Pσ−lω× {l } with Rσ−lω|Pσ−lω
> l if Qω ̸= ;. (158)

To do so, let P ∈PΛ, and l ∈Z≥0 and note that for Q =σl
Ω(P ∩R>l )× {l } we have

Q = {(σl
Ω(ρ, x), l ) ∈Ω×X × {l } : (ρ, x) ∈ P ∩R>l }

= {(ρ, x, l ) ∈Ω×X × {l } : (σ−lρ, x) ∈ P ∩R>l }

= {(ρ, x, l ) ∈Ω×X × {l } : x ∈ Pσ−lρ∩ (R>l )σ−lρ},

so that we see Qω = Pσ−lω∩ (R>l )σ−lω× {l }. Note that as Rσ−lω|Pσ−lω
is constant, we

have either
Qω = Pσ−lω∩ (R>l )σ−lω =; or Pσ−lω ⊆ (R>l )σ−lω.

So if Qω ̸= ;, we see Pσ−lω∩ (R>l )σ−lω× {l } = Pσ−lω× {l } proving Equation (158).
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Now to show Equation (157), note for Q ∈P∆ we have a P ∈PΛ and l ∈Z≥0 such
that Q =σl

Ω(P ∩R>l )× {l }. We then see that

P∆ω = {Qω ∈FX×Z≥0 : Qω ̸= ;,Q ∈P∆} by Lemma 4.2.5

= {Pσ−lω× {l } ∈F∆ω : Rσ−lω|Pσ−lω
> l ,P ∈PΛ}, by Equation (158)

proving our claim.

We postpone any measure theoretical properties of the random principal parti-
tion until the next section and focus on its ‘mechanical’ nature first. We point out
once more that in Remark 4.2.4 we have defined

Gn
ω =Gσn−1ω ◦ · · · ◦Gω, for n ∈Z≥1.

Adding to this we shall fix G0
ω := Id|∆ω .

We now formalise the embedding that was hinted at in Remark 5.1.6. Its use will
become clear in the sections ahead and is also a good way to get acquainted further
with ‘section’ notation.

Lemma 5.1.13. Let (∆,F∆,µ∆,G) be a random tower system and let ω ∈ Ω̇, l ∈ Z≥0

such that ∆ω,l ̸= ;. Then we have for each l ′ ∈ {0, ..., l } that ∆ω,l × {l ′} ⊆∆σ−(l−l ′)ω,l ′ × {l ′}
and the mapping

G l−l ′
σ−(l−l ′)ω

|∆ω,l×{l ′} :∆ω,l × {l ′} →∆ω,l × {l } (159)

(x, l ′) 7→ (x, l ),

is bijective. Lastly, (G l−l ′
σ−(l−l ′)ω

)−1(∆ω,l × {l }) =∆ω,l × {l ′}.

Proof. The case l ′ = l is trivial so assume l > 0 and l ′ ∈ {0, . . . , l −1}. Note that

∆ω,l × {l ′} = (R>l )σ−lω× {l ′}
= (R>l )σ−l ′ (σ−l−l ′ω) × {l ′}

⊆ (R>l ′)σ−l ′ (σ−l−l ′ω) × {l ′}

=∆σ−l+l ′ω,l ′ × {l ′},

proving our first claim. Having shown this, we can indeed write

G l−l ′
σ−(l−l ′)ω

|∆ω,l×{l ′} :∆ω,l × {l ′} →∆ω.

We have to show injectivity on ∆ω,l × {l ′}. To do so, note that for any l ′′ ∈ {l ′, . . . , l } we
have

Rσ−(l−l ′′)(σ−l ′′ω)(x) = Rσ−lω(x) > l for any x ∈∆ω,l ,
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so that Gσ−(l−l ′′)ω(x, l ′′) = (x, l ′′+ 1) for any x ∈ ∆ω,l . Having shown this we can con-
clude

G l−l ′
σ−(l−l ′)ω

(x, l ′) =Gσl−1ω ◦ · · · ◦Gσ−(l−l ′)ω(x, l ′) = (x, l ),

so G l−l ′
σ−(l−l ′)ω

|∆ω,l×{l ′} is injective. Moreover, we see G l−l ′
σ−(l−l ′)ω

(∆ω,l × {l ′}) =∆ω,l × {l }.

To show (G l−l ′
σ−(l−l ′)ω

)−1(∆ω,l × {l }) =∆ω,l × {l ′}, we derive

(G l−l ′
σ−(l−l ′)ω

)−1(∆ω,l × {l }) = {(x, l ′′) ∈∆σl ′−lω : G l−l ′
σl ′−lω

(x, l ′′) ∈∆ω,l × {l }}

= {(x, l ′) ∈∆σl ′−lω,l ′ × {l ′} : G l−l ′
σl ′−lω

(x, l ′) ∈∆ω,l × {l }}

=∆ω,l × {l ′}.

In the following sections we shall be most interested in the special case of Lemma
5.1.13 where we have an embedding between a (general) floor and a subset of the
ground floor which we phrase in Corollary 5.1.14 below. We also show this embed-
ding has nice measure theoretical-properties.

Corollary 5.1.14. Let (∆,F∆,µ∆,G) be a random tower system and let ω ∈ Ω̇, l ∈ Z≥0

such that ∆ω,l ̸= ;. Then the mapping

G l
σ−lω

|∆ω,l×{0} :∆ω,l × {0} →∆ω,l × {l } (160)

(x,0) 7→ (x, l ),

satisfies (G l
σ−lω

|∆ω,l×{0})⋆µ∆
σ−lω

=µ∆ω,l×{l } and is bi-measurable with invariant inverse.

Proof. In noting G l
σ−lω

|∆ω,l×{0} = Id|∆ω,l × tl by Lemma 5.1.13 and that µ∆ω,l (∆ω,l ) <∞
our claim is immediate by Lemma 4.3.18.

5.2 Measure-Regularity of random towers

As said in Section 5, a difficulty with analysing random towers ∆ is that we do not
know if for elements A ∈ P∆ the mapping G|A : A → G(A) has a measurable inverse,

making analysing dG⋆µ∆
dµ∆

through Jacobians as in the deterministic case harder. Ad-
ditionally, mimicking the deterministic case and defining some sort of random tower
base (∆0,F∆0 ,µ∆0 ,GR ) appears to be fruitless as well as there does not seem to be a
clear identification of the densities associated with (GR )⋆µ∆0 . For this reason, we,
like the papers [26], [2], [4], [7] before us, will continue the work on the sections of
the random tower. That is, we fix an ω ∈ Ω̇ (with Ω̇ as in Remark 5.1.5) and use the
local behaviour of Gω to study the global behaviour of G . As said in Section 5.1, we
do need to assume some extra regularity on the random tower System in order to

113



apply the theory from Section 4.3. This section is aimed at showing the sections of
random tower maps are pbn-singular and locally invertible allowing us to analyse its
measure-theoretical properties through refined principal partitions and Jacobians.
Moreover, this will mean the (sections) of the random tower map are forward mea-
surable - a property fundamental to almost all of our proofs.

Definition 5.2.1. A random tower system (∆,F∆,µ∆,G) is measure-regular if we have
for all ω ∈ Ω̇ and all A ∈P∆ with Gω(Aω)∩ (∆σω,0 × {0}) ̸= ; that

Gω(Aω) ∈F∆σω , that Gω|Aω : Aω→Gω(Aω) is bi-measurable,

and we have
(Gω|−1

Aω
)⋆µ∆σω ≪µAω .

From hereon out we shall assume every random tower system is measure-regular.

We now show the existence of the Jacobian for sections of the random tower map. We
remind the reader that we have already obtained non-singularity on the Ω-sections
of random tower systems almost surely in Proposition 5.1.9.

Lemma 5.2.2. Let (∆,F∆,µ∆,G) be a random tower system. Then for every ω ∈ Ω̇ the
map Gω : ∆ω → ∆σω is locally invertible with P∆ω partitioning ∆ω into invertibility
domains for Gω. Moreover, for each ω ∈ Ω̇ the mapping Gω is pbn-singular so that
there exists a Jacobian JGω :∆ω→ [0,∞).

Proof. Let Aω ∈P∆ω . We prove Aω is an invertibility domain and do so by distinguish-
ing two cases. If Gω(Aω)∩ (∆σω,0 × {0}) ̸= ; we have the bi-measurability of Gω|Aω :
Aω →Gω(Aω) by measure-regularity, so Aω is an invertibility domain (see Definition
4.3.1). Moreover, again by measure-regularity, we have (Gω|−1

Aω
)⋆µ∆σω ≪ µAω . Ancil-

lary, we have as Aω ∈P∆ω , with Gω(Aω)∩ (∆σω,0 × {0}) ̸= ; that Gω(Aω) ⊆∆σω,0 × {0}.
Now suppose Aω ∈P∆ω satisfies Gω(Aω)∩(∆σω,0×{0}) =;. By Corollary 5.1.12 we

then know there exists l ∈ Z≥0 and P ∈ PΛ such that Aω = Pσ−lω× {l } ⊆ R>l ,σ−lω× {l }.
As Gω(Aω)∩(∆σω,0×{0}) =; it follows from the definition of the tower map that Aω,l =
Pσ−lω ⊆ R>l+1,σ−lω. In particular, we have

Gω|Aω : Aω,l × {l } → Aω,l × {l +1}

(x, l ) 7→ (x, l +1), (161)

which is bi-measurable and satisfies (Gω|−1
Aω

)⋆µ∆σω ≪µAω as well. Finally,

Gω(Aω) = Pσ−lω× {l +1}

= Pσ−l−1(σω) × {l +1}

∈P∆σω ,
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and Gω(Aω) ∈ F∆σω by Corollary 5.1.12. We conclude the partition P∆ω consists of
invertibility domains making Gω locally invertible. Moreover, we have shown

(Gω|−1
Aω

)⋆µ∆σω ≪µAω for each Aω ∈P∆ω .

This together with µ∆ω(∆ω) ∈ [1,∞) asω ∈ Ω̇ implies pbn-singularity of Gω by Lemma
4.3.6. As Gω : ∆ω → ∆σω for ω ∈ Ω̇ is measurable, locally invertible and pbn-singular
between two finite measure spaces, we have by Lemma 4.3.8 that the Jacobian JGω

exists.

In the corollary below we have phrased ancillary results following directly from
the proof of Lemma 5.2.2. We note the mapping in Equation (161) has a Jacobian
that is constant by Lemma 4.3.18.

Corollary 5.2.3. Let (∆,F∆,µ∆,G) be a random tower system. Letω ∈ Ω̇, Aω ∈P∆ω . We
have either

Gω(Aω) ⊆∆σω,0 × {0}

or
Gω(Aω)∩ (∆σω,0 × {0}) =; and Gω(Aω) ∈P∆σω .

In case of the latter, we have additionally

JGω ≡ 1, µAω-almost surely. (162)

The rest of this section is dedicated to deriving the chain rule of theΩ-sections of
a random tower map. To this end, it is natural to refine our principal partition. We
shall write for n ∈Z≥1, ω ∈ Ω̇,

P n
∆ :=

n−1∨
i=0

G−i P∆ and P n
∆ω

=
n−1∨
i=0

G−i
ω P∆

σiω
. (163)

We derive the existence of the Jacobian for iterated the tower maps.

Lemma 5.2.4. Let (∆,F∆,µ∆,G) be a random tower system and n ∈ Z≥1. Then for
every ω ∈ Ω̇ the mapping Gn

ω is pbn-singular and P n
∆ω

partitions ∆ω into invertibility
domains for Gn

ω :∆ω→∆σnω. Moreover, the Jacobian JGn
ω exists and is given by

J (Gn
ω) =

n−1∏
i=0

(JGσiω)◦G i
ω for µ∆ω-almost every x ∈∆ω. (164)

Proof. In Lemma 5.2.2 we showed that for ω ∈ Ω̇ the partition P∆ω consists of invert-
ibility domains for Gω and that Gω is pbn-singular. We can see that for ω ∈ Ω̇, we
can apply Corollary 4.3.13 to see that Gn

ω : ∆ω → ∆σnω is pbn-singular and that P n
∆ω

partitions ∆ω into invertibility domains for Gn
ω. The existence of JGn

ω and its charac-
terisation in Equation (164) then follow from Proposition 4.3.16.
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The following Corollary is obvious by Lemma 5.2.4 and Lemma 4.3.3. We have
included it separately to make sure the reader is left without questions on measura-
bility.

Corollary 5.2.5. Let (∆,F∆,µ∆,G) be a random tower system and n ∈ Z≥1. Then for
every ω ∈ Ω̇ and every Aω ∈F∆ω we have Gn

ω(Aω) ∈F∆σnω
.

In the next section we will use Equation (164) to prove that J(Gn
ω) is positive µ∆ω-

almost surely for ω ∈ Ω̇, assuming an extra condition.

5.3 The Markov Property and Bounded Distortion for random tow-
ers

In this section we shall continue building the theory of Random Young Towers and to
do so we define random equivalent of the Markov Property (3.2.3), Separation Time
(5.3.9) and Bounded Distortion (5.3.12), cumulating in the notion of (acip) admissi-
bility at the end of this section. Our Definitions, 2.1.27 and 3.2.6 are consistent with
[2] with the exception that we have placed the positivity of the Jacobian under the
Markov Property as seen in Definition 5.3.1. This way we can derive the reciprocal
identity in Lemma 5.3.7 before needing to introduce the bounded distortion for ran-
dom towers.

We briefly highlight the n′th-Markov Collections as defined in Definition 5.3.2.
This collection contains the sets that for a given n ∈ Z≥1, ω ∈ Ω̇ map onto a ground
floor under Gn

ω, as can be seen in Corollary 5.3.4. The Markov property will ensure this
happens bi-measurably with a positive Jacobian. These sets will form the backbone
of the arguments in Section 5.4. We still assume measure-regularity on random tower
systems throughout this section.

Definition 5.3.1. Let (∆,F∆,µ∆,G) be a random tower system. If for each ω ∈ Ω̇
and A ∈P∆ with GωAω∩ (∆σω,0 × {0}) ̸= ;, the mapping Gω|Aω is bi-measurable onto
∆σω,0×{0} with JGω|Aω > 0, µAω-almost surely, we say (∆,F∆,µ∆,G) satisfies the (Ran-
dom) Markov Property.

Additionally to measure-regularity, for the rest of this section we shall assume
all random tower Systems satisfy the Markov Property.

Definition 5.3.2. Let (∆,F∆,µ∆,G) be a random tower system, n ∈Z≥0 andω ∈ Ω̇. We
then say

Rn
ω :=

{
Aω ∈P n

∆ω
: Aω ⊆∆ω,0 × {0}, Gn

ω(Aω)∩ (∆σnω,0 × {0}) ̸= ;
}

is the n’th Markov collection with respect to ω. We call elements of Rn
ω Markov sets.
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We present two consequences of the Markov Property.

Lemma 5.3.3. Let (∆,F∆,µ∆,G) be a random tower system, n ∈ Z≥1,ω ∈ Ω̇. Then for
each Aω ∈P n

∆ω
we have either

1. Gn
ω(Aω) ∈P∆σnω

with Gn
ω(Aω)∩ (∆σnω,0 × {0}) =; or

2. Gn
ω(Aω) =∆σnω,0 × {0}.

Proof. We prove by induction. Note for n = 1 our claims follow from Corollary 5.2.3
combined with the Markov Property. Now suppose that for some p ∈Z≥1 we have for
each Bω ∈P

p
∆ω

, that either

1. G p
ω[Bω] ∈P∆σpω

with G p
ω[Bω]∩∆σpω,0 × {0} =; or

2. G p
ω[Bω] =∆σpω,0 × {0}.

Then note that for any Aω ∈P
p+1
∆ω

we have a Cσpω ∈P∆σpω
and a Bω ∈P

p
∆ω

such that

Aω = Bω∩G−p
ω (Cσpω). Using the induction hypothesis we then see

G p
ω(Aω) =G p

ω(Bω∩G−p
ω Cσpω)

=G p
ω(Bω)∩Cσpω using Lemma 2.1.23

=
{

Cσpω if G p
ω(Bω) ∈P∆σpω, (as overlapping elements from the same partition)

Cσpω if G p
ω(Bω) =∆σpω,0 × {0} (as then necessarily Cσpω ⊆∆σpω,0 × {0})

=Cσpω.

Hence Gp+1
ω (Aω) = Gσpω(Cσpω). As Cσpω ∈ P∆σpω

the claim follows from Corollary
5.2.3 applied with the Markov Property/

Directly from Lemma 5.3.3 we obtain a nice characterisation of the Markov Col-
lections.

Corollary 5.3.4. Let (∆,F∆,µ∆,G) be a random tower system, n ∈ Z≥1 and ω ∈ Ω̇. We
then have

Rn
ω =

{
Aω ∈P n

∆ω
: Aω ⊆∆ω,0 × {0}, Gn

ω|Aω : Aω→∆σnω,0 × {0} is bi-measurable
}

,
(165)

moreover, in writing Rn
ω :=⊔

R∈Rn
ω

R we have

(Gn
ω|∆ω,0×{0})

−1(∆σnω,0 × {0}) = Rn
ω. (166)
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Proof. If Rn
ω =;, there is nothing to prove. If Rn

ω ̸= ;, let Aω ∈ Rn
ω so that Gn

ω(Aω)∩
(∆σnω,0×{0}) ̸= ;. Lemma 5.3.3 then shows Gn

ω(Aω) =∆σnω,0×{0} and bi-measurability
of Gn

ω|Aω follows directly from Lemma 5.2.4.
Now to prove Equation (166), note that (Gn

ω|∆ω,0×{0})−1(∆σnω,0 × {0}) ⊇ Rn
ω follows

by Characterisation (165). Conversely, note that

(Gn
ω|∆ω,0×{0})

−1(∆σnω,0 × {0}) = {(x,0) ∈∆ω,0 × {0} : Gn
ω(x,0) ∈∆σnω,0 × {0}}

= ⊔
Aω∈P n

∆ω
,Aω⊆∆ω,0×{0}

(Gn
ω|Aω)−1(∆σnω,0 × {0})

⊆ Rn
ω,

so that we may claim Equation (166).

Remark 5.3.5. In Figure 9 on the next page, we have, as a visual aid for the theory,
pictured how an element of a refined principal partition can behave under the appli-
cation of the random tower map. No new concepts will be explained and thus this re-
mark can be skipped. Suppose, given a random tower system (∆,F∆,µ∆,G) andω ∈ Ω̇
we have a Aσ−5ω ∈R6

σ−5ω
, such that Rσ−5ω|Aσ−5ω,0

≡ 2 and Rσ−3ω|(G2
σ−5ω

(Aσ−5ω))0
≡ 4. Due

to the Markov Property we then have g 6
σ−5ω

(Aσ−5ω)× {0} = ∆σω,0 × {0} and by Lemma
5.2.4 we know

G6
σ−5ω

: Aσ−5ω→∆σω,0 × {0},

is bi-measurable. In Figure 9 the straight arrows display applications of Gσiω :∆σiω→
∆σi+1ω to G5−i

σiω
(Aσ−5ω) for i ∈ {−5, . . . ,0} which we have rewritten using the definition

of Gω. The curved arrows below the figure display the (again bi-measurable) map-
pings

G2
σ−5ω

: Aσ−5ω→G2
σ−5ω

(Aσ−5ω), G6
σ−5ω

: Aσ−5ω→∆σω,0 × {0},

and
G4
σ−5ω

: G2
σ−5ω

(Aσ−5ω) →∆σω,0 × {0},

from left to right as the labels appear in the figure. These we have also rewritten using
the definition of Gω.
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Figure 9: The tower map applied to a markov set119



We now start analysing densities associated with random tower maps. First we
prove the positivity (almost everywhere) of the iterated Jacobian in Lemma 5.3.6 be-
low, before proving a reciprocal identity in Lemma 5.3.7. Eyeing the Markov Property,
Corollary 5.2.3 and the chain rule in Lemma 5.2.4, the result in Lemma 5.3.6 should
come to no surprise.

Lemma 5.3.6. Let (∆,F∆,µ∆,G) be a random tower system. Then for n ∈ Z≥1, ω ∈ Ω̇,
we have that JGn

ω > 0, µ∆ω-almost surely.

Proof. Let ω ∈ Ω̇ and n ∈ Z≥1. By Lemma 5.2.4 we may assume the Jacobians JGn
ω

and J (Gσiω) exist. Note that by Lemma 5.2.4 we can find a set ∆′
ω ⊆ ∆ω such that

µ∆ω(∆ω \∆′
ω) = 0 for which we have

JGn
ω(x) =

n−1∏
i=0

(JGσiω)◦G i
ω(x) for each x ∈∆′

ω.

Claim: for each i ∈ {0, . . . ,n −1} there exists a set ∆̇σiω ∈F∆
σiω

for which we have

µ∆
σiω

(∆σiω \ ∆̇σiω) = 0 and JG|∆̇
σiω

> 0. (167)

Let i ∈ {0, . . .n −1} be arbitrary. By Lemma 5.3.3 we have for any Aσiω ∈P∆
σiω

either

Gσiω(Aσiω) ∈P∆
σi+1ω

and Gσiω(Aσiω)∩ (∆σi+1ω,0 × {0}) =;,

or
Gσiω(Aσiω) = (∆σi+1ω,0 × {0}).

In both cases, using Corollary 5.2.3 or the Markov Property respectively, we find
for each Aσiω ∈P∆

σiω
a set Ȧσiω ∈F∆

σiω
such that

µA
σiω

(Aσiω \ Ȧσiω) = 0 and JGσiω|Ȧ
σiω

> 0.

Write
∆̇σiω = ⊔

A
σiω∈P∆

σiω

Ȧσiω,

and note µ∆
σiω

(∆σiω \ ∆̇σiω) = 0 and JGσiω|∆̇
σiω

> 0, showing our claim.

Now using our claim, construct for each i ∈ {0, . . . ,n−1} a set ∆̇σiω satisfying Equa-
tion (167). Note that we have

µ∆ω(∆ω \ (G i
ω)−1∆̇σiω) = (G i

ω)⋆µ∆ω(∆σiω \ ∆̇σiω) = 0 as (G i
ω)⋆µ∆ω ≪µ∆

σiω
.

Then note that
∆̈ω := ∆̇ω∩·· ·∩ (Gn−1

ω )−1∆̇σn−1ω,

120



satisfies µ∆ω(∆ω \ ∆̈ω) = 0 and that for each i ∈ {0, . . . ,n − 1} we have G i
ω(∆̈ω) ⊆ ∆̇σiω

by Lemma 2.1.23 and that G i
ω(∆̈ω) ∈F∆

σiω
by Corollary 5.2.5. Consequently, for each

x ∈ ∆̈ω∩∆′
ω we have

JGn
ω(x) =

n−1∏
i=0

(JGσiω)◦G i
ω(x) > 0,

and µ∆ω(∆̈ω∩∆′
ω) =µ∆ω(∆ω), proving our statement.

We now use the positivity found in Lemma 5.3.6, to express the Radon-Nikodym
derivative in terms of the Jacobian with the following reciprocal identity. Using this
instead of directly using Lemma 4.3.11 will save us some tedious calculations at the
end of Lemma 5.4.2, which might be the most tedious proof in this thesis.

Lemma 5.3.7. Let (∆,F∆,µ∆,G) be a random tower system. Then we have for n ∈Z≥1,
ω ∈ Ω̇ and any Aω ∈P n

∆ω
that,

JGn
ω((Gn

ω|Aω)−1( · ))−1 = d(Gn
ω|Aω)⋆µ∆ω
dµ∆σnω

( · ), holds µGn
ω(Aω)-almost surely.

Proof. Let n ∈ Z≥1, ω ∈ Ω̇ and Aω ∈ P n
∆ω

. Note that Lemma 5.3.6 implies that JGn
ω >

0, µ∆ω-almost surely, so in particular JGn
ω > 0 µAω-almost surely. Lemma 5.2.4 then

allow us to apply Lemma 4.3.11 and obtain a set Ȧω ∈F∆ω such that µ∆ω(Aω \ Ȧω) = 0
and

JGn
ω(x ′)−1 = d(Gn

ω|Aω)⋆µ∆ω
dµ∆σnω

(Gn
ω(x ′)), for all x ′ ∈ Ȧω. (168)

Note by Corollary 5.2.5 we have Gn
ω(Aω),Gn

ω(Ȧω) ∈ F∆σnω
and by pbn-singularity of

Gn
ω (see Lemma 5.2.4) we then see

µ∆σnω
(Gn

ω(Aω) \Gn
ω(Ȧω)) ≤µ∆σnω

(Gn
ω(Aω \ Ȧω)) = 0.

By bi-measurabilty of Gn
ω|Aω : Aω →Gn

ω(Aω) we can then substitute x ′ = (Gn
ω|Aω)−1(x)

in Equation (168), which yields

JGn
ω((Gn

ω|Aω)−1(x))−1 = d(Gn
ω|Aω)⋆µ∆ω
dµ∆σnω

(x), for every x ∈Gn
ω(Ȧω),

so that our claim follows.

For ease of reference, we have rephrased Lemma 5.3.7 for Markov sets using Corol-
lary 5.3.4.

Corollary 5.3.8. Let (∆,F∆,µ∆,G) be a random tower system. Then we have for n ∈
Z≥1, ω ∈ Ω̇ and any Aω ∈Rn

ω that,

JGn
ω((Gn

ω|Aω)−1( · ))−1 = d(Gn
ω|Aω)⋆µ∆ω
dµ∆σnω

( · ), holds µ∆ω,0×{0}-almost surely.
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Finally, to define the random equivalent to bounded distortion we define the ran-
dom separation time. Note that under this notion of the separation time, we assume
points belonging to different ω-sections of ∆ are always separated. Note that in Def-
inition 5.3.9, Lemma 5.3.10 and Definition 5.3.12 we denote for ω ∈ Ω̇ elements of
∆ω ⊆ X ×Z≥0 as a single symbol x or y .

Definition 5.3.9. Let (∆,F∆,µ∆,G) be a random tower system. For ω ∈ Ω̇ we define
the mapping

αω :∆ω→P∆ω , x 7→ Aω for the unique Aω ∋ x.

We then define the (random) separation time on ∆ as the mapping

s :∆×∆→Z≥0 ∪ {∞},

(
(ω, x), ((ω′, y)

) 7→{
sω(x, y), in case ω=ω′ ∈ Ω̇,

0, otherwise.

where we define for ω ∈ Ω̇,

sω :∆ω×∆ω→Z≥0 ∪ {∞},

(x, y) 7→ inf
{
n ∈Z≥0 :ασnω(Gn

ω(x)) ̸=ασnω(Gn
ω(y))

}
,

Similar to the deterministic case, the random separation time can give rise to a
metric, making ∆ into a topological space. For the proofs in Section 5.4 this is not
necessary however. Instead, we merely state that the tower map is expanding section-
wise in Lemma 5.3.10. As the proof is very similar to Lemma 2.1.28 we shall refrain
from giving a full proof here.

Lemma 5.3.10 (Expandingness). Let (∆,F∆,µ∆,G) be a random tower system, let n ∈
Z≥1,ω ∈ Ω̇, C ∈R>0 andβ ∈ (0,1). Then for each Aω ∈P n

∆ω
with x ′, y ′ ∈ Aω the mapping

dβ,C ,ω :∆ω×∆ω→ [0,C ]

(x, y) 7→Cβsω(x,y),

satisfies for each i ∈ {1, . . . ,n}

dβ,C ,σiω(G i
ωx ′,G i

ωy ′) =β−i dβ,C ,ω(x ′, y ′)

As said, the mapping dβ,C ,ω in Lemma 5.3.10 above is not a metric unless we as-
sume extra conditions. As such, we shall simply refer to it as the mapping dβ,C ,ω. We
shall phrase Lemma 5.3.10 conveniently as follows.
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Corollary 5.3.11. Let (∆,F∆,µ∆,G) be a random tower system, let n ∈ Z≥1, ω ∈ Ω̇,
C ∈R>0 and β ∈ (0,1). Then for each Aω ∈P n

∆ω
and x ′, y ′ ∈ Aω we have

dβ,C ,σnω(Gn
ω(x ′),Gn

ω(y ′)) =β−n+i dβ,C ,σiω(G i
ω(x ′),G i

ω(y ′)) for i ∈ {0, . . . ,n}. (169)

Proof. Let Aω ∈P n
∆ω

with x ′, y ′ ∈ Aω. Then note

dβ,C ,σnω(Gn
ω(x ′),Gn

ω(y ′)) =β−ndβ,C ,ω(x ′, y ′), (170)

by Lemma 5.3.10 and i ∈ {0, . . . ,n} again by Lemma 5.3.10

dβ,C ,ω(x ′, y ′) =βi dβ,C ,σiω(G i
ω(x ′),G i

ω(y ′)). (171)

Equation (169) then follows from substituting Equation (171) in Equation (170).

Finally, we phrase the random counterpart of bounded distortion.

Definition 5.3.12. Let (∆,F∆,µ∆,G) be a random tower system. We say it satisfies
bounded distortion if there are constants C > 1, 0 <β< 1 such that forω ∈ Ω̇ and each
Aω ∈P∆ω , we have a set Ȧω ∈FAω such that µAω(Aω \ Ȧω) = 0 and∣∣∣∣ J (Gω)(x)

J (Gω)(y)
−1

∣∣∣∣≤ dβ,C ,ω(x, y), for every x, y ∈ Ȧω. (172)

with dβ,C ,ω as in Lemma 5.3.10.

We can extend Equation (172) inductively. As the proof relies on methods already
shown in Lemma 5.3.6 and Lemma 3.2.7 in particular we have incorporated it without
proof.

Lemma 5.3.13. Let (∆,F∆,µ∆,G) be a random tower system satisfying bounded dis-
tortion and let n ∈ Z≥1. For each ω ∈ Ω̇ and each Aω ∈ P n

∆ω
, we have a set Ȧω ∈ FAω

such that µAω(Aω \ Ȧω) = 0 and for each i ∈ {0, . . . ,n −1}∣∣∣∣∣ J (Gσiω)(G i
ω(x))

J (Gσiω)(G i
ω(y))

−1

∣∣∣∣∣≤ dβ,C ,σiω(G i
ω(x),G i

ω(y)), for every x, y ∈ Ȧω. (173)

with dβ,C ,ω as in Lemma 5.3.10.

For the readers’ convenience we make the following definition, summarising all
our conditions on random towers so far.

Definition 5.3.14. Let (∆,F∆,µ∆,G) be a random tower system. We say it is (acip)
admissible if the following conditions hold.
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Measure-Regularity For all ω ∈ Ω̇ and all A ∈ P∆ with Gω(Aω)∩ (∆σω,0 × {0}) ̸= ; we
have that

Gω(Aω) ∈F∆σω , and that Gω|Aω : Aω→Gω(Aω) is bi-measurable,

and we have
(Gω|−1

Aω
)⋆µ∆σω ≪µAω .

Markov Property For eachω ∈ Ω̇ and A ∈P∆ with GωAω∩(∆σω,0×{0}) ̸= ;, the map-
ping Gω|Aω is bi-measurable onto∆σω,0×{0} with JGω|Aω > 0,µAω-almost surely.

Bounded Distortion There exist constants C > 1, 0 < β < 1 such that for ω ∈ Ω̇ and
each Aω ∈P∆ω , we have a set Ȧω ∈FAω such that µAω(Aω \ Ȧω) = 0 and∣∣∣∣ J (Gω)(x)

J (Gω)(y)
−1

∣∣∣∣≤ dβ,C ,ω(x, y), for every x, y ∈ Ȧω. (174)

with dβ,C ,ω as in Lemma 5.3.10.

We say the random dynamical system (Ω× X ,FΩ×X ,P×µ,S) is (acip) admissible if
we can use it to construct an admissible random tower system as done in Sections
5.1–5.3

5.4 An Acip In The Quenched Case

In this section we shall assume every random tower system is acip admissible

The main result of this section (and of this thesis) is the Theorem phrased below.

Theorem 5.4.1. Let (∆,F∆,µ∆,G) be a random tower system, then there exists an M ∈
R>1 and a probability measure ν on ∆ such that ν≪µ∆, dν

dµ∆
≤ M, µ∆-a.e., and G⋆ν=

ν. That is, there exists an acip ν for (∆,F ,µ∆,G).

As we have already developed all other measure-theoretical and functional an-
alytic machinery, the main goal of the proofs of this section are to show that for a
random tower system (∆,F∆,µ∆,G), we have an M ∈ R>1 such that for all ω ∈ Ω̇ and
n ∈Z≥0 we have

d(Gn
σ−nω)⋆µ∆σ−nω,0×{0}

dµ∆σnω

≤ M , µ∆σnω
-almost surely,

which we shall do in Proposition 5.4.6. In evaluating
d(Gn

σ−nω
)⋆µ∆σ−nω,0×{0}

dµ∆σnω
, we shall par-

tition its domain ∆σnω and evaluate
d(Gn

σ−nω
)⋆µ∆σ−nω,0×{0}

dµ∆σnω
on each floor individually .
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For the set ∆ω,0 × {0} we prove an adaptation of Lemma 3.3.4 using Markov sets mak-
ing us obtain the bound (175) in Lemma 5.4.2. We shall relate this bound to higher
floors using Lemma 5.4.5, and combine our knowledge to obtain the promised uni-
form upper bound in Proposition 5.4.6.

Lemma 5.4.2. Let (∆,F∆,µ∆,G) be a random tower system, let n ∈ Z≥0, A ∈ P n
∆ and

ω ∈ Ω̇ such that we have Aσ−nω ∈Rn
σ−nω. For µ∆ω-almost all x ∈∆ω,0 × {0}, the density

φAσ−nω
:= d(Gn

σ−nω|Aσ−nω
)⋆µ∆σ−nω

dµ∆ω
satisfies

1

M
µ∆σ−nω

(Aσ−nω) ≤φAσ−nω
(x) ≤ Mµ∆σ−nω

(Aσ−nω), (175)

where M ∈R>1 is independent of ω,n, A and x, and

φAσ−nω
(x) = 0 for µ∆ω-almost every x ∈∆ω \∆ω,0 × {0}. (176)

Proof. For notational convenience we shall write α := σ−nω. Keeping Lemma 3.3.4
in mind, we start with constructing a set Ȧα ∈ FAα such that µAα(Aα \ Ȧα) = 0 upon
which we can apply the random equivalent of the chain rule in Lemma 5.2.4, bounded
distortion as in Lemma 5.3.13 and reciprocal identity of Corollary 5.3.8.

As Aα ∈Rn
α we have by Corollary 5.3.4 that

Gn
α|Aα : Aα→∆ω,0 × {0}

is bi-measurable. Furthermore, as we know (Gα)⋆µ∆α ≪ µ∆ω by Proposition 5.1.9,
we can apply Lemma A.1.3 to show (Gn

α|Aα)⋆µ∆α ≪µ∆ω , and allowing us to make the
definition

φAα := d(Gn
α|Aα)⋆µ∆α
dµ∆ω

.

Now, using Corollary 5.3.8 we then obtain a set (∆ω,0 × {0})′ ∈ F∆ω,0×{0}, so that
µ∆ω(∆ω× {0} \ (∆ω,0 × {0})′) = 0 and

φAα(z) = JGn
α((Gn

α|Aα)−1(z))−1, (177)

for each z ∈ (∆ω,0× {0})′. Furthermore, by Lemma 5.2.4 we can find a set ∆′
α ∈F∆α , so

that µ∆α(∆α \∆′
α) = 0 and

J (Gn
α)(x) =

n−1∏
i=0

(JGσiα)◦G i
α(x) for x ∈∆′

α. (178)

Lastly, by Lemma 5.3.13 we find an A′
α ∈FAα with µAα(Aα \ A′

α) = 0 such that for each
i ∈ {0, . . . ,n −1}∣∣∣∣∣ J (Gσiα)(G i

α(x))

J (Gσiα)(G i
α(y))

−1

∣∣∣∣∣≤ dβ,C ,σiα(G i
α(x),G i

α(y)), for every x, y ∈ A′
α. (179)
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In writing Ȧα := (Gn
α|Aα)−1((∆ω,0 × {0})′)∩∆′

α∩ A′
α, we then have that

µAα(Aα \ Ȧα) =µAα(Aα \ (Gn
α|Aα)−1((∆ω,0 × {0})′)),

as µAα(∆′
α∩ A′

α) =µAα(Aα) and more so

µAα(Aα \ Ȧα) =µAα((Gn
α|Aα)−1(∆ω,0 × {0}) \ (Gn

α|Aα)−1(∆ω,0 × {0})′)
≤ (Gn

α|Aα)⋆µAα((∆ω,0 × {0}) \ (∆ω,0 × {0})′)
= 0.

As Ȧα ∈FAα the mapping Gn
α|Ȧα : Ȧα→Gn

α(Ȧα) is bi-measurable by Lemma 4.3.3 item
2. Moreover, by pbn-singularity of Gn

α we have as∆ω,0×{0}\Gn
α(Ȧα) ⊆Gn

α(Aα\ Ȧα) that

µ∆ω(∆ω,0 × {0} \Gn
α(Ȧα)) ≤ (G−n

α )⋆µ∆α(Aα \ Ȧα) = 0.

For any x, y ∈Gn
α(Ȧα) we then have unique elements

x ′, y ′ ∈ Ȧα such that x ′ = (Gn
α|Ȧα)−1(x) and y ′ = (Gn

α|Ȧα)−1(y).

By Equation (177) we then have φAα(x) = (J(Gn
α)(x ′))−1 and φAα(y) = (J (Gn

α)(y ′))−1.
Finally as Ȧα ⊆ Aα we obtain

dβ,C ,ω(x, y) =β−n+i dβ,C ,σiα(G i
αx ′,G i

αy ′) for i ∈ {0, . . . ,n}, (180)

by Corollary 5.3.11. Combining our efforts, we see∣∣∣∣log

(
φAα(x)

φAα(y)

)∣∣∣∣= ∣∣∣∣log

(
J (Gn

α)(y ′)
J (Gn

α)(x ′)

)∣∣∣∣
=

∣∣∣∣∣log

(∏n−1
i=0 (JGσiα)(G i

α(y ′))∏n−1
i=0 (JGσiα)(G i

α(x ′))

)∣∣∣∣∣ (181)

≤
n−1∑
i=0

∣∣∣∣∣1− (JGσiα)(G i
α(y ′))

(JGσiα)(G i
α(x ′))

∣∣∣∣∣ (182)

≤
n−1∑
i=0

dβ,C ,σiα(G i
α(x ′),G i

α(y ′)) (183)

≤ dβ,C ,ω(x, y)
n−1∑
i=0

βi (184)

≤ dβ,C ,ω(x, y)

1−β . (185)

In Equation (181) we used Equation (178); in Equation (182) we used | log(z)| ≤ max(|1−
z|, |1− 1

z |) and | log(z)| = | log( 1
z )| for z > 0, and in Equation (183) we used Equation
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(179); and in Equation (184) we used Equation (180). As Equation (185) holds for
general x, y ∈Gn

ω(Ȧω) we can see that for all x, y ∈Gn
ω(Ȧω) we have

log

(
φAα(x)

φAα(y)

)
≤ dβ,C ,ω(x, y)

1−β and log

(
φAα(y)

φAα(x)

)
≤ dβ,C ,ω(x, y)

1−β . (186)

Exponentiating both equations in line (186) yields

1

M
φAα(y) ≤φAα(x) ≤ MφAα(y), (187)

for M := e
C

1−β , so that M > 1. Integrating (187) with respect to y on Gn
α(Ȧα) shows

1

M
µ∆α,0×{0}(Aα) ≤φAα(x) ≤ Mµ∆α,0×{0}(Aα),

as µ∆α,0×{0}(Ȧα) = µ∆α,0×{0}(Aα) and µ∆ω,0×{0}(Gn
α(Ȧα)) = µ∆ω,0×{0}(∆ω,0 × {0}). Substi-

tuting σ−nω = α back, we obtain the statement in Equation (175). As for Equation
(176), note that (∆ω \∆ω,0 × {0})∩Gn

α(Aα) = ; as Aα ∈ Rn
α, using Corollary 5.3.4. As

Gn
α(Aα) ∈ F∆ω by Corollary 5.2.5 we can apply Lemma A.1.1 and derive Equation

(175).

Similar to the deterministic case, in order to find an acip, we now need to obtain
an uniform upper bound for a density associated with the tower map, here

d(Gn)⋆µ∆0×{0}

dµ∆
, for any n ∈Z≥1.

As we are working directly on the tower our analysis starts deviating significantly from
the deterministic case however.

First, we need to wrest thorough control of densities associated with the tower
map. To do so, we shall in Lemma 5.4.3 verify some statements on absolute conti-
nuity to make sure we can define these densities to begin with. Here, we shall also
introduce the set ∆(l ) for l ∈ Z≥0. Technically, this set is dependent on a specified
ω ∈ Ω̇ and n ∈ Z≥0 but we have omitted this for notational brevity. This set contains
all information of floor l of ∆ for which for a given ω ∈ Ω̇we expect the density

d(Gn
σ−nω|∆σ−nω,0×{0})⋆µ∆σ−nω

dµ∆ω

to have a non-zero value. In Lemma 5.4.3 we show some elementary properties of
this set. In Lemma 5.4.4 we shall then calculate an upper bound for

d(Gn−l
σ−nω|∆(l ) )⋆µ∆σ−nω

dµ∆
σ−lω

.
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Importantly, as we offset ∆(l ) against Gn−l
σ−n , we shall for this only require Markov sets

for which the bounds obtained in Lemma 5.4.2 suffice. Lemma 5.4.5 then shows how
this relates to the density

d(Gn
σ−nω|∆(l ) )⋆µ∆σ−nω

dµ∆ω
.

After combining these statements into a more general upper bound in Proposition
5.4.6 we are ready to prove the main Theorem of this text.

The key concept in Lemma 5.4.3 below is that for l ∈Z≥1, ω ∈ Ω̇ and (x,0) ∈∆ω,0×
{0} we can only have G l

ω(x,0) ∈ ∆σlω,l × {l } if for all i ∈ {1, . . . , l } we have G i
ω(x,0) ∉

∆σiω,0 × {0}.

Lemma 5.4.3. Let (∆,F∆,µ∆,G) be a random tower system and let ω ∈ Ω̇, n ∈ Z≥1,
l ∈ {1, . . . ,n}. Define

∆(l ) := (Gn
σ−nω|∆σ−nω,0×{0})

−1(∆ω,l × {l }).

Then we have

∆(l ) = (∆σ−nω,0 × {0})∩G−n+l
σ−nω(∆ω,l × {0}) ∈F∆σ−nω

, Gn−l
σ−nω(∆(l )) ∈F∆ω,l×{0}, (188)

and

(Gn−l
σ−nω|∆(l ) )⋆µ∆σ−nω

≪µ∆ω,l×{0} and (Gn
σ−nω|∆(l ) )⋆µ∆σ−nω

≪µ∆ω,l×{l }. (189)

Proof. First note that by Lemma 5.1.13 we can derive (using l ′ = 0) that G−l
σ−lω

(∆ω,l ×
{l }) =∆ω,l × {0}. Using this we see

∆(l ) = (Gn
σ−nω|∆σ−nω,0×{0})

−1(∆ω,l × {l })

= (Gn−l
σ−nω|∆σ−nω,0×{0})

−1(∆ω,l × {0})

= (∆σ−nω,0 × {0})∩G−n+l
σ−nω(∆ω,l × {0}) ∈F∆σ−nω

.

Moreover, we note that by Lemma 2.1.23 we have

Gn−l
σ−nω(∆(l )) =Gn−l

σ−nω(∆σ−nω,0 × {0})∩ (∆ω,l × {0}) ⊆∆σ−lω,0 × {0}.

To show Equation (189) we note

∆(l ) ⊆G−n
σ−nω(∆ω,l × {l }) and ∆(l ) ⊆G−n+l

σ−nω(∆ω,l × {0}).

Equation (189) then follows from Lemma A.1.3.

The following Lemma is the first step towards obtaining an almost surely uniform
upper bound for densities ofΩ-sections of random tower maps.
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Lemma 5.4.4. Let (∆,F∆,µ∆,G) be a random tower system, let M ∈R>1 be as in Lemma
5.4.2 and let ω ∈ Ω̇, n ∈ Z≥1 and l ∈ {0, . . . ,n}. Let ∆(l ) be as in Lemma 5.4.3. Then we
have for each A ∈F∆

σ−lω∫
A

d(Gn−l
σ−nω|∆(l ) )⋆µ∆σ−nω

dµ∆
σ−lω

(x, l ′)dµ∆
σ−lω

(x, l ′) ≤ Mµ∆
σ−lω,0×{0}(A). (190)

Proof. First note that for the case n = l , Equation (190) can be rewritten as∫
A
1∆(n) (x, l ′)dµ∆σ−nω

(x, l ′) ≤ Mµ∆σ−nω,0×{0}(A),

for each A ∈F∆σ−nω
. As we know M ∈R>1 and ∆(n) ⊆∆σ−nω,0 × {0} this is immediate.

Now supposing 0 ≤ l < n, we shall derive our bound through the bound obtained
for Markov sets in Lemma 5.4.2 using Equation (166) in Corollary 5.3.4. To start, de-
fine

Rn−l
σ−nω := ⊔

K∈Rn−l
σ−nω

K

and note that we have

∆(l ) = (∆σ−nω,0 × {0})∩G−n+l
σ−nω(∆ω,l × {0}) Using Lemma 5.4.3

⊆ (∆σ−nω,0 × {0})∩G−n+l
σ−nω(∆σ−lω,0 × {0}) Using Lemma 5.1.13

= Rn−l
σ−nω, Using Corollary 5.3.4.

Now applying Lemma 5.4.3 we have

(Gn−l
σ−nω|∆(l ) )⋆µ∆σ−nω

≪µ∆ω,l×{0},

and so by Lemma A.1.2 we then have

d(Gn−l
σ−nω|∆(l ) )⋆µ∆σ−nω

dµ∆
σ−lω

≤
d(Gn−l

σ−nω|Rn−l
σ−nω

)⋆µ∆σ−nω

dµ∆
σ−lω

,µ∆
σ−lω

-almost surely. (191)
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Now note that for arbitrary A ∈F∆
σ−lω

we have

∫
A

d(Gn−l
σ−nω|∆(l ) )⋆µ∆σ−nω

dµ∆
σ−lω

(x, l ′)dµ∆
σ−lω

(x, l ′)

≤
∫

A

d(Gn−l
σ−nω|Rn−l

σ−nω
)⋆µ∆σ−nω

dµ∆
σ−lω

(x, l ′)dµ∆
σ−lω

(x, l ′)

=
∫

A0×{0}

d(Gn−l
σ−nω|Rn−l

σ−nω
)⋆µ∆σ−nω

dµ∆
σ−lω

(x, l ′)dµ∆
σ−lω

(x, l ′) (192)

= ∑
K∈Rn−l

σ−nω

∫
A0×{0}

d(Gn−l
σ−nω|K )⋆µ∆σ−nω

dµ∆
σ−lω

(x, l ′)dµ∆
σ−lω

(x, l ′) (193)

= ∑
K∈Rn−l

σ−nω

M ·µ∆
σ−lω

(A0 × {0})µ∆σ−nω
(K ) (194)

≤ M ·µ∆
σ−lω,0×{0}(A), (195)

where in Equation (192) we used Lemma A.1.1 and Gn−l
σ−nω(∆(l )) ∈ F∆

σ−lω,0×{0} as seen
in Lemma 5.4.3; in Equation (193) we used Lemma 2.1.20 and the Monotone Conver-
gence Theorem; in Equation (194) we used Lemma 5.4.2; in Equation (195) we used
Rn−l
σ−nω ⊆∆σ−nω,0 × {0} so that

µ∆σ−nω,0×{0}(Rn−l
σ−nω) ≤µ∆σ−nω,0×{0}(∆σ−nω,0 × {0}) = 1,

proving our claim.

Conceptually the rest of this section will rely on Corollary 5.1.14.

Lemma 5.4.5. Let (∆,F∆,µ∆,G) be a random tower system and let ω ∈ Ω̇, n ∈ Z≥1,
l ∈ {1, . . . ,n}. Let ∆(l ) be as in Lemma 5.4.3. Then we have for each A × {l } ∈ F∆ω,l×{l }

that ∫
A×{l }

d(Gn
σ−nω|∆(l ) )⋆µ∆σ−nω,0×{0}

dµ∆ω,l×{l }
(x, l ′) dµ∆ω,l×{l }(x, l ′)

=
∫

A×{0}

d(Gn−l
σ−nω|∆(l ) )⋆µ∆σ−nω,0×{0}

dµ∆ω,l×{0}
(x, l ′)dµ∆ω,l×{0}(x, l ′). (196)

Proof. We shall use Lemma A.1.6 and quickly verify its conditions. By Lemma 5.4.3
we can write

Gn−l
σ−nω|∆(l ) :∆(l ) →∆ω,l × {0},
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and have (Gn−l
σ−nω|∆(l ) )⋆µ∆

σ−lω
≪µ∆ω,l×{0}. By Corollary 5.1.14 we know

G l
σ−lω

|∆ω,l×{0} :∆ω,l × {0} →∆ω,l × {l }

is bi-measurable and satisfies

(G l
σ−lω

|∆ω,l×{0})⋆µ∆
σ−lω,0×{0} = (G l

σ−lω
)⋆µ∆ω,l×{0} =µ∆ω,l×{l }.

Combining the above we can see that on the composition Gn
σ−nω|∆(l ) =G l

σ−lω
◦Gn−l

σ−nω|∆(l )

we can apply Lemma A.1.6 and obtain for µ∆ω,l×{l }-almost every (x, l ) ∈∆ω,l × {l },

d(Gn
σ−nω|∆(l ) )⋆µ∆σ−nω,0×{0}

dµ∆ω,l×{l }
(x, l ) =

d(Gn−l
σ−nω|∆(l ) )⋆µ∆σ−nω,0×{0}

dµ∆ω,l×{0}
(G−l

σ−lω
(x, l )).

Note this implies that for each A× {l } ∈F∆ω,l×{l } we have∫
A×{l }

d(Gn
σ−nω|∆(l ) )⋆µ∆σ−nω,0×{0}

dµ∆ω,l×{l }
(x, l ) dµ∆ω,l×{l }(x, l ′)

=
∫

A×{l }

d(Gn−l
σ−nω|∆(l ) )⋆µ∆σ−nω,0×{0}

dµ∆ω,l×{0}
(G−l

σ−lω
(x, l ′))dµ∆ω,l×{l }(x, l ′)

=
∫

A×{0}

d(Gn−l
σ−nω|∆(l ) )⋆µ∆σ−nω,0×{0}

dµ∆ω,l×{0}
(x, l ′)dµ∆ω,l×{0}(x, l ′),

where we used Lemma 2.1.10 (applicable as ∥d(Gn−l
σ−nω

|
∆(l ) )⋆µ∆σ−nω,0×{0}

dµ∆ω,l ×{0}
∥1 ≤ 1) and Corol-

lary 5.1.14 in the last step, proving Equation (196).

Proposition 5.4.6. Let (∆,F∆,µ∆,G) be a random tower system, letω ∈ Ω̇, n ∈Z≥0 and
let M ∈R>1 be as in Lemma 5.4.4. Then we have for each A ∈F∆ω∫

A

d(Gn
σ−nω|∆σ−nω,0×{0})⋆µ∆σ−nω

dµ∆ω
≤ Mµ∆ω(A).

Proof. Let A ∈F∆ω be arbitrary. First note that we have

Gn
σ−nω(∆σ−nω,0 × {0}) ⊆ ⋃

l∈{0,...,n}
∆ω,l × {l },

so that in writing

A>n := A∩
(⋃

l>n
∆ω,l × {l }

)
,
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we have Gn
σ−nω(∆σ−nω,0 × {0})∩ A>n =;. Hence, by Lemma A.1.1∫

A>n

d(Gn
σ−nω|∆σ−nω,0×{0})⋆µ∆σ−nω

dµ∆ω
(x, l ′)dµ∆ω(x, l ′) = 0.

Proceeding, we see∫
A

d(Gn
σ−nω|∆σ−nω,0×{0})⋆µ∆σ−nω

dµ∆ω
(x, l ′)dµ∆ω(x, l ′)

=
n∑

l ′′=0

∫
Al ′′×{l ′′}

d(Gn
σ−nω|∆σ−nω,0×{0})⋆µ∆σ−nω

dµ∆ω
(x, l ′)dµ∆ω(x, l ′)

=
n∑

l ′′=0

∫
Al ′′×{l ′′}

d(Gn
σ−nω|∆σ−nω,0×{0})⋆µ∆σ−nω

dµ∆ω
(x, l ′)dµ∆ω,l ′′×{l ′′}(x, l ′).

Recapping the definition ∆(l ′′) := (Gn
σ−nω|∆σ−nω,0×{0})−1(∆ω,l ′′ × {l ′′}) from Lemma 5.4.3

we then see using Lemma A.1.1 that

n∑
l ′′=0

∫
Al ′′×{l ′′}

d(Gn
σ−nω|∆σ−nω,0×{0})⋆µ∆σ−nω

dµ∆ω
(x, l ′)dµ∆ω,l ′′×{l ′′}(x, l ′)

=
n∑

l ′′=0

∫
Al ′′×{l ′′}

d(Gn
σ−nω|∆(l ′′) )⋆µ∆σ−nω

dµ∆ω,l ′′×{l ′′}
(x, l ′)dµ∆ω,l ′′×{l ′′}(x, l ′).

Finishing our proof we then see that,

n∑
l ′′=0

∫
Al ′′×{l ′′}

d(Gn
σ−nω|∆(l ′′) )⋆µ∆σ−nω

dµ∆ω,l ′′×{l ′′}
(x, l ′)dµ∆ω,l ′′×{l ′′}(x, l ′)

=
n∑

l ′′=0

∫
Al ′′×{0}

d(Gn−l ′′
σ−nω|∆(l ′′) )⋆µ∆σ−nω

dµ∆ω,l ′′×{0}
(x, l ′)dµ∆ω,l ′′×{0}(x, l ′) (197)

=
n∑

l ′′=0

∫
Al ′′×{0}

d(Gn−l ′′
σ−nω|∆(l ′′) )⋆µ∆σ−nω

dµ∆
σ−l ′′ω

(x, l ′)dµ∆ω,l ′′×{0}(x, l ′) (198)

=
n∑

l ′′=0

∫
Al ′′×{0}

d(Gn−l ′′
σ−nω|∆(l ′′) )⋆µ∆σ−nω

dµ∆
σ−l ′′ω

(x, l ′)dµ∆
σ−l ′′ω

(x, l ′) (199)

≤
n∑

l ′′=0

Mµ∆
σ−l ′′ω

(Al ′′ × {0}) (200)

=
n∑

l ′′=0

M(G l ′′
σ−l ′′ω

|∆ω,l ′′×{0})⋆µ∆
σ−l ′′ω

(Al ′′ × {l ′′}) (201)

=
n∑

l ′′=0

Mµ∆ω,l ′′×{l ′′}(Al ′′ × {l ′′}) (202)

≤ Mµ∆ω(A),
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where in Equation (197) we used Lemma 5.4.5; in Equation (198) we used Lemma
A.1.4, as ∆ω,l ′′ × {0} ⊆ ∆σ−l ′′ω by Lemma 5.1.13; in Equation (199) we used Lemma
A.1.4; in Equation (200) we used Lemma 5.4.4; in Equation (201) we used Lemma
5.1.13 and in Equation (202) we used Corollary 5.1.14. This proves our claim.

We can now combine all our work in the following theorem. That is:

1. Proposition 5.4.6 provided us with a uniform upper bound for the density of
the sections of the tower map.

2. Lemma 4.2.9 will then allow us to claim the bound holds for the density of as-
sociated with the tower map itself as well.

3. Proposition 4.1.8 will then supply us with the necessary convergence result to
obtain our acip for (∆,F∆,µ∆,G).

Theorem 5.4.7. Let (∆,F∆,µ∆,G) be a random tower system and M > 1 as in Proposi-
tion 5.4.6, then there exists a probability measure ν on ∆ such that ν≪ µ∆, dν

dµ∆
≤ M,

µ∆-a.e., and G⋆ν= ν. That is, there exists an acip ν for (∆,F ,µ∆,G).

Proof. First note in Lemma 5.1.9 we proved that (∆,F∆,µ∆,G) is a random dynami-
cal system. Moreover µ∆(∆0 × {0}) = (P×µ)(Λ) = 1. First let A ∈ F∆ and n ∈ Z≥0 be
arbitrary. Note that by Lemma 4.2.10 we have∫

Ω
µ∆ω(Aω)dP(ω) =µ∆(A),

and by Lemma 4.2.7∫
A

d(Gn)⋆µ∆0×{0}

dµ∆
(ω, x)dµ∆(ω, x) =

∫
Ω

∫
Aω

d(Gn)⋆µ∆0×{0}

dµ∆
(ω, x)dµ∆ω(x)dP(ω).

Note that according to Lemma 4.2.9 we have for almost every ω ∈ Ω that for each
B ∈F∆ω that∫

B

d(Gn)⋆µ∆0×{0}

dµ∆
(ω, x)dµ∆ω(x) =

∫
B

d
(
Gn
σ−nω

)
⋆
µ∆σ−nω,0×{0}

dµ∆ω
(x)dµ∆ω(x).

Furthermore, as (Gn
σ−nω)⋆µ∆σ−nω,0×{0} = (Gn

σ−nω|∆σ−nω,0×{0})⋆µ∆ω we can write∫
B

d
(
Gn
σ−nω

)
⋆
µ∆σ−nω,0×{0}

dµ∆ω
(x)dµ∆ω(x) =

∫
B

d(Gn
σ−nω|∆σ−nω,0×{0})⋆µ∆σ−nω

dµ∆ω
(x)dµ∆ω(x).

By Proposition 5.4.6 we then have for each ω ∈ Ω̇ that∫
B

d(Gn
σ−nω|∆σ−nω,0×{0})⋆µ∆σ−nω

dµ∆ω
(x)dµ∆ω(x) ≤ Mµ∆ω(B).
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To conclude we see∫
A

d(Gn)⋆µ∆0×{0}

dµ∆
(ω, x)dµ∆(ω, x) =

∫
Ω

∫
Aω

d(Gn)⋆µ∆0×{0}

dµ∆
(ω, x)dµ∆ω(x)dP(ω)

=
∫
Ω

∫
Aω

d
(
Gn
σ−nω

)
⋆
µ∆σ−nω,0×{0}

dµ∆ω
(x)dµ∆ω(x)dP(ω)

≤ M
∫
Ω̇
µ∆ω(Aω)dP(ω)

= Mµ∆(A).

As A ∈ F∆ was given arbitrarily we have
d(Gn )⋆µ∆0×{0}

dµ∆
≤ M , µ∆-a.e.. for each n ∈ Z≥0.

Consequently, for n ∈Z≥0 we have µ∆-almost surely,

1

n

n−1∑
i=0

d(Gn)⋆µ∆0×{0}

dµ∆
≤ M .

We can then apply Proposition 4.1.8 to infer

1

nk

nk−1∑
i=0

G i
⋆µ∆0×{0} → ν set-wise as k →∞,

for some strictly increasing sequence (nk )k≥0 and a finite positive measure ν on ∆,
with ν≪µ∆, and dν

dµ∆
≤ M . We can then see by set-wise convergence

1 = 1

nk

nk−1∑
i=0

G i
⋆µ∆0×{0}(∆) → ν(∆) as k →∞,

so that ν is a probability measure. Finally note that for general A ∈F∆ we have

ν(A)−G⋆ν(A) = lim
k→∞

1

nk

(
nk−1∑
i=0

G i
⋆µ∆0 (A)−

nk−1∑
i=0

G i+1
⋆ µ∆0 (A)

)
= lim

k→∞
1

nk
(µ∆0 (A)−µ∆0 (G−nk (A)))

= 0,

proving the invariance of ν. We have shown our statement.

5.5 Shattered Measures

When dealing with measures associated with RDS’s it is usually convenient to dis-
integrate measures over the random dynamic and the base dynamic. Within exist-
ing theory random measures are usually used to fulfil this purpose. These objects
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are well-studied but have two shortcomings: firstly as existence of the disintegration
usually relies on the topological assumptions on the RDS and secondly as the fibers of
their disintegration must be probability measures. Both these conditions can make
it hard to use these objects in our situation.

Alternatively, if we have a measure on an RDS that is absolutely continuous with
respect to the overlying product measure, we can ‘disintegrate’ said measure in such
a way that we are not faced with either of the previously mentioned constraints. As
this method is different than what is commonly understood as a disintegration we re-
fer to it as a shattering. We remind the reader that for a measurable space (X ,FX ) the
spaces M+∞(X ),M+(X ) denote the positive measures on X and positive finite mea-
sures on X respectively.

Proposition 5.5.1. Suppose (Ω,FΩ,P) is a probability space, (X ,FX ,µ) is a σ-finite
measure space and let (Ω× X ,FΩ×X ,P×µ) be their product measure space. Suppose
we have a measureν ∈M+(Ω×X ), withν≪P×µ and let dν

dP×µ denote a postive version
of the Radon-Nikodym derivative of ν with respect to P×µ. Then the mapping

ν :Ω→ M+
∞(X ) (203)

ω 7→

νω : FX → [0,∞]

A 7→
∫

X
1A(x)

dν

dP×µ (ω, x)dµ(x)


is so that for each A ∈ FX the mapping ω 7→ νω(A) is FΩ-measurable and ν·(A) ∈
L1(Ω). Moreover we hav P-almost every ω ∈Ω, νω≪µ with

dνω
dµ

(·) = dν

dP×µ (ω, ·)

and νω ∈M+(X ).

Proof. Note that by Proposition 2.1.7 for each x ∈ X the mapping

ω 7→ dν

dP×µ (ω, x),

is FΩ-measurable. By the Radon-Nikodym Theorem 2.1.11 we then see that νω ∈
M+∞(X ) and νω ≪ µ, with dνω

dµ (·) = dν
dP×µ (ω, ·). Moreover for arbitrary A ∈FX we have

1Ω×A ∈ L1(ν) so that by Lemma A.1.7 Item (3) we have 1Ω×A · dν
d(P×µ) ∈ L1(P×µ). By

Fubini’s Theorem 2.1.8 we then see that

ν·(A) :Ω→R∪ {∞}

ω 7→
∫

X
1Ω×A(ω, x)

dν

dP×µ (ω, x)dµ(x)
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is FΩ-integrable. In particular, note that this implies ω 7→ νω(A) is integrable and
hence also measurable. As, again by Fubini’s Theorem 2.1.8, the mapping

x 7→ dν

dP×µ (ω, x)

is in L1(X ), P-almost surely, we see that (again) by the Radon-Nikodym Theorem
2.1.11 we have νω ∈M+(X ), P-almost surely.

Theorem 5.5.2 (Disintegration Theorem - Existence and Uniqueness). Suppose
(Ω,FΩ,P) is a probability space, (X ,FX ,µ) is a σ-finite measure space and let (Ω×
X ,FΩ×X ,P×µ) be their product measure space. Suppose we have a finite measure
ν ∈ M+(Ω× X ), with ν≪ P×µ. Then a mapping ν· : Ω→ M+∞(X ) as in Proposition
5.5.1 satisfies for each f ∈ L1(ν)∫

Ω×X
f (ω, x)dν(ω, x) =

∫
Ω

∫
X

f (ω, x)dνω(x)dP(ω). (204)

Finally, the equation ∫
Ω
νω(Aω)dP(ω) = ν(A) for all A ∈FΩ×X , (205)

defines the mapping ω 7→ νω uniquely P-a.s..

Proof. Our proof relies on the standard machinery. First, to erase any doubts on mea-
surability, let B ∈FΩ×X and we prove that we have ω 7→ νω(Bω) ∈ L1(Ω). To do so, we
note

νω(Bω) =
∫

X
1Bω(x)

dν

dP×µ (ω, x)dµ(x)

=
∫

X
1B (ω, x)

dν

dP×µ (ω, x)dµ(x). (206)

Now as 1B ∈ L1(Ω×X )∩L∞(Ω×X ) and dν
dP×µ ∈ L1(Ω×X ), we see 1B · dν

dP×µ ∈ L1(Ω×X ).
Integrability with respect to P of

ω 7→ νω(Bω) =
∫

X
1B (ω, x)

dν

dP×µ (ω, x)dµ(x),

then follows from Fubini’s Theorem 2.1.8. Now note we have∫
Ω

∫
X
1B (ω, x)dνω(x)dP(ω) =

∫
Ω
νω(Bω)dP(ω)

=
∫
Ω

∫
X
1B (ω, x)

dν

dP×µ (ω, x)dµ(x)dP(ω)

= ν(B)

=
∫
Ω×X

1B (ω, x)dν(ω, x),
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using Fubini’s Theorem 2.1.8.
For an arbitrary simple function s = ∑n−1

i=0 αi 1Bi , with Bi ∈ FΩ×X , αi ∈ R, 0 ≤ i ≤
n −1, we then see as s ∈ L1(ν):∫

Ω×X
s(ω, x)dν(ω, x) =

n−1∑
i=0

αiν(Bi )

=
n−1∑
i=0

αi

∫
Ω
νω((Bi )ω)dP(ω)

=
∫
Ω

n−1∑
i=0

αi

∫
X
1(Bi )ω(x)dνω(x)dP(ω)

=
∫
Ω

n−1∑
i=0

αi

∫
X
1Bi (ω, x)dνω(x)dP(ω)

=
∫
Ω

∫
X

s(ω, x)dνω(x)dP(ω) (207)

so that Equation (204) also holds for simple functions.
General integrable functions f ∈ L1(ν) can be split into a positive and negative

part f +, f − ∈ L1(ν) respectively, both of which we can approximated by simple func-
tions, that is, there exists sequences of simple functions (sn)n≥0, (rn)n≥0 ⊆ L1(ν) such
that sn ↑ f +, rn ↑ f − pointwise as n →∞. Knowing this, it is easily seen that∫

Ω×X
f (ω, x)dν(ω, x) = sup

n≥0

∫
Ω×X

sn(ω, x)dν(ω, x)− sup
n≥0

∫
Ω×X

rn(ω, x)dν(ω, x) (208)

= sup
n≥0

∫
Ω

∫
X

sn(ω, x)dνω(x)dP(ω)

− sup
n≥0

∫
Ω

∫
X

rn(ω, x)dνω(x)dP(ω) (209)

=
∫
Ω

∫
X

f (ω, x)dνω(x)dP(ω), (210)

holds, from which we conclude that Equation (204) indeed holds. In Equations (208)
and (210) use was made of the monotone convergence theorem whereas (209) relies
on Equation (207).

Finally, as for uniqueness suppose we have two mappings ω 7→ νω, ω 7→ ν′ω both
satisfying Equation (205). We can see that for any A ∈FX and for any O ∈FΩ we have∫

O
νω(A)dP(ω) =

∫
Ω
νω((O × A)ω)dP(ω) =

∫
Ω
ν′ω((O × A)ω)dP(ω) =

∫
O
ν′ω(A)dP(ω),

so νω(A) = ν′ω(A), P-a.s. for any A ∈FX . So ω 7→ νω is indeed defined uniquely P-a.s.
by Equation (205).
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Definition 5.5.3. Suppose (Ω,FΩ,P) is a probability space, (X ,FX ,µ) is a σ-finite
measure space and let (Ω×X ,FΩ×X ,P×µ) be their product measure space. Suppose
we have a measureν ∈M+(Ω×X ), withν≪P×µ. We call a mappingν· as in Equation
(203) a shattered measure and for each ω ∈Ωwe call νω a shard.

Remark 5.5.4. As in Theorem 5.5.2, any version of the Radon-Nikodym derivative
dν

dP×µ satisfies Equation (205), we can see that any two versions dν
dP×µ

′
, dν

dP×µ
′′

give

rise to shattered measures ν′·,ν′′· respectively for which we have ν′ω = ν′′ω, P-almost
surely. This means that shattered measures constructed for some ν are unique up
to a P-measure zero set. As all claims on shattered measures we make hold up to
a P-measure zero set we shall speak of the shattered measure ν· when we mean its
naturally induced equivalence class.

Remark 5.5.5. Strictly speaking we do not require (Ω,FΩ,P) to be a probability space
- even a σ-finite space will yield the same result as long as ν is a positive finite mea-
sure. We shall, however, not encounter this and hence we impose P(Ω) = 1 in Defini-
tion 5.5.3.

We will typically want to think of shattered measures in the context of Random
Dynamical Systems and we shall give an elementary example. We remind the reader
of Remark 4.2.4.

Example 5.5.6. Given a random dynamical system (∆,F∆,µ∆,S), we naturally have
µ∆ ≪ P×µ so that by Theorem 5.5.2 we obtain a shattered measure µ∆,·. Note then
by Proposition 2.1.7 we have for each A ∈F∆ that ω 7→µ((∆∩ A)ω) is FΩ-measurable
and as µ((∆∩ A)ω) ≤µ(∆ω) we have ∥µ((∆∩ A)·)∥L1(Ω) ≤ (P×µ)(∆). Consequently, we
may write∫

Ω
µ∆,ω(Aω)dP(ω) =µ∆(A) =

∫
Ω
µ((∆∩ A)ω)dP(ω) =

∫
Ω
µ∆ω(Aω)dP(ω),

so that by Theorem 5.5.2 we can see µ∆,ω = µ∆ω holds P-a.s.. Using this, we can for
instance see that Lemma 4.2.9 immediately holds, again using the disintegration in
Theorem 5.5.2. Moreover, any statement in Section 4.2 on densities can be phrased
in terms of shattered measures.

Lemma 5.5.7. Let (Ω,FΩ,P) be a probability space, (X ,FX ,µ) be a σ-finite measure
space and let (Ω×X ,FΩ×X ,P×µ) be their product space. Now suppose we have ν,η ∈
M+(Ω× X ) such that ν ≪ η ≪ P×µ. Then we have for P-almost every ω ∈ Ω that
νω≪ ηω and

dνω
dηω

(·) = dν

dη
(ω, ·), ηω-almost everywhere.
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Proof. First as η≪ P×µ we have a set Ω̇ ∈ FΩ with P(Ω \ Ω̇) = 0 and for each ω ∈ Ω̇
dηω
dµ (·) = dη

dP×µ (ω, ·),µ-almost surely, by Proposition 5.5.1. Similarly, due to Proposition

5.5.1 we can find a set Ω̈ ∈ FΩ with P(Ω \ Ω̈) = 0 such that ηω,νω ∈ M+(X ) for each
ω ∈ Ω̈. Then note that for ω ∈ Ω̇∩ Ω̈we have for arbitrary A ∈FX ,

νω(A) =
∫

A

dν

dP×µ (ω, x)dµ(x)

=
∫

A

dν

dη
(ω, x) · dη

dP×µ (ω, x)dµ(x)

=
∫

A

dν

dη
(ω, x) · dηω

dµ
(x)dµ(x) as ω ∈ Ω̇

=
∫

A

dν

dη
(ω, x)dηω(x).

As A ∈FX was given arbitrarily, we see in particular that for ω ∈ Ω̇∩ Ω̈we have∫
X

∣∣∣∣dν

dη
(ω, x)

∣∣∣∣ dηω(x) = νω(X ) <∞,

implying dν
dη (ω, ·) ∈ L1(X ,ηω) and so by Theorem 2.1.11 we haveνω≪ ηω and dν

dη (ω, ·) =
dνω
dηω

(·), ηω-almost everywhere, for each ω ∈ Ω̈∩ Ω̇.

To close our discussion on shattered measures, we show how invariance of shat-
tered measures and bounds on densities of shattered measures carry over to their
shards.

Corollary 5.5.8. Let (∆,F∆,µ∆,S) be an RDS with σ :Ω→Ωmeasure preserving. Fur-
thermore, suppose we have an acip ν≪ µ∆ on ∆. Then for P-almost every ω ∈ Ω we
have νω≪µ∆ω and

dν

dµ∆
(ω, x) = dνω

dµ∆ω
(x), for µ∆ω-almost every x ∈∆ω. (211)

If additionally we have an M ∈R>0 such that dν
dµ∆

≤ M, µ∆-almost surely then

dνω
dµ∆ω

(x) ≤ M , for µ∆ω-almost every x ∈∆ω, (212)

and if S⋆ν= ν, then
( fω)⋆νω = νσω,P-almost surely. (213)
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Proof. As seen in Example 5.5.6 we have µ∆≪P×µ. As ν≪µ∆, Equation (211) then
follows directly from Lemma 5.5.7.

Assuming we have M ∈R>0 such that dν
dµ∆

, µ∆-almost surely, the (F∆-measurable)
set

Y :=
{

(ω, x) ∈∆ :
dν

dµ∆
(ω, x) > M

}
,

has µ∆(Y ) = 0. Using Theorem 5.5.2 we then have µ∆ω(Yω) = 0, on some set ΩY ∈FΩ

with P(Ω\ΩY ) = 0. Furthermore, by Lemma 5.5.7 we have a Ω̈ ∈FΩ such that P(Ω̈) =
P(Ω) and that for each ω ∈ Ω̈ we have dν

dµ∆
(ω, x) = dνω

dµ∆ω
(x) on some set x ∈ ∆̇ω with

µ∆ω(∆ω \ ∆̇ω) = 0. We then note P(Ω̈∩ΩY ) = P(Ω) and that for each ω ∈ Ω̈∩ΩY and
A ∈F∆ω we have∫

A

dνω
dµ∆ω

(x)dµ∆ω(x) =
∫

A∩∆̇ω∩(∆ω\Yω)

dνω
dµ∆ω

(x)dµ∆ω(x)

=
∫

A∩∆̇ω∩(∆ω\Yω)

dν

dµ∆
(ω, x)dµ∆ω(x) (214)

≤ Mµ∆ω(A∩ ∆̇ω∩ (∆ω \ Yω))

= Mµ∆ω(A),

which shows dνω
dµ∆ω

≤ M , µ∆ω-almost surely on the set Ω̈∩ΩY which has measure

P(Ω) =P(Ω̈∩ΩY ), proving Equation (212).
Finally assuming S⋆ν= νwe shall exploit the uniqueness of shards to prove Equa-

tion (213). To do so, let A ∈FΩ×X be given arbitrarily and note∫
Ω
νω(Aω)dP(ω) = ν(A) (215)

= (S⋆ν)(A)

=
∫
Ω
νω((S−1 A)ω)dP(ω)) (216)

=
∫
Ω

( fω)⋆νω(Aσω)dP(ω)

=
∫
Ω

( fσ−1ω)⋆νσ−1ω(Aω)dP(ω), (217)

where in Equation (215) we used Theorem 5.5.2; in Equation (216) we used Theo-
rem 5.5.2 and in Equation (217) we used Lemma 2.1.10 with the invariance of σ−1,
showing Equation (213) by the uniqueness condition phrased in Theorem 5.5.2.

As an application to shattered measures we state the following consequence of
Theorem 5.4.7 together with Proposition 5.5.8.
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Corollary 5.5.9. Let (∆,F∆,µ∆,G) be a acip admissible random tower system and M ∈
R>1 as in Theorem 5.4.7, and let ν : F∆ → [0,1] be an acip for (∆,F∆,µ∆,G). Then for
P-almost every ω ∈Ω we have νω≪µ∆ω ,

dν

dµ∆
(ω, x) = dνω

dµ∆ω
(x), for µ∆ω-almost every x ∈∆ω,

and
dνω

dµ∆ω
(x) ≤ M , for µ∆ω-almost every x ∈∆ω,

and
(Gω)⋆νω = νσω.

Returning to the original problem we indeed obtain an acip for our skew product
S as in Section 4. We remind ourself that an acip admissible random dynamical sys-
tem is a random dynamical system for which we can construct a random tower, that
is measure-regular and satisfies both the Markov Property and bounded distortion.
In particular, we can apply Theorem 5.4.7 to this random tower. We shall now show
how we can use this to find an acip for our underlying system.

Corollary 5.5.10. Let (Ω× X ,FΩ×X ,P×µ,S) be a random dynamical system that is
acip admissible. Then there exists an acip η onΩ×X and a shattered measure η· :Ω→
M+∞(X ) such that for almost every ω ∈ Ω the shard ηω is a probability measure with
(gω)⋆ηω = ησω.

Proof. As (Ω×X ,FΩ×X ,P×µ,S) is acip admissible we can construct a random tower
system (∆,F∆,µ∆,G) on (Ω× X ,FΩ×X ,P×µ,S) for which, by Theorem 5.4.7, there
exists an acip ν≪ µ∆ so that dν

dµ∆
≤ M µ∆-almost surely, for some M ∈ R>1. We show

this induces an acip on (Ω×X ,FΩ×X ,P×µ,S) using the mapping

π : ∆→Ω×X

(ω, x, l ) 7→ (ω, g l
σ−lω

(x)).

We claim η := π⋆µ∆ is an acip for (Ω×X ,FΩ×X ,P×µ,S). First we prove π is measur-
able, and let A ∈FΩ×X . Note that by definition of π we have π−1(A) ⊆∆. Proceeding,
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we see,

π−1(A) = {(ω, x, l ) ∈∆ :π(ω, x, l ) ∈ A}

= {(ω, x, l ) ∈∆ : g l
σ−lω

(x) ∈ Aω}

= ⊔
l∈Z≥0

{(ω, x) ∈Ω×X : g l
σ−lω

(x) ∈ Aω, x ∈Λσ−lω}× {l }

= ⊔
l∈Z≥0

{(ω, x) ∈Ω×X : Sl (σ−lω, x) ∈ A, (σ−lω, x) ∈Λ}× {l }

= ⊔
l∈Z≥0

{(ω, x) ∈Ω×X : (ω, x) ∈σl
Ω(S−l (A)∩Λ)}× {l }

= ⊔
l∈Z≥0

σl
Ω(S−l (A)∩Λ)× {l } ∈FΩ×X ,

so that π−1(A) ∈F∆.
As for absolute continuity of ηwith respect to P×µ, assuming P×µ(A) = 0 we see

µ∆(π−1(A)) =µ∆
( ⊔

l∈Z≥0

σl
Ω(S−l (A)∩Λ)× {l }

)
= ∑

l∈Z≥0

µ∆(σl
Ω(S−l (A)∩Λ× {l }))

= ∑
l∈Z≥0

(P×µ)(σl
Ω(S−l (A)∩Λ))

= ∑
l∈Z≥0

(P×µ)(S−l (A)∩Λ) (218)

≤ ∑
l∈Z≥0

(P×µ)(S−l A)

= ∑
l∈Z≥0

Sl
⋆(P×µ)(A)

= 0, (219)

where in Equation (218) we used the invariance and bi-measurability of σΩ as seen
in Lemma 4.2.6 and in Equation (219) we used the non-singularity of S as proven in
Lemma 4.2.2.

Finally, we show π◦G = S ◦π. Namely, note for (ω, x, l ) ∈∆we have

(π◦G)(ω, x, l ) =
{
π(σω, x, l +1), Rσ−lω(x) > l +1

π(σω, g l+1
σ−lω

(x),0), Rσ−lω(x) = l +1

= (σω, g l+1
σ−lω

(x))

= (S ◦π)(ω, x, l ),
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so that π◦G = S ◦π holds. For general A ∈FΩ×X we then see

S⋆(π⋆µ∆)(A) =µ∆(π−1(S−1 A))

=µ∆((π◦G)−1 A)

=π⋆µ∆(A),

proving invariance of η=π⋆µ∆ under S.
Having proven that η≪P×µ and S⋆η= ηwe see there exists a shattered measure

η· for η by Definition 5.5.3 (and Proposition 5.5.1 to be precise). Corollary 5.5.8 then
yields our result.

5.6 An Example

We shall now showcase the quenched approach by applying the theory of Section 5.4
to a random dynamical system with a non-mixing ergodic driver, namely the irra-
tional rotation from Example 2.1.3. For our definition of the irrational rotation of the
circle (Ω,FΩ,P,σθ) over some θ ∈R\Q, we have based ourselves on the conventions
as seen on Page 16 of [23]. We give some further explanation in subsection below.

5.6.1 Conventions made for the (irrational) rotation

We define an equivalence relation ∼ on R such that for x, y ∈Rwe have

x ∼ y ⇔ x − y ∈Z.

Define π : R→ R/Z as its quotient mapping. We then define Ω := R/ ∼ and endow
this with the quotient topology T∼. We then naturally have a quotient metric. More
specifically, if we let dR denote the Euclidian metric on R we can define the quotient
metric as

d([x], [y]) = inf
{
dR(u, v) : u ∈ [x], v ∈ [y]}, for [x], [y] ∈Ω}

.

Equipping Ω with T∼ yields a compact topological space. More so, for each x ∈ R
we can represent its equivalence class [x] by x −⌊x⌋ ∈ [0,1), so that we can write Ω=
R/Z∼= [0,1).

As for the σ-algebra FΩ onΩ, we can define

FΩ := {A ⊆Ω :π−1(A) ∈B(R)},

as the push-forward σ-algebraof the Borel σ-algebraB(R) on R. In denoting m for
the Lebesgue measure on the real line we can define the Lebesgue measure on the
circle as

P(E) = m(π−1(E)∩ [0,1)).
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The measure P is a probability measure which is invariant under the operation σθ :
[0,1) → [0,1), x 7→ x +θ mod 1. It is well known that (Ω,FΩ,P,σθ) is a uniquely er-
godic dynamical system (e.g. as seen in [10, Example 7.2.1], for a definition of unique
ergodicity, see Definition 5.6.1). Lastly, we define, given a,b ∈ [0,1) with a ̸= b the
open interval (a,b) ⊆ [0,1) as

(a,b) =
{

(a,b), a < Rb

(a,1)∪ (0,b), a > Rb,
,

where with < R and > R we mean the natural ordering on R. The open intervals in
[0,1) are open (contained in T∼) and measurable. We shall now very briefly explain
the ergodic property to prove Lemma 5.6.3 below. Namely, for irrational θ ∈ R the
rotation (Ω,FΩ,P,σΩ) is uniquely ergodic as defined below.

Definition 5.6.1. [10, Section 7.2] Let (X ,B,λ,T ) be a dynamical system with X a
compact metric space, (X ,B,λ) the standard Borel space with the Lebesgue measure,
and T : X → X a continuous transformation. If there exists only one T -invariant
probability measure we call T uniquely ergodic.

In our case, we shall use unique ergodicity in that is strengthens typical theorems
such as the Pointwise Ergodic Theorem in obtaining a claim that holds everywhere
instead of just almost everywhere claims in this thesis. In particular, we shall use the
following Theorem.

Theorem 5.6.2 ([10] Theorem 7.2.1). Let (X ,B,µ,T ) be a dynamical system with X a
compact metric space, (X ,B,µ) a standard Borel space and T : X → X a continuous
transformation. Then the following are equivalent:

1. There exists an T -invariant probability measure µ on (X ,B) such that for all
f ∈C (X ) and all x ∈ X we have

lim
n→∞

1

n

n−1∑
i=0

f (T i x) =
∫

X
f dµ. (220)

2. T is uniquely ergodic.

A proof that irrational rotations are uniquely ergodic can be found in Example
[13, Example 7.2.1].

Before going into random towers we now prove an observation on circle dynamics
that will be vital to proving integrability of return times in Lemma 5.6.7.

Lemma 5.6.3. Let (Ω,FΩ,P,σθ) be the irrational rotation. Let P,Q ∈ FΩ be such that
P

⊔
Q =Ω and suppose P◦ ̸= ;. Then there exists an M ∈ R>0 such that for every x ∈Ω

we have inf{n ∈Z≥1 :σn
θ

x ∈ P } ≤ M.
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Proof. First note, σθ :Ω→Ω is a continuous mapping, so that {σ−n
θ

P◦ : n ∈ Z≥1} is a
collection of non-empty open sets. As P◦ is open there exists a y ∈ P◦, δ ∈ R>0 such
that (y −δ, y +δ) ⊆ P◦. Now note that the mapping

f :Ω→Ω, x 7→ max

(
1− d(x, y)

δ
,0

)
,

is continuous and that we have ∫
Ω

f (x)dP(x) = δ> 0.

By unique ergodicity of σθ we may apply Theorem 5.6.2 and derive that for all
x ∈ [0,1) we have

lim
N→∞

1

N

N−1∑
n=0

f (σn(x)) = δ,

so σn x ∈ (y −δ, y +δ) for infinitely many n ∈Z≥0, and in particular, at least once.
Note this implies that for any x ∈ Ω we have an n ∈ Z≥1 such that σn x ∈ (y −

δ, y +δ). Consequently, {σ−n(y −δ, y +δ) : n ∈ Z≥1} is an open cover for Ω and by
compactness ofΩ, there exists an M ∈Z≥1 and a finite sub-cover

C = {σ−n(y −δ, y +δ) : n ∈ {1, . . . , M }}

for Ω. For an arbitrary x ∈ Ω we then have a C ∈ C and a k ∈ {1, . . . , M} such that
x ∈C =σ−k (y −δ, y +δ) so that σk (x) = (y −δ, y +δ) ⊆ P◦. We then see

sup
x∈Ω

inf{n ∈Z≥1 :σn x ∈ P } ≤ M

as desired.

5.6.2 The Quenched Stalling System

We define the base RDS (see (146)) of the random tower constructed later in this sec-
tion. The ergodic (non-mixing) driver we will equip the base dynamics with, is the
irrational rotation. To do so, similar as in Section 3.6.2 we define two mappings

fg : [0,1) → [0,1) fs : [0,1) → [0,1)

x 7→ 2x mod 1 x 7→
{

x, x ∈ (0, 1
2 )∪ ( 3

4 ,1)

2x −1, x ∈ ( 1
2 , 3

4 ),

where refer to fg as a ‘go’ and fs as a ‘stop’. We now use ([0,1),F[0,1),λ) as the standard
Borel space on [0,1). Now, fix (Ω,FΩ,P,σθ) as the irrational rotation on the circle.
PartitionΩ into two non-empty half-open intervals Ig , Is ∈FΩ, define a mapping

α :Ω→ {g , s}

ω 7→ γ, such that ω ∈ Iγ, (221)
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and construct the tuple

(Ω× [0,1),FΩ×[0,1),P×4 ·λ,U ), U (ω, x) = (σθω, fα(ω)(x)). (222)

We shall now show it is a random dynamical system.

Lemma 5.6.4. The system (Ω× [0,1),FΩ×[0,1),P× 4 ·λ,U ) as in Equation (222) is a
(random) dynamical system.

Proof. We shall use Lemma 3.6.7 and to do so, we need to prove measurability of
(ω, x) 7→ fα(ω)(x). To do so, note that for an arbitrary C ∈F[0,1) and ω ∈Ω we have

f −1
α(ω)(C ) = Is × f −1

s (C )⊔ Ig × f −1
g (C ) ∈FΩ×[0,1),

proving measurability of fα(·). Similarly, in having C ∈F[0,1), with 4 ·λ(C ) = 0, we can
see that for ω ∈Ω we have

λ( f −1
α(ω)(C )) ≤ max

{
λ( f −1

g (C )),λ( f −1
s (C ))

}
= 0,by non-singularity of fs and fg .

Applying Lemma 3.6.7 yields our result.

Similar to Lemma 3.6.11 we derive an ergodic equivalence of the system in (222)
with an RDS that nicer to work with. To do so, we recall the following definitions from
Section 3.6. Define the product measure space ({0,1}Z≥0 ,F{0,1}Z≥0 ,µ) with weights
(p0, p1) = (1

2 , 1
2

)
. Now define the mappings

σg : {0,1}Z≥0 → {0,1}Z≥0 σs : {0,1}Z≥0 → {0,1}Z≥0

(xn)n≥0 7→ (xn+1)n≥0 (xn)n≥0 7→
{

(xn+1)n≥0, (xn)n≥0 ∈ [10]

(xn)n≥0, (xn)n≥0 ∈ [0]∪ [11],

and construct the tuple

(Ω× {0,1}Z≥0 ,F
Ω×{0,1}Z≥0 ,P×4 ·µ,S), S(ω, x) = (σθω,σα(ω)(x)). (223)

This system we also show is an RDS.

Lemma 5.6.5. The system (Ω× {0,1}Z≥0 ,F
Ω×{0,1}Z≥0 ,P×4 ·µ,S) in Equation (223) is a

(random) dynamical system.

Proof. We shall use Lemma 3.6.7 and to do so, need to prove measurability of (ω, x) 7→
σα(ω)(x). To do so, note that for an arbitrary C ∈F{0,1}Z≥0 and ω ∈Ω we have

σ−1
α(ω)(C ) = Is ×σ−1

s (C )⊔ Ig ×σ−1
g (C ) ∈FΩ×{0,1}Z≥0 ,
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proving measurability of σα(·). Similarly, in having C ∈ F{0,1}Z≥0 , with 4 ·µ(C ) = 0, we
can see that for ω ∈Ω we have

µ(σ−1
α(ω)(C )) ≤ max

{
µ(σ−1

g (C )),µ(σ−1
s (C ))

}
= 0,by non-singularity of σs and σg .

Applying Lemma 3.6.7 yields our result.

Concluding our first task, we prove the ergodic equivalence between the systems
(222) and (223).

Lemma 5.6.6. The systems

(Ω× [0,1),FΩ×[0,1),P×4 ·λ,U )

and
(Ω× {0,1}Z≥0 ,F

Ω×{0,1}Z≥0 ,P×4 ·µ,S)

as defined in (222) and (223) respectively are ergodically isomorphic.

Proof. By Lemma A.2.4 we know the systems

([0,1),F[0,1),λ, fg ) and ({0,1}Z≥0 ,F{0,1}Z≥0 ,4 ·µ,σg )

are ergodically isomorphic. More so, by Corollary A.2.5the dynamical systems

([0,1),F[0,1),4 ·λ, fs) and ({0,1}Z≥0 ,F{0,1}Z≥0 ,4 ·µ,σs)

are ergodically isomorphic. Our claim is then immediate by Lemma 3.6.10.

For the rest of this Section we shall fix (Ω× {0,1}Z≥0 ,F
Ω×{0,1}Z≥0 ,P×4 ·µ,S) as in

Equation (223).

We shall now construct a random tower on (Ω× {0,1}Z≥0 ,F
Ω×{0,1}Z≥0 ,P×4 ·µ,S),

and to do so we reuse objects from Section 3.6. We again define

Y := {
x ∈ {0,1}Z≥0 : for all i ∈Z≥0 there is a j ∈Z≥1 such that xi ̸= x j

}
, (224)

and fix Λ = Y ∩ [10]. For the reader’s convenience we restate the following notation
from Lemma 3.6.5,

I2 := {[1010]}, I3 := {[10110], [10010]}, and for l ≥ 3,

Il :=
{

[10a10] ⊆Λ : a ∈ {0,1}l−2, ai ai+1 ̸= 10, i ∈ {0, ..., l −3}
}

, (225)
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and PΛ := {I : I ∈Il , l ∈Z≥2}. We then define Λ′ :=Ω×Λ and let

PΛ′ := {Ω× I : I ∈Il , l ∈Z≥2}. (226)

In notingΛ′ =⊔
I∈PΛ

Ω×I we can apply Lemma 3.6.5 and see PΛ′ is indeed a partition
of Λ′ consisting of countably many sets. It is important to note that the sections of
Λ′ are constant overΩ, that is Λ′

ω =Λ= [10]∩Y for each ω ∈Ω.
We now need to prove Λ′ and PΛ′ are a (random) induced domain and a (ran-

dom) principal partition for (Ω× {0,1}Z≥0 ,F
Ω×{0,1}Z≥0 ,P×4 ·µ,S). As a step up to this,

we first obtain a convenient expression for

R ′ : Λ′ →Z≥1 ∪ {∞} (227)

(ω, x) 7→ inf{n ∈Z≥1 : Sn
ω(x) ∈Λ′},

in Lemma 5.6.7 showing it indeed takes values in Z≥1 and is integrable on Λ′. Note
the similarity of the claim with Lemma 3.6.13, and recall the definition of α from
Equation (221).

Lemma 5.6.7. In letting R :Λ→Z≥1 be the return time from Lemma 3.6.3 and defining
for k ∈Z≥2 the measurable mapping

#k (ω) := #{i ∈ {1, . . . ,k −1} :α(σi
θ(ω)) = g }+1, (228)

we have a return time R ′ :Λ′ →Z≥2 which is given by

R ′(ω, x) = inf{k ∈Z≥2 : R(x) = #k (ω)}. (229)

Moreover, we have R ′ ∈ L1(Λ′), making PΛ′ into a random principal partition with
random induced domain Λ′ for (Ω× {0,1}Z≥0 ,F

Ω×{0,1}Z≥0 ,P×4 ·µ,S).

Proof. First, note that in denoting σ : Y → Y for the shift σ((xn)n≥0) = (xn+1)n≥0 we
have

σg |Λ =σs |Λ =σ|Λ and σs |Y \Λ = Id|Y \Λ, σg |Y \Λ =σ|Y \Λ.

Recall we have Λ′
ω = Λ = [10]∩Y for each ω ∈Ω. Then note that for each ω ∈Ω we

have Sω|Λ =σ|Λ and for x ∈ Y \Λ that

Sω|Y \Λ(x) =
{
σ(x), α(ω) = g

x, α(ω) = s.

Now let R ′ be as given by (227). First, we note that for any (ω, x) ∈ Λ′ we have as
x ∈ [10] that

R ′(ω, x) = inf
{
n ∈Z≥1 : Sn

ω(x) ∈Λ′
σnω

}
≥ inf

{
n ∈Z≥1 :σn

g (x) ∈ [10]
}

≥ 2.
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We can then see that for any ω ∈ Ω and x ∈ Λ′
ω we have that for n ∈ Z≥2, 2 ≤ n ≤

R ′(ω, x) we see that

Sn
ω(x) = Sσn−1

θ
(ω) ◦ · · · ◦Sσθ(ω)(x) =σ#n (ω)(x).

We then derive that for any (ω, x) ∈Λ′ we have as R ′(ω, x) ≥ 2

R ′(ω, x) = inf
{
n ∈Z≥2 : Sn

ω(x) ∈Λ′
σnω

}
= inf

{
n ∈Z≥2 :σ#n (ω)(x) ∈Λ′

σnω

}
= inf

{
n ∈Z≥2 :σ#n (ω)(x) ∈ [10]∩Y

}
.

Now to prove R ′ is constant over the elements of the partition PΛ′ , we note that for
any ω ∈Ω and any Pω ∈PΛ′

ω
we have an l ∈Z≥2 and Il ∈Il such that Pω = Il . Recall-

ing the property R|Il ≡ l from Lemma 3.6.5, and that

R(x) = inf{n ∈Z≥2 :σn(x) ∈ [10]∩Y },

with R as in Lemma 3.6.3 we note that for any x ∈ Il we have

R ′(ω, x) = inf
{
n ∈Z≥2 :σ#n (ω)(x) ∈ [10]∩Y

}= inf{n ∈Z≥2 : #n(ω) = l } , (230)

proving that R ′
ω(·) := R ′(ω, ·) is constant on elements Pω ∈PΛ′

ω
. More so, this implies

for general x ∈Λω that

R ′(ω, x) = inf
{
n ∈Z≥2 :σ#n (ω)(x) ∈ [10]∩Y

}= inf{n ∈Z≥2 : #n(ω) = R(x)} ,

proving Equation (229). To show R ′
ω takes values in Z≥1 note that by Lemma 5.6.3 we

have an M ∈Z≥1 so that

#{i ∈ {1, . . . , M } :α(σi
θω) = g } ≥ 1.

This implies that for any ω ∈Ωwe have

#n(ω) ≥
⌊ n

M

⌋
. (231)

Combining this with Equation (229) then shows that for ω ∈Ω and x ∈ Il we have

R ′(ω, x) = inf{k ∈Z≥2 : R(x) = #k (ω)} ≤ M(l −1) (232)

proving the return time indeed takes finite values (as for anyω ∈Ω and any Pω ∈PΛ′
ω

we have Pω = Il for some l ∈ Z≥2 and Il ∈ Il ). Finally, to show R ′ ∈ L1(Λ′), we note
that for all ω ∈Ωwe have

4 ·µ(Λ′
ω) =µ([10]∩X ) = 1

4
, so that 4 · (P×µ)(Λ′) = 1.
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Moreover, as seen in the proof of Lemma 3.6.6 we have for each l ∈ Z≥2 and Il ∈ Il

that µΛ(Il ) = 4 ·2−l−2 and #Il = l −1. As we know µΛ = (4 ·µ)Λ, we then calculate∫
Λ′

R(ω, x)d(4 ·P×µ)(ω, x) = 4
∫
Ω

∫
Λ′

ω

Rω(x)dµ(x)dP(ω)

= 4 ·∑
l≥2

∑
Il∈Il

∫
Ω

∫
Il

Rω(x)dµ(x)dP(ω) (233)

≤ 4 ·∑
l≥2

∑
Il∈Il

∫
Ω

∫
Il

M(l −1)dµ(x)dP(ω) (234)

≤ 4 ·∑
l≥2

∫
Ω

M(l −1) ·2−l−2(l −1)dP(ω)

= ∑
l≥2

(l −1)2 ·M ·2−l <∞, (235)

where in Equation (233) we used the Monotone Convergence Theorem; in Equation
(234) we used (232); and in Equation (235) we used the Ratio Test [12, Theorem 2.31].
We conclude R ∈ L1(Λ′) and that Λ′ is a random principal partition with random
induced domain Λ′.

As in Definition 5.1.7 we can then construct a random tower system (∆,F∆,µ∆,G)
on Λ′ and PΛ′ on

(Ω× {0,1}Z≥0 ,F
Ω×{0,1}Z≥0 ,P×4 ·µ,S), S(ω, x) = (σθω,σα(ω)(x)).

We shall now prove (∆,F∆,µ∆,G) is acip admissible as seen in Definition 5.3.14. That
is, it is measure-regular (see Definition 5.2.1) and satisfies the Markov Property (see
Definition 5.3.1) and has bounded distortion (see Definition 5.3.12). As in Remark
5.1.5 we shall fix Ω̇ as well (but note that in this particular instance we can likely take
Ω̇=Ω).

Proposition 5.6.8. The system (∆,F∆,µ∆,G) is acip-admissable. In particular there
exists an acip ν≪µ∆.

Proof. We need to verify measure-regularity, the markov property and bounded dis-
tortion for (∆,F∆,µ∆,G). Fix ω ∈ Ω̇.

First suppose we have an A ∈ PΛ′ such that Gω(Aω)∩ (∆σω,0 × {0}) ̸= ;. Then ac-
cording to Corollary 5.1.12 we have a P ∈ PΛ′

ω
, k ∈ Z≥0 such that Aω = Pσ−kω× {k}.

If Gω[Aω]∩ (∆σω,0 × {0}) ̸= ; we then have by Definition 5.1.7 for each x ∈ Aω that
Gω|Aω(x,k) = (Sk+1

σ−kω
(x),0), where Rσ−kω|Aω,k ≡ k + 1. By definition of PΛ′ we then

know there exists a l ∈Z≥2 and an Il ∈Il with Pσ−kω = Il , so that for any x ∈ Pσ−kω we
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have

Sk+1
σ−kω

(x) = Sk
σ−k+1ω

(σg (x))

=σk−(l−1)
b σl−1

g (σg (x))

=σl
g (x),

so that we have Gω|Aω(x,k) = (σl
g (x),0). By Lemma 3.6.5 we know σl

g |Il : Il → Λ is

bi-measurable satisfying ((σl
g )−1)⋆µ≪µ. Finally, we know∣∣∣∣∣ Jσl

g (x)

Jσl
g (y)

−1

∣∣∣∣∣=
∣∣∣∣ (1/2−1)l

(1/2−1)l
−1

∣∣∣∣= 0, (236)

holds for almost every x, y ∈ Il .
Proceeding, in denoting c{k},c{0} for the counting measures restricted to {k} and

{0} respectively, we see the mapping tk : {k} → {0},k 7→ 0 is trivially bi-measurable and
pbn-singular with respect to the measure spaces ({k}, {;, {k},c{k}) and ({0}, {;, {0},c{0}).
More so, we see J (ck )(k) = 1. In noting that Gω|Aω = σl

g |Il × tk , we can apply Lemma

4.3.18 to show Gω|Aω is bi-measurable and satisfies (Gω|−1
Aω

)⋆µ∆σω ≪ µAω , showing
measure-regularity. Moreover, as again by Lemma 4.3.18 we have

J (Gω)|Aω = J(σl
g |Il )J (tk ) = (1/2−1)l ·1 µAω-almost surely,

so that J(Gω|Aω) is constant and positive almost surely so that the Markov property
and bounded distortion follow as well.

As (∆,F∆,µ∆,G) is acip admissible, we obtain an acip ν≪ µ∆ with dν
dµ∆

≤ M for
some M ∈R>1 by Theorem 5.4.7.

From Proposition 5.6.8 we can directly apply Corollary 5.5.9 to obtain an acip ν′

for (Ω× {0,1}Z≥0 ,F
Ω×{0,1}Z≥0 ,P×4 ·µ,S). The same measure ν′ will then be an acip for

(Ω×{0,1}Z≥0 ,F
Ω×{0,1}Z≥0 ,P×µ,S). We shall use the ergodic equivalence of this system

with the system (Ω× [0,1),FΩ×[0,1),P×µ,U ) as seen in Equation (222) to show there
exists an acip ν for (Ω× [0,1),FΩ×[0,1),P×µ,U ).

Corollary 5.6.9. The system (Ω× [0,1),FΩ×[0,1),P×µ,U ) admits an acip ν and a shat-
tered measure ν· such that for almost everyω ∈Ω the shard νω is a probability measure
and satisfies (Uω)⋆ηω = ησω.

Proof. By Lemma 5.6.6 we know that

(Ω× [0,1),FΩ×[0,1),P×λ,U ) and (Ω× {0,1}Z≥0 ,F
Ω×{0,1}Z≥0 ,P×µ,S)
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are ergodically equivalent. By Proposition 5.6.8 we can then construct an acip-admissible
tower on

(Ω× {0,1}Z≥0 ,F
Ω×{0,1}Z≥0 ,P×4 ·µ,S),

so that we may find an acip ν′ ≪P×4 ·µ. Note that we have ν′ ≪P×µ and S⋆ν′ = ν′
as well. By Corollary 2.1.19 we obtain an acip η≪P×λ for

(Ω× [0,1),FΩ×[0,1),P×λ,U ).

The existence of a shattered measure η· of η satisfying (Uω)⋆(ηω) = ησω then follows
from Corollary 5.5.8 (note this Corollary applies to general random dynamical sys-
tems so in particular to this case).

A Appendix

A.1 Some Radon-Nikodym Derivative Identities

The following Lemma relates the image of the push-forward mapping with the sup-
port of the Radon-Nikodym derivative.

Lemma A.1.1. Let (X ,F ,µ) and (Y ,B,ν) be σ-finite measure spaces with f : X → Y a
measurable mapping with f⋆µ≪ ν. Now let A ∈F with f (A) ∈B. We then have

d( f |A)⋆µ

dν
(y) = 0 for almost every y ∉ f (A). (237)

Proof. Let B ∈B, with B ⊆ Y \ f (A) be given arbitrarily. Note this implies B∩ f (A) =;
and we (generally) have f (A)∩B = f [A∩ f −1(B)], so that

A∩ f −1B =;⇔ f [A∩ f −1(B)] =;⇔ f (A)∩B =;.

Consequently, we have∫
B

d( f |A)⋆µ

dν
(y)dν(y) = ( f |A)⋆µ(B) =µ(( f |A)−1(B)) =µ(A∩ f −1(B)) = 0,

which shows Equation (237) as B ∈B,B ⊆ Y \ f (A), was given arbitrarily.

Lemma A.1.2. Let (X ,F ,µ) and (Y ,B,ν) be σ-finite measure spaces and f : X → Y a
measurable mapping so that f⋆µ≪ ν. Then for A,B ∈F with A ⊆ B we have

d( f |A)⋆µ

dν
≤ d( f |B )⋆µ

dν
, holds ν-a.s..

152



Proof. Let C ∈FY be arbitrary and note∫
C

d( f |A)⋆µ

dν
(y)dν(y) =µ(A∩ f −1(C ))

≤µ(B ∩ f −1(C ))

=
∫

C

d( f |B )⋆µ

dν
(y)dν(y).

As C ∈FY was given arbitrarily, our claim follows.

Lemma A.1.3. Let (X ,F ,µ) and (Y ,B,ν) be σ-finite measure spaces and f : X → Y a
measurable mapping so that f⋆µ≪ ν. Then suppose A ∈F , B ∈B so that A ⊆ f −1(B),
then we have

( f |A)⋆µ≪ νB .

Proof. Note that for general C ∈B with νB (C ) = 0 that f⋆µ(B ∩C ) = 0 as f⋆µ≪ ν. We
see

( f |A)⋆µ(C ) =µ(A∩ f −1(C )) ≤ f⋆µ(B ∩C ) = 0.

Lemma A.1.4. Let (X ,F ,µ) and (Y ,B,ν) be finite measure spaces and f : X → Y a
measurable mapping so that f⋆µ≪ ν. Then suppose A ∈F , B ∈B so that A ⊆ f −1(B).
We then have

d( f |A)⋆µ

dν
|B = d( f |A)⋆µ

dνB
, νB -almost surely.

Proof. First note that by Lemma A.1.3 and Theorem 2.1.11 we have d( f |A)⋆µ
dνB

∈ L1(νB ).
Moreover, note that

( f |A)⋆≪ νB ≪ ν

so that we may write

d( f |A)⋆µ

dν
= d( f |A)⋆µ

dνB

dνB

dν
,ν-almost surely,

so that in particular

d( f |A)⋆µ

dν
|B = d( f |A)⋆µ

dνB
|B · dνB

dν
|B , νB -almost surely.

In noting that dνB
dν |B ≡ 1, νB -almost surely, we then see that for arbitrary C ∈BB∫

C

d( f |A)⋆µ

dν
|B (y)dνB (y) =

∫
C

d( f |A)⋆µ

dν
(y)dνB (y)

=
∫

C

d( f |A)⋆µ

dνB
(y)dνB (y),

proving the statement.
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Lemma A.1.5. Let (X ,F ,µ) and (Y ,B,ν) be finite measure spaces and f : X → Y a
measurable mapping so that f⋆µ≪ ν. Let A ∈F then we have

d( f |A)⋆µ

dν
= d f⋆µA

dν
.

Proof. Note that for C ∈B we have

( f |A)⋆µ(C ) =µ(A∩ f −1(C )) = f⋆µA(C ),

and so
f⋆µA(C ) ≤ f⋆µ(C )

so f⋆µA ≪µ. The claim follows.

Lemma A.1.6. Let (X ,F ,µ), (Y ,G ,ν) and (Z ,H ,η) be finite measure spaces and let
T : X → Y , and U : Y → Z be measurable mappings such that T⋆µ≪ ν and U⋆ν = η

with U bi-measurable. Then we have

d(U ◦T )⋆µ

dη
(z) = dT⋆µ

dν
(U−1z), η-almost surely.

Proof. Let C ∈H be arbitrary. Note then∫
C

d(U ◦T )⋆µ

dη
(z)dη(z) = (T⋆µ)(U−1C )

=
∫

U−1C

d(T⋆µ)

dν
(y)dν(y)

=
∫

U−1C

d(T⋆µ)

dν
(U−1 ◦U (y))dν(y)

=
∫

C

d(T⋆µ)

dν
(U−1(y))dU⋆ν(y) (238)

=
∫

C

d(T⋆µ)

dν
(U−1(z))dη(z),

(239)

where in Equation (238) we used Lemma 2.1.10 with the integrability of the Radon-
Nikodym derivative.

The following lemma is here for easy reference in Proposition 5.5.1.

Lemma A.1.7. Suppose (Ω,FΩ,P) is a probability space and (X ,FX ,µ) is a σ-finite
measure space. Construct (Ω×X ,FΩ×X ,P×µ). Suppose we have a finite positive mea-
sure ν on Ω×X , with ν≪P×µ. Then we have:
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(1) The Radon-Nikodym derivative dν
dP×µ is non-negative P×µ-almost everywhere;

(2) For almost every ω ∈Ω and for each A ∈FX we have∫
A

dν

dP×µ (ω, x)dµ(x) ≥ 0;

(3) For every f ∈ L1(ν) we have f · dν
dP×µ ∈ L1(Ω×X ).

Proof. Firstly note that for general A ∈FΩ×X we have∫
A

dν

dP×µ (ω, x)d(P×µ)(ω, x) = ν(A) ≥ 0,

showing Claim (1) of the lemma. Furthermore, for general A ∈ FX and O ∈ FΩ we
have using Theorem 2.1.8∫

O

∫
A

dν

dP×µ (ω, x)dµ(x)dP(ω) =
∫

O×A

dν

dP×µ (ω, x)d(P×µ)(ω, x)

= ν(O × A)

≥ 0,

so that indeed for almost every ω ∈Ω and for each A ∈FX∫
A

dν

dP×µ (ω, x)dµ(x) ≥ 0,

proving Claim (2). Lastly, note that for f ∈ L1(ν) we have∫
Ω×X

∣∣ f (ω, x)
∣∣ dν

dP×µ (ω, x)d(P×µ)(ω, x) =
∫
Ω×X

∣∣ f (ω, x)
∣∣ dν(ω, x) <∞,

so f · dν
dP×µ ∈ L1(Ω×X ).

A.2 Ergodic Equivalence of Bernoulli shift with Doubling map

The rest of this Section is dedicated to proving the equivalence of the doubling maps
and the binary shift. A technical complication in the lemma below is that binary
expansions need not be unique. Luckily, there are at most countably many real values
having a non-unique expansion.

Lemma A.2.1. Let

π̄ : {0,1}Z≥0 \ {(1n)n≥0} → [0,1) (240)

(xn)n≥0 7→
∞∑

n=0
xn2−n−1
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and

φ : [0,1) → {0,1}Z≥0 (241)

x 7→
(

n 7→
{

0, if 2n x −⌊2n x⌋ < 1
2

1, if 2n x −⌊2n x⌋ ≥ 1
2

)
,

then we have π̄◦φ(x) = x for each x ∈ [0,1).

Proof. Well-definedness of π̄ Note that for every x ∈ {0,1}Z≥0 we have xn ≥ 0 for all
n ∈ Z≥0 and π̄(x) ≤ ∑∞

n=0 2−n−1 = 1, so π̄(x) is absolutely convergent. Note that
π̄(x) = 1 only holds for x ∈ {(1n)n≥0}, so π̄ indeed takes values in [0,1).

φ is a right-inverse for π̄: We claim that

π̄(φ(x)) :=
∞∑

n=0
2−n−1(φ(x))n = x for each x ∈ [0,1).

For a proof, suppose N ≥ 0 and write (xn)n≥0 :=φ(x). We will show

x −
N∑

n=0
2−n−1xn ∈ [0,2−N−1) (242)

by induction. First for the case N = 0, note that

x −
0∑

n=0
2−n−1xn =

{
x −0 · 1

2 if x < 1
2

x −1 · 1
2 if x ≥ 1

2

∈
[

0,
1

2

)
= [0,2−N−1).

Then suppose for some fixed N ≥ 0 Equation (242) to holds. Then we have

x −
N+1∑
n=0

2−n−1xn ∈ [0,2−N−1 −2−N−2) = [0,2−N−2),

so that by induction Equation (242) holds for all N ≥ 0. Consequently, we note

x − π̄((xn)n≥0) = lim
N→∞

x −
N∑

n=0
(2−n−1xn) = 0,

so that indeed
π̄(φ(x)) = π̄((xn)n≥0) = x (243)

We shall now show we obtain a bijection when we restrict the domain of π̄ to a
suitable subset.
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Lemma A.2.2. Let

X := {(xn)n≥0 ∈ {0,1}Z≥0 : for all i ∈Z≥0 there is a j ≥ i such that x j = 0}, (244)

π : X → [0,1) (245)

(xn)n≥0 7→
∞∑

n=0
xn2−n−1

and

φ : [0,1) → X (246)

x 7→
(

n 7→
{

0, if 2n x −⌊2n x⌋ < 1
2

1, if 2n x −⌊2n x⌋ ≥ 1
2

)
,

then φ and π are well-defined on their respective domains and we have

φ◦π= IdX , π◦φ= Id[0,1). (247)

Proof. φ takes values in X : Suppose we have an x ∈ [0,1), such that (xn)n≥0 :=φ(x) ∉
X . Then there exists a lowest N ∈Z≥0 such that (n 7→ xn)|n≥N ≡ 1.

If N = 0 then
∑∞

n=0 2−n−1xn = 1, which contradicts Lemma A.2.1 so suppose
N ≥ 1. We then necessarily have xN−1 = 0 and define

(yn)n≥0 :=


xn , n < N −1

1, n = N −1

0, n > N −1

.

Note (yn)n≥0 ∈ X and y :=∑N−1
i=0 2−i−1 yi ∈ [0,1). We then see

π̄((xn)n≥0)− π̄((yn)n≥0) = 2−n−1 −
∞∑

i=n
2−i−2

= 2−n−1 −
∞∑

i=0
2−n−i−2

= 2−n−1(1−
∞∑

i=0
2−1−i )

= 0,

so by Lemma A.2.1 we see x = π̄(φ(x)) = π̄(φ(y)), so that x = y . Finally, note
then that

2N−1x −⌊2N−1x⌋ = 2N−1 y −⌊2N−1 y⌋ = 1,

contradicting xN−1 = 0, so x ∈ X .
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φ is a left-inverse for π: Suppose x ∈ X . We shall show

xm = (φ◦π)(x)m , for all m ∈Z≥0. (248)

To do so let m ∈Z≥0, and to evaluate (φ◦π)(x)m we note

2m
∞∑

n=0
xn2−n−1 −⌊2m

∞∑
n=0

xn2−n−1⌋ = 2m
∞∑

n=m
xn2−n−1

=
∞∑

n=0
xn+m2−n−1

≥ 1

2
if and only if xm = 1

where the last inequality holds as x ∈ X . Thus,

(φ◦π)(x)m = 1 ⇔
∞∑

n=0
xn+m2−n−1 ≥ 1

2
⇔ xm = 1.

Similarly, we can derive

(φ◦π)(x)m = 0 ⇔
∞∑

n=0
xn+m2−n−1 < 1

2
⇔ xm = 0,

as x ∈ X . We conclude Equation (248) for all m ∈Z≥0, so that φ◦π= Id|X .
In addition to the above, Lemma A.2.1 yields π ◦φ = Id[0,1) from which Identity

(247) follows.

The following corollary is useful when applying measure theory to the set X of
Equation (244) as in Lemma 4.3.17. For the notation on cylinders, see Section 3.6.

Corollary A.2.3. Let, n ∈ Z≥1, and γi ∈ {0,1} for i ∈ {0, . . . ,n − 1}. For the cylinder
[γ0 · · ·γn−1] ⊆ X we have that[

n−1∑
k=0

2−k−1γk ,
n−1∑
k=0

2−k−1γk +2−n

)
=π[γ0 · · ·γn−1]. (249)

Proof. First we prove[
n−1∑
k=0

2−k−1γk ,
n−1∑
k=0

2−k−1γk +2−n

)
⊇π[γ0 · · ·γn−1]. (250)

To do so, let (xk )k≥0 ∈ [γ0 · · ·γn−1] and note

π((xk )k≥0) =
∞∑

k=0
2−k−1xk =

n−1∑
k=0

2−k−1γk +
∞∑

k=n
2−k−1xk .
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Now as
∑∞

k=n 2−k−1xk < 2−n , we have

π((xk )k≥0) ∈
[

n−1∑
k=0

2−k−1γk ,
n−1∑
k=0

2−k−1γk +2−n

)
.

To show [
n−1∑
k=0

2−k−1γk ,
n−1∑
k=0

2−k−1γk +2−n

)
⊆π[γ0 · · ·γn−1], (251)

let x ∈ [∑n−1
k=0 2−k−1γk ,

∑n−1
k=0 2−k−1γk +2−n

)
. Note that for l ∈ {0, . . . ,n −1} we have

2l x −⌊2l x⌋ =
n−1∑
k=l

2−k−1 ·γk ·2l ,

so that

2l x −⌊2l x⌋ ≥ 1

2
if γl = 1, and 2l x −⌊2l x⌋ < 1

2
if γl = 0,

meaning that φ(x)l = γl for l ∈ {0, . . . ,n −1}. As φ=π−1 this implies Equation (251).
Equations (250) and (251) imply Equation (249), proving the corollary.

Lemma A.2.4. Let ([0,1),B[0,1),λ,D) be the standard Borel measure space equipped
with the doubling map and ({0,1}Z≥0 ,F{0,1},P,σ) be the Bernoulli shift with for all i ∈
Z≥0

P({x ∈ {0,1}Z≥0 : xi = 1) =P({x ∈ {0,1}Z≥0 : xi = 0) = 1

2
.

Then the mappingπ from Lemma A.2.2 is an ergodic isomorphism between ([0,1),B[0,1),λ,D)
and ({0,1}Z≥0 ,F{0,1},P,σ).

Proof. The proof comes down to verifying the properties of Definition 2.1.15. We fix
X as in Equation 244.

Measurability of X Taking for all n ∈Z≥0, the cylinders

Cn,0 := {(xn)n≥0 ∈ {0,1}Z≥0 : xn = 0}

we can write

X = limsup
n→∞

Cn,0 :=
∞⋂

n=1

( ∞⋃
m=n

Cm,0

)
∈F{0,1}.

The set X is of full measure First note that for each l ∈Z≥0 we have

P(
n+l⋃

m=n
Cm,0) = 1−2−l so that P(

∞⋃
m=n

Cm,0) = 1.

The set X is, as the countable intersection of sets of full measure, has full mea-
sure, that is, P(X ) = 1.
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π and φ are measurable We shall make use of Lemma 2.1.5. First write I = π−1C ,
where C denote the cylinders in X . For clarity sake, note that by Corollary A.2.3
we have

I :=
{[

n−1∑
k=0

2−k−1γk ,
n−1∑
k=0

2−k−1γk +2−n

)
⊆ [0,1) : γk ∈ {0,1},k ∈ {0, . . . ,n −1},n ≥ 1

}
.

Using this, we note for any open interval [a,b) ⊆ [0,1) we have by Lemma A.2.2

[a,b) =
∞⋂

n=0

[
n∑

i=0
2−i−1(φ(a))i , 1

)
∩

∞⋃
n=0

[
0,

n∑
i=0

2−i−1(φ(b))i

)
,

so that σ(π−1C ) = B[0,1). Now as σ(C ) = FX , we see by Lemma 2.1.4 that
π : X → [0,1) is measurable. Conversely φ−1(I ) = C ⊆ FX and σ(I ) = B[0,1)
so φ : [0,1) → X is also measurable by Lemma 2.1.4.

The property π◦S = D ◦π holds Let x ∈ X . Note by Corollary A.2.3 we have π(x) ∈
[0, 1

2 ) if and only if x0 = 0 and π(x) = [ 1
2 ,1) if and only if x0 = 1, so that x0 =

⌊2 ·∑∞
n=0 2−n−1xn⌋. Note then

π◦S(x) =π((xn+1)n≥0)

=
∞∑

n=0
2−n−1xn+1

=
∞∑

n=0
2−n xn −x0

=
∞∑

n=0
D(2−n−1xn)−

⌊ ∞∑
n=0

D2−n−1xn

⌋
= D

∞∑
n=0

(2−n−1xn)−
⌊

D(
∞∑

n=0
2−n−1xn)

⌋
= D ◦π(x).

The property P=φ⋆λ holds We shall use Lemma 2.1.5. We denote the set of cylin-
ders in X with the empty set as given by

C = {
[γ0 · · ·γn−1] ⊆ X : n ∈Z≥1,γi ∈ {0,1}, i ∈ {0, . . . ,n −1}

}∪ {;}.

Then C contains the empty set, generates FX , and is closed under finite inter-
section. Moreover, by Lemma A.2.3 we seeP[γ0 · · ·γn−1] = ( 1

2 )n , andφ⋆λ[γ0 · · ·γn−1] =
( 1

2 )n so that by Lemma 2.1.5 we have φ⋆λ=P.

We have shown the desired equivalence.
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Corollary A.2.5. Let ([0,1),B[0,1),λ,Ds) be the standard Borel measure space equipped
with the mapping

Ds : [0,1) → [0,1)

x →
{

D(x), x ∈ (1
2 , 3

4

)
x, else,

where D is the doubling map. Also let ({0,1}Z≥0 ,F{0,1},P,σs) be with P defined by

P({x ∈ {0,1}Z≥0 : xi = 1) =P({x ∈ {0,1}Z≥0 : xi = 0) = 1

2
,

for all i ∈Z≥0 and let σs : {0,1}Z≥0 → {0,1}Z≥0 be as given by

σs((xn)n≥0) =
{
σ((xn)n≥0), x0 = 1, x1 = 0

(xn)n≥0, else.
(252)

Then the mappingπ from Lemma A.2.2 is an ergodic isomorphism between ([0,1),B[0,1),λ,Ds)
and ({0,1}Z≥0 ,F{0,1},P,σs).

Proof. By Lemma A.2.4, the only thing we need to prove is for every (xn)≥0 ∈ X with
X as in Equation (244) we have π ◦σs = Ds ◦π. To do so, let x ∈ X and note that by
Corollary A.2.3 we have π(x) ∈ [ 1

2 , 3
4 ) if and only if x0 = 1 and x1 = 0. Then note

Ds ◦π(x) =
{

D ◦π(x), π(x) ∈ ( 1
2 , 3

4 )

π(x), else

=
{

D ◦π(x), x0 = 1, x1 = 0

π(x), else

=
{

(π◦σ)(x), x0 = 1, x1 = 0

π(x), else

= (σs ◦π)(x)

provingπ◦σs = Ds◦π on X . Again, by the claims proven in Lemmas A.2.4 and A.2.2 we
then have the ergodic equivalence of ([0,1),B[0,1),λ,Ds) and ({0,1}Z≥0 ,F{0,1},P,σs).

A.3 Functional Analysis

In this Appendix we have compiled some functional analytic results needed in Sec-
tion 4.1.

The following Theorem characterises duals of Lp spaces.
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Theorem A.3.1 ([8] Appendix B ). Let (X ,F ,µ) be a measure space, let 1 ≤ p, q < ∞
and 1/p +1/q = 1. If g ∈ Lq (X ), define Fg : Lp (X ) → F by

Fg ( f ) =
∫

f g dµ.

If 1 < p <∞ the map g 7→ Fg defines an isometric isomorphism of Lq (X ) onto Lp (X )′.
If p = 1 and (X ,F ,µ) is σ-finite, g 7→ Fg is an isometric isomorphism of L∞(X ) onto
L1(µ)′.

The following Theorem is known as the Banach-Alaoglu Theorem. It is perhaps
the main result on compactness within functional analysis.

Theorem A.3.2. [8, Theorem V.3.1] Let (X , || · ||) be a normed vector space. Then the
closed balls in the dual space X ′ are compact in the weak* topology.

The following Theorem is known as the Eberlein-Smulian Theorem. It shows
that weak compactness and weak sequential compactness are equivalent in Banach
spaces. Note we do not require a separability condition on our space.

Theorem A.3.3. [8, Theorem V.13.1] If X is a Banach space and A ⊆ X , then the fol-
lowing statements are equivalent.

1. Each sequence of elements of A has a subsequence that is weakly convergent.

2. The weak closure of A is weakly compact.
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