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1 Introduction

Be it population growth [16], particles moving in a space [22] or mixing liquids [19]
- many physical processes display a change over time. Since the early 1930s math-
ematicians have modelled these processes using (discrete) dynamical systems [5]
having a measure, to quantify an amount of people or an amount of particles for
instance, and an operator to model how the measure changes over time. Natural
questions then arise on the long term behaviour of these processes, such as: will our
population amount stabilize? Can we predict the size of a volume by following how
much time an individual particle spends in the volume on average? Will the liquids
mix homogeneously?

Typically, an invariant measure is a measure which describes the long term be-
haviour of our system. A common approach to finding invariant measures is by fix-
ing a reference measure, letting the system run for infinitely long and seeing how the
reference measure averages over time [23, Chapter 2]. This asymptotically averaged
measure is then likely to be an invariant measure.

If we want to be able to answer questions like the ones written earlier however, it
is clear that not just any reference measure defined on a dynamical system will yield
an invariant measure that yields relevant information. Instead, we likely need the ref-
erence measure to have some kind of physical meaning, moreover, we then need to
be able to describe our invariant measure in terms of this reference measure. Math-
ematically speaking, we want to find an absolutely continuous invariant measure for
our reference measure. Or specifically in this thesis, an absolutely continuous invari-
ant probability measure also known as (acip).

Turning to a more abstract setting than the physical processes above, in the 1970s
it was shown that dynamical systems in which small distances grow uniformly ad-
mit acips [1]. These systems are called uniformly expanding. The uniform expansion
allows us to describe the system as a shift over a (possibly infinite) alphabet while
still respecting ergodic and measure-theoretic properties such as absolute continu-
ity. For the uninitiated reader, we have added a prototypical example of a uniformly
expanding system at the end of this section, seen in Figure

However, physical reality is seldom as nice as to assure us of uniformly expanding
behaviour in dynamical systems. Hence, Lai-Sang Young in [25] and [24] developed
a method stating conditions shared by a wide class of non-uniformly expanding sys-
tems under which acips exist. Crucially, she showed these non-uniformly expanding
systems can be analysed successfully by defining an induced scheme (in this thesis re-
ferred to as a tower base) and a Young Tower. Conceptually, the tower base is a small
part of the original system where the dynamics are sped up. On a tower base, a Young
Tower can then be constructed, which under certain conditions induces an acip for
our original (non-uniformly expanding) system.

Since Young'’s discovery, mathematicians have tried studying random dynamical



systems based on non-uniformly expanding dynamical systems through Young Tow-
ers [2],[3],(13], [4]. Random dynamical systems are constructed using a base dynamic
and a dynamical system we refer to as a random dynamic. The base dynamic consists
of a family of operators acting on the same set where at every time step an operator
is chosen according to the random dynamic. In the literature, there exist two lead-
ing paradigms to apply Young Towers to random dynamical systems which are called
the annealed approach [13], [3] and the quenched approach [4], [2]. The annealed
approach essentially constructs a Young Tower directly on the random dynamical
system allowing us to analyse it with the existing theory on Young Towers. This does
force the random dynamic to be subjected to similar conditions as the base dynamic,
limiting its applicability to random dynamical systems with a random dynamic that
expands. As the annealed approach has already undergone a rigorous treatise in the
paper [13] we shall focus ourselves on the quenched approach.

The quenched approach was first introduced in [4]. In a nutshell, the quenched
approach constructs a Young Tower like structure for almost every element of the
random dynamic. This allows for greater flexibility in our choice for a random dy-
namic, but the construction is much more delicate. To illustrate, the original method
as seen in [4] has been reworked several times in papers such as [26], [2] and [7] the
latter two being published as recent as 2023. However, each of these approaches is
hard to make rigorous, either due to missing measurability of the density of an acip
such as in [4], [26], relying on topological conditions not generally satisfied in the
context of random Young Towers and/or basing themselves on bounds not applying
to typical standard examples such as Young Towers based on the doubling map [1],
[71.

The main aim of this text is finding a mathematically rigorous way to use the
quenched approach to prove the existence of an absolutely continuous invariant
probability measure (acip) for random dynamical systems with a non-uniformly ex-
panding base dynamic and a random dynamic not displaying any form of expand-
ingness.

This thesis is structured as follows. In Section 2] the preliminaries introduce ele-
mentary measure-theoretical concepts to the reader necessary to prove the existence
of an acip using deterministic Young Towers as seen in Section 3} Section [3]is based
on papers [25], [24] and the book [1] where we try to make the conditions as imposed
by Young as intuitive as possible. Moreover, several proofs on the ergodic proper-
ties of the acip have been reworked in hopes of providing a clearer exposition than
was done in [25]. In Section [3.6|/two elementary examples of Young Towers are given,
the first one being deterministic and the second being an example of the previously
mentioned annealed approach.

Sections|4.1H5.6/are aimed at proving the existence of an acip for quenched ran-
dom dynamical system. In particular, in Section [4.1 we develop the functional an-



alytic background necessary for our proof from which we in Section derive an
original proof for the deterministic case as well. We do so using a novel measure-
theoretical counterpart of the celebrated Arzela-Ascoli Theorem obtaining L' con-
vergence and almost everywhere convergence, without requiring compactness. In
Sections [4.2]and [4.3| we shall lay out the measure theoretical foundations necessary
to describe Young Towers. Notably, an adapted version of the treatise of Jacobians
in [23] is given and subsequently generalised to describe Random Young Towers, or
more generally, random dynamical systems. In Sections |5.1 we shall carefully
build up the theory of Random Young Towers to prove the existence of an acip for
Random Young Towers in Section[5.4] To our knowledge, our approach is novel but
does borrow some ideas from papers such as [2] or [7].

Finally, in Section we have proven a novel Disintegration Theorem gener-
ally applicable to random dynamical systems as it only relies on absolute continuity,
avoiding complicated disintegration theorems such as [9, Corollary 6.13] used by [1]
that may or may not apply to our setting. We conclude the thesis by presenting an ex-
ample in Section 5.6/ to which the quenched approach applies. The non-expanding
random dynamic there will take shape in the form of the irrational rotation.

Ly .
— D(x) I
= !
2 05| y
Q ,,’.

0~ ‘ :

0 0.5 1

X

Figure 1: The doubling map
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2 Preliminaries

We start with some general definitions and notations used in this thesis. The material
present here has been written with the help of [6], [23], [1], to which a few results have
been added. The material here presented is sufficient for all proofs in Section[3|

2.1 Dynamical Systems

This subsection is structured as follows: In Definition through Example
first we shall introduce dynamical systems briefly. After that from Definition [2.1.6]
through Theorem[2.1.11|we shall then lay out some elementary measure-theoretical
concepts, necessary to study dynamical systems. After that we shall formally define
an acip and for the rest of the section present tools to study these.

We shall generally only consider dynamical systems of positive o-finite measures
with a non-singular operator. Non-singularity we shall require for the Radon-Nikodym
Theorem.

Definition 2.1.1. Given a measure space (X, %, u) with u a o-finite positive measure
and an & -measurable mapping T : X — X, we call T non-singular if for all A e F
with p(A) = 0 we have u(T~'A) = 0. If T is non-singular, we refer to the quadruple
(X, %, u, T) as a dynamical system with T the operator.

In ergodic theory we often want to investigate the relation between p and T by
means of the following definitions.

Definition 2.1.2. Given a dynamical system (X, %, u, T) with u(X) € (0,00) we say the
measure y is invariant (for T) if for all A € & we have u(A) = u(T~1 A). If so, we call T
measure preserving. For measure-preserving T we say, T is:

1. ergodic, if for all A€ % with T"' A= A we have u(A) =0or u(X\ A) =0;
2. mixing, if for all A, B € & we have

lim p(T™" AN B) = p(A)p(B);

3. exact, if we have
{,u(A) :Ae ) T—”g} ={0, u(X)}.

n=0
We have an order of implications[3|={2]={1] see [10].

Example 2.1.3. The following dynamical systems will be used as examples in Sec-

tions[3.6land 5.6l



Bernoulli shift Given a finite indexed set I' = ‘{Y}yer with a vector P = (py)yer of
probabilities, py >0, Zyer py =1, we can define (220, Fris0,P,0) where Frz.,
is the infinite product o-algebra based on I', P the product measure and o the
left shift. We shall refer to I as an alphabet.

Rotation Given some 6 € R, the rotation
0p:[0,1) —[0,1) op(x)=x+6 mod]l,

makes ([0,1),4810,1),1,0p) into a dynamical system where 28([0, 1)) is the Borel
o-algebra and A the Lebesgue measure.

Doubling map Given the Borel space ([0,1),48[0,1), 1) equipped with the Lebesgue
measure, we can define the doubling map as given by

T:[0,1)—1[0,1) x—2x mod]l.

It is well known that Bernoulli shifts, the doubling map and rotations are measure
preserving. On top of that, Bernoulli shifts and the doubling map are exact and rota-
tions og are not mixing, but og ergodic if and only if 0 e R\ Q.

As said previously, we present some measure-theoretical tools necessary to study
dynamical systems. We incorporated these as they will used extensively and for ease
of reference. Functions whose inverse images map a collection of generators into a
o-algebra are measurable, see [21, Lemma 7.2]

Lemma 2.1.4. Let (X,%x) and (Y,%y) be measurable spaces with T : X — Y some
mapping. Suppose we have W < Fy withoW)=Fy and T"*(W) < Fx. Then T is
measurable.

The following Lemma is also known as the 7-A Theorem. It states that if two mea-
sures on a measure space are equal on an intersection stable collection of generators
for their o-algebra, they agree on the entire o-algebra. See [21, Theorem 5.7].

Lemma 2.1.5. Let (X, %) be some measurable space and suppose we have finite mea-
sures v € M (X) such that u(X) = v(X) and an-systemI1 € & so thato(Il) = &, and
w(P) =v(P) foreach PeTIl. Then yu=v.

We shall see many instances of dynamical systems constructed by restricting a
measure space to a measurable subset on which on an operator is defined.

Definition 2.1.6. [6, pg 8, 56] Given a measure space (X, %, u) with u a o-finite non-
negative measure and an A € & with u(A) € [0,00) we can define the trace o-algebra
(of A)

Fpr={AnNB< X:Be %}



and the restricted measure (to A)
pa:Fa—[0,u(A)] A— u(AnB).
Similarly we call (A, % 4, na) the restricted measure space (to A).

In particular, we shall often use the notion of a restricted measure space when
considering product spaces - in fact this is exactly how we will define Young Towers
in Section[3.4] The following Proposition will then be useful.

Proposition 2.1.7. |6, Proposition 3.3.2.] Let (X, % x) and (Y, %y) be measurable spaces
and construct the measurable space (X xY,Fxxy). Then foreach Ae Fxxy, x € X and
y €Y we have

Ay::{xeX:(x,y)EA}EQXandAx::{yeX:(x,y)EA}egy (1D

In addition, for every & xy -measurable function f and every x € X the mapping y —
f(x,y) is Fy-measurable.
Lastly, for any finite measurev on Fy the mapping x — v(Ay) is ¥y -measurable.

We refer to the sets A, and A, as in Equation (I) as sections. Proposition tells
us that product measurable sets have measurable sections. The following Theorem
will play an important role in Sections[4.2]and 5.5

Theorem 2.1.8. |6, Theorem 3.4.4. Fubini] Let i and v be o -finite non-negative mea-
sures on the spaces X and Y respectively. Suppose that a function f on X x Y is in-
tegrable with respect to the product measure i x v. Then, the function y — f(x,y) is
integrable with respect to v for pu-a.e. x, the function x — f(x,y) is integrable with
respect to u for v-a.e. y, the functions

x— fy fay)dvly) and ye— fX £,y duo)

are integrable on X and Y respectively, and one has

fd(uxw:fff(x,y)du(x)V(y):fff(x,y)V(y)du(x).
YJX XJY

XxY

To study how measures of dynamical systems change under their operator we
define the pushforward measure.

Definition 2.1.9. Suppose we have a measure space (X, %, u) with y a positive mea-
sure and a measurable space (Y, %) with a measurable mapping T : X — Y. We shall
refer to the measure T, on Y defined by

Tou(B)=u(T™'B), forBe%,

as the pushforward measure of punder T.

8



If Ac & and T : A — Y is measurable we will often simply write T, u instead of
T4 pa. Note that measure-preservingness of a T: X — X with respect to some u sim-
plifies notationally to T u = u, and non-singularity of T with respect to u simplifies
to requiring Ty it << (.

We now present a technical tool for evaluating pushforward measures.

Lemma 2.1.10 (Change of variables). Let (X, %, 1) be a measure space, and let (Y, %)
be a measurable space. Let f : X — Y and g: Y — RU {oo} be measurable mappings.
We have g € L' (Y, fxp) ifand only ifgo f € LY (X, ). In this case, we have

fgd(f*u):f gofdu forall Ae .
A 4

See [6, Theorem 3.6.1] for a proof.

A useful consequence of assuming absolute continuity of a pushforward measure
with respect to reference measure is the ability to define densities using the Radon
Nikodym Theorem [6, Theorem 3.2.2.]. The theorem itself, taken from [6, Theorem
3.2.2], is only phrased there for finite measures but the generalisation we phrase here
is mentioned in words later in the corresponding section. Note that any measure
absolutely continuous with respect to a o-finite measure is o-finite.

Theorem 2.1.11 ([6], Theorem 3.2.2). Let (X,%,u) be a o-finite measure space. For
any positive measurev : F — [0,00] the following statements are equivalent:

1. The measurev is absolutely continuous with respect to p.
2. There exists a measurable function f : X — RxoU{oo} such thatv(-) = [ f(x) du(x).

If such f exists, we refer to it as the Radon-Nikodym derivative of v with respect to u
and write f = Z—;. The Radon-Nikodym derivative is unique up to a [L.-measure zero

set. We have Z—; € L(X, ) ifand only if v is a finite measure.

Having established the necessary measure-theoretical background, we return to
our discussion of dynamical systems. The main goal of this thesis will be finding
sufficient conditions under which the following object exists and whether this object
is unique in that setting.

Definition 2.1.12. Given a dynamical system (X, &, u, T) we say that v is an abso-
lutely continuous invariant probability measure (with respect to u and T) if v is a
probability measure satisfying v < p and T, v = v. We shall refer to such a measure v
as an acip for short.

The following proposition is useful for proving uniqueness of acips with the same
support. See [1] for a proof.



Proposition 2.1.13. Let (X,%,u, T) be a dynamical system and A € & be such that
1(A) > 0. Now let v be an ergodic acipv < p with uy < v < pLa. Thenv is the unique
acip with v < u satisfying v(A) > 0.

Combining Theorem with the non-singularity of dynamical systems, we
can study densities of pushforward measures. The following lemma asserts that we
can find acip’s by these densities. In the proof the L' convergence along a subse-
quence does the heavy lifting.

Lemma 2.1.14. Suppose we have a dynamical system (X, %, u, T) with u(X) € (0,00)
and suppose in writing

17= T!

—Z a )*,u’ forneZs,,

niz  dp
we have a subsequence (¢, ) k=0 converging in || -1 x, to some ¢ € L'(X) as k — oo.
Then there exists an acip v < u on X. Furthermore, if we have a C > 1 such that
forall n € Z>, we have ¢, € [%, C] p-almost surely and ¢, — ¢ pointwise p-almost
everywhere as k — oo, then there exists an acip v < u such that

1 dv
—< d_,u < C pu-almost everywhere.

Proof. Let (ni)kez., S Z=1 be a sequence increasing in k € Z-; such that for ¢ €
LYX), ¢pn, — pin || |l11x) as k — co. In noting ||y, |l1 =1 and ¢p, = 0 p-almost
surely for all k € Z-, we see ||¢p||; = 1 and ¢ = 0 u-almost surely as well, which implies
v(-) := [ ¢du is a probability measure. Absolute continuity of v follows by Theorem
For T-invariance of v, let B € & and note that for all k € Z>; we have

v(B) - Txv(B)| = fcpdu—f ¢du'
B T-1B

=< fB</>du—fB¢nkdu
o[ ncdu=[ | udu
chbdu—stbnkdu

b L |u(B) — w(T"' B)| +
Mk

#|[ L, gmdn- [ ¢d4
T-1B T-1B

f </>nkdu—f </>du',
T-1B T-1B

|[v(B) — Txv(B)| =0.

IA

where in taking the limit of k — co we obtain

10



Thisimplies Txv = v, proving v is an acip. If (¢, ) k=1 also converges pointwise almost
everywhere and ¢, < [%, C] for all k € Z5,, we obtain % < Z—; < C p-almost surely as
desired. O

The notion of ergodic equivalence below is adopted from[23, Chapter 8].

Definition 2.1.15. Let (X, %,u,T), (Y,%8,v,U) be dynamical systems with p(X) =
v(Y) < oco. We say they are ergodically equivalent if one can find A€ &, Y € % with
(X \A)=0,v(Y\B) =0, and a mapping ¢ : A — B that is bijective, & 4-%p measur-
able and has a measurable inverse satisfying

¢oxpu=vand o T =Uod.
We call the mapping ¢ an ergodic isomorphism.

Remark 2.1.16. 1. There is slight abuse of notation in Definition|2.1.15|as copied
from [23, Chapter 8], in that ¢ : A — B is not defined on the entirety of X and
Y, hence writing
¢oxpu=vandpoT=Uodp.
is technically not well-defined. As pu(X\ A) =0, and v(Y \ B) = 0 and hence

pw(CnA) =pu(C) forall Ce & and v(DnB) = v(D) for all D € 8 we shall overlook
this matter.

2. In [23, Chapter 8] it is also pointed out that the sets A and B in Definition[2.1.15
can be chosen such that T(A) € A and U(B) < B, allowing us to construct er-
godically equivalent dynamical systems

(A’gA)lJA) T) and (B,%B,VB, U))

where ¢p: A — B serves as an ergodic isomorphism. This will play a role in the

proof of Corollary[2.1.19

The lemma below states that ergodic properties are shared between ergodically

equivalent systems. As we shall only need the claim holding for measure-preservingness

and exactness we have only included those proofs.

Lemma2.1.17. Suppose (X, Z,u, T), (Y,%B,v,U) are dynamical systems satisfying u(X) =
v(Y) < oo and that they are ergodically equivalent. Then (X, %, u, T) is measure-preserving/
ergodic/mixinglexact ifand only if (Y, 28, v, U) is measure-preservinglergodic/mixing/exact.

Proof. Let Ae &,B € 9B satisfy u(X\ A) =0, v(Y\B) =0and ¢: A— B be an ergodic
isomorphism. We shall without loss of generality assume our ergodic properties hold
on (X, %, u, T) and show these transfer to (Y, %, v, U).

11



Measure-Preservingness Assume (X, %, i, T) is measure-preserving, and let K € %.
Note we have

(Uxv)(K) = (UxVv)(KN B)

= (U (W) (K N B) 2)
=p((Uod) (KN B)

= p((po )" H(KNB) 3)
= (KNB) (4)
=v(K),

so that we see U,v = v. For clarification, in Equation (2) we used ¢,u = v;
in Equation (@) we used ¢po T = U o ¢ and in Equation (@) we used measure-
preservingness of 7.

Exactness Suppose (X,%,u, T) is exact and suppose K € (), U~ "%8. Then note
¢ 'Kep (Nu=oU "AB)
=N (67U "%
n=0

= (T7"¢p'B) (usingpoT =Uo¢, ntimes)

n=0

S Np=o(T™"F),
so that v(K) = u(¢p~1K) € {0,00} proving exactness of v. O

A canonical (non-trivial) example of an ergodic equivalence between two dynam-
ical systems are the doubling map with the instance of the Bernoulli shift given in
Lemma [2.1.18 below. The result is considered ‘standard theory’. The author was un-
able to find a complete proof in existing literature however and hence incorporated
a proof in Appendix|A.2|or more specifically, below Lemma

Lemma 2.1.18. Let ([0,1),48(0,1), A, D) be the standard Borel measure space equipped
with the doubling map and ({0, 1}220,9{0,1}, P,0) be the Bernoulli shift with for all i €
Zxg

P({xe{0,1}%2: x;=1) =P({x € {0,1}?>° : x; = 0) = %

Then
([0) 1);’%[0) 1)) /1) D) and ({Oy I}ZEO’E{O,]}ZEO ) I]:D) O-)

are ergodically equivalent.

We now prove that acips on dynamical systems induce acips on ergodically equiv-
alent dynamical systems, maintaining additional properties if present, such as the
acip having an essentially bounded density or exactness.

12



Corollary 2.1.19. Let (X, Z,u, T), (Y,%B,v,U) be dynamical systems with u(X) = v(Y) <
oo that are ergodically equivalent. Suppose we have an acipn < . Then there exists an
acip{ < v on(Y,%,v,U). Moreover, ifll;ll—ZIIoo < M for some M € R then II%IIoo <M
and ifn is exact then so is (.

Proof. For sake of technical ease we shall first assume we have a mapping¢: X — Y
that is bi-measurable satisfying

¢oxpu=vandpo T =Uodp.

and comment on the more general case, where ¢ is defined on subsets of full measure
as in Definition[2.1.15} at the end of the proof.

Using the acip n < u, define { := ¢.n. We first want to show { < v. To start, let
N € &8 and note

¢(N) = (P« (N)
d

- an
_f(p—lN LI

d
= f(P_lNd—Z(gb‘l op(x)) du(x).

In noting g1 € L'(1), we see by Lemma 2.1.10| that 5% o ¢! € L($4j1). Again by
Lemma|2.1.10{we may then write,

d77 -1 fdn -1
M Vo) dut) = [ 41 o
f(b i g du = [ T av.ww)

_ [ dn
—deu&P M dv(y),

so that p
((N) = f A s () dv(y).
Ndu

Applying Theorem [2.1.11{we then have { < v and % = Z—Z o1, v-almost surely.

We now show (Y, %,{, U) is a dynamical system to apply Lemma To do so,
weneed U,{ < (. Let N € 28 and suppose {(N) = 0, which is rewritten, 17((/)‘1 (N))=0.
Then note

Ux{(N) = U,p«n(N)
=n(Uo¢) 1 (N)
=n((¢po )" ()
= Tun(p~ ' (N) =0

13



as Tyn < 1, showing U, ({ <« ¢. Having shown non-singularity for { we see (Y, %,(, U)
is a dynamical system. In noting { = ¢.n, we see ¢ is an ergodic isomorphism be-
tween (Y, %,{,U) and (X, %,n, T). We may then apply Lemma(2.1.17]so that the in-
variance of  implies invariance of {. Similarly, if n is exact then so is (.

Lastly, if || Z_Z”OO < M for some M € R, we have a set X € & such that ,u(X\X) =0
and Z—Z(x) < M for each x € X. Then note (/)(X) = ((p‘l)‘l(X) € % and

V(G(X)) = p3 v(X) = u(X) = u(X) = v(Y).

Consequently, we can see that for IV € 98 we have

_ [ dn
((N)—de“(dJ M) dv(y)

dn
= — d
fN o) d,u((P (¥ dv(y)

< Mv(NN¢(X))
= Mv(N),

proving || Z—f] loo < M.

Now finally, if ¢» would have only existed between measure-dense subsets of A <
X and B ¢ Y respectively, we could use Remark [2.1.16] and apply the above proof
to (A, Z4,ua, T) and (B,%ABp,vp,U). The resulting measure { (defined on & 4) then
induces a measure { : & — Rxq defined by ((N)={(NNA). Using u(X\ A) =0, we can
directly derive that invariance, non-singularity, absolute continuity (with a uniform
upper bound on the density) and exactness of { are preserved from {. O

2.1.1 Partitions and Separation Times

Next, we see the first example (of many) where considering partitions of dynamical
systems can be useful. We first phrase a slightly more general claim.

Lemma 2.1.20. Let (X, %, u) and (Y,%,v) be o-finite measure spacesand f : X — Y a
measurable mapping so that f,u < v. Let Xo € & and 2 < & be a countable partition
of Xo. Then
d d
AU 1x)«H =) dfle)xp holds v-a.s. (5)
dv pep  aAv
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Proof. Let B € 98 be given arbitrarily. We simply note

f d(f|X0)*IJ
B

T aviy) = wXon f'B)

=u(L] Pnf'B)

Pe2?

=Y wPnf'B)

Pe

d(flp)«p
=Y | ="~ nd
Pe@fB av )

d
:fB 5 (fli)*'u(y)dv(y), ©6)

Pe2? d

where in Equation (6) we used the monotone convergence theorem. As B € 98 was
given arbitrarily this implies Equation (5). O

Specified to dynamical systems this reads as follows.

Lemma 2.1.21. Let (X, %,u, T) be a dynamical system with u(X) € (0,00). Suppose
that Xo € & and &P < % is a countable partition of Xy. Then

a(r a(r
ATl Y aTlxp holds pi-a.e.. (7)
du i Ap
Also, if there exists an M > 0 such that for all Ae 2,

Hd(T|A)*H

’ < M u(A) for some M >0,

A(Txp)x pt
dp

‘Oo < u(X)- M.

Proof. Equation (7) is a special case of Lemma2.1.20, The second statement follows
suit by noting that forB € &,

acr da
f ( |X0)*IJ( ) dpu(x) = Z (T |A)*/J( ) dp(x)
B AePp ap

< Y | Mu(A)du(x)
AeopJB

= Y Mu(AuB)
AeP

= Mu(X)u(B).

Now in fixing
a(r
B:= {xeX:M(x) >M}e9«‘,
ap
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and assuming u(B) > 0 we have

d(Tlx,)
Mu(B)u(X) < f +}j*“(x) du(x) < Mu(Ou(B),
B
showing a contradiction, which implies p(B) = 0, proving the claim. O

In having a partition for some dynamical system, we often want to construct
a new partition consisting of smaller sets as these will often be better behaved for
higher iterates of an operator. How to do so, we explain below.

Definition 2.1.22. Given a dynamical system (X, %, u, T) and a countable partition
2 < Z of X consisting of sets of positive measure, we say that for n € Z-; the parti-
tion

n-1 .

P"=\/ TP ={PonT 'Pin..0T "' Py_1:Py,.... Py_1 € P}\ {2},

i=0

is the n'th refinement of 22, and
oo

n=0

is the asymptotic refinement. Furthermore, we say & is generating for & if the set
o 1 P" is generating for &, thatis o (U5, 22") = &. We say & is separating if 22
is the trivial partition of X into singletons. Here we denote for k€ Z-; and A€ &,

T*A={xeX:T*x) e A}

When dealing with partitions and refinements thereof, the following standard set
identity is very useful.

Lemma 2.1.23. Suppose we have a function f: X — Y with Ac X and BS Y. Then
fANF1(B) = f(A)NB.

The Lemma below will be useful to relate the measure of some measurable set to
the measure of some element of a generating and separating partition [1, Corollary
2.3] for a proof.

Corollary 2.1.24. Let (X, %, u, T) be a dynamical system with u(X) € (0,00) and let 22
be a countable generating partition for &. Then for all > 0 and A € & with u(A) >0,
therearen=1andP € \/?;01 T7'2? such that u(P\ A) < 6u(P).
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The following lemma (see [1, Lemma 2.7]) gives a useful criterion for finding
whether a partition is generating and separating. We define for metric spaces (X, d)
with a countable partition & < X,

diam(&?) :=sup{sup d(x,y): P € Z}.
X,yeP

Whenever we refer to a Borel space of a metric space, we mean a measure space where
the o-algebra is a Borel o-algebra induced by the topology of the metric and with its
measure a Borel measure.

Lemma 2.1.25. Given a metric space (X, d), let (X, %, u, T) be a dynamical system with
(X, %, ) a Borel space and let 2? < & be a countable partition. Then 22 is generating
and separating if

diam(2?") — 0 as n — oo.

The Bernoulli shift naturally admits a generating and separating partition. We
shall introduce some terminology to explain this also used for instance in Section
3.6

Example 2.1.26. Consider a Bernoulli shift (FZEO,gFZEO,P,U) as given by Example
Given n€ Z3; and ay, ..., ay—1 € I' we can define a cylinder of depth n by

(g an-1]:= {(yi) k=0 €T**° 1y0 = Go,..., V-1 = Gn-1}.
Cylinders can be seen as the building blocks of (I'2°, %;z.,) as the set of cylinders
€ :={lap...an-11: n€Z=1,i €1{0,...,n-1},a; €I',} € Frz.,,
generates Fyz,, by definition. Moreover, for any n € Z,, the collection
€":={lag...an_1]:i€10,...,n—1},a; €T}},

partitions I'/>0, We can see €" is the n'th refinement of €', so that our notation
is consistent with Definition [2.1.22, To show %! is generating and separating for
(['%20, Fz.4,P, 0), we first note the function

dFZZO . ZZO X ZEO - [O, 1] (8)
supi2 "y £y, neZ-gt ify#y
7,y — p Yn7Vn =0 . Y Y,
0 ify=y'.
defines a metric on I'/=0. In fact, Sz, can be seen as the Borel o-algebra on [Z=0

induced by drz.,. Then note that for n € Z-; we have

diam(€") = sup{ sup dyz.,(x,y):Ce€"}=27".
x,yeC

Applying Lemma 2.1.25) then shows that 6! is generating and separating for
(FZEO, grzzo ) I]:Dr 0) .
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In this text we shall apply Lemma to various dynamical systems such as
Bernoulli shifts and the doubling map. We postpone formalising this for now. To
understand better what it means to have a generating and separating partition for a
dynamical system we now show how we can use it to naturally define a metric. For
this we require the separation time which we will define below.

Definition 2.1.27. Let (X, %, u, T) be some dynamical system with u(X) € (0,00) and
2 < % a countable partition of X. We define the mapping

a: X — 2, x— P for the unique P > x,
and the separation time s: X x X — Zy U {oo} as the mapping
s(x,x)=inf{ne Z-g: a(T"(x)) # a(T"(x")}.

We shall now show the separation time induces a metrisable topology on X if
the partition it is based on is generating and separating. We start with a preliminary
lemma.

Lemma 2.1.28. Let (X,%,u, T) be some dynamical system with u(X) € (0,00) and let
P < F be a countable partition of X. Let n € Z>y and let x,y € X be such that there is
aPeP" withx,ye€ P. Then fori€{0,...,n} we have

s(Ti(x), Ti(y)) =s(x,y) +1. 9)
Proof. First, note that if Q € 22 we have for a, b € Q that a(a) = a(b) so
s(a,b) =inflk € Zso: a(T* (@) # a(T* (b))}
= inf{k € Z>1 : a(T*(@)) # a(T* (b))}
=infk € Z, : a(T* " 1 (T(@))) # a(T* (T ()}

=inflk € Z=o: a(T*(T(a))) # a(T*(T (b))} +1
=s(T(a), T(b)) +1. (10)

Now since P € 22", we have some Py,..., P,,_1 € 22 such that
P=PynT 'Pin---nT"'P, ;.
Note then that for each i € {0,...,n — 1} we have a(T?(x)) = a(T'(y)) as
T'x), T' () e THPyN---nT P InPnTHT P 0 n TP, ] S Py,

where we applied the set identity Lemma[2.1.23] Knowing this, we can apply Identity
i times to obtain . .
s(T'(x), T'(y) = s(x, ) + .

Equation (9) follows. O
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Lemma 2.1.29. Let (X, %, u, T) be some dynamical system with p(X) € (0,00) and 2 <
F a generating and separating partition and let s : X x X — Z>¢U{oo} be the separation
time associated with 2. For any C € R, f € (0,1) the mapping

dpc:XxX—[0,C]

CBS™Y, s(x,y) #o0
(x,y)—
0, else.

is a metric.

Proof. Fix p € (0,1) and C € Rso. For notational convenience we write d := dg c. To
show d[X x X] < [0, C] first let x, y € X and note that if s(x, y) = co we have d(x, y) = 0.
If 5(x, y) # co we have s(x, y) € Zsq so B**¥ < 1 and thus d(x, y) = CS5*Y) < C so that
indeed d [X x X] € [0, C].

We shall now prove d is a metric and to do so let x, y, z € X be arbitrary.

Positive Definiteness We already know d(x, y) = 0. Suppose d(x,y) = 0. We know
this implies s(x, y) = co and so we have for all n € Z>y, a(T"(x)) = a(T"(y)).
Then write (Py) =0 = (@(T"(¥)) n=0 and note by construction this implies x, y €
NS, T~ "Py. As 2 is separating we then have x = y.

Symmetry We immediately see d(x, y) = CSS%Y) = CB5VY) = d(y, x).

Triangle Inequality We discern, without loss of generality, three cases:

alx)=a(y), alz)#alx) (11)
alx)#Za(y), a(y) #alz), a(x) # a(z) (12)
ax)=a(y)=a(z) (13)

In Case (II) we can see a(z) # a(y) so B5¥4 =1,
d(x,y) +d(y,z) = C(*™ + p*W?) = Cp*Y + C= C = C*™? = d(x, 2).
In Case we see s(x, ) =s(y,2) = s(x,z) =0so0
d(x,y) +d(y,2) = C(BEHY + sV =2C = C = CA*™? = d(x, 2).

For Case (13), write m := min{s(x, y), s(y, 2), s(x, 2)} and note we have m > 1. As
this m represents the highest integer such that thereisa P € 22" with x, y,z € P,
this is then also the highest integer m such that there is

P'e @ with T" Y(x), T (), T™" L(2) € P/,
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so that a(T™(x)), a(T™(y)),a(T™(z)) fall into either one of Cases or (12).
We then derive,

dx,y)+d(y,z)=p" (d(Tm(x), T +d(T™(y), Tm(Z)) (14)
> B"d(T™(x), T (2)) (15)
=d(x,2)

where in we used Lemma [2.1.28/ and in we used either Case or
Case (I2). We have shown the triangle inequality.

We conclude d = dpg ¢ is a metric. O

Remark 2.1.30. In Section we shall show that for general dynamical systems
(X,Z,u, T) with a generating and separating partition the topology 9 induced by
the separation time is complete and separable, making (X,J") a Polish Space, u a
Borel measure and & a Borel o-algebra. We have postponed proving this to avoid
stretching the preliminaries for too long and as it is not necessary for Section[3|

To the knowledge of the author the statement is seemingly missing from texts
such as [25], [24] or [1]. We shall use the Polish space structure to give an alternative
proof for Proposition3.3.2} one of the cornerstones of Section 3]

2.2 Jacobians

The notion of a Jacobian, well-known from analysis, can be adapted to dynamical
systems, purely relying on measure theoretical concepts. Relying on measure the-
ory instead of analytical arguments is advantageous as we will frequently encounter
mappings that have discontinuities on their domain - or mappings defined on spaces
lacking a topology altogether.

Shortly put, in our setting a Jacobian of some mapping is a locally integrable
function describing how much a small area gets stretched under applying the map-
ping. Similar to the Radon-Nikodym derivative we shall require some notion of non-
singularity, which we call pbn-singularity, to be defined in Definition Addi-
tionally, we shall require forward measurability of an operator, warranting the need
for local invertibility as defined in Definition[2.2.1] These conditions may seem heavy
for general dynamical systems but turn out to fit our situation perfectly.

The statements in this section are phrased as a special case of the more general
results proven in Section where additional results also have been phrased. To
elaborate a bit more on this, see Remark[2.2.12]at the end of this section. We included
the references to the more general statements in the headers of their respective defi-
nitions and claims.

Definition 2.2.1 (4.3.1). Let (X, %) be a measurable space and let T : X — X be a
measurable mapping.
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1. If T: X — X is measurable, bijective and has a measurable inverse, we call T
bi-measurable.

2. If Ae & isso that T(A) € & and T4 : A — T(A) is bi-measurable (onto its
image) then we call A an invertibility domain for T.

3. If there exists a countable partition &2 of X consisting of invertibility domains
for T, then we call T locally invertible.

Locally invertible mappings map measurable sets to measurable sets and mea-
surable subsets of invertibility domains are again invertibility domains.

Lemma 2.2.2 (4.3.3). Let (X, %,u, T) be a dynamical system. Then,

1. if A € & is an invertibility domain for T then every B € & with B < A is an
invertibility domain for T;

2. if T : X — X is bi-measurable, then for any A€ &, we have that T|4: A — T(A)
is bi-measurable;

3. if T: X — X is locally invertible, then for any A € %, we have that T(A) € &.

Now we are in the position to define pullback non-singularity for locally invertible
transformations on finite measure spaces.

Definition 2.2.3 (4.3.4). Let (X, %, u, T) be a dynamical system with p(X) € (0,00) and
let T: X — X be alocally invertible mapping. We say T is pullback non-singular or
pbn-singular if for every invertibility domain A € &, u(A) =0 implies u(7(A)) = 0.

We can verify pullback non-singularity using a single partition consisting of in-
vertibility domains.

Lemma 2.2.4 (4.3.6). Let (X,%,u,T) be a dynamical system with u(X) € (0,00) and
T be a locally invertible mapping. Then T is pullback non-singular if and only if for
some partition 22 of invertibility domains for T we have

(T1p); Ty < pp foreach Pe2. (16)

We now present an easy example to explain the difference between pbn-singularity
and non-singularity.

Example 2.2.5. Define the Borel space ([0, 1],48(0,1], A + 61;) with A +6{;; being the
sum of the Lebesgue measure and the Dirac measure supported on {1} respectively.
Define

G:[0,1]1 —[0,1] T:10,1] — [0,1]
x, x€(0,1] x, x€[0,1)
X — X —
1, x=0, 0, x=1.
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We show G is not pbn-singular but is non-singular, and that T is non-singular but not
pbn-singular.
Note both T and G are measurable and 2 = {{0}, (0, 1]} and 2?7 = {[0, 1), {1}} par-
tition [0, 1] into invertibility domains for G and T respectively.
Note that
A+6ppd0) =0, (A+6a)(GIOY) =1,

showing that G is not pbn-singular, however for A € [0, 1] we have
A+0a)(T(A) =AA) <A+ (A,
so T is pbn-singular. As for non-singularity, note that for A € %10,1]

f0juA, 1€A
A\{0}, 1¢A

{1}JUA, 0€A

G_I(A):{ )
AV{1}, 0¢ A

T7'(A) = {

We then see
(A+81) (G (A) = A+80))(A)  and  (A+6) (T ({0}) = 1 while (A+81;)({0}) =0,
showing non-singularity of G and that T is not non-singular.

We are now ready to define the Jacobian. The Jacobian is used to describe how
much invertibility domains get ‘stretched’ under the operator of a dynamical system.

Definition 2.2.6 (4.3.7). Let (X,%,u,T) be a dynamical system with p(X) € (0,00)
and let T: X — X be alocally invertible, pullback non-singular mapping. A function
JT: X — [0,00) such that JT-1p € L'(X) and

u(T(P)) = f JT(x)du(x), foreveryinvertibility domain P € & (17)
P

is called a Jacobian of T.

The following lemma is an existence and uniqueness result for Jacobians in our
setting.

Lemma2.2.7 (4.3.8). Let (X, Z,u, T) be a dynamical system with j(X) € (0,00) and let
T : X — X be a locally invertible, pullback non-singular mapping. Then a Jacobian
JT : X — [0,00) exists and is unique up to a measure zero set. Furthermore, in assum-
ing & < & is a countable partition of X consisting of invertibility domains for T we
have for P e 2,

AT p
UT- =] i D P
0, else,
and

JT=) JT-1p, p-as.
Pe?
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We conclude our discussion of Jacobians with two technical characterisations of
Jacobians.

Lemma 2.2.8 (4.3.11). Let (X,Z,u, T) be a dynamical system with u(X) € (0,00) and
T a locally invertible, pullback non-singular mapping. Suppose for some invertibility
domain A€ &F we have JT >0, pa-almost surely. Then
a(r
JT(x) ™' = %ﬂ)*u(ﬂx)), for ua-almost every x € A.
As hinted at before, refinements of partitions consisting of invertibility domains
are well-behaved with higher iterates of operators of dynamical systems.

Lemma 2.2.9 (4.3.13). Let (X, %,u, T) be some dynamical system with p(X) € (0,00)
and suppose T : X — X is a locally invertible and pullback non-singular mapping
with a partition & consisting of invertibility domains. Then for eachn € Z-, and each
ke{l,...,n} the n-th refinement 2" consists of invertibility domains for T*. Moreover,
T* is pullback non-singular.

Finally, we phrase the Chain Rule for Jacobians.

Proposition 2.2.10 Chain Rule For Jacobians). Let (X, %, u, T) be a dynamical
system with u(X) € (0,00) and let T be locally invertible and pullback non-singular.
Then we have for each n € Z>, that J(T") exists and that

n-1 .
J(r™ =[]J(MeT" holds p-ae.
i=0

Below we present a non-trivial example of a Jacobian associated with a locally
invertible mapping. We postpone the proof until Lemma [4.3.17| to avoid clouding
this subsection with statements we shall not need for any other purpose than this
lemma.

Lemma2.2.11. Let (I'4=0, Friz9,P,0) be some Bernoulli shift with weights P = (py)yer-
Then foreachn =1 and k € {1,...,n} the collection

€" ={lyo"yYn-11ST%" 1 yg,...,yn-1 €T}

of cylinders of depth n consists of invertibility domains for o* : T%=0 — I'2=0, Moreover;
ok : 1720 — 1220 s locally invertible and pbn-singular with a Jacobian satisfying

1
Jok=—— P-almost everywhere.

Pyo" " Pyia
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Remark 2.2.12. 1. For a different treatise of the subject, [23, Chapter 9.7] is a
good reference, but many proofs are missing there. Moreover, in Section
we shall need to generalise the notion of a Jacobian in a measure-theoretic set-
ting slightly which is why we have omitted proofs in this section. We point out
that our notion of local invertibility is a bit more strict than what is done in
[23, Chapter 9.7] where only a countable cover of invertibility domains instead
of countable partition is assumed. We believe that our convention leads to an
easier understanding of Jacobians however and is sufficient in many cases, in
particular for our purpose.

2. In some literature, such as [23, Chapter 9.7], non-singularity is defined as we
define pullback non-singularity. We make a distinction between the two to
avoid any confusion with the more common definition of non-singularity

3 The Deterministic Case

As said in Section[I|the main goal of this thesis is finding conditions for which random
dynamical systems with a non-uniformly expanding base dynamic admit absolutely
continuous invariant probability measures. Our method is built upon a framework
developed by Lai-Sang Young in the papers [25] and [24] to describe deterministic
dynamical systems. We shall start by sketching this method in Section[3.1] After that,
we shall formally define a Tower Base in Section [3.2| and prove it admits an acip in
Section Subsequently, in Section we shall formalise the notion of a Young
Tower and in Section [3.5| prove it admits an acip. We shall close Section [3| with two
easy examples to which Young Tower Theory can be applied. Sections3.2|-(3.5/have
been written with the help of [1],[25] and [24].

3.1 Intuition for Young’s Theory

In this (sub)section, we shall do our best to explain what kind of systems Young’s
theory applies to, why finding acip’s can be subtle and why we need Young Towers.
To narrow our point of focus we shall mainly consider dynamical systems
([0,1),4810,1),A, T) where ([0,1),48(0,1), A) is the standard Borel space on [0, 1),
equipped with the Lebesgue measure and T : [0,1) — [0, 1) is some operator.

We shall start easy. Consider the doubling map from Example Lemma
states that the doubling map ([0, 1), 28[0, 1), A, D) is ergodically equivalent with
a Bernoulli shift on {0, 1}, written as ({0, 1}220,9{0)1}120 ,I?,0). To sketch the proof, we
partition the interval [0,1) in &2 = {[0, %), [%, 1)} up to a set of measure one. Subse-
quently, we show that refinements of &2 can be naturally identified by the cylinders
in {0,1}%>0 through an ergodic isomorphism 7. The fact that there exists an acip
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for Bernoulli shifts then implies the existence of an acip for the doubling map (i.e.
as follows from Lemma [2.1.17). If we want to find acip’s for more general systems
([0,1),4810,1), A, T), the natural question then arises, how big is the class of dynami-
cal systems where ([0, 1), 28[0,1),A, T) is ergodically isomorphic with some Bernoulli
shift? Or, more generally, to what extent does the behaviour of some cleverly chosen
partition predict the existence of an acip?

At the very least, we know that if ([0,1),98[0,1),A, T) for some T is ergodically
equivalent with some Bernoulli shift (FZEO,gZFZZO,P,U) we should be able to encode
the dynamics of T symbolically. That is, we should be able to construct a finite par-
tition 227 on [0, 1) having similar properties as a partition of I'“>0 into cylinder sets.
Specifically, we would have

1. For each P € &7 the mapping T|p: P — [0, 1) is bi-measurable.
2. The partition &t is generating and separating for ([0,1),48(0,1), A, T).

The next natural question then arises. Are these properties sufficient for obtaining
an acip for ([0,1),48[0,1),1, T)? As is well known, we can answer this negatively by
looking at the instance of the LSV-map ([0, 1), 28[0,1), A, fLsv) below.

1,,

— fLsv

0.8 1

0.6 1

frsv(x)

0.4

0.2 |

0 02 04 06 08 1
X

As shown in [18], the LSV-map does not admit an acip, yet it can be shown the par-
tition & sy = {[0, %), [%, 1)} does satisfy the properties just mentioned. A property the
doubling map has, however, which the LSV map lacks, is (uniform) expandingness.
When systems are uniformly expanding we expect distances between points that are
close to grow uniformly. The LSV-map lacks this property as f/,,(x) | 1 approaches
1 as x | 0. As a first mention, in |15, Theorem 2.4.6] partitions satisfying the pre-
viously mentioned properties are constructed explicitly for expanding maps on the
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circle. Two other key results linking (a notion of) expandingness and the existence of
an acip are [17] and, more generally applicable, [23, Theorem 11.1.2].

Keeping this in mind, one might then assume that being ‘expanding’ is necessary
for the existence of acip for systems of the form ([0, 1),28[0,1),A, T). But again, the
problem is more subtle: the logistic map as graphed below does admit an acip with
respect to the Lebesgue measure. Despite not being uniformly expanding.

1% ;
— flog

flog(x)
e e
= (o))

0 02 04 06 08 1
X

Hence, we need more sophisticated tools to successfully analyse systems such as
(10,1),%810,1), A, fi0g) and ([0,1),28[0,1), A, fLsv)-

The crucial remark to make is that even if f,¢ and frsy are not ‘expanding’ ev-
erywhere, the maps will still separate arbitrarily close points when applied a large
amount of times. To use this, Lai-Sang Young defined in [25] and [24] an induced
domain A <[0,1) and a return time

R:A— ZsyU{o0}, x—inf{neZ: :g"(x) € A}.

Assuming the return time indeed takes values in Z>; we can define an induced dy-
namical system (A, %y, ua, T®), which we shall refer to as a tower base. Young then
assumes there exists a partition 22, with properties similar to the following:

(Constant Return Time) For each P € 22y the mapping R|p is constant.

(Markov Property) Foreach P € 2,, gRlp : P — Aisbi-measurable and (gRII_,l)*uA <
HA-

(Generating and Separating) the partition &2, is generating and separating.

Note as we can not expect that R: A — Z, is bounded the partition 22, will likely
be countably infinite instead of finite. This will complicate finding an acip but it is
something we can overcome.
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Finally, this construction allows us to control the distortion of the Jacobian in
terms of time it takes points to separate using the separation timefrom Lemma|2.1.27
On our ‘naive’ partition of {[0, %), [%, 1)} we could define a separation time, but we
can not use this to analyse the distortion of the Jacobian in f;,¢ due to the fact that
flpg) —0asx1 3.

Finding an acip for the induced systems (A, Fx, pa, gR) will be the contents of Sec-
tions [3.2] - In Sections we will phrase conditions under which this acip
implies the existence of an acip on the base system where we shall introduce the
concept of a Young Tower.

3.2 The Tower Base

For this section we fix a dynamical system (X, %, m, g) with m(X) € (0,00]. Our first
goal is to formalise the notion of a Tower Base as mentioned in Section 3.1}, and start
by defining the return time and induced domain.

Definition 3.2.1. Suppose we have A € & with m(A) € (0,00), if the map
R:A— 72 U{oo}, x—inf{neZ.:g"(x) € A},
takes values in Z~; we call R a return time and A its induced domain.

If we have a return time R and induced domain A for (X, %, m, g), we consider
the mapping g®: A — A, as given by g*(x) = g()*™ for x € A. Then define u = ;1.
In restricting (X, %, u) to A we can then define the tuple (A, %y, ua, gR), where p, is
a probability measure. The following lemma asserts this tuple is a dynamical system.

Lemma 3.2.2. Let (X,%,u,g) be some dynamical system and let A € & be such that
W(A) = 1 and suppose we have an integer valued measurable mapping R : A — Z3,
such that g(x)®% € A for each x € A. Then (A, Fp, ua, g5 is a dynamical system.

Proof. As A is a measurable set of finite measure we can define the finite measure
space (A, Za, p). We need to show g® is %, -measurable. To do so, define

Pr={R Ynl:neZs},

and note this is a countable collection consisting of %, -measurable sets.
We then note that for an arbitrary A € %, we have

€' W= I @Rl @= L] RHnnE" (A eF,

neZs neZsy

by measurability of g.
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Similarly assuming we have p, (A) = 0 we can see using the non-singularity of g

that
pa8H A= Y mEMnEh '@ s Y pgH A =0,

neZsy neZs

proving (A, Fp, Up, TRy isa dynamical system. O

In the sequel until and including Section[3.4|we fix a dynamical system (X, %, m, g)
and assume there exists a return time R with induced domain A such that m(A) €
(0,00). We then call (X, %, m, g) the base dynamics. We will focus on the dynamical
system (A, %y, ia, g¥) and analyse its properties.

We shall only refer to the underlying base dynamics (X, %, m, g) implicitly until
we are readily equipped to analyse it. For now, we focus on the dynamical system
(A, Fp, a, gR), where a return time and induced domain are implicit. We shall fix
(A, Fp, a, gR) until and including Section

Definition 3.2.3. Suppose we have a countable partition 22y < %, consisting of sets
of positive measure of A with the following properties:

(Constant Return Time) For each P € 22y the mapping R|p is constant.

(Markov Property) Foreach P € 2,, gRlp : P — Aisbi-measurable and (gRII_,l)*uA <
HA-

(Generating and Separating) the partition &7, is generating and separating.
Then we call 2, a principal partition for (A, Fa, s, g5).

Remark 3.2.4. Typically, in the literature, such as in [24] or [1], the Markov property
merely assumes the bi-measurability onto a A, not also pullback non-singularity. In
this text the pullback non-singularity is there to guarantee the existence of the Jaco-
bian. This existence is in the literature usually assumed as part of bounded distortion,
seen in Definition 3.2.6] without phrasing conditions for which this object can actu-
ally exist. Outside of Young Tower theory the Markov Property is commonly phrased
even more leniently, for instance as in [15], for instance not requiring surjectivity. The
author is aware of this deviation.

The curious reader can skip ahead to Section to see an elementary exam-
ple of a principal partition. For the rest of this section we shall assume our system
(A, Fp, pa, gR) has a principal partition 22,. By definition, 225 consists of invertibil-
ity domains for g% so g® is locally invertible and by the Markov Property we can apply
Lemma to see gf is pbn-singular as well. By Lemmawe then see Jg® exists
and is unique up to a uj-measure zero set.

The bijective property in the Markov property can be extended inductively to re-
finements of Z2,.
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Lemma 3.2.5. Foreachne Zs;,and A€ ?}’/’\l
1. the mapping (g%)"|4: A— A is bi-measurable, and
2. we have 5 (A) > 0.

Proof. 1. By Lemma [2.2.9 we only need to prove surjectivity. In the case n =1
the statement follows directly from the Markov Property. In supposing we have
for some p € Z»; that for any A’ € 22! we have (gF)P(A) = Athatfor A€ ,@/’fﬂ
there exist Ag..., Ay € &5 such that

A=Agn---n(gHPAy.
Consequently, we have

"7 A = (g"HP Ao n (@) TP A1) N (g TP Ap)

=g®((g™P(Agn---n (g™ P (A1) N AY) (18)
=gfAy) (19)
= A, (20)

where in Equation we used Lemma [2.1.23] in Equation we used the
induction hypothesis and in Equation we used the Markov property.

2. Note that for general n € Z-; and A € 22! we know A is an invertibility do-
main for (g%)"” by Lemma and that (g%)"(A) = A, so if we would have
w(A) = 0 then pa(A) = ua((g%)"(A)) = 0 by pullback non-singularity. As we
know pp (A) =1 we then must have up (A) > 0. O

As mentioned in Section [3.1] we need to be able to control the distortion of the
Jacobian in terms of the separation time metric as defined in Definition[2.1.27} To do
so, we shall for the rest of this section fix a € (0,1) and C € R and the separation
time metric dg ¢ induced by 2?5. Without proof for now, we shall assume the joint

measurability of dg c, see Remark|2.1.30
We remind the reader that Jg® exists and is unique up to a measure zero set.

Definition 3.2.6. If for the dynamical system (A, %y, ta, gR) for each A € &2, the Ja-
cobian J(g®)|4: A — [0,00) is strictly positive u4-almost everywhere and satisfies

Jgfw)
JgR)

1‘ <dgc(x,y) for almost every x,y € A,

we say the dynamical system has bounded distortion.
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If the dynamical system (A, %y, ua, gR) has bounded distortion, we refer to it as a
tower base. From here on out we shall assume (A, %y, ta, gR) is a tower base. We use
the non-singularity of g¥ to extend bounded distortion to (g¥)" as follows for general
ne’zZs.

Lemma 3.2.7. Let (A, Fp, U, gR) be a tower base and letn € Z~,. Foreach A€ 227, we
have a set A€ F 4 such that i (A\ A) = 0 and for each i € {0,...,n— 1}
J(gMUgMH )
J(g™ g™y

1| =dp (@), 8N (), foreveryx,ye A 21)

Proof. Let A€ 2. First we will construct the set A, show it satisfies Equation
and then show why it satisfies ua(A\ A) = 0. Let A, ..., A;n_1) € 2 be such that

A= A(()) N---N (gR)_(n_l)A(n_l).

By bounded distortion, we can find for each i € {0,...,n— 1} an Ay € Z 4, such that
HAg (A(l') \ A(i)) =0and

-1

’ JgR(x)
JgR(y)

< dﬁyc(gR (x),gR(y)) forallx,y € A(i).

More so, by non-singularity of g® we have
pA@ AL (8 T Aw) = (€A (An \ Aw) = 0. (22)
Then define
A=Agn---nghH " VA,
and note that using Lemma2.1.23|we have
€M A=@E" Agn-nE@H " VA nAnn @ Auyn.. (€T A,
c A(l'),

so that ,

Jg" g™ )

JgR((gM (y)
More so, as Agy S A for i € {0,...,n— 1} we can derive using general set identities
that we have

—1|=dp (g (), (g (y) forall x,y € A.

A\VA= (A \Ag)U---U CO (Ap-1\ An-1))-

By Equation (22),A\ A is the union of a finite amount of measure-zero sets, so that
indeed pp(A\ A) = 0. O
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Remark 3.2.8. For tower bases (A, %, a, gR) one can show using the chain rule in
Proposition[2.2.10]and the positivity phrased in bounded distortion that for A € 22,
J((g™™) is strictly positive for n € Zsq, pa-almost everywhere. As the proof is very
similar to the proof of Lemmas|3.2.7|and |5.3.6/we shall omit proving this now.

We will see in Proposition|3.3.2|that for each n € Z-( the density dig” J*” A displays

aremarkable Lipschitz property with respect to the separation time metric. This con-
cept will also return in Section|4.1.1

Definition 3.2.9. We call a function f € L' (A) Lipschitz on a set of full measure if there
exists a Ay € F, with u(A\ Ay) =0and a L € R such that for each x, y € A we have

lf(x) = fMI<L-dpcx,y).

Remark 3.2.10. As for the well-definedness of Definition[3.2.9we want that the prop-
erty ‘Lipschitz on a set of full measure’ is representation independent. To do so let
g, h be two representations of some f € L' (A) such that there exists a Ag € &, with
(AN Ag) =0 and that for each x, y € Ag

1g(x) —gI<L-dgc(x,y).

As we know g is equal almost everywhere to £, say on some set Xj, € %, we know that
8lxynAg = hlx,nn,, SO that

lh(x) —h(y)| < L-dgc(x,y),

for each x,y € X, N Ag. As we know pp (X N Ag) = ua(A) we conclude that being
Lipschitz on a set of full measure indeed is a property shared on equivalence classes
in L(A).

In the situation of a tower base, we are particularly interested in functions that
are Lipschitz on a set of full measure with respect to dg ¢ and that are essentially
bounded, as denoted by

Lgc(A) :={p € L°(A) : ¢ is Lipschitz on a set of full measuref. (23)

We can equip this space with

|p(x) — p(y)]

|plg = esssup,,, PR and  |lpllg =1l +1$lloo,

which are easily verified to be a seminorm and norm, respectively. As A is of finite
measure, we obtain the inclusions Lg c(A) € L (A) € LY(A).
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3.3 The Tower Base Acip
3.3.1 The Existence Of An Acip

For this section, we remain having fixed a tower base (A, %, 14, gR ) with principal
partition &2, and separation time metric dg ¢ for some § € (0, 1), and C € R,.

We shall start by proving that a sequence in Lg c(A) consisting of functions that are
Lipschitz with the same constant and share a uniform upper bound admits an accu-
mulation point in Lg c(A). The space Lg c(A) will later be shown to contain (convex

. . ... dEghn .
combinations of) the densities % for n € Z-(. We will then be able to use Propo-

sition for proving the existence of an invariant measure in Theorem The
proof of Proposition below is based on [1] where a diagonalization argument is
used. We make this explicit and for ease of reading we state this before phrasing the
Lemma.

Lemma 3.3.1 (Diagonalisation Argument [20]). Suppose we have for each n € Z>;,
functions f, : Z>1 — R and consider (f,) nez.,. Assume there exists a C € R such that
|fn(D| = C foralll,n € Zs,. Then there exists a subsequence (fn,) k=0 Of (fn)n=0 such
that (fu, (1)) k=oconverges foreach l € 7.

We now prove the promised sequential compactness.

Proposition 3.3.2. Suppose we have a tower base (A, Fp, U, gR), and a sequence
(Pr)nezs, S Lp,c(A) satisfying for some M > 1,

1
=M d inf inf > —.
nseégl ||¢n||ﬁ an "g%zl eSSJICEA(pn(X) M

Then (¢p) =1 converges pointwise almost everywhere and in L' (A) to a function ¢ €
Lg,c(N) with||pllp < M and essinfyep ¢p(x) = ;.

Proof. First, for each n € Zs, let A, € %, be a set for which u, (A,) = 1 and that for
each x,y € A, we have lpn(x) —Ppn(y) = M-dgc(x,y) and ¢(x) < M. Note then that
on A:=7", A we have |¢p,(x) —pn(y)| < M-dgc(x,y) foreach x,ye Aand n€ 75,
and that u, (A) = 1. We keep in mind that any %, -measurable set of positive measure
has an intersection of positive measure with A.

In the proof we shall start by picking a representative of each set in the principal
partition and apply Lemma3.3.1]to find a first statement on convergence. To do so,
foreach Ne Z;y weletyy:Z5 — z@}\v denote an enumeration of @/I\V . Then define
a (countable) choice function

X:PY—A  P—x (st xeP),
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and define (x;n)iez., := (Y oW N (D) iez.,. Note then for all N € Z-; we obtain a se-
quence of sequences (¢, (x, n))n=1, such that

lpn(x;n) < sup llpullg<M foralln,leZs,.

neZsy

By Lemmawe then obtain a sequence (1) k=0 S Z>1 with (¢, (X1, N) k=0 cOnverg-
ing forall / € Z>, (in terms of Lemma(3.3.1we take f;,(I) := ¢, (x; n))-

Now we use the Lipschitz continuity of ¢, on A for each n € Z-; to extend this
convergence to all elements of A. In doing so, let x € A and € € R+ be arbitrary and
N € Zs be such that M- CB"N < %e. Note we can find exactly one P € K@IZXV such that
for some [/ € Z-; we have x, x; y € P. We then have for each k € Z>,,

€
[P (X) = (X, N = M -dp c(x, X, n) < 3

Now as (¢, (x;,n)) k=1 is converging in k = 1 for all / € Z-,, we may pick ky € Z> such
that for all k, m = ky we have

lpn (X1,N) = Py, (X1, M| < g

Consequently,
|Pni (X) = P,y (O] < 1Py (%) = P (X1, N + [Py (x1,N) = Py, (X1,8)
+1¢n,, (X) = Pp,, (X1,N)|

<e,

which shows (¢, (X)) k=0 is Cauchy in R for each x € A. Now define for x € A,

(p’(x): limp oo Pp (), x€eA
0, else.

which as a limit of measurable functions is measurable. Now in noting that for x, y €
A we have

1" (x) — ' () . P (X) = p (V)]
- =1 < <M,
Do) b dpony) P [9nl
and
lp(x)] = khlf}ol‘/’”k(x)l < sup lpnlleo = M,

nezZs

we see ¢ € Lg c(A). The L'-convergence then follows by the dominated convergence
theorem. Lastly, as (¢, (x)) = A—l/[, forall k € Zs and x € A, we can easily see

_ 1
P(x) = klggoqbnk(x) Vi

so that indeed essinfyep ¢’ (x) = ﬁ Letting ¢ denote the equivalence class of mea-
surable functions agreeing with ¢’ u, -almost everywhere proves our claim. O
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Remark 3.3.3. 1. It is worth noting that even though the limit point of the se-
quence is in Lg c(A), we do not have || - || g-convergence.

dg®") s pa
d

In order to apply Proposition (3.3.2|to the densities i for n € Z-y we need
to find a uniform upper bound In [ ||g-norm. Conceptually, Lemma below
ensures us that the ‘symbolic encoding’ as mentioned in Section|3.1|can actually lead
to an absolutely continuous (invariant probability) measure by showing the bounds
in Equation (25)..

A technical difficulty with the proof of Lemma 3.3.4]below is that given n € Z,
A € 2{ we need to find a single set A € F, so that we can apply the bounded dis-
tortion property[3.2.6} the reciprocal formula in Lemma [2.2.8|and the chain rule in
Proposition For this, we shall need the non-singularity and pullback non-
singularity of the mapping g®. Constructing such a set A will be the first task in the
lemma.

el

Lemma 3.3.4. Suppose we have a tower base (A, F, ua, gR). Then for C' = e™F and

neZs, and A€ P} we have a set A € Fp such that py(A\ A) = 0 and so that the
_ d@®10upa

density oy a:= —dun satisfies forall x,y € A
bn,a(y) Ldp.c(x,y)
1 . =<' —-, 24
‘Ogd)n,A(x) =P .
and .
E,uA(A) <y a(x) < C'up(A) forallx € A. (25)

Proof. Let n€ Z) and A € 22¢. First note that A is an invertibility domain for (g®Hn

by Lemma By Remark we may apply Lemma to claim we have an
A€ ) with A’ € Asuch that u,(A\ A") =0 and

Gnal(@H"x) =UE"" )™, foreachx' e A'. (26)

Furthermore, by Proposition[2.2.10we can find a set A’ € %, such that uy (A\A') =0

and
n-1

J(ghHm ) = []ughoeg®ix) forx'en. 27)
i=0

Lastly, by Lemma [3.2.7]we can find a A” € %, such that ua(A\ A”) = 0 and for each
i€{0,...,n-1}
JgMUgh )
J(g®ghiyn
Then define

1| =dgc((g™' ), (gM'(y), foreveryx,y'eA”.  (28)

A=A NA"NE" "N € Zy.
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By non-singularity of g we then see pua(A\ A) = 0. Moreover, in taking A = (g%)" 4,
we see by LemmaA € Fp. By Lernmawe have (g®)"*(A) = A so
AVA =AN (gD (A) < (g®H(A\ A).
Using pbn-singularity of (g%)” we then have
pA(A\A) = A ((85)"(AVA)) =o0.

Now we can start with the proof. Proceeding, we find for general x,y € A unique
x',y' € Awith (g1 )1 (») = ¥ and (g%"] 1) "' (x) = x’ so that

RN -1
'log(cpn,A(x)) _|1og V&G 9)
Pn,a(y) JERH Nt
RN /
_ Og](g n)(x) (30)
J(RMH )
n-1 R Ryi ./
o Hl«z_ol(]g )((g ).(x)) -
[T, Ug® (g®i(y")
n-1 R Ryi/
- Z log (]gR)((gR).(x )
=0 (Jg"g"m
n—1 R Ryi(,, R Ryi
- Zmax{‘l—(]g )((g )'(y)) , _Ughg )'(x)) } (32)
i=0 Jg®((g®i(x") Jg®hghiun
n—1 . .
=) dﬁ,c(gR x), g® (y’)) (33)
i=0
n-1
=dgc(x,y) ) p' (34)
i=0
dgc(x,y)
SW, (35)

showing Equation (24). For clarification, in Equation we used Equation (26); in
Equation we used the identity |log(z)| = |log(z™"))| for z € (0,00); in Equation
we used Equation (27); in Equation we used |log(2)| < max{|1-1|,1-zl}
for z € (0,00); in Equation we used Equation (28); in Equation we used
Lemma and finally Equation was derived using the expression for a ge-
ometric series.

To show Equation we now only need to apply Lemma|2.1.28/and note

Pn,a(x) ) ‘ dg,c(x,y)
1 < .
‘ Og((l)n,A(J/) 1-p6
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To prove Equation note that as dg ¢ takes values in [0, C], we have

(Pn,A (x) ) ' ((Pn,A (x) ) ' ]
1 <1 <C(-
Og(cpn,A(y) =08y, )| =C0P

(Pn,A(J/)) ((Pn,A(x)) 1
1 <1 <C(- ,
Og(</>n,A(x) =|los\ 5 ") SCLP

so that after exponentiating both equations and rearranging we obtain for all x, y € A

C

(€)' Pna) < Pna(x) <C'Pnaly),  forC'=em?.
Integrating both sides with respect to y on A then shows
(C) " HA(A) S P a(x) < C'un(A).
As x € A was given arbitrarily, we have proven our claim. O
Ancillary, we following result useful for finding bounds in Section[3.3.2]

Corollary 3.3.5. Let (A, Fy, U, gR) be a tower base, then there exists some C' > 1 such
that, foralln=1, A€ 97’1’\7 and almost every x € A we have

1 1
— A<s——<(C A). 36
C,MA( ) 7@ pa(A) (36)
Proof. Let C' € R>) be asin Lemma(3.3.4[and let n € Z-, A€ 2. As seen in the proof
of Lemmawe have a A € %, such that pa (AN A)=0,

Gra@"() =UE®™(x)"!, foreachx € A, (37)

and
(C) tua(A) < ¢Pna(x) <C'up(A), foreachxe (gR)”(A). (38)

Combining Equations and then yields Equation (36), proving our claim. [

Rn
We are now ready to show the densities d(gd—p)j\*“" are in Lg 1 for some L€ R>1. A

statement similar to the Lemma below is made in [1, Lemma 3.9] - we provide differ-
ent bound however.

Conceptually we shall ‘sum’ the bounds obtained Lemma|3.3.4|over the principal
partition.

Lemma 3.3.6. Suppose (A, Fn, lia, gR) is a tower base. We have a M € Rs1 such that
foreach n =0 we have,

d(g®" 1
<M and essinfME

d(g®")xpin 1
XEA d'LLA M

dpa

dg®")pa

Lgc(A),
diin € Lgc(N)

. (39)

B
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Proof. First note for n =0 we have

d(g®") s ua _ dua
d,LtA d,uA

=1, up-almost everywhere,

for which we immediately see the claims in Equation hold for any M € R.;. Now
write forne Z-; and A€ 9’/'\1 the densities

dg"" 1) «kn _ dEg")pa

Pn,ai= diin , bn: diin

We shall start by showing inf,e7_, essinfyea ¢, (x) is positive and that sup nezay 1Pnlloo
is bounded.

Let C' € Rs; be the constant given by Lemma For n€Z-; and A € 2] let
A, 4 € A be the set such that for each x, y € Ay 4,

1
oHAA) = Pnalx) = C'ua(A), (40)
and P
X,
og (,bn,A(J/) < g,clx,y . 41)
(pn,A(x) 1- ﬁ
By Lemmawe know Ay, 4 € Fp and pup(A\ Ay 4) =0, 50 (AN (Naezy An,a)) =0.
More so, we have by Lemmal[2.1.21Ja A" € &, such that s (A\A') =0 and
Z ¢Gn a(x) = pn(x) foreach xe A (42)
Az}

We conclude that for A = Azt Ap,aN A’ we have pa(A\ A) = 0 and by combining
Equation with Equation we see

1 .
Ve < ¢n(x) < C, for every x € A. (43)
As this holds for arbitrary n € Z-, and know C’ > 1 we have indeed shown

infez., essinfyep ¢, (x) is positive and that SUpPpez., Pnlloo is bounded. To show
there exists an M € R.; such that

dg™) s pn

=M
d,uA

sup
neZs,

B

let n € Z>; be arbitrary and construct A again as above. Let x, y € A. Following from
Equation we have that

dpc(x,y)

(/)n,A(X) =exp (W) (Pn,A(,V);
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and
dp,c(x,y)

1-p

Summing over 2 as before and rearranging then yields that

¢n,a(y) <exp ( ) P, a(X).

dﬁ,c(x, ¥)
1-p

(Pn (x)
‘;bn( )

log

Furthermore, as by Equation (43) we have that
(C"?|log(2)| for z € [

(p”(x) [(c’ 2,(C’)Z] and since |z— 1| <

o (ch ] we can derive

(,bn(x) "3 (pn(x) (C,)s
lpn(x) =Py = C' |1 - ——| < (C)° [log——| < dgc(x,y).
$nl0) = fuly ony) onn)| T 1=p P
As x,y € A and n € Z-; were given arbitrarily we have sup,,.; |¢| g = (C_)ﬁ Fixing
M = % + C' we see M > 1, which yields our claim. O

Finally, we obtain our acip for tower bases.

Theorem 3.3.7. Suppose (A, Fn, pn, gR) is a tower base. Then there exists an acip v
with up < va < up. Furthermore, the density Z—Z’A‘ satisfies
1 dVA
—<

My <M, pup-almost surely, (44)

for some M e R;.

Ri
Proof Let n € Z,>; and define ¢; := M for i €{0,...,n— 1} write . Then define
1Y "} ¢;. The bounds on ¢, i € {0, ..., n—1}, from Lemma|3.3.6/are maintained
under convex combination of {¢;}p<;<»—1 and hence hold for v, as well. Thus, we
obtain

YneLg(A), ||1//n||ﬁsM and essinfu/nzl\i/[ (45)

for M,L € R, as in Lemma[3.3.6] As Equation holds for all n € Z-; we obtain
using Propositionwe obtain an accumulation point ¥ € LY (A), with llyllg <=M
and ¥ = ﬁ of the sequence (¥ ,)u=1. As [[¥|leo < llYllg = M we obtain by Lemma
an acip v < p, satisfying Equation (44). Consequently, we see that we have
forall Ae %, that vp(A) = Ai/[,uA(A) SO we obtain iy < vj.

]
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3.3.2 The uniqueness of the acip

The general strategy for proving uniqueness of the acip found in Theorem 3.3.7} is to
prove it is ergodic and rely on Lemma In doing so, we will prove our acip is
exact. It is a nice ancillary result but we will not revisit similar properties in Sections
- which can be considered the bulk of this thesis.

Remark 3.3.8. The key point to exactness is ‘expanding’ behaviour. In constructing a
Bernoulli shift (I', &1, P, o) based on an alphabet I" = {0, 1} with weights {2, 2} we can
see a cylinder can never be an element of (1,50 0~ "%r. This is most easily illustrated
by seeing

o[10]=[1] but o '[1]=[10]U[01].

That is, the expanding nature of shift forces that there is no set acting as the inverse
of [10]. In contrast, as rotations on the circle ([0,1),98[0,1),1,0g) are bi-measurable
we have N,200;,"%[0,1) = 810, 1).

The corollary below is largely inspired by [1, Corollary 3.6] where we have also
provided a lower bound we need later on.

Corollary 3.3.9. Let (A, Fp, ua, gR) be a tower base. Then there exists a C, > 1 such
that foralln = 1, A€ 22| and measurable sets Ay, Ay < A, with u(A) > 0 we have,

1 paA) _ T AD) _  palA)
Cz pa(A2) ~ ua@(A2)) ~ " pia(Ay)

(46)

Proof. Firstlet C' € R be as given in Corollary[3.3.5| Let n>1, A€ 2}, and Ay, Az €

Z 4, be such that y1(A4,) > 0. By Lemma[2.2.9|we know px (g%" (42)) > 0.
Rearranging Equation (36) from Corollary [3.3.5 we obtain a C’ > 1 such that for
almost every x € A

L < J(g""(x) < C'——. (47)
C' pua(A) Ha(A)
Integrating Equation over A; yields
1 pp(Ap) s Ha (A1)
— e <A s 0 (48)
C ) HA g pa(A)’
Integrating Equation over A, and taking the reciprocal of both sides yields
1 A _ _ (A)
— BN @R A = 0 P (49)
C' up(Az ) pa(Az)
Multiplying Equations (@8) and (@9) then yields Equation (46) for C, = (C")?. O
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Without relying on invariance, we can show that ;> (gR)_”9 A consists of
measure-zero and measure-one sets. The proof is largely inspired by [1, Theorem
3.13], where we have included the (necessary) lower bound in Equation (50). Intu-
itively the proof relies on the fact that any A € 22 will be blown up to A under n
iterations of g¥. We shall make use of the bounds in Corollary and Corollary
[3.3.9|to extend this to more elements of F,.

Lemma 3.3.10. Suppose we have a tower base (A, Fy, i, gR). We then have for all
A€ (gR) " F) that s (A) =0 or pp(A) =1.

n=0

Proof. Fix A€ N%°,(g")~"F, and suppose p(A) > 0. Fix C; > 1 as in Corollary3.3.9)

n=0

By Corollary we may for all € € R- pick an n € Z; and P € 22} for which

pua(P\A) €

< —.
LA (P) Cs

Define B = (g%")~! A and note we have by Lemmathat (g®"(P\ A)=A\Bso
that by Corollary we obtain

BA(ANB) _ . pa(P\A)
<C .
pa(A) pa(P)

Now note by Lemmawe have forall P € 2\ that g®" (P\ A) = A\ B. In applying
Corollary(3.3.9, we then see for each P € 2}

1 pa(P\A) _ pa(A\B)

— < (50)
G up(P) HA(A)
from which follows B
pa (P \~A) <c? uA(P\ A) <
pa(P) pa(P)
Multiplying both sides by pa (P) and summing over 2\ then shows
paANA) = > uaP\A)<e ) pa(P) =e.
Pep) Pe)
As € > 0 was given arbitrarily we may hence conclude p (A \ A) = 0 meaning
a(A) =1, which proves the statement. O

Corollary 3.3.11. Suppose (A, Fy, pa, ") is a tower base. The acip v, < uy obtained
in Theorem|3.3.7 is exact and is the unique acip v << [ix.
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Proof. Let vy < up be an acip given by Theorem We have by Lemma|3.3.10|for
any A € N,=0(g®) ™%, that us(A) = 1 or ua(A) = 0. In the case of the former we have
as vp < Up

HANANA) =0=>vpA(ANA) =0=>vpa(A) =1,

and in case of the latter (also using vy < pa)
Ha(A) =0=vp(A) =0,

so that
va(A): Ae (N " Fal = 10,1}
n=0
As we know v, is invariant under gR , we can conclude v 4 is exact. As we have yy <
va < up as well, it is the unique acip vy < up by Proposition[2.1.13 O

3.4 The Tower Framework

For this section we remain having fixed the dynamical system(X, %, m, g) and tower
base (A, &, u,, gR). As promised in Section for the remaining sections We
shall complete our exposition on Young’s theory by defining a tower and giving con-
ditions under which we can find an acip for our original system (X, %, m, g) in Corol-
lary Lemma through Theorem [3.5.5] cover the ergodic properties of the
acip for a tower and are not necessary for understanding the theory in Sections[4and
We have incorporated these results however, as the further ergodic properties of
the acip (e.g. the rates of mixing, see for instance [25] or [2]) are central to the theory
of Young Towers, and that important bounds necessary to prove this were not found
in pieces such as [25] and [24].

As suggested by the notion of a tower base, we shall now define a tower. We en-
courage the reader to take a brieflook at Proposition[2.1.7|for some adopted measure-
theoretical conventions.

Conceptually, a tower is a tool to store points of A before mapping them back to
X. Having found an acip for (A, %, ua, g%) and assuming R € L'(A), showing this
induces an acip on the tower is a small step. This acip then induces an acip on our
original system (X, %, m, g).

Definition 3.4.1. We say
1. Ai={(x,) e AxZ59:0<1<R(x)—1}1is a tower,
2. A\j={xeA:R(x)>l} for l € Z> is floor | of A;

3. Ag = Ais the ground floor of A; and
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4. Ppr:={Px{l} S AxZsy:P e Py, R[P] > l}is the principal partition of A.

If we endow Z-( with the power set 22>° as its o-algebra and the counting mea-
sure N we can construct the o-finite measure space (A x Zxq, #axz., 4a * N). In
writing

R.;:={xeA:R(x)>1}

we can see that
Aj=Rs; and A=||Rux{l}€ Frxzy (51)
=0
so that A € #p.z.,. We can then define the restricted measure space (A, %a, pa).
Using this construction we can see that

@G = U {Ax{l} S Fpr: AS R, A€ F,}, (52)
ZEZEO

is a set of generators for 5. We shall fix (A, %, ua) for the rest of the section, along-
side its naturally associated collection 2?5. We get the following technicalities sorted.

Lemma 3.4.2. The following claims hold:
1. The collection 225 consists of measurable sets and partitions A.
2. IfRe L'(A) we have ||R||1 = ua(A).

Proof. First we check &y < &,. For Item 1 note that for any P € £, we have an
unique A€ %), l € Zsg such that AC R-;sothat Ax {[}CAand Ax {I} € Fp x 2720
F \xo720 aNd 50 P = A x {l} € Fp.

To show 2, coves A, recall a : A — 22, from Definition [2.1.27} we similarly have
for any (x,1) € A that x € a(x) € 25 and x € R5; so that (x, ) € a(x) x {I} € 2. Finally,
for BP' € 22y wehave Ax {I} = PA'x{l'} = P' and so PN P' # ¢ implies [ = I’ and so
A= A" as P, is a partition. This implies P = P’. We have shown %, covers A and
consists of pairwise disjoint measurable sets, proving our claim.

For Item 2 we note

pa(A) =) pa(Rs) x N({1)
=0
=) pupa(Rsyp)
=0
IIRIl1,

where we used a standard probabilistic equality (e.g. seen in [14, Lemma 4.4]) in the
last line. This proves the claim in Item 2. O
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We now the define an operator on (A, %, ua) called a tower map and show this
results in a dynamical system.

Definition 3.4.3. Given a tower A and its associated measure space (A, Z%p, ua) we
define the tower map G: A — A as

(x,I+1), ifl+1<R(x)
G, =4 5 . (53)
(g"(x),0), otherwise,

Lemma 3.4.4. The tuple (A, Fa, ua, G) is a dynamical system.
Proof. We need to show measurability and non-singularity.
Measurability Let [ € Z>( and define

Gp = U {Ax{l} S Fr:ACS R, A€ Fp},
l6220

as in Equation (52). We shall show G~ (%) € % to use Lemma and dis-
tinguish between the cases [ >0 and [ = 0.

First for [ > 0, consider an arbitrary A x {I} € 45. Note

G rHAx{l) ={(x,k) e A:G(x, k) € Ax (I}, k+1<R(x)}
U{(x, k) € A: G(x, k) € Ax {l},k+1=R(x)}
={(x,k)eA:(x,k+1)e Ax{l},k+1<R(x)}
U{(x, k) €A:(gBx,00€ Ax {1}, k+1=R(x)}
={x,I-1)eA:x€e ANR.}U®

=(ANRs) x{I-1} using Equation
=Ax{l-1} as AS Ry

AsAcR.;wesee ACR.j_jandsoas Ae ¥, wesee Ax{l—1} €. Fx.

For arbitrary A x {0} € ¥ we see

Gtaxioh= || g MAnP) x{lleFa.
PE(@A,R@EZ

We have shown G~ (%) € %, proving G is measurable by Lemma

Non-singularity Similarly, for B € 5 with ua(B) =0we see ux(B;) =0forall l € Z5.
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In writing for P € 22y, rp € Z>, for the integer satisfying R|p = rp we see

pa(G™ By x 0D) = Y pal(Pn (g™ ™' (Bo) x {rp—1})
Pep)

= Y uaPnEg®H 1 (Bo))
Pe2?y

< Y (@M wua(Bo)
Pe?y

=0, by non-singularity of px. (54)
Moreover for [ > 0,
pa(G™H (B x {1)) = pa (B x {1 —1}) = pua(B) = 0. (55)
Combining Equation and we see
Gupa(B) =Y Gypa(By x {I}) =0,
1=0
proving non-singularity.

Having shown non-singularity and measurability of G we have shown (A, Zj, pa, G)
is a dynamical system. O

We refer to the dynamical system (A, %x, ua, G) as a tower. The following Corol-
lary simplifies questions on measurability greatly.

Corollary 3.4.5. Let (A, Zp, ua, G) be a tower. Then the following holds.
1. The tower map G : A — A is locally invertible;

2. Foreach k € Z~y and each A € & we have that Gk(A) e FA.

Proof. We prove 2, consists of invertibility domains for A. Note that by definition we
have for each P € 2y an A€ &P, and | € Z5o such that A x {l} = P and A € R.;. Note
that for z € Z the mapping ¢; , : {I} — {{ + 2z}, — [ + z is bi-measurable and Id: A — A
is bi-measurable as well. If A< R.;,; we have

G|A><{l}(x) l) = (x) I+ ]-) = (Id x Cl,l)(x’ l)y
which is bi-measurable by Lemma If AR (I +1) we have
Glaxin (6, D) = (g7(x),0) = (g%1ax e, -0 (x, D),

which again by Lemma |4.3.18| is bi-measurable. We conclude that 2, indeed is a
partition into invertibility domains and so G is locally invertible. Item 2 is direct con-
sequence of local invertibility. O

In the next section we will prove existence and uniqueness of an acip for this sys-
tem.
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3.5 The Tower Acip

We can directly use the acip v, obtained in Theorem to obtain an acip v for
(A, Zp, Ua, G) - assuming an integrable return time.

Theorem 3.5.1. Let (A, %, ua, G) be the tower as fixed in Section and assume we
have R € L' (A). Then there exists an acip va < pa and an My € Rsq such that

1 d
—< ara < My, holds ua-almost everywhere. (56)

Proof. Let v, be the acip for (A.%,, ua, g%) obtained in Theorem and M € Ry,
the constant satisfying Equation (44). Define the measure v/, on A by

Vi(B):=)_va(B) for B € Z,. (57)
=0

Again, writing for P € &), rp € Z> for the integer satisfying R|p = rp we have for
arbitrary B € %, as in the proof of Lemma|3.4.4]

VA(GTH(By x {01) = Y vA((G™1(By x {0)))
=0

=) va (( LI (Pﬂ(gR)_l(Bo))X{rp—l})l)

[=0 Ped?y

:ZVA( L] @nEhH By
=0 Pe?p,rp—1=1

:vA( L] Png® By
Pey

=v(Bo)
=\ (By x {0}), (58)

and for I’ € Z~; we see
V(G By x {I'N) = vy (By x {I' - 1})
= ivA((Bl' x{I'=11))
= V_A(Bl’)
= iVA((Bl’ x {1

=0
= v\ (By x{I'}). (59)
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Combining Equations and we see

Va(G™'B) = va(G ™ (Box{0N+)_ va(G ™ [Byx{I}]) = va(Box{0D)+Y_ va(B;x{l}) = va(B),
=1 =1

proving G, va = va. Furthermore, note that

o0 o0 oo
VAA) =Y vaA(A) =Y vaARs) =M Y pa(Rsp) < MIIRI|; < oo,
=0 =0 =0

so v/, is a finite measure. Then define the G-invariant probability measure v, =
(v, (A))~!-v/\. Note that as R(A) € Z-; we have ||R|[; = 1.
Lastly, note that for any B € %, we have

Vii(B) =Y VA(B) <M ) pa(B;) = Mua(B),
1=0 =0

and similarly

, & 1 & 1
v\ (B) = ;)VA(BZ) z ZZZOMA(BI) =3B,

which implies v}, (B) € [1;1a(B), Mua(B)], so that we have for

M 1
MA::maX{V,A(A)-M,M}, that vaA(B)€ E[JA(B), Mapua(B)|.

Consequently we have pup < va < pa, with
—— < —— < M,, pa-almostsurely,

proving our claims. O

Similar to the acip for the tower base, we shall now prove uniqueness of the acip
obtained in Theorem (3.5.1} We again opt to use Lemma [2.1.13|and for that require
ergodicity. In Lemma|3.3.10|we showed this for (A, %, ua, g%) by proving exactness
and did so by showing arbitrary small non-trivial sets can saturate the tower base
under enough iterations of g. There is one caveat however for applying this method
to (A, Fa, ua, G). If the return times have a greatest common divisor greater than 1,
periodic behaviour can occur leading to multiple distinct acips with disjoint support.
More precisely in Lemma 3.5.3} we shall rely on the following lemma. The writer was
unable to find an explicit reference and has hence proved it - note it is more algebraic
in nature than other claims in this thesis.
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Lemma 3.5.2. Suppose we have a countable set N € 7>y such that gcd(N) = 1. Then
there exists n,d € Z», and a finite set{a,, ..., a,} < N such that

n
Z-3<{z€Z51:2= Z a;x;, for x; = 0}.
i=1

Proof. Asgcd(N) =1we can find finitely many integers {a;, ..., a,} < Nforsomen =1
such that Z?Zl aix; =1forsome x;€Z,i€{l,...,n}. Write K ={i € {1,...,n}: x; <0}
and define i
C:i={z€Z>1:2=)_ aix,, for x; = 0}.
i=1
Weseekad € Z~; such that Z-; € C. We claim for

d=1-) arxp— ) () ai)aexi

keK keK ieK

that we we have Z..; < C.
First note that for [ € {0,..., Y rcx ax} we have

d+l=1- Z apXp— Z(Z a;)agx + 1

keK keK ieK
n
=Y akxk— Y. () adagxg+1) aix;
keKe¢ keK ieK i=1
= Z ay (—l + Z a,-) (—xp) + Z ai(l+1)xy
keK ieK keKe¢

(60)

so thatindeed d +1 € C, foreach [ € {0,...,Y recx ax}. Moreover, note that d € C and so
(d+nY rex ar)n=0 € C. Now as C is closed under addition we can see

sz cld+1l+n Z ak}nzO,lE{O,---Zkede} cC,
keK

proving our claim. O

We now move on to proving our acip is unique. A slightly different version of
the following Lemma is made as a claim by Young in her [25] paper in the proof of
Lemma 5. The claim is made without proof however, which is why we have proven
the statement below. In [1] a different approach can be found.

Our proof below goes in two steps: first we derive a bound based on elements di-
rectly from our principal partition and thereafter approximate this with a more gen-
eral set. The statement relies on our ability to saturate A with an arbitrarily small set
in finite time. In the proof we shall rely on the forward measurability of G: A — A as

seen in Corollary[3.4.5[implicitly.
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Lemma 3.5.3. Let (A, %, Ua, G) be a tower with return time R € LY(A) and
gcd(R(A)) = 1. Then for all e € Ry there exists a t = t(e) € Zsy and 6 = 6(t,€) € Rsg
such that all B € Fa with uy (Ao \ Bo) < 6 satisfy ua(A\ G'(B)) <e.

Proof. Let € € Rsq be arbitrary. As R € L'(A) we have pa(A) = ||R||; by Lemma|3.5.2]
and so we may find an n € Z-; such that

n—1 n—1 1
pa | AN A x i} = 1IRIl = Y pa(Rsp) < =e.
i=0 i=0 2

We shall find a ¢ = £(e) and 6 = 6(t,€) € R>( such that for any B € F; with pp(Ag )\
By) < 6 we have

n—1
Ha ( U Ak x {3\ G (Bo x {0})) < %e.
k=0

(Claim) Thereexistsad € Z-1 and P; € V;.lié G~/ Py foriel0,...,n—1} such that

n—1

1
< —e.
i=0 2

Firstly, as gcd(R(A)) = 1, we have a finite set £ and a collection Agf = {P;}leg €
) such that gcd{R(P)) : l € &} = 1. For | € & write rp! € Z > for the integer satisfying
Rlp; =Tp. By Lemma|3.5.2|we can then find d € Z, such that forall i € {0,...,n—1}
we have positiveintegers (a; ;)jce S Z>1 wWithd+i =} jcpa;; -Rp;.

In particular, this means for each i € {0,...,n — 1} there is an [; € £ and P; €
V923 GI P, P < P] x{0} such that G**'P; = Agx {0}. Now as, G~ (A x {1}) = Ay x {0} <
Ao x {0} we have

n-1 n-1 .
U A x{ite G (A x {0)).
i=0 i=0

Thus we can see

n-1 n-1 . n-1 . . n-1
Aixiiye G o x oy = J G o) < U 6" Py,
i=0 i=0 i=0 i=0

so that

n-1 n-1 1
Ha (A\ U G"_Hd(Pi)) <paA\ Y A x{ih) < 26
i=0 i=0
proving our claim.
To proceed with the second part of the proof define P; o € &, for the 0-section of
P;, thatis P; = P; x {0}, we note
d+i -
PipelJgt @y, for i€fo,...,n-1} (61)
j=0
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Then define ¢

0y := i pP; d 6=—"n——,
2 ] (§nln I}HA( l’O) an 2-C2-n-62

i€{0,..., n—

where C, € R. is as in Lemma(3.3.9

(Claim) Forall Be % with upa(Ao\ By) < 6 we have
d+i g .
uaBo\ g (BoﬂPi,o))SCgé—, forie{0,...,n—1}.
2

Let B € %,. First note

8> a8\ Bo) = pa(UiZg Pio\ Bo) = _ max  pa(Pio )\ Bo). (62)

Now by Equation we may for each i € {0,...,n -1} find a n; € Z>; such that

g4 [P; ol = g [P; o] = Ag, consequently, we may apply Lemma and Lemma
[3.2.5land find

A (gR" (Pio\ Bo)) <C kA (Pio\ Bo)

ua@rM (Pig) T maPio)

As by construction g4+ (P; o) = g% (P;0) = Ao, and as g4+ |p,o : Pijo — Ao is bijective,
we can see

(63)

Ag )\ gd+i(Bo NP;o) = gd+i(Pi,0 \ (BoNPjp)) = ani (Pio\BonNPjp) = ani (Pi o0\ Bo),

so that pa (Ag )\ (gd”(Bo NPio)) = a (ani (P 0\ Bp)). Combining this with Equation
shows .
HaBo)\ g (Bon Pig)) _ . #a(Pio\ Bo)
1A (o) T Pr)

)

which implies
d+i 6 .
ua(Ao\ g (BoﬂPi,o))SC26—, forie{0,...,n—1}, (64)
2

proving our second claim.
Proceeding, we see for i € {0,...,n — 1} that using the general set identity f(A)\
f(B) S f(A\B) that

Apeicy ¥ {0 == TG (By x {0D) € G" '~ (Ap—i-1 x {01\ G+ (By x (01)
c Gn_i_l(AO x {0} \ Gd+i(B() x {0})).
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Using this bound we then arrive at

pa (Bnoica x (n= =T\ G (Bo x (0])) = paa (Ao x 10} \ G**1(By x (0))]
< 1a (B0 x 101\ GTi((By 1 Py) x {0)]

= 1A (Ao \ g (Byn Py )
5

<Co—, 65
< 262 (65)

where in Line we used Inequality (64). Then finally (please bear with us), we note

n-1
\ Gd+n_1(B0 x {0})) — Z U (An—i—l X {n— i— 1} \ Gd+n_l(BO X {0}))
i=0

n—-1
IJA((U Ap—im1 x{n—i-1}

i=0

which implies

i=1 i

n-1 n-1
pa(A\GTL(By x {01) < pa (A\ U aix {i}) + A ( Ai x {iI\ G (By x {0) | <.
' =1
Finally, in noting
pa(A\GHTIB) < up (AN GHTL(By x {0)),
we can see the claim follows (for t=d +n—1). O

Finally, we need the following result to prove exactness of G.

Lemma 3.5.4. Let G: A — A be a tower map with R € LY(A). Ifgcd(R(A)) = 1, then for
all A€ 5 with ua(A) >0 we have foreache >0 ann € Z» such that ux(A\G"(A)) <e.

Proof. First let A € F5 with pa(A) > 0 and let € > 0 be given arbitrarily. Now by
Lemma there exists a § € R and ¢ € Z>( be such that for all B € %, with

pa (Ao \ By) < & we have pa(A\G'(B)) <e.

If we can find an m(A, §) € Z; such that ux (Ag\G™(A)g) < 8 then ua (A\(G™F1(A))) <
€, proving our claim for n = m+ t.

To prove existence of such an m € Z-;, we start by pointing out that as a con-
sequence of pbn-singularity we can pick an I € Z- such that p,((G'A)g) > 0. Fix
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0p = C% where C; is as given by Corollary(3.3.91 Then by Corollary

angeZspand P e 3?’16\7 be such that

pa(P\ (G A))

< 52.
ua(P)

Using Corollary[3.3.9we then have

ua@" (P (G M) _ ., pa(P\ (G A)o)
@™ ey T )

In noting g%’ (P) = A we see 5 (g%’ (P)) =1 and
A g™ (G M) < g (P (G A)).
Combining all the above, we see

ua (A g™ (G A)0)) = ua (g™ (P\ (G A))
1
- ¢, MR\ (G A
pa(P)
< Cy05
= 6.

2.1.24

there exists

Upon fixing R € Z-, to be the (smallest) integer satisfying gﬁ (P) = Ag we can see (as

A = Ap) that
[J,A(Ao \ (GmA)O) < 6, form = ﬁ + l,

so that indeed ua(A\ (G"(A))) <eforn=m+t.

O

Theorem 3.5.5. Let (A, Fa, tia, G) be a tower with gcd(A) = 1 and R € L' (A), the acip

VA < up obtained in Theorem|3.5.1|is exact and unique.

Proof. We shall first prove that for each A € (2, G™"%,, with vA(A) > 0 we have
va(A) = 1. First, note that by Lemma we have for all € € R an n € Z5; such that
1a(A\ G"(A)) < e. Continuing, by Theorem there exists a M € R.; such that

pa(A) = MLAVA(A) > 0 so that we may see

€> pua(A\ G"'(A) = LVA(A \G"(A)),
M

which implies
va(G"(A)) > va(A) — Mje.
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Consequently, as A € G~ ", there exists A’ € %, such that A= G " A’. Hence
VA(A) = VA(A) =va(G"(A) > Va(A) — Mje. (66)

As My € Ry is fixed and € > 0 was chosen arbitrarily, we may conclude v (A) =
va(A) =1.
Since v, is invariant under G as well, we conclude that v, is exact. Using Equation

with )
0 < —pa(A) <VA(A) < Mpaua(Q),
My

we see it is also the unique ergodic acip va < pa with va(A) > 0 for (A, Fa, ua, G) by
Proposition[2.1.13 O

To conclude the section, we end it with a small corollary to show how the results
on the tower can be expanded to the rest of the system. Note that relevance of the
resulting measure within X depends on the size of A. The idea stems from Lemma
4.11in [13].

Corollary 3.5.6. Suppose the tower (A, Fn, ua, G) fixed in SectionsatisﬁesR e LY(A)
and gcd(R(A)) = 1. Then we can find an exact acip for its base dynamics (X, %, m, g).

Proof. Write v, for the exact acip found in Theorem[3.5.5] In defining
T A—X  (zD)—gla), (67)
we note we have for (z,1) € A, R(z)>1[+1,
moG)(z, D) =n(z,1+1) =g (2) = (gom)(z,])
andif (z,]) e A,R(z)=1+1,
oGz, 1) = n(g"(2),00 = " (2) = (gom) (2, )

holds, showing 70 G = goz. In noting that for A € Fx we have 771 (A) = L;=0(g " (A)N
A) x {I}, we can see that 7 is #-measurable. We define mg := 7, v, and show this is
a acip.

To show mg < m, we assume m(A) =0 and see

mg(A) =vamr (A) = Y valg™ (AN A) x (1))

=0
< MAZ;)MA((g_l(A) NA) x {1})
= MAI_ZOuA(g" (ANA)
= My lio m(A)-m(g~ (A N A)
< Mam(A) lzo(g’)*m(A)
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so that by non-singularity of g we see mg < m. Finally, we see
8xMg = gx(MxVA) = 4 (GuVp) =T,V = Mg,

and for K € N, 8 "Fx we see

n'Ken!

g "Fx

n=0
=) G "n ' Fx]
n=0

< ﬂ G_ngA,

n=0

(68)

(69)

where in Equation we used 710G = gor, in Equation we used measurability of
7. Using the exactness of v found in Theorem we can claim mg(K) = va(n 1K) €

{0, 00}, proving exactness of Mmg.
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3.6 Two Examples

In this subsection we give two examples of dynamical systems where Young Towers
can be used. The theory thus far has already been used in many different contexts
see for instance [13] and [3]. It is for the reasons that

1. Young Tower Theory can seem ‘inaccessible’ by its many conditions and struc-
tures involved as seen in Sections[3.2|and 3.4}

2. Young Tower Theory is still undergoing development in various (stochastic)
generalisations such as [2] and [7]; and

3. The literature seems to lack easy paradigm examples to test developed theory
against;

that the author feels that the literature may be aided by giving simple paradigm ex-
amples already describable by existing theory. Finally, we shall revisit these Examples
in a new context in Section[5.6] In this section, after introducing some standard the-
ory and terminology, we shall use Young Towers to construct an exact acip for the
doubling map in Section (3.6.1|and in Section we shall construct an exact acip
for the so-called stalling system (defined in Equation (74)). The stalling system will
be our the occurrence of a random dynamical system. We remind the reader of the
adopted conventions on the Bernoulli shift in Examples 2.1.3|and [2.1.26|and of the
definition of the doubling map in Examples

3.6.1 The Doubling Map

The following two elementary lemmas allow us to study the doubling map through
the Bernoulli shift. The results are by no means new and are used throughout ergodic
theory but the author was unable to find a source with a full proof and believed it
to be instructive to provide one. As it is rather lengthy, the proof can be found in
Appendix[A.2] The results essentially state we can find binary number expansions
for every real in [0, 1), that these are unique up to a measure zero set and that binary
shifting behaves similarly as multiplication by a factor 2.

Lemma 3.6.1 (A.2.2). Let

X :={(xp)nz0 € {0,132 : foralli€ Zg thereisa j = i such that x; = 0},

T X—10,1)

00
~n-1
(Xn)n=0— Z xp27"
n=0
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and
¢:10,1) - X

(n _ {0, if2"x—12"x] < %

1, if2"x—[2"x] = %
Then ¢ and n are well-defined on their respective domains and we have

¢pon=1Idy  mo=Idpy).
Recall the definition of the Doubling map ([0, 1), %[0, 1), A, D) from Example[2.1.3]

Lemma 3.6.2 . Let ([0,1),9810,1), A, D) be the doubling map and
({0, 1}4=0, 55{0,1}220 ,P,0) be the Bernoulli shift with

P(ix€{0,1}720: xo = 1}) = P({x € {0, 1170 : xo = O}) = %

Then the mapping nt from Lemma|3.6.1|is an ergodic isomorphism between
(10,1),%10,1),A, D) and ({0, 1}220,9{0,1}220 P,0).

We shall now construct a tower on the Bernoulli shift ({0, I}ZEO,%‘{OJ}ZZO ,[P,0) with
P as seen in Lemma|3.6.2, and fix this system for the rest of this section.

For this system, the pick for an induced domain is not unique: rather any cylinder
set can be used to construct such a collection. In particular, the easiest choice would
be to take the trivial ‘cylinder’ {0,1}>°. For sake of future study (and to adopt literary
convention e.g. [13] and [3]) our induced domain shall be a subset of the cylinder

[10] = {(y ) n=0 €10, 1} s yo = 1,7, = 0} € Fo,11220

of full measure. Specifically we restrict this cylinder to the sequences that are not
eventually constant to make sure the return time takes finite value}

Lemma 3.6.3. In fixing the set
Y= {x €{0,1}%20; forallieZs thereisa j € Z>) such that x; # xj}, (70)
we haveY € #y 1,7, P(Y) =1,0(Y) = Y and the return time

R:YN[10] = Z>;
x—inf{nezZs :0"(x) e Y N[10]},
exists on Y N [10] and satisfies

R(x)=infilne€ Zs»:x, =1, x,+1 = 0}. (71)

!For a systematic approach in finding suitable induced domains in various non-uniformly expand-
ing systems see [25} Page 29]
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Proof. First we show Y is a measurable set. To do so, note that

{xefo, 11220 : there exists a j > i, x; # xj}

~
Il
)8

~
I
—

U {xeo,n%0:x; £ x;}

Il
)8

~.
1l

—
~.

—

Il
8
Rech]

J {xefo, 3% = 1,x;=0fu{xe {0,101 x; = 0,x; = 1}

~
Il

—
~.

—

m
K
e
=
o
v
(=1

Looking at its complement, we see
[e,®]
=J(fxefo, 3% :x; =1, forall j = i} U{x € {0,1}%=°: x; = 0, forall j = i})
i=0

is the countable union of measure-zero sets, hence P(Y) = 1. Finally note that every
sequence is eventually constant if and only if it is eventually constant considered
starting the first (or any) index, which implies o(Y) =

To show Equation holds, note that for x € Y we have x € [10] if and only if
xp=1,x; =0, so that

Rx)=zinfilneZ-»:x,=1,x,41 =0},

moreover we see for such x € [10] N Y that x € [1] and o (x) € [0], so o (x) ¢ [10]. Hence
Rx)=infin€Zs»:x, =1, x,+1 =0}.

Lastly, as x € Y we have R(x) < co proving the statement. O

We shall now fix A :=[10] N Y, and define the measure space (A, %y, up) as the re-
striction of ({0, 1}220,9{0,1}@0 ,4-P) to A. The factor 4 is necessary to ensure (A, %x, tp)
is a probability space, as P(A) = 7

Remark 3.6.4. Technically, A as a subset of Y does not contain any cylinders of
{0,1}720 but whenever we write [aga;...ar_;] € Y for some cylinder [aga...ar_1] S
{0,1}220, we actually mean [apa,...ar—11NY. As Y is closed under o this slight abuse
of notation causes no issues: Lemmaf4.3.17]applies to these ‘cylinders’ as well for in-
stance. We shall do the same for [aga;...ar-1] € A, that s, if [aga;...ar-1] € A then we
mean the resctricted cylinder [aga;...ax—1]1 N A.

We remind the reader the return time is measurable and so by Lemma 3.2.2, we
can define the dynamical system (A, %, pua, o). We need to fix a principal partition
to prove it is a tower base.
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Lemma 3.6.5. Consider the system (A,gA,MA,O'R) as above. Define for each l € 75,
the collections #; < 2" as given by

7= {[1010]}, .%:=1{[10110],(10010]}, andforl>3
7= {[malo] CA: aci0,1}2 ajai, #£10, i€ {0,...,1—3}}. (72)

Then the collection Py := | ljcz., #] is a principal partition in the sense of Definition
for (A, Fa, pin,0R). Moreover, for | € Zs, and I; € .%; we have Rl =1

Proof. Let I € 22\ be given and let [ € Z-, be such that I € .#;. Note that [ is a cylinder
of depth [ + 2 so that by Lemma we know that o' : I; — A is bi-measurable.
Furthermore by Lemmawe see that R|;, = I. To show &, partitions A, note as
x € A we know (x,) >0 is not eventually constant and x € [10]. We can then see we
have either x € [1010] or there must exist a smallest [ > 3 and an a € {0,1}}~2 with
a;a;+1 #10for i €{0,...,] — 3} such that x € [10a10]. We conclude &2, covers A.

Finally, for I, ] € &5 of depth I,m € Z-,, we have I n ] # ¢ only if the cylinders
consist of sequences that correspond on the first min(/, m) terms, so that either I < J
or J < I. Assuming I < J without loss of generality implies that / = m. To show why
I = m must hold, write I = [10a10] and J = [10b10] for a € {0,1}'~4, b € {0,1}"~* so that
we have [10a10] < [10b10]. Now if [ > m we see this implies that [a] < [b10] which is
a contradiction as [ € .#;. Hence we see that 22, indeed consists of disjoint elements.

Looking at the n’th refined partition 22 as seen in Definition we can in-
ductively show every I" € P| has some ay, ..., an € U2, {0, 1} such that

I"=[10a,10a5...10a,10].

Using the metric as defined in Equation (8) we have sup, ¢ 1» djg1y7-0 (%, y) = 27" for

any [" € &y, so by Lemma(2.1.24we have that &, is generating and separating as in
Definition We conclude &, is indeed a principal partition. O

Lemma 3.6.6. The dynamical system (A, Fp, ua,or) with 2, as in Lemma isa
tower base. Moreover we have R € L'(A) and gcd(R(A)) = 1 and there exists an exact
acipv < P for ({0,1}%20, Fg 1,2, P, 0)

Proof. Inorder for (A, %y, pa, of) to be a tower base it remains to prove (A, %y, pp, 0%
satisfies bounded distortion according to Definition By Lemma4.3.17|we can
see, that given some P € 25 the Jacobian satisfies J (®)|p = ua(P) so we have

R
forall x,ye P, M 1‘:

JoRIp ()

So (A, Fp, up, o®) is then a tower base and we may construct a tower (A, Fa, ua, G) as
in Definition3.4.1]
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To show the integrability of the return time R, simply note that for any / = 2, we
have #.4; = [ - 1 (see Equation for the definition). For each I; € .#; we then have,
as they are cylinders of depth [ + 2, that us (I;)) = 4-27'"2 and Ry, =1by Lemmam
Consequently, we see

o0

IRIh=) > 1-4-P()
=219
=4 (1-1)-1.27172
=2

=4,

sothat Re L! (A). Flnally we have [1010],[10110] € 25 and RI[lOlO] =2, RI[lOllO] =350
clearly we have gcd(R(A)) = 1.

By Theorem we then obtain an exact acip v for (A, %, ua, G) with a uni-
formly bounded density Z—Zi such that % < Z—Zi < C for some C € R-;. By Corollary
we then obtain an exact acip for ({0,1}%2°, F) ;,z.,,P,0). As this system is er-
godically equivalent with ([0,1),28[0,1), 1, D) we know the latter has an exact acip

with a uniformly bounded density as well by Corollary O

3.6.2 Annealed Stalling System

We shall now showcase how Young Tower Theory can be applied to random dynami-
cal systems. The approach in this example is called annealed in the literature, see for
instance [3] and [13]. The annealed approach is to incorporate the random dynam-
ics into the Young tower. When having a mixing base dynamic this can work rather
well - the base dynamic is well-behaved to the extent that is does not interfere with
the construction of the Young tower. This method typically fails when considering
systems with a non-mixing random dynamic such as the (irrational) rotation. De-
veloping theory to analyse these systems will be done in Sections|4|and 5| The main
purpose of this section is to provide a concrete example of the annealed approach to
compare with the in Section|5.6/which follows the quenched approach.

To keep the example as simple as possible we build upon our previous example
in Section[3.6.1} We shall refer to this system as the (annealed) stalling system.

Define on the standard Borel space ([0,1),48(0,1), 1) with Lebesgue measure two
mappings

fg :10,1) — [0, 1), fs:100,1) —[0,1) (73)
1 3
x—2x modl, —{" xe[(l),%)u[4,1)’
2x—-1, xe€ (z,z)
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where we refer to f; as a ‘go’ map and f; as a ‘stall’ map. We shall assume non-
singularity of fg and f; without proof and define the (natural) dynamical systems
(10,1),4810,1), A, f¢) and ([0, 1), 28(0, 1), A, f5).

To construct a random dynamical system, we consider the Bernoulli shift
(Q,Z%q,P,0) based on an alphabet X = {s, g} with weights {3, 5} respectively, so that

11
272
Q:={s, g}ZEO. Now we construct the tuple

(Q X [0) ]-))gQX[O,l)])[FD X A) S)) S(w,X) = (Uw’ fa)o (X)), (74)

where we refer to S as the skew product. To prove the System is a dynamical sys-
tem we shall make use of the following lemma. In Section[4.2|we shall see a stronger
version with a proof.

Lemma 3.6.7. Let (O, %q,P,0) be a dynamical system with o : Q) — Q bi-measurable
and P(Q) =1 and let (X, Fx, 1) be a o-finite measure space. Suppose that we have a
measurable mapping

fOxX—X
(w, x) = fu(x)
with (fu) « 1t < p for w € Q and then define (A x X, Fqxx,P x 1, S) with
S:OxX—-QxX
(@, %) — (0w, fu(1)).

Then the mapping S is measurable and non-singular and hence (A x X, Fqxx,Pxu,S)
is a dynamical system.

We introduce some terminology for the objects in Lemma We shall define
this in greater generality in Definition|4.2.3

Definition 3.6.8. We call systems (Q x X, Zqxx,P x 4, S) as in Lemma random
dynamical systems. More so, we call the mapping S: Q x X — Q x X a skew product,
the family (X, %, u, fu)weq the base dynamic and the dynamical system (Q2, %q, P, 0)
the random dynamic.

Applying Lemma|3.6.7, we see the following.

Lemma 3.6.9. The system (Q x [0,1), Zqx(0,1),P % A, S) in Equation is a dynamical
system.

Proof. In order to apply Lemma|3.6.7, we first need to show the mapping f : (w, x) —
fw,(x) is measurable and non-singular, so let A < [0, 1) be some measurable set. Then
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we see f~1(A) = ([g] x fz (A U [s] x f(A) € F (0,120 In assuming A(A) = 0 we
see similarly,

Px (1A = Px (g1 x f (A +Px ) ([s]x f;7 (A) < Af (AN + A (A) =0.

Secondly, the Bernoulli shift is bi-measurable by Lemma [4.3.17| and so by Lemma
we have proven our statement. O

We shall construct a Young Tower on the system (74). We start by transcribing it
to a shift system and to do so, use the following Lemma.

Lemma 3.6.10. Suppose we have dynamical systems (X, %x,u, 1), (Y, ZFy,v,U;) for
i € {0,1} and suppose we have sets U € Fx, V € Fy with u(U) = v(V) < oo and an
ergodic isomorphisma : U — V for (X, %x,u, T;) to (Y, ZFy,v,U;) forie€ {0,1}. Now let
(Q,%q,P,0) be some dynamical system withP(Q) =1 and lety : Q — {0, 1} be measur-
able and the mappings

OxX—-X, (0,X) = Tyw), QAxY =Y, ()~ Uyw(y)

be measurable. Lastly suppose that for P-a.e. w € Q we have (Tyw)«p < i and
(Uyw))xV < v. Then the random dynamical systems

Qx X, Zaxx,Pxu,J) and (Qx X, Faoxx,P x u,%), (75)
with I ,% skew products, are ergodically isomorphic.
The proof of Lemma[3.6.10]is straightforward: we can directly verify
dxa:QxU—-QxV (w,x) — (W, x(x))

is an ergodic isomorphism, checking the measurability conditions using Lemma|2.1.4
We have omitted giving a full proof not to interrupt the flow of the text. We now show
the system is ergodically equivalent with a shift system.

Lemma 3.6.11. Define the product measure space ({0,1}*

(po, p1) = (3, 3). Now define the mappings

20, F0.1)220, 1) With weights

0g: {0,170 = (0,1} 051 {0, 1720 — {0,1)7=0
(Xn+1)n=0, (Xn)n=0 € [10]
(il = G Jnzo (=0 {(xn)nzo, (tw)nzo € (01U (111,

then
(Q x {0, I}ZZO,EQX{OJ}ZEO,P x w, U) and (Qx[0,1),Zax,1),PxA,8),
with U, S as given by,
Uw, x) = (0w, 0y, (x)) S(w, x) = (0w, fu,(x))

are ergodically equivalent.
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Proof. We can see that by LemmalA.2.4we have
([0,1),8[0,1), A, D) and ({0, 1}*2°, F g 1,720, 1, )

are ergodically equivalent and by Lemma[A.2.5]the systems
([0,1),48[0,1), 4, f;) and ({0, 1}%2°, F g 1,720, 1, O 5)

are ergodically equivalent. We can then use Lemma(3.6.10|to show that the random
dynamical systems

(Q X [0) 1)) gﬂx[o,l))[p X A’} S) and (Q X {0) I}ZEO’ng{Oyl}ZZO)P X u) U)

are indeed ergodically equivalent. O

We can equip both Q and {0, 1}420 with natural product metrics dq and dyy1)7=0 aS
in Equation (8) and define the metric

Aoyioz=0 © (Qx{0,1) x (Qx{0,1}) =R
(w, ), (@', X)) — do(,0") + dg 17 (X, X')

il’ldUCll’lg edj\Qx {0 ]}ZEO .

For the rest of this section we fix (Q x {0, I}ZEO,EQX{O,”ZZO ,P x u,U) as in Lemma

B.6.111

In defining an induced domain A € Q x {0,1}?>° (not to be confused with A) and a
principal partition £25 an obvious starting point is the set [10] n Y and the collection
P, from Lemma In fact, we shall fix

A=Qx([10]nY)

for some large measurable Q € Q as defined in Lemma|3.6.12, Further up in Lemma
3.6.14} we shall show we can construct a principal parition 2?4 consisting of products
between elements I € 2?5 and cylinders O € q in Q.

Lemma 3.6.12. Let Y Nn[10] = A <{0,1}22° be as in Lemma and define
Q:={(wn)n=0 € Q: w; = g for infinitely many i € Z-o}. (76)

Then A := Q x A is measurable, (P x W) = ;11 and o (Q) = Q.
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Proof. First note we may write

Q =limsup {(w;)iz0 € Q: 0, = g},

n—oo

so that Q € Z(,. Furthermore

PQ\Q) = {weQ:wi:s})

v
3

=
Ao
v
3

{weQ:a),-:s})

so that P(Q) = 1. We then see
P x w)(A) =PQ)u(10]nY) ==~

Now by Lemma we have A € 2., so that A = QxAe€ Faxio1)2=0- Lastly, as
sequences in ( have infinitely many terms equal to g starting at index 0 if and only
they have infinitely many terms equal to g starting at index 1, wesee 0(Q) = Q. O

We restrict the measure space (Q x {0, 1}4=0, Faxio1)2=0, 4 Px ) to A from Lemma
to obtain the restricted measure space (A, %, (4-P x p) ,). We shall write 4 :=
(4-P x u) 5 for notational convenience. The factor 4 here once again ensures us we
obtain a probability space. In Lemma|3.6.13|below we show there exists a return time
on A asin Deﬁnition for the dynamical system (Q x {0, 1}4>°, Faxio,17=04 P X
w1, U). In proving this, we also give a convenient expression for R.

Lemma3.6.13. In letting R: A — Z~; be the return time from Lemmal3.6.3 and defin-
ing for k € Z>, the measurable mapping

#re(w):=#iefl,....k-1}:w;=g}+1, 77
we have a return time R : A\ — Z>1 which is given by
R(w, x) =inf{k € Z>5 : R(x) = #;(w)}. (78)

Proof. We recall for [ € Z5, the definition of .#; and the relation to R|;, = [ from
Lemma [3.6.5] Now let (w,x) € A and fix [ € Z5; such that x € I; for some I; € ..
First note that by Lemmawe have o' (w) € Q for each I € Z5 so that R is only
dependent on the second component of U/ (w, x), for J € Zs;. It is then clear that
R(w, x) is the lowest value k € Z5; such that there are [ = R(x) elements g seen in the
first k indices of w = (wg, w1, ...) € Q, excluding wy as oglio) = 0slj10;. We conclude
that
R(w, x) =inflk € Z>, : R(x) = #.(w)},

proving our claim. O
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Having shown the return time R : A — Z; exists we can define the dynamical
system
(A, Fp, 4, U (79)

as seen by Lemma In proving this system is a tower base, we now construct
a principal partition. As mentioned earlier, %2, is constructed by taking Cartesian
products between elements in 22, with cylinders in €.

Lemma 3.6.14. Let (A, Fp,4up, UR) be the dynamical system as in Equation (79). Let
l€Zs), $1 € F 1250 beasin Lemma Then for all k = | define

K= {lwo - wp_1) S# (D) 1wk = g}
We have for each k,l € Z>», k = | that R|k, <1, = k and

1 1
P(Kk,) pallp)

]UR(w,x) = (w,x) € Ky x I}, 4k, x5, — almost surely.  (80)

Moreover 2 := |22 k=1lUpex;, x5 1P} is a principal partition for (\, Fa,4pn, U®

as in Definition[3.2.3

Proof. We shall show the conditions as phrased in Definition and in the process
show 22, partitions /A into measurable sets, alongside Identity (80).

(Constant Return Time) Note for general k = 2 we can write by Lemma|3.6.13

R (k) = {(w,x) e Atk =inf{k' =2: R(x) = #p (w)}}

=] ] {0 eQxI;:k=inf{k' =2: R(x) = #p(w)}}
=219

=] L] {@ 0 eQxI:R(x) = #(w), w1 = g}
ZEZIIEJI

= U U KexI

=2 1.9 Kk,lelk,l

In noting that for k, [ € Z-, we have Ky ; # ¢ if and only if k = [ we can see as
A=R1(Z>y),

A= R "= U U EKeixI

k=2 122 k=11j€%) Ky |EX,|

so that

2= L L] Kerx 1,

=2 k=119 Kk,lexk,l

is a partition. Note it consists of measurable sets as it consists of cylinders (in-
tersected with a measure 1 set closed under UX).
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(Markov Property) Letk,l€ Z>», and K ; x I} € £}, x %] be given. First note that as
Kk,1, I; are cylinders of depth k, [ respectively, we have ak[Kk,l] =Q, aé[ll] =A.
Now recalling o as defined just above Equation we apply Lemma
and see o : Ky, — Q and aé, : I; — A are bi-measurable and pbn-singular.
Moreover, we see Jo = P(K;kl)’ Pk, ,-almost surely and ]Ué, =4-u)), 4-uy,
almost surely. By Lemma we then see 0% x Ulg is pbn-singular and that
Identity holds.

(Generating and Separating) forne Z-, thesets A€ V;?:_OI (UR)~1 22, consist of prod-
ucts of cylinders of depth at least n, meaning that diam(\/?zo(U Ry-i Pp) — 0as
n — oo. Consequently, we see &) generates ¥, and Z° is the trivial partition
into points by Lemma|2.1.25

We have shown £, is a principal partition. O
We now show (A, Fp,4up, UR) is a tower base.

Lemma 3.6.15. The dynamical system (/\, F, 41U, UR with 2, asin Lemma is
a tower base. Moreover we have R € L1 (\) and gcd(R(A)) = 1 and there exists a unique
mixing acip v € 2(Q x [0,1)%2°) for (Q x [0,1), Fax[o,1),P x A, 5).

Proof. Bounded Distortion We shall first show bounded distortion. To do so, let P €
2. By Equation in Lemma|[3.6.14|we then have [ € Z-,, k € Z~; with P =
Kk,; x I for some Ky ; € #},; and I; € 2y, and

1 1

UR(w,x) = :
JUT @, ) P(Kk,1) wpall)

(,x) €Kiy x I}, 4k, «1, -almost surely

so that
JUTp@x) | _

J(UR|p) (', y)
holds for (w, x), (@', y)-almost every 4 K% 1+
Aperiodic Return Times Note that [gggg] x [1010],[ggggg] x [10110] € 225, both

have positive measure and R|[ggggx[1010] = 2, Rl[gggggix(10110) = 3 SO clearly we
have gcd(R(A)) = 1.

Integrability of R We shall now calculate the expectation of the return time. Note
for k € {0,1}, R"'{k} = @ and for k > 2 we have by the proof of Lemmal3.6.14}

RYk=]1] L] KeixI. (81)

122 [1€9 Ky 1€EX

We then see for [ =2, k = [ and Ky ; € £ 1, I; € F that Ki ; is a cylinder of depth
k, and I is a cylinder of depth [ + 2 so that P(Ky ;) = 27k and ulp) = 2712,
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Consequently, we have 4un (Ki,; x I}) = 4.27k.2-1=2 — p=k.9=1 Als0, we note
in writing for y € {g, s} that J,’Izll ={lwo - Wi-1] € Lk, : wo =Y}, we see #Jfkyl =

(*72), so that #.#;,; = 2+ (572). As seen in the proof of Lemma we have

#.¢; =1 —1. Using this, we see

f R(w,x) dipp(w,x) = ) R(w, x) ddpup (w, x)
A i=2J Rk}

oo k

=3y X f R(w, x) ddup (w, x)
K11

k=21=21;€.9] Ky, 1€ X,

=X > Y Y k-dpaKexI)

k=21=21;€.%) Ky, 1€ X},

=YY T T k2t

k=21=21;€%] Ky, € X},

oo k _
=Y Zz-(];_zz)k-.z—k-z"(l—l)

k=21=2

o —k+1 K [k—2 -1
:ZZ 'kZ o 2751 -1). (82)
k=2 =2 -

=2 I'=0
k- H(k—z) >
<—— 2
4 lI:O l
k—1( 1\k2
=——|1+=|
4 2

which we substitute in Equation to see

00 k (k=2 00 k—1 1 k-2
Zz-k“-kz( )2'l(l—1)s22‘k+1-k-—(1+—)
k=2 i=\1-2 k=2 4 2

© k-1 _(3)7% (3)\F
o 4 2 4
00 3\
<) K (—) :
k= \4
which we can show converges using the Ratio Test [12, Theorem 2.31]. Hence

we see Re LY(A).
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As the system (A, Fp,4un, U Ry satisfies bounded distortion it is a tower base, so
that we can construct a tower (A, %\, ua,G) as in Section As we have shown
the return times are aperiodic and that return time is integrable we then can ap-
ply Theorem to obtain an exact acip va for (A, Fa, ua, G) such that there ex-
ists a M > 1 with MLA < Z—Zi < Mj. By Corollary |3.3.11| we then obtain an exact
acip for (Q x {0, 1}720, F 0,11Z=0, P x 1, U). As this system is ergodically equivalent
with (Q x [0,1), Zaqx(0,1),P x A,S) we know this has an exact acip as well, by Lemma

YRR O
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4 Preliminaries for the Quenched Case

As mentioned in Section (1, the quenched approach allows us to study random dy-
namical systems as defined in Section[4.2)with a non-uniformly expanding base dy-
namic. To motivate the quenched approach we revisit the annealed approach as seen
in Section[3.6.21

In Section we applied Young Towers as introduced in Sections [3.2]and
to show the existence of an acip on the (annealed) stalling system. As we constructed
our Young Tower directly on

Q2 x {0, I}Zzo»ggx{o,ulzmp xu,U),

we essentially interpret it as a deterministic dynamical system. As Young Towers are
designed to analyse non-uniformly expanding dynamical systems, we can then rea-
sonably expect that the annealed approach only applies to random dynamical sys-
tems with a non-uniformly expanding random dynamic, such as a Bernoulli shift.
This limits the possible applications for the annealed way of analysing random dy-
namical systems.

The quenched approach tackles this issue, by constructing a Young Tower-like
structure A, for each w € Q) individually, yielding a random Young Tower

A={(w,x) eQx X xZ5p:Xx€ N}

This way, we can make sure Young’s conditions only have to apply to the Q-sections
of A, rather than to the entirety of A itself. This construction is very delicate, however
as technical conditions such as measurability are no longer guaranteed.

The outline of this section is then as follows. In Section 4.1 we will show using
functional analytic arguments that a sequence of measures with a uniformly bounded
density admits an accumulation point in the topology of setwise convergence. Ob-
taining this convergence argument is important as we will not be able to generalise
the notion of a tower base effectively to the quenched setting. This makes us unable
to make use of a potentially generalised version of Proposition[3.3.2] In the adjacent
Section we shall also use this convergence argument to phrase an alternative
proof for Proposition After that, we shall continue with Section [4.2] where we
shall define a random dynamical system as was already hinted at in Section[3.6.2] Im-
portantly, Lemmaf4.2.7]allows us to describe the density associated with skew prod-
ucts through its Q-sections. As our analysis in Section [5| will mainly happen on the
Q-sections of A, this will be vital. Lastly, in Section4.3|we shall generalise the notion
of a Jacobian in order to fit our random dynamical systems framework. As Jacobians
are heavily interlinked with Young Towers through bounded distortion, and as in the
literature authors commonly assume a Jacobian exists without stating conditions un-
der which they actually do, they are deserving of their own section.
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4.1 Uniform Integrability and Weak-* Compactness
Definition 4.1.1. Let (X,9) be a topological vector space over the field R. We call

1. the space X’ of bounded linear functionals ¢ : X — R the dual (vector space) of
X;

2. the topology 0 (X, X') € J being the weakest topology on X so that all ¢ € X’
are continuous, the weak topology on X; and

3. the topology o (X', X), being the weakest topology on X’ so that for all x € X
the mappings x' : X’ — R as given by x'(¢) = ¢p(x) are continuous, the weak-*
topology on X'.

Note that X’ with the weak star topology is again a topological vector space, so we
may define X" = (X’)’. We shall refer to this space as the bidual of X.

Remark 4.1.2. 1. Whenever X is a normed vector space, we can equip X' with the
norm ||¢||x' = sup, <1 1¢(x)|. Similarly we can endow X" with a norm based
on X'. It is known that whenever X is a normed space, X’ and (hence) X" are
Banach spaces.

2. Chapter V of [8] hosts an extensive treatise of these topologies and spaces, but
we shall only discuss the material essential for our application.

Example 4.1.3. Let (X, %, 1) be a measure space, let p,g € (1,00) with 1/p+1/qg =1
and define their associated L”(X) and L9(X). By Holders inequality, we know that for
feLP(X),ge LX) we have ||fgll1 < |Ifll,llgllg, and it is then not hard to see that
for every f € LP(X) we have

Fr: LX) —R
ng fgdu,
X

to be a bounded linear functional on L9(X). The fact that the mapping f — Fy is
actually an isometric isomorphism from L (X) to L7(X)’, is the content of Theorem

A3.dl

Building on Example|4.1.3} given again some p, g € (1,00) with % + % =1, we can

apply Theorem |A.3.1|to LY(X, ). In doing so, we obtain an isomorphism J, from
LP(X,u) to LP(X,w)". such that for f € L”(X) and for all g € L7(X, u) we have

Ip(f)(Fg) = Fg(f) = fxfgdu.
We generalise this to arbitrary Banach Spaces.
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Definition 4.1.4. [8, Definition I11.11.2] Let (X, || - ||) be a Banach space over a field R,
and let X" := (X")’ be its bidual. If the mapping

Jx:X— X"

XX >R
X — )
¢ — p(x)

is an isometric isomorphism from (X, [|-||) onto (X", ||-||x7y) then we call X reflexive.

The main reason we are interested in weak and weak-* topologies is the weak
sequential compactness of (norm bounded) balls in reflexive Banach spaces. We
will quickly go over the method for proving this and assume X is a reflexive Banach
space. Firstly, assuming reflexivity, we can show the mapping Jx : X — X" is a weak
to weak-** continuous linear isomorphism. To prove this, we shall rely on nets, (see
(8, Appendix A.2]). Additionally the Banach-Alaoglu Theorem allows to show
norm-bounded balls in X" are weakly compact. Using the Eberlein-Smulian Theo-
rem|A.3.3|then implies the weak sequential compactness of these balls. The (just es-
tablished) properties of Jx can then show the weak sequential compactness of (norm
bounded) unit balls in X. Generally, for sequences (x,) >0 we shall write x, ~» x to
say (Xp,) k=0 — X as k — oo for some sequence (ny)r=o. Thatis, x is an accumulation
point of (x,)n=0-

Proposition 4.1.5. Let (X, || ||) be a normed vector space. Then Jx : X — Jx[X] isa
weak to weak-+* continuous linear isomorphism.

Moreover if (X, |- ]) is a reflexive Banach space, we have for each M € R~ the unit
ball By :={x € X :||x|| = M} to be weakly compact.

Proof. For the proof we rely on net convergence. Let (x,)qc4 S X be some net con-
vergent to some x € X in the weak topology on X. Note by definition we then have
¢$(x,) — ¢p(x) foreach p e X'.

Consequently, we see that for each ¢ € X’ we have

Jx (%) () = Pp(xa) — P(x) = J(x)(¢)

proving weak to weak-** continuity of Jx. To prove invertibility of Jx : X — Jx[X],
note that Jx is injective as it is an isometry and so every element y € Jx[X] is uniquely
determined by some x € X with y = Jx(x). Inletting (y4) zc 4 be some net in X" weak-
** convergent to some y € X" we then have unique (x4)ze4 € X and x € X such that
];(1 (¥a) = xand ];(1 (y) = x. We can then show continuity of ];(1 in seeing that for any
¢ € V we have

dUx V) = Plxa) = J(xa) () — J(x) () = dUx (1)),
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SO ];(1 (Ya) — ];(1 (y) weakly which implies (Jx)™! : Jx[X] — X is indeed weak-** to
weak continuous. As Jx : X — Jx[X] is now a continuous linear mapping with con-
tinuous inverse we can claim it is a continuous linear isomorphism.

Assuming (X, || -||) is a reflexive Banach space, we then see Jx : X — X" is surjec-
tive as well, so Jx : X — X" is a weak to weak-** isomorphism and for each M € R
we then have

Jx[Buml = {x" € X" :||x"||x» < M},

as Jx is an isometry. In knowing that by the Banach-Alaoglu Theorem[A.3.2]we have
By to be weak-** compact, we then may conclude B), is weakly compact. O

Corollary 4.1.6. Let (X, ||-|) be a reflexive Banach space over the field R and let (x;,) n=0
be some sequence such that sup,,=¢llx,ll < M for some M € Rso. Then there exists a
x € X such that x,, ~ x weakly.

Proof. Immediate in combining Theorem/A.3.3Jand Proposition ontheball By, :=
{xe X :||x|| < M}. O

Remark 4.1.7. 1. Should itbe the case that in Corollary[4.1.6lwe would have ||x,|| =
M for all n € Z-,, one might be tempted to think the accumulation point x € X
obtained in Corollary also has a norm ||x|| = M. It is a well-known fact,
however that the spheres in infinite dimensional normed vector spaces are not
weak-* compact and that the accumulation point x may even be the zero vec-
tor.

2. An important class of examples for reflexive Banach spaces are when given
some o-finite measure space (X, %, u), and p € (1,00) the spaces L” (X, u), see
(8, Examples I11.1.8 and I11.11.2)]

The following Proposition will be a main tool in finding accumulation points of
sequences of the densities of the measures as mentioned at the start of this section.

Proposition 4.1.8. Let (X, Z, uo) be a measure space with py(X) € (0,00) and suppose
we have a sequence of finite (positive) measures (l1,,) n=1 for which there exists M € R
such that for alln € Z>, we have u, < o and

H dpn
dpio

Then there exists a finite positive measure |1 € 4 (X) such that pu, ~~ u set-wise. Fur-

<M.

oo

d
thermore, we have u < o and H d—” H < M.
Ho |l oo

Proof. Let (X, %, 1) be a finite measure space and p, g € (1,00) such that % + % =1.
Firstly, note that for any g € L*(X, ) we have

1
l1gllg = l1glloopto(X) 7, (83)
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so g € L9(X, o) and in particular all indicator functions are contained in LY(X, uo).
Using Holders inequality we can then see for any f € LP (X, uo) that

A =1 -Ixlh < 1 flplxllg = ||f||p'HO(X)% <oo (84)

and so LP (X, o) € L' (X, po) holds. Now let (14,,) =0 be a sequence of finite measures
with foreach ne Z-; :

duy

Ho

< M for some M > 0.
(o.0]

Ho<<ip, and sup
n=1

Note then, as seen by Equation that we have

Vi
dpio

1
:neZz1}§{g€L”(X,uo) 11gllp sMuo(X)P},

so that we can invoke Corollary to claim there exists a g € L” (X, yo) such that

Z—ﬁg ~ g, by reflexivity of LP (X, u). As follows from Equation we then have g €

LY(X, uo) as well and may define the finite measure u(-) = [ g duo.
Note for the g € (1,00) as before we have L*(X, uo) < L9(X, o) so any A € & sat-
isfies

d
IJn(A)=f un'ﬂAdﬂowf g - Tadug = u(A),
x duo X

showing set-wise convergence and that u(A) =0 forall Ae &.
Lastly, note that for all A€ %, n =1 we have

_ [ dpn
Hn(A) = (0)Ta(x) dpo(x) < Muo(A),
x dio
and as u, ~» u set-wise we have a sequence (ny)x=0 < Z>1 such that then for any
A€ F we have
1(A) = klim M, (A) < Muo(A)
—00

which in turn implies p < o and H;_ﬁljo H <M. O
(e .9]

The above proof will be sufficient in proving the existence of an acip, but con-
sidering densities as objects of L” spaces for p € (1,00) may seem a bit artificial as
densities of finite measures can be just L!. The issue with expanding this argument
to L! is, however, that for measure spaces (X, %, u) whenever a space LY(X, W) is in-
finite dimensional we do not have reflexivity. Instead we have (LYM(X, w)' = Le°(X, w,
but L} (X, u) € (L°°(X,w)'. That is, Jx is not surjective as can be seen in [8, Section
V.4]. Assuming p is a finite measure, we can still obtain a beautiful characterisation
of the weak closure of subsets of L! (X, 1) however.
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Definition 4.1.9. [6, Definition 4.5.1] Suppose (X, %, ) is a finite measure space. We
call a collection «f < L(X, u) uniformly integrable if

lim sup | fldu=0.
C—00 fe oy J{| fI>C}

The Dunford-Pettis Theorem below now gives us the topological characterisation
we are looking for. We point out once more that the dual of LY(X, W) is L®°(X, w).

Theorem 4.1.10. (6, Theorem 4.7.18] Suppose we have a finite measure space (X, %, |1)
and let of < LY(X, ). Then « is uniformly integrable if and only if it has compact
closure in the weak topology of L* (X, ).

This way, we obtain an alternative proof of Proposition Note that we make
a much stronger assumption than strictly necessary by assuming the densities are
uniformly bounded in || - ||, instead of just uniformly integrable.

dpn
dpo

Alternative proof off4.1.8 First we show uniform integrability of (
we have by assumption

) . Note that
n=1

duny

sup <M,
n=1 | dpo || o
so that sup,,~; )Zﬁg . < Muy(X) and, in particular, ZZ;’ € LY(X, wo) for n € Z>1. Now

we see for any C > M that

dun
d o

su

nzll)f{l%bc}

d,U() =0.

So the set {Z—Z’; ‘n= 1} is uniformly integrable.
Combining Theorem [4.1.10|with Theorem[A.3.3|we then obtain an accumulation

point f € L1(X, o) for {Zzg n= 1} in the weak topology on L'(X, up). In defin-

ing u(-) = [ fduo we may claim f = j—lﬁ) by (almost everywhere) uniqueness of the
Radon-Nikodym derivative, and then have for any A € &,

d
Mn(A)=f un'ﬂAdﬂowf g ladpo = p(A),
x dpo X

showing set-wise convergence as requested. Moreover p is a positive measure.

The bound ;—:0 < M s derived perfectly analogously to the last paragraph of Propo-
sition[4.1.8 O
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4.1.1 An alternative proof for Proposition

In this section we shall give an alternative proof to Proposition3.3.2] While the proof
of Proposition[3.3.2)is valid, it relies on conditions specific to that of a tower base and
it hides some of the more general structure. The alternative proof will also give us
more insight into the relationship between weak-* convergence and L!-convergence
and the topological nature of the tower base.

Before starting rigorously, we shall briefly go over the method. Fix some tower
base (A, %, pa, g%) with a metric dgc as in Deﬁnition Firstly, it is clear by
‘ d(gs”)*u/\

< M for some M € R, in-

Lemma|3.3.6/that for each n € Z-¢ we have ‘

o0

1 nlM
D i )n>0 has got

dependent of n. By Proposition [4.1.8/we then see that (

an accumulation point g so that + o ! d(gd%

ition on how to strengthen this convergence to obtain L!-convergence we include an

(il

~» p set-wise. To get some intu-

Example 4.1.11. We define for ne Z;,,

fn:(0,1)—(0,1)

1
X+— 5 sin(2nmnx).

i

" HIHH'H!HHHIUH‘\ \"\ IHHW

‘\

“

Figure 3: Graph of  Figure 4: Graph of
fI’fZ;fé fler)fé)fSO

We can interpret curves (f,),>1 as densities ‘gz’ of measures taken with respect

to the Lebesgue measure A on (0,1). We then know we have an accumulation point
w such that f,,dA ~~ u set-wise. One can prove that due to the ever increasing speed
of oscillations the areas below and above the line y = 5 wﬂl even out when integrated

over, so that u(-) = f 37¢,1)(x) dA(x). One can show however that [y | fu— 3T0,0] dA

Figure 2: Graph of f
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will be bounded away from zero uniformly in 7 € Zs¢, so L!-convergence can not
happen.

The question then remains, is oscillatory behaviour the only way in which weak-*
convergence can not lead to L'-convergence. We shall answer this question through
the following concepts, as seen in [6, Page of Theorem 4.7.29.].

Definition 4.1.12. Let (X, %, u) be a finite measure space, let f € L (W) andlet Ae &
be such that u(A) > 0. The quantity

O5C(f1.) 1= ()" fA 'f(x)—u(A)“ fA £ du(y)‘ dp(o),

is called the average oscillation of the function f on A.
Now we present the main tool of this section (see [6, Theorem 4.7.29.] for a proof).

Theorem 4.1.13. Suppose we have a finite measure space (X, %, u) with p(X) € (0,00)
and suppose that a set F < L' (u) has compact closure in the weak topology. Then, the
closure of F is compact in the norm of L' (u) precisely when F satisfies the following
condition:

For every € € Ry and every set A € & of positive -measure there exists a finite
collection of sets Ay, ..., A, € A of positive measure such that every function f € F has
the average oscillation less than € on at least one of the sets Aj, j € {1,..., n}.

Returning to the setting of a tower base, we also know as a consequence of Lemma

1 d@")apa
=0  dua

measure with a uniform bound on the Lipschitz constgizzlt. It is then likely we can use
Theorem to prove Ll—convergence. To do so, we do need to be able to relate
the measure of measurable sets to distances. A common class of topological spaces
where this is possible are Polish Spaces.

3.3.6/that the convex combinations % i are Lipschitz on a set of full

Definition 4.1.14. A Polish space (X,9) is a separable topological space for which
there exists a metric that is complete.

A strength of Polish spaces is that any finite Borel measure p on a Borel space
(X, Z) is outer regular, that is for any A € & we have

1(A) =inf{u(0) : O 2 A,with O open},

see [11]. We shall now prove that any dynamical system with a generating and sepa-
rating partition can be equipped with a natural topology making it Polish. To do so,
we recap the separation time from Definition|2.1.27
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Definition 4.1.15. Let (X, %, u, T) be some dynamical system with u(X) € (0,00) and
2 < & a countable finite partition of X. We define the mapping

a: X—2, x— P for the unique P > x,
and the separation time s: X x X — Z-y U {oo} as the mapping
s(x,xX)=inf{ne Z-g: a (T"(x)) # a(T"(x")}.

Recall that if for some dynamical system (X, %, u, T) with pu(X) € (0,00) we have
a countable generating and separating partition 22 < & then by Lemma [2.1.29, we
know that for any € (0,1), C € R, that

dp,c(x,y) := CB*™Y)

is a metric on X and we denote the topology it induces by 9. We shall characterise
the open balls in this topology. We use the notation

By(€):={ye X:dgc(x,y) <€},
for an open ball with radius € € R-( around a point x € X.

Lemma4.1.16. Let (X, %,u, T) be a dynamical system and let & be a generating and
separating partition as in Definition And let e € Ry, C € Ry, € (0,1) and
xe€ X. Ife < C thereexistsan n € Z>, and an A€ 2" such that

xX€eA andA={yeX:dgc(x,y) <e}. (85)

Ife > C then we have
X={yeX:dgclx,y) <€} (86)

Proof. First note the sequence (Cf") > is strictly decreasing to zero and has a max-
imum C for n=0.

Now suppose€ < C andlet nn € Z-; be such thate € (CA",CB" 1. Let{ € (0,Cp" ' -
Cp"] be so thate = CB" + (. Then let A€ 22" be such that x € A. Note

Bx(e) = {y € X: dﬁ,c(x, y) < e}
={yeX:CB™ <Cp"+(}
={yeX: N < ﬁ"—1+10gﬁ(ﬁ+ﬁ*"“(/(:)}

={yeX:s(x,y)>n-1+logs(B+p""¢/IO), (87)

where in Equation we used the fact that logg is strictly decreasing. To show

{yeX:s(x,y)>n—-1 +logﬁ(,6+ﬁ_"+1(/C)} ={yeX:s(x,y)>n-1}, (88)
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note that §+ S~"*1¢{/C € (,1] so that logs(B+ B~"*1¢/C) € [0,1) implying
{yveX:s(x,y)>n—-1 +logﬁ(ﬁ+ﬂ_”+IC/C)} ={yeX:s(x,y)>n-1},

as s takes values in the (extended) non-negative integers.
Now note that for y € X we have that

s(x,y) > n—1ifand only if a(T*(x)) = a(T*(y)) for each k€ {0,...,n—1}.

As we have A= Agn---n T "1 A, ; for some Ay,...,A,_1 € P we can see having
a(T*(x)) = a(T*(y)) for each k € {0,...,n—1} is equivalent with having A, = a(T*(y))
for each k € {0,...,n— 1}, which is equivalent with y € A. We conclude B(€) ={y€ X :
s(x,y) > n—1} = A, proving Equation (89).

Now in supposing € > C, we simply note that dg ¢ takes values in [0, C] so that
X ={ye X:dgc(x,y) <e} holds for each x € X. O

From the proof of Lemmaf4.1.16/we obtain the following Corollary if we consider
the casee = CS" ! for ne Zs,.

Corollary 4.1.17. Let (X, %,u,T) be a dynamical system and let & be a generating
and separating partition as in Definition Andletne Zs, CeRsy, B€(0,1)
and x € X. Then fore = CB"! there exists an A € 2" such that we have

X€eA andA={yeX:dgc(x,y) <e}. (89)

We now apply Lemma 4.1.16| to prove we can equip dynamical systems with a
generating and separating partition with a Polish topology.

Proposition 4.1.18. Let (X, %,u, T) be a dynamical system and let & be a generating
and separating partition as in Definition[2.1.22. Then for any € (0,1) and C > 1,
(X,dg,c) is a complete separable metric space. Moreover, & is a Borel o -algebra for
this topology and p is outer regular.

Proof. Let f € (0,1),C € Rs; be arbitrary. We show (X, dg c) is a complete, separable
metric space. To do so, let (x,),>0 be a Cauchy sequence in X. We shall use the
separating property of &2 to show (x,),>¢ converges.

As (xp) n=0 is Cauchy, we have for alle e R.g an N € Z such thatforall n,m = N(I)
we have dg c(xn, Xm) < €. Now, in letting (€;);ez., be such thate; = C,Bl_l forle 7,
we see that we have for each [ € Z-; an N(I) € Z5( such that for all n,m = N we
have dg c(xu, Xm) <€;. In particular, by Corollarywe have for each [ € Z-; and
Xy €EXan A€ 2! such that

Ar={ye X:dpclxnw, y) <€} (90)

76



and (x,) n=n() € A; for each n = N(I). We now show A; 2 A, forany [ € Z>;, with A;
and A;, as constructed in Equation (90).

To do so, let [ € Z>; and note we have dg c(Xn(), Xn+1)) < €7 SO that Xy 41y € Aj.
As Plisa partition for X, we then know this A; satisfies xy;+1) € A; uniquely for Pl
so then, again by Corollary[4.1.17}, we know that

Ar=1{ye X:dgc(xnu+1),y) <€}

As we have
A ={yeX:dgcxnu+1), y) <€r11}

we then see as €; > €;;1 that A; 2 A;;. As this holds for general [ € Z-; and as A; € !
we can see ;2 A; € . As & is separating, we then know (172 A; = {x} for some
x € X. The limit lim,_., x,, = x follows directly. As (x,),>0 was a given arbitrarily,
we can conclude every Cauchy sequence converges in this metric space. Hence the
space is complete.

As for separability note that by Lemma (4.1.16), the collection U'}’ZOP}”Z consists
of the open balls in 97, so that J is clearly second countable. As metric spaces are
separable if and only if they are second countable, the separability of 5~ follows.

Having shown dg ¢ endows X with a topology that is separable and completely
metrisable (as dg ¢ is complete), we conclude X is a Polish space.

Finally, by definition the collection U?ZOQZ generates %, that is, & is generated
by the open balls in 9~ and as such is the Borel o-algebra. As any finite signed Borel
measure on a Polish space is outer regular, p is outer regular. O

We now provide two auxillary results to apply Theorem

Lemma 4.1.19. Let (X, d) be a separable metric space with topology 9. Then for every
0 € R. there exists a countable collection of open balls Bs < X of radius 6 covering X.

Proof. Let 6 € R5 be given, and let (x,) >0 be a dense subset of X. We claim Bs(x;) <
9 is an open cover for X. Note that for any y € X we have x,, € B5(y) forsome n € Z5
as (x,) =0 is a dense in X. Consequently, we see y € Bs(x,) proving our claim. O

Remark 4.1.20. The concept of an equicontinuous collection of continuous func-
tions can be interpreted as ‘continuous in the same way’, meaning that rather than
imposing a stronger notion of continuity (such as Lipschitz continuity) it is about the
relation between the continuous functions themselves. Under the euclidian metric
on (0,1), functions as x — x“ for @ € (-1,1), and x — /x for x € (0,1) can hence be
part of equicontinuous collections but neither of them are Lipschitz.

Lemma 4.1.21. Let X be some Polish space and let (X, %, 1) be a finite measure space
with & the Borel o-algebra. Then for any set A € & with u(A) > 0 and any 6 € R
there exists an open ball Bs < % such that u(Bs n A) > 0.
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Proof. Suppose we have A € & with u(A) > 0 and suppose there exists a § > 0 such
that (A n Bs) = 0 for every open ball Bs < X.

Then, using Lemma there is a countable cover (Bs, ;) ;=0 of X consisting of
open balls of radius 6 and

0=) puBsp,NA = u(Ar‘n U BM) = u(A) >0,

n=0 n=0

which leads to a contradiction meaning that p(An Bg) > 0 for at least one open ball
of radius 6 > 0. O

To make our convergence result as generally applicable as possible, we use the
concept of equicontinuity. Readers acquainted with Arzela-Ascoli’s Theorem (see for
example [8, Theorem IV.3.8]), a Theorem ubiquitous throughout functional analysis,
will be familiar with it. Note, as opposed to Arzela-Ascoli’s Theorem, we do not re-
quire compactness of our topological space.

Definition 4.1.22. Let X be some Polish space and let (X, %, u) be its standard Borel
space. We say a collection F ¢ L°(X) is equicontinuous on a set of full measure if there
exists a complete separable metric d on X, an X, € &, u(X\ X,) = 0 such that for each
€ € R5o and x € X, there exists a § € R such that for each y € X,, with d(x, y) <6 we
have foreach f € F, |f(x) - f(y)| <e.

We quickly prove that every countable set of functions that are Lipschitz on a set
of full measure with the same Lipschitz constant, is equicontinuous on a set of full
measure.

Lemma 4.1.23. Let X be some Polish space, let (X, ,u) be its standard Borel space
and let d be some complete separable metric on X. Fix L € Rs,. Any countable set C <
LY(X) consisting of Lipschitz functions on a set of full measure with Lipschitz constant
at most L is equicontinuous on a set of full measure.

Proof. Forevery f € C, write Xy € X foraset u(X\Xy) = 0 upon which we have | f (x) -
fW| < Ld(x,y) for every x,y € Xy. Then, note X = (ec X is a set with (X \ X) =0
for which for each f € C we have

|f(x)— f(»)| < Ld(x,y) for every x,y € X.

Then note for arbitrary € € Rso we have for § = ¢/L that for each x,y € X, d(x,y) <6
that
lf(x) = fWI<Ld(x,y) <€,

proving our claim. O

78



Finally we arrive at our ‘measure-theoretical version’ of the Arzela-Ascoli Theo-
rem, not requiring compactness.

Theorem 4.1.24. Let X be a Polish space and let (X, %, 1) be some standard Borel
space, with u(X) € (0,00). Now let {(p,}n=0 < L! (1) be a uniformly integrable, equicon-
tinuous on a set of full measure, sequence. Then there exists a subsequence (¢n,) =0
and a ¢ € L' () such thatlimy_... ¢, = ¢ in L' and u-almost everywhere.

Proof. By Theorem we know that (¢,) ;=0 has compact closure in the weak
topology of L' (X, ). Now let € € R and let A € & with u(A) > 0. Now fix a metric
d for X, inducing the topology on X. As (¢,) >0 is equicontinuous on a set of full
measure we have a set X € & with u(X) = 1 and a §, € Rsq such that

for each x, y € X with d(x, y) < 8¢ we have |¢,,(x) — ¢, ()| <e.

Next, as X is Polish and p1(A) > 0 we can by Lemmal4.1.21|find an open ball Bs € X
such that u(An Bs) > 0. In writing As = An Bs N X, we can directly verify that the
- _ Ha . dPa;, 1
probability measure P 45 = M(A‘;) satisfies P 4; < pa; and ﬁ = @) [ as-almost
surely. Having verified this, we see that for each n € Z-, we obtain

0SC(Pnla;) = p(As) ™! f

As

b () — 11(Ag) ! fA bn(3) du(y)‘ du(x)
)

Z#(Aé)_lf </>n(x)—,u(A5)_1f bn(y) d,U«Ag(J/)‘ dp(x)
As As

=,U(A5)_1f ¢Pn(x) - ¢n(y)dPA5(y)'du(x)
As As

su(Aa)_lf f |pn(X) = ()| dP a; (y) dp(x) (91)
As JAs

< p(As) ™! f f €dP 4,(y) du(x)
As JAs

= M(Aé‘)_l €M(A6) . I]:DAg (A5)
=E€.

In Equation we used Jensens Inequality [6, Theorem 2.12.19.] using the convex
function

‘Py:IR—>[RZ
x—lx-=yl,

for any y € R. Using Theorem [4.1.13| we then see (¢,),>0 has compact closure in
L'(u). As L' (u) is a metric space, we then obtain a subsequence (¢n,) 1=0 converging
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to some ¢ € L'(u) as [ — oo in L'-norm. As this implies that ¢,, — ¢ in measure
(see e.g. [6, Definition 2.2.3]), we can use [6, Theorem 2.2.5] to obtain a subsequence
(<pnlk) k=0 Of (n,) 120 Which converges to ¢ pointwise almost everywhere and in L' ().
We have proven our claim. O

Finally we rephrase Proposition[3.3.2]

Proposition 4.1.25. Suppose we have a tower base (A, F, in, g%), and a sequence
(Pr)nez., € Lp,c(N) satisfying for some M > 1,

1
=M d inf inf > —.
nselg1 lldnllp and  inf ess ;chelA(P”(x) Vi

Then (¢p,) =1 converges pointwise almost everywhere and in L' (A) to a function ¢ €
Lg c(A) with||pllg < M and essinfyep p = 1\_1/1

Proof. (Sketch) By Lemmawe see that for (A, %, i, gR) there exists a natural
topology 9 < %, such that (X,9") is Polish space, %, is the Borel o-algebra, and px
is a Borel measure.

By Lemma [3.3.6) we can then as in the (alternative) proof of Proposition at
the end of Section obtain uniform integrability of (¢,,) sez., with respect to p,.
Then, as (¢,) nez., are Lipschitz on a set of full measure with the same Lipschitz con-
stant, we can apply Theorem to obtain a ¢ € L! and a subsequence (Pn) k=0
such that (¢, ) k=0 — ¢ in L' and almost everywhere as k — co. Having obtained
L'-convergence and convergence a.e., the other claims in the statement can then be
verified as in the proof of Proposition[3.3.2] O

4.2 Random Dynamical Systems

In this section we define a notion of a random dynamical system (RDS) and prove
all measure-theoretical properties to fit our Random Young Towers framework later.
The author has put special care into defining the RDS in such a way that its conditions
suffice for our application, are easy to check and apply as general as reasonable.

The proofs in this section are rather dry and technical, but have been incorpo-
rated for sake of completeness and for a lack of convenient overview elsewhere. Con-
ceptually it is important to note that

1. bi-measurability of the random dynamic plays a central role in the construction
of RDS’s; and

2. joint integrability and measurability are stronger than integrability and mea-
surability over the sections, but we can use sections to derive statements in the
joint setting.
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We start by constructing a Random Dynamical System in Definition and to
do so we verify basic properties on measurability and non-singularity in Lemmas
14.2.1land}4.2.2| As mentioned before, for functions f: X x Y — Z and elements x € X

fx:Y—=Z: y— f(x,p.

Lemma 4.2.1. Let (Q,%q,P,0) be a dynamical system with o : Q — Q bi-measurable
and P(Q) = 1 and let (X,%x, 1) be a o-finite measure space. Suppose we have a set
A € Fqxx such that 0 < (P x u)(A) < oo and a measurable function f : A — X so that
for each w € Q we have f,[Ay] € Ay, then for every w € Q the mapping

Jo:Dw = Dow, x— f(w,x).
is Fp,-Fna,,, -measurable.

Proof. First define

f:OxX—-X
(W, x) — fw(x)y xX€eN,
’ X, X¢EAN,.

Then, note that for arbitrary A € %y we have f‘l (A) = f‘1 (AUANQxA) e ZFaxx,
as f‘1 (A) € Fp € Faxx and A € F 4 x. By Proposition we then have for each
w € Q that x — f,(x) is Fx-measurable. Finally, note that for B < %, _, we have

£ B) = (BN (BNAL) € Fa,,
from which we may conclude %, -%#,,, measurability of f,. O

We remind the reader of our notation on restricted measures as defined in Defi-

nition2.1.6

Lemma 4.2.2. Let (Q,%q,P,0) be a dynamical system with o : Q — Q bi-measurable
and P(Q) = 1 and let (X,%x, 1) be a o-finite measure space. Suppose we have a set
A € Fqxx such that 0 < (P x u)(A) < oo and a measurable function f : A — X so that
for each w € Q we have f,[Ay] € Agw and (fu)xpa, < Ha,, for almost every w € Q.

Define (A, Fp, ua) as the finite measure space obtained by restricting Q x X to A and
define

S: A—A

(@, %) — (0w, fu,(1).

Then the mapping S is measurable and non-singular and hence (A, Zp, ua, S) is a dy-
namical system.
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Proof. We start by proving &x-measurability of S. Note we may write S: A - Q x X
as A< Q x X. For general O € Zq, B € ¥x we have

ST OxB)={(w,x)eA: (ow, fu(x)) € O x B}
=0 '0xX)n fl(B] 92)
€ Faxx

$0 SN (FaxFx) € Faxx. Aswe know ST [Q x X] € A we can then see S~ (Fy x Fq)
Z so that by Lemma [2.1.4] the mapping S: A — Q x X is #a-Fqxx measurable. As
S[A] € A and % € Fq«xx, the Fx-measurability of S follows.

We now note by Lemma[2.1.7|for each w € Q the mapping x — f(w, X) is Fa,,-Fa,,
measurable.

We write for fixed w € Q x — f,(x) for x — f(w, x). To prove non-singularity of S
note that for A€ Fq,x, w € Q we have

(S7HA)w = {(@,x) € A: S(iv, x) € A},
={(w,x) €A: f;,(x) € Agi}w
= £, (Asw). (93)

Then note that by Fubini’s Theorem if (P x u)(A) = 0 we have u(A,) =0, P-
almost surely. Assuming (P x u)(A) = 0, we then see

Su(Px ) (A) = (P x u)(S~1A)
= fQ p((S7tA)y) dP(w)

:fQ(fw)*,U(Acrw)dP(w)
=f£)(fglw)*u(Aw) dP(w) (94)
=0, (95)

where in Equation we used Proposition|2.1.10|and the invariance of 0. As Equa-
tion holds for general A € oy x with (P x u)(A) = 0 we may conclude S, ua =
Sx([P x p) <P xpu. As pup is the restriction of P x u to A, we may conclude Sy pup <
UA- I

Definition 4.2.3. We shall call a dynamical system (A, %x, ua,S) as constructed in
Lemma a random dynamical system or RDS for short. The mapping S: A — A
is called a skew product, the family (A, Fa,, s, fo)weq the base dynamic and the
dynamical system (Q2, #q, P, 0) the random dynamic.

82



Remark 4.2.4. Whenever we define an RDS (A, %, pa, S) and omit mentioning the
spaces (Q, Zq,P,0), (X,%x, ) or the function f : A — X used to construct it as in
Lemmal4.2.2} we shall assume these exist implicitly. For this f, we shall often write
for (w,x) € Aand n =1 that

fa’}(x) = fo"flwo"'ofw(x),

which is well-defined as we assume that f,,(Ay) € Ag. Furthermore, we define fg (x) =
Id|a,. In similar vein, we shall often want to define w-sections of partitions 22 of A.
That is, given a partition & < F,, we write

Py ={Pye Fx: P, #@,Pec P} (96)

In Lemma we prove &, partitions A,. A final notational comment is that for
w € Q we shall often write ua,, := (u)a,. Thatis, ua, is the restriction of the measure
Hto Ay,.

Lemma 4.2.5. Let (QQ,%q) and (X,%x) be measurable spaces and suppose for A €
Faxx we have a countable partition 22 < F, for A. Then for each w € Q with A, # @
the collection &, as defined in Equation is a countable partition for A, consisting
of %, -measurable sets.

Proof. Letw € Q and with A, # @. Note then for each x € A, we have (w, x) € A so that
there is a unique P € £ with (w, x) € P so that x € P,,. We show &, consists of disjoint
sets. To do so assume that P, N Q, # @ for some Q' € 2, , and note by definition of
2, we have a Q € &2 such that Q,, = Q'. Note we have @ # P, N Q, = (PN Q), so that
PNnQ # @ andso P = Q, so that P, = Q,. Finally, as every element of & gives rise to
at most one element of &2, we see &, is countable as well. O

We extend the map o of an RDS to a mapping oq : Q x X — Q x X. We will see this
mapping o many times in Section |5

Lemma 4.2.6. Let (A, %, ua,S) be an RDS and define
00:OxX—->0QxX
(W, x) — (ow, x).

This mapping o q is bi-measurable, (P x u)-invariant and has a (P x u)-invariant in-
verse.

Proof. Note that o : QO — Q is by definition invariant, bi-measurable with an invari-
ant inverse (which is then also bi-measurable). Similarly, the identity on X is bi-
measurable, p-invariant and has an invariant inverse. We can then apply Lemma
to both o0 = 0 x Id and 051 = 07! xId to find both are bi-measurable and
P x p-invariant. O
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Our analysis of Deterministic Young Towers relied heavily on densities associated
with dynamical systems. The following lemma relates the density of the operator of a
RDS to ‘section-wise’ densities. The proof relies on (corollaries of) Fubini’s Theorem
and once again explicitly on the bi-measurability of ¢. In Section [5.5 we will
develop a tool to making these derivations easier, which we, for didactical purposes,
have postponed.

Lemma 4.2.7. Let (A, %, la, S) be a random dynamical system, let Ay € Fa be so that
Ha(Ag) > 0 and let n € Z,. For every w € Q, write Ao, := (Ao)w. Then we have for
almost every w € Q and i, -almost every x € A,

dS? ua, A(f ) xBrgy-n, do’P
— (w,x) = : ) 97
diin (w, X) dpin, (x) P (w) 97)

Moreover if o is measure-preserving we obtain for almost every w € Q and ip,, -almost
everyx €A,

dS” d(fn—n ) HA o
*HAg (@, %) = o’ * PR, (x)
dpa duna,

(98)

Proof. Recall that A € Q x X and hence we may write S : A — Q x X by embedding
its codomain (so that (§")"}[Q x X\A] = @). In doing so, note that by non-singularity
of S we have

Shun, < Sipua < pp <P x .

. . as?
Moreover, as S 1ia, is a finite measure we know ngj’ € L'(P x u). We shall prove

Equation (97). To do so, note that for O € ¥, A € &x we have

ST"OxA)={w,x)eA:S"(w,x) € Ox A}
={(w,x) € A: (0" (w), f,y (x)) € O x A}
={w,0eA: fll(x)e AAn{lw,x) e A:c"we O}.

Now define for w € Q) the mapping
Fy i X—R

o Ta(fl(x), xeA,
0, X¢A,.
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and note that Tg-n[gx 4] (@, x) = To(0" (w)) -Fg 4 (x). Knowing this we can see

f dSiso 0 dP x ) (o, x) = S" a, (O x A)
OxA dI]:DXp ’ ’ *F o

=f D20 (1) ) Asnioen (@, 2) AP x 1)@, 1)
O x d[FDXIJ ’ S [Ox A] ) ’

:foXﬂAo(‘”’x)'FS,A(x)-ﬂo(U”(w))dp(x) dP(w)
99)

=f91]0(0"(w))fXF£,A(x) dup,,, (x) dP(w) (100)
:Lﬂo(Un(w))d(fa'f)*qu,w(A) dP (w) (101)
where in Equation we applied Theorem[2.1.8] As a consequence of Theorem

we also know that w — (f,))«a,,, (A) is in L'(Q). So we may apply Lemma|2.1.10/and
continue writing Equation (101) by

- fﬂ 10(0) - (£ i n, (A) dO P ()

d(fol'/lfnw)*uAO,a_"w do—zp
_ fo fA T ()=~ () dpu(x) dP (@)

To conclude, we can see for every O € %, A€ Fx

ds”
f *E% () x) d(P % 1) (0, %)

aifr.,) n, do’'P
= f f Jo )+, © 02 () du) dPw).  (102)
odJa du dp

Define
dslllqu
S(w,x) = { dpis

0, else,

(w,x), if(w,x)eA

and

dpa,

aifr, )*/JAO -n do"'P
_ o w ,0 w * , E A
Flw,x) = X)—7p (W), x€l,
0, else.

Furthermore we note that for any O € %q, A € ¥x we have following from Theorem

that

~ dS"
ffS(w,x) du(x)dP(w)zSZqu(OxA)sz xHa (w, x) dp(x) dP(w), (103)
0Ja oJa dPxpu
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and similarly we see that

d(f "a))*MAOU—”w dO'ZI]:D
ff (x) P (w) dp(x) dP(w)

d[;, ) % Hg -y, (A) AP (W)

d l’l
- 3 dp O ) g,y (AN D) dP @)

dl]; ) xHig -y (AN AS) dP () (104)

d(for-l—nw)*NAola—nw dO‘ZP
—ffAmA dpn, (x) P (w) dua,, (x) dP(w)
=fff(w,x)du(x)dﬂ3’(w), (105)
OJA

where the term in Equation (104) equals zero. Combining Equations (102), (103) and
(105) we see that we have

ffS(w,x)d,u(x)dﬂj’(w):fff(w,x)d,u(x)d[F"(w). (106)
oJa oJa

As Ae Fx,0 € Fq we given arbitrarily we see S(w,x) = f (w, x) for almost every w € Q
and almost every x € X and in particular for almost every w € Q and almost every
x € Ay, which yields Equation (97).

As for Equation (98), if P is invariant under o we have do dIP = 1 and Equation (98)
follows. -

Remark 4.2.8. It is tempting to claim Equation hold pa-almost everywhere but
there is no guarantee the right-hand side of the equation is jointly %#,-measurable
implying the set

as” a(f;-n,) -n
:{(w,x)eA: <o () x) = Jomno) cHio, u'(x)}
duna dpa,

d( nfn )* -n
may not be measurable. Contrarily, in fixing w € Q, the mapping x — lo zumxu : ()
is #x-measurable (and integrable) as a consequence of the Radon-Nikodyn theo-
rem. Phrased differently, Lemma |4.2.7| asserts that for almost every w € Q2 we have
Ha, (BS) =0.

The following rather straightforward lemma is an elementary example of a disin-
tegration. In Proposition we require a uniform upper bound on densities to find
an acip. In the RDS setting, this means the uniform upper bound needs be found on
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the density associated with the skew product - just obtaining the bound section-wise
is not enough. The lemma below together with Lemma above are exactly what
is necessary to make this translation happen.

Lemma 4.2.9. Let (A, %, ua,G) be a RDS and let Ay € 5 be some set of (finite) posi-
tive measure. Then foranyne€ Z-,, A€ %p we have

d(G™)x i d(G™) xpin
—(w,x)d (w,x):ff ——— (w,x) dpp, (x) dP(w).
fA dua Ha aJa, dua Ha
Proof. Let n€ Z>1 and A € %,, then define
G:Qx X —[0,00)
d(G")4 .
(©, ) {d—wﬁm(w,x) if (w,x) €A
else.

Now note we have

a(G" .
f O et 4, 1) dpan (0, ) = f G, 0 dP x p)(©, %)
A dua A
:f f G(w, x) du(x) dP(w) (107)
aJa,
:f f Gw,x)- Ta, (x) dpu(x) dP(w) (108)
aJa,
aG"
- f f LG Debtto 4y, vy dy, (1) dP@),
aJa, dua
proving the lemma. In Equation we used Theorem [2.1.8|and in Equation
we simply note that for x € A, we have 15, (x) = 1. O

We conclude the section with the following Lemma, allowing us to integrate effi-
ciently over subsets of RDS’s.

Lemma 4.2.10. Let (A, %a, ua,G) be a RDS and let Ay € F be such that p(Ay) < oo.
Then we have

pa (Do) = fQ Ha,, (Do,w) AP (w).

Proof. First note that Tp, € L'(A) so that 15, € L' (Q x X). In noting that
Ha, (Do) = fA Tag,, (X) da, (x) = fA Tao (@, x) dpa,, (x) = fX Tap (0, x) du(x),
we can apply Fubini’s Theoretho see w — pia, (Ao) is in L1 (Q). More so, we see

foXﬂAO (w, x) dp(x) = (P x w)(Ag) = pa(Ao),

proving the statement. O
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4.3 Jacobians With Distinct Domains

In Definition we defined the Jacobian as a locally integrable function JT of a
locally invertible, pbn-singular measurable transformation 7 : X — X on a (o-finite)
measure space (X, %, u). In the quenched approach however, we are more interested
in the densities associated with the sections S, : A, — Ay SO0 we need to define a Ja-
cobian for suitable measurable mappings not necessarily having an identical domain
and codomain.

Finally it is worth noting that local invertibility of the section of a mapping S does
necessarily translate to the local invertibility of S in its entirety. Luckily, the material
developed in Section [4.2|makes the potential local invertibility of S irrelevant for our
theory.

We start with some preliminary definitions.

Definition 4.3.1. Let (X, %) and (Y,%) be measurable spaces andlet T: X — Y bea
measurable mapping.

1. If T: X — Y is measurable, bijective and has a measurable inverse, we call T bi-
measurable;

2. f Ae Fissothat T(A) € 9 and T|4: A — T(A) is bi-measurable (onto its im-
age) then A is called an invertibility domain for T;

3. If there exists a countable partition 2 of X consisting of invertibility domains
for T, then we call T locally invertible.

Remark 4.3.2. In definition[4.3.1|we assume that X admits a partition of invertibility
domains. This is slightly more restrictive than what is done in Section 9.7.3 of [23] but
is more easily understood, shortens our exposition on Jacobians significantly, and is
sufficient for our theory. It seems our approach is novel and we provide more details
than given in [23].

We shall now prove three basic statements on invertibility domains.

Lemma 4.3.3. Let (X,%) and (Y,%9) be measurable spaces, and let T : X — Y be a
measurable mapping. Then,

1. if A€ & is an invertibility domain for T then every measurable Be &%, B< A is
an invertibility domain for T;

2. if T: X — Y is bi-measurable, then for any A€ &, we have that T|4: A— T(A)
is bi-measurable;

3. if T: X — Y islocally invertible, then for any A € &, we have that T(A) € 4.
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Proof. 1. Suppose A € & is an invertibility domain for 7. Then note for any mea-
surable B € A, we have T|p : B— T(B) to be bijective and (TIA)_IIT(B) to be an
inverse for T|p. We only need show that T'(B) € ¢4. To do so, note that TIZ1 is
measurable and T(B) < T(A) so we can see T(B) = (T|,") ' (B) € 4.

2. If T: X — Y is bi-measurable, item 1 shows that any A € & is an invertibility
domain for T, making T|4 : A— T(A) bi-measurable.

3. If T: X — Y islocally invertible, let 22 € & be a partition into invertibility do-
mains, and note that for A € & we have

T(A)=TWUpemp ANP)=UpexpT(ANP)eY,

as by Item 1 we have T(AnN P) € ¢4 for each P € 2.
We have shown our claim. O

Now we are in the position to define pbn-singularity for locally invertible trans-
formations on finite measure spaces. Be aware that this notion of pbn-singularity is
different from Definition

Definition 4.3.4. Let (X, %, u) and (Y,%,v) be finite measure spaces and let T : X —
Y be a measurable, locally invertible mapping. We say T is pullback non-singular
or pbn-singular if for every invertibility domain A € & we have u(A) = 0 to imply
v(T(A)) =0.

Remark 4.3.5. In the context of Definition we can by Lemma rewrite pbn-
singularity as the property (Tlg,l)*v <« | p for any invertibility domain P € &.

Lemma 4.3.6. Let (X, %, ) and (Y,%9,V) be finite measure spaces and let T : X — Y be
a measurable, locally invertible mapping. Then we have T to be pbn-singular if and
only if for some partition & of invertibility domains for T we have

(TIxH%v < up foreach Pe2. (109)

Proof. The implication assuming 7 is pbn-singular is trivial. So assume we have a
partition & of invertibility domains for T for which Equation (109) holds. Then let
A € & be some invertibility domain such that u(A) = 0. Then note,

pA) =0 = Y u(AnP)=0

Pez

= Y v(T(AnP)=0 (110)
Pe

= v(T(A) =0, (111)

where we used Equation (I09) in Line (110) and the injectivity of T|4 in line (111).
This proves our claim. O
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We now define the Jacobian.

Definition 4.3.7. Let (X, %, u) and (Y,%,v) be finite measure spaces and let T : X —
Y be a measurable, locally invertible, pbn-singular mapping. A function JT: X —
[0,00) such that JT-1p € L' (u) and

v(T(P)) = f JT(x)du(x), foreveryinvertibility domain P € & (112)
P

is called a Jacobian of T.

Our Definition [4.3.1| of local invertibility allows us to give a concise characteri-
sation of the Jacobian. Included within the proof is an existence and uniqueness
condition up to a measure zero set.

Lemma 4.3.8. Let (X,%,u) and (Y,%4,v) be finite measure spaces and let T : X — Y
be a measurable, locally invertible, pbn-singular mapping. Then a Jacobian JT : X —
[0,00) exists and is unique up to a measure zero set. Furthermore, in assuming & < %
is a countable partition of X consisting of invertibility domains for T we have for every
Per,

ATV () xep
(JT-1p)(x) = au ’ for p-a.e. x € X, (113)
0, else,
and
JT=) JT-1p, p-ae. (114)
Peo

Proof. Let 22 < & be a countable partition of X consisting of invertibility domains
for T. We shall first give a characterisation of a Jacobian for T.

In doing so, fix P € 22 and let B € & with B < P. Note we have by Lemmal[4.3.3} B to
be an invertibility domain so T(B) € ¢ and note we may write v(T(B)) = (T|;)1)*V(B).
Using pbn-singularity as seen in Remark[4.3.5]yields

_ dA(T|3Y v
(TIH)%v(B) = f — P (wduw),
B du
from which we conclude
d(TIY) v ,
V(T(B)):f d—u(x) du(x), forarbitrary measurable B < P. (115)
B

As the measure v is finite, we see (T II‘JI)*V is a finite measure as well and so 1p -

AT g d 1p- ATl Imost here. As th tabl
—r— €L () and 1p - — = < oo p-almost everywhere. As the countably many
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d(T|pH v
dp

elements of &2 are disjoint, we may then assume )_pcg Ip- takes finite values
p-almost everywhere.

Now for an arbitrary invertibility domain B € & we can see

v(T(B)) = Z v(T (PN B)) (116)
Pe2?

d(TIpH«v
= — = (x)d 117
Pezgj fp s dn (xX) dp(x) (117)

d(T|3H v
=y Bﬂp(x)'—dit* () dp(x)
Pe2?

-1

=] > 1px- M(x) du(x), (118)
B pegp dp

where in Equation we used injectivity of T on B and o-additivity of measures

over disjoint measurable sets; in Equation we applied Equation ; and Equa-

tion follows from the monotone convergence theorem, summing over non-

negative elements.

From Equation then follows

. d(TIY) v
JT:= Y 1p- ok x7
PeP ap
is a Jacobian for T, from which Equations and follow immediately
Having found this, we show Equation defines Jacobians up to a measure-
zero set uniquely. To do so, note that any measurable function f: X — [0,00) satisfy-
ing
v(T(P)) = f fx)du(x), foreveryinvertibility domain P € &,
P

satisfies for arbitrary B € &,

f JT(x)dpx) = ) JT(x) dp(x) (119)
B pegzJBNP
=) v(T(BNP)) (120)
Pe?
=) fx0)dux) (121)
PesJBNP
szfdu(x), (122)

so that f and JT differ up to a measure zero set. Here in Equations (I19) and (122)
we used the Monotone Convergence Theorem and in Equations (120) and (121) we
used Lemmal4.3.3} item 1. O
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Remark 4.3.9. Using the uniqueness property proven in Lemma we can show
Equations (113) and (114) hold for any Jacobian JT of T.

The Corollary below shows that Equation (114) is independent of a choice for a
partition of invertibility domains, in the sense that / only depends on the points x on
which it is evaluated.

Corollary 4.3.10. Let (X, %, u) and (Y,¥4,v) be finite measure spaces and letT: X — Y
be a measurable, locally invertible, pbn-singular mapping with Jacobian JT. Let A €
F be some invertibility domain for T. We then have

d(TI v
JT(x) = d—p (x), foralmostevery x € A. (123)
Proof. By Lemma we have the Jacobian JT to exist. Now fix an invertibility do-
main A € &, and suppose B € &%, B < A. The Jacobian then satisfies

-1 d(T|;11)*V
[B]T(X) du(x) =v(T(B)) =v(T(AnB)) = (TI,)xv(B) = fB d—,u(x) dp(x).
-1
That is, JT — d(TL’L)*V integrates to zero on any measurable subset of A and hence
Equation (123) holds. O

We conclude our discussion of Jacobians with three technical characterisations of
Jacobians. The first in Lemmal4.3.11| characterises the Jacobian in terms of a Radon-
Nikodym Derivative. After we show the Chain Rule generalises to Jacobians in Propo-
sition and that - under the right conditions - the Jacobian factors on product
spaces in Lemmal4.3.18

Lemma 4.3.11. Let (X, %,u) and (Y,%9,v) be finite measure spaces and letT: X — Y
be a measurable, locally invertible, pbn-singular mapping with Jacobian JT. Suppose
for some invertibility domain A€ F for T we have JT >0, us-almost surely. Then

%(T(x)), forp-a.e. x€ A, (124)

Proof. We shall show that on any B € %, B< A we have

[ ATl wp d(TI ")V
u(B)—fB v (T(x) dy (x)du,

JTx) ' =

so that

d(T d(TI7H v
(cli‘;‘/)*uoT. c|;,‘u L | [—a.e. on A, (125)
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by Corollary|4.3.10| To do so, note

d(T14) d(TI;hsv ‘f d(T|a) 0
fB gy T = = Wdu = | == (T ATV ()

d(T
:f M((Tal)_l(x))d(T|;‘1)*V(X)
B dv

d(T|A)*Il
= - da 126
fT Ty WAy (126)

= ((TTa)» ) (T(B))
= u(B),

where in Equation (126) we relied on Lemma [2.1.10, pulling back (lel) which we

may do as % € L' (v) following from p being a finite measure. As BS A, Be &

-1
was taken arbitrarily we may conclude Equation (125), as JT = d(Tl{L)*V by Corollary
4.3.10; O

The following lemma shows that local invertibility and pbn-singularity as defined
in Definitions [4.3.1| and |4.3.4] are preserved under composition. This is central to
proving the Chain Rule in Proposition4.3.16

Lemma 4.3.12. Let (X, %,u), (Y,9,v), and (Z,#€,n) be finite measure spaces with
T:X—YandU:Y — Z locally invertible mappings. In letting 2Px, Py be partitions
of X and Y into invertibility domains, respectively, then the collection

Pyor:={ANT 'B: Ae Px,Be Py} \ (g} (127)

partitions X into invertibility domains for Uo T, so that Uo T is a locally invertible
measurable mapping. Additionally, if U and T are pbn-singular then Uo T is pbn-
singular.

Proof. Let (X,%,), (Y,%4,v), and (Z,#,n) be measurable spaces with T: X — Y
and U : Y — Z locally invertible, pbn-singular mappings. The measurability of Uo T
is imminent as composition of measurable mappings.

Now let Zx, Py be partitions of X and Y consisting of invertibility domains for T
and U respectively. Define the collection 22y, as in Equation which partitions
X and consists of &% -measurable sets. Furthermore, we have for arbitrary A€ 2x,B €
Py with ANT B e Pyor,that ANT'B< Aand T(ANnT~'B) = T(A)n B < B so that
by Lemma item (1) we have An T~1B to be an invertibility domain for T and
T(An T~!B) to be an invertibility domain for U. This implies

(Tl gng-15) " T(ANB—ANT 'B
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and
(U|T(A)mB)_l :U(T(ANB)—T(ANB

are well-defined measurable bijections and it is then easily seen that

(UoDlpnr-18)" = (Tlanr-18)"" o Wlrant-18) "

holds. Hence ((Uo T)| 47-15) "' is a measurable bijection onto its image as a compo-
sition of measurable bijections. Lastly as (Uo T)(An T~'B) = U(T(A) n B) € 7 the
partition 2y, indeed consists of invertibility domains for Uo T. We conclude Uo T
is locally invertible. We now only need to show pbn-singularity of Uo T.

To do so, let P € & be an arbitrary invertibility domain for Uo T such that u(P) = 0.
Then note we can immediately derive

NUoTP)=nUT( || PnA)

AePyor
=n( || UoT(PnaA (128)
AEQZ'UoT
= ) nUeT(PNA)
AePyor
—0, (129)

where in Equation (128) we used the injectivity of Uo T on P. Equation (129) is seen
by noting

pwP)=0 = p(AnP)=0 = v(T(ANP)=0 = n(U-T(ANP)) =0,
using the pbn-singularity of T'and U consecutively. O
We swiftly extend the above inductively.

Corollary 4.3.13. Letn € Z>1, (X;, i, lLi)o<i<n be finite measure spaces, let T; : X; —
Xi41 fori€|0,...,n—1} be locally invertible and let fori € {0,..., n—1}, 2?; be partitions
of X; consisting of invertibility domains. Then we have for each k € {1,...,n},

Prn:i={ANT AN nT " A1 A e, ief0,...,n—1}}\{g} (130)

to consist of invertibility domains for Tk := Ty_jo0---0 Ty, so that T* : Xo — Xy is a
locally invertible measurable mapping. Additionally, if for each i € {0,...,n—1}, T; is
pbn-singular then T* is pbn-singular as well.

Proof. First we prove that 21« consists of invertibility domains for 7" and that 7" is
pbn-singular. We will use this to show that 27 also consists of invertibility domains
for T* for each k € {1,..., n} proving local invertibility and pbn-singularity of T*. We
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proceed inductively. The case n = 1 is trivial. Furthermore, note the case n = 2 is
proven in Lemma[4.3.12]

In case n > 2, we assume ;.1 consists of invertibility domains for T"~! and that
T"1 is pbn-singular. We can then conclude again by Lemma T" :=Tyq0
+e0Ty = Ty_10 T L, that T" is locally invertible, pbn-singular as a composition of
locally invertible, pbn-singular mappings. Similarly, by Lemma[4.3.12} we see Zr» =
Prn1V Py is indeed a partition of invertibility domains for 7". Having shown
the induction step and the initial case n = 2 we have shown consists of invertibility
domains for 7" and that T" is pbn-singular for general n € Z5,;

In particular for 1 < k < n, note that, applying the above on T*, we now know T*
is locally invertible and pbn-singular with 22« consisting of invertibility domains. As
for every P € 2r» we have a Q € 2« such that P < Q we can see by Lemma(4.3.3|27»
partitions X into invertibility for T* as well, as 27« partitions X. O

The following Corollary is a direct consequence of Corollary[4.3.13|combined with
Lemma

Corollary 4.3.14. Letn € Z>y, (X;, i, i)o<i<n be finite measure spaces, let T; : X; —
Xis1 for i € {0,...,n— 1} be locally invertible. Then for each A € %y and each i €
{1,...,n} we have T'(A) € &;.

The following Corollary is of no relevance to Jacobians per se, but is useful for
future reference.

Corollary 4.3.15. Let forne€ Zx1, (X;, i, i)o<i<n be finite measure spaces, T; : X; —
Xi+1 be locally invertible mappings, 2?; be partitions of X; consisting of invertibil-
ity domains for i € {0,...n — 1} and 2P as defined in Equation (130). For every k €
{0,...,n—1} and for each B, € Z1» we have exactly one Ay € Py so that TkB, < Ay.

Proof. In case n =1 simply pick for arbitrary By € %, Ap = By so that T°B, < A, for
Ap € Py.
Letke{l,...,n—1} and B,, € Zr». By construction we have

B,=Agn---NnT "4, |, with A; €2, for i€{0,...,n—1}.
Consequently, we see that
T*[B, = TF[Agn - N T A,_1]
=T*Agn - n T A n T AN n T A, )
=T*Agn - N T A N AN T A 0 n TR A, (13D)
c Ap€ Py, (132)

where in Equation we used the general set identity f(An f~[B]) = f(A) N B
which holds for all functions f and subsets A, B of the domain and codomain of f
respectively. O
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We shall now show the chain rule for Jacobians holds.

Proposition 4.3.16 (Chain Rule For Jacobians). Letn e Z>,, (X;, Zi, Li)o<i<n be finite
measure spaces and let T; : X; — Xj41 for i € {0,...,n— 1} be locally invertible, pbn-
singular mappings. Then J(T;,—-10---o Ty) exists and

n—-1
J(Tyoq0:--0Tp) = [[ J(T)) o (Ti—10---0Tp) holds pu-a.e., (133)
i=0

where we interpret T;_y0---0 Ty = Id for i = 0.

Proof. First we will prove the statement for the case n = 2. Extending it to a general
finite amount comes down to applying the case n = 2 and Lemma[4.3.12| n — 1 times.

So let (X, Z,), (Y,%,v), and (Z, #,n) be finite measure spaces with T: X — Y
and U : Y — Z locally invertible, pbn-singular mappings. Then by Lemmal4.3.12|we
know Uo T to be locally invertible and pbn-singular so we may apply Lemmal4.3.8as
well to claim the Jacobian J(U o T) exists, as the measure spaces involved are finite.

Now let A € & be such that A is an invertibility domain for T and T(A) is an
invertibility domain for U. Then we see

fA J(Uo T)W) du(x) = (U o T(A)

- f JUG) dv(y) (134)
T(A)
= fA JUT(0) d(T13H) v (x) (135)
dA(TI3H) v
: f JUT(0) —A"2 () dp(x) (136)
A du
= fA JUT(0)) T(x) (), (137)

where Equation (134) is by definition of the Jacobian; Equation (135) follows from
Lemmal4.3.11} Equation (136) holds by pbn-singularity of T; and (137) follows from

Corollary|4.3.10
Now in fixing 22,7 as in Lemma|4.3.12, we see that the conditions under which

Equation (137) holds, applies by Lemma to all measurable sets A € & such that
there is a P € Py, with A c P. Using this, we can see that for an arbitrary B € & we
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have

fBJ(UO T)(x) du(x) :fx Y. Tap(x)J(Uo T)(x)dpu(x)

PE:@UOT

= ) J(Uo T)(x) du(x) (138)
PePyor BNP

= Y JU(T ()] T (x) dp(x) (139)
Peg’UoT BnP

= Y gap () JU(T(x))J T(x) dp(x) (140)
XPE@UoT

- fB JUT)IT(0) dp(e),

to hold, where in Equations (138), (140) we have used the Monotone Convergence
Theorem, and in Equation (139) we applied Equation (137) to the sets BNP. AsBe &
was given arbitrarily, we may conclude

JWUoT)=(JUoT)-JT, tohold pu-a.e.. (141)

Now for general n > 2 let (X;, %, ui)o<i<n be finite measure spaces and let T; : X; —
X1 for i € {0,...,n— 1} be locally invertible, pbn-singular mappings. We then have
by Corollary[4.3.13]and Lemmal4.3.8|the Jacobian J(T,—; o---o Tp) to exist. Assuming
Equation holds for the case n — 1, we can see

J(Ty—q0---0Tp) = J(Tp-10(Tp—20...1p))
=(Tp-10Ty—20---0Tp) - J(Ty—20---0Tp) (142)
n-2
=Ty-10Tpz0---0To)- [] JTio(Ti—y0---0 Tp)
i=0
n—1
=[[JTio(Tis10--0Tp) (143)
i=0
holds p-a.e.., where in Equation (142) we used the case n = 2 and in Equation (143)
we used our induction hypothesis. Note that - like in the claim of the Proposition -
we say Tj_jo---0 Ty =1d for i = 0. We conclude the statement. O

The following lemma showcases nicely the efficiency that can be achieved in cal-
culating Jacobians when standard results have been established. For notation on
cylinders see Section[3.6]

Lemma 4.3.17. Let (IT?>°, %, P,0) be some Bernoulli shift with weights P = (Py)yer-
Then foreach n=1 and k € {1, ..., n} we have the collection

@n = {[')’OYH—I] ngzo Y05 Yn-1 Er}
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of cylinders of depth n to consist of invertibility domains for o* : T?=0 — T'Z=0, More-
over, 0% : 7720 — ['Z=0 js Jocally invertible and pbn-singular with a Jacobian satisfying

1
Jok(x) = ——, for almost every x € ['220, (144)
Pyo " Pyia
Proof. First fix the cylinders of depth 1, € 1.— {lyl [4=0 . y € I'}, and note for any

Yo € I' we have

Oy, 20 — [yo]

(fn)REO'—’(n._,{YO’ I’l:())

fi’l—l) nz1

to satisfy (o, © )iy, = Idlfy,), 00y, =1d. We shall show the measurability of .
In doing so, note that for any n’ > 1 and (y})o<j<p—1 €T " such that Yo = Yo we have

O_;Ol [YSY;'—I] = [7,17/;1/—1] EgA)

proving o, is measurable by Lemma and so 0|y, is bi-measurable. As € par-
titions I'/>0 we have o to be locally invertible. To prove pbn-singularity, we derive the
Jacobian directly. That is, note that for a yo € ' and a cylinder [yoy} -+ vy),_;1 € [yol we
have

@15 *Pliyel (VoY1 Vi) = P@lyoyy - ¥iaD)
=Py} Y1)
1 / /
= —P(([yoY) - Vn1l)- (145)
Yo

The cylinders starting with y( are a generating collection for the restricted o-algebra
Fly,l» S0 we can apply Lemma |2.1.5/ to show (UIB,{)])*[P’[YO] = #[P’. Using Equation
0

(145) we have for A € ) that

1 1
P(o(A) = (U|_1 )x Py (A) = —Pry 1 (A) Zf —dP(w),
[yol’/ *" [¥ol Py [vol A Pro

so that as yo was given arbitrary we see by pbn-singularity and Jo|, = #, P-almost
0

surely. Now for n =1, k € {1,..., n} the collection €¢" is exactly the n’th refined par-

tition of ¢! and so by Lemma |4.3.15{%6" consists of invertibility domains of ¢* and

hence we may apply Proposition|4.3.16|to see for [yg---y,-1] € € that
k-1

Jok(x) = I1 Jo) (o' (x) = ﬁ for almost every x € [yg...Yn-1l.
i=0 Yo' Pk

98



The lemma below is one of the few instances in which measure theoretic proper-
ties of sections are maintained on their product.

Lemma 4.3.18. For each i € {0,1} let (X;, %, i), (Y;,F;,v;) be finite measure spaces
and f; : X; — Y; mappings. Define
HZXOXX1—>YOXY1
(x, y) — (fo(x), fi(y).

Then we have
1. H is Fx,xx, -measurable if fy and f; are measurable;
2. H is bi-measurable if fy and f, are bi-measurable;
3. H is measure-preserving if fo and f, are measure-preserving and measurable.

Moreover, if fy and f, are pbn-singular and bi-measurable the mapping H is pbn-
singular and bi-measurable, so that JH exists, and we have JH(x,y) = ] fo(x)] f1(y),
for wy x w1 almost every (x,y) € Xp x Xj.

Proof. The first claim follows from [6, Lemma 2.12.5] phrased for general measurable
spaces.

Now assuming bi-measurability of f; and f;, we can see H is bijective with H™! =
fo‘1 x fl‘l, which then as a product of measurable mappings is measurable by [6,
Lemma 2.12.5]. We then conclude H is bi-measurable.

If fo and f; are measure-preserving (and measurable), we can show

D :={C € Fxyxx, : Hx (o x 1) (C) = (o x p1)(C)}
contains the 7-system
S = {Ag x Ay €go Xgl ZA()Ego,AI €91}-

As 2 is also a Dynkin system, we can apply Lemma|2.1.5/to show & = . x,, proving
H, (po x p1) = Ho X 1.

For the remaining statements, assuming f, and f; are bi-measurable and pbn-
singular, we see the Jacobians Jfy, Jfi to exist by Lemma and be integrable.
We can directly verify joint measurability of (x, y) — J fo(x) - J fi(y) and the mapping
(x,) — Jfo(x)- Jfi(y) satisfies J fy- J fi € L' (X x X;) follows by Theorem[2.1.8| Con-
sequently, we see

Vi Fxynx, — 10,00)

A fA T oG T fi () (o x ) (x, )
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to be a measure by the Radon Nikodym Theorem|2.1.11{ Moreover, by bi-measurability
of H, we can see that

(Vo x V1) (H(-) := (H™ Y (o x 1)

is a measure as well.
Finally, on the n-system

g = {Ap x Ay Eeg'b XgllA()ELOJ;(),Al Egl},
we see that for any Ay x A; € .# we have

(vo x v1)(H(Ap x A1) = (vo x v1) (fo[Aol x fi[A1])
=vo(folAol) - v1(filA1])

=f J fo(x) dpo(x) f JA dpi(y)
Ag A
=f Jfo(x)] fi(y) d(uo x p1)(x, y),
AOXA1
by Theorem [2.1.8] Applying Lemmal2.1.5/then shows
v < VOCHO) = [ 100 A0 dlyto x ).,

from which we can directly derive pbn-singularity of H. To conclude, /H indeed
exists and JH(x, y) = ] fo(x)] f1(y), for po x p;-almost every (x, y) € Xo x X;. O

A (trivial) application of Lemma|4.3.18|is Lemmal4.3.19|below. We have put it here
to avoid repeating the same claim later on.

Lemma 4.3.19. Let (X, %, u) be some finite measure space and let (Z, 2Z.¢) be the in-
tegers with the counting measure. Let k,l € Z and define the restricted measure spaces
({k}, (@, {k}}, ciy) and ({13, {2, {13}, cyy). Then the mapping

Idx ty: X x {k} — X x {I}
(x, k) — (x,D),

IS Fx«ik-Fxx(1y measurable, bi-measurable and satisfies (Id x ty) (1 x Ciiy) = [ X €y
Moreover, J(Id x ty) exists and we have ] (Id x t;) = 1, u x ¢y -almost surely.
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5 Quenched Random Young Towers

In this section we finally start our study of Random Young Towers in a quenched
setting. At the start of Section 4/ we have motivated the necessity for the quenched
approach for describing certain random dynamical systems and now focus on its
method. To the knowledge of the author, the quenched setting was first introduced
in [4] and later discussed again in papers such as [26], [2] and [7].

As mentioned in Section[4} in the quenched approach the random tower A is de-
fined on a random dynamical system (Q x X, Zqxx,P x 1, S) in such a way that its
Q-sections A, are Young Tower-like structures. In doing so, we shall also need to de-
fine a (random) induced domain A, a (random) principal partition 2y, a (random)
tower map and a (random) return time R. In order to find an acip for the resulting
(random) tower system

(A, Fp, i, G),

we will then subject the Q2-sections of A, 2, R and A to adapted versions of Young’s
conditions. As mentioned in Section |4, this allows for more flexibility than in the
annealed approach.

The price we pay for this is that we lack typical properties on (A, %a, ua, G) such
as local invertibility as we are no longer sure if 22, partitions A into invertibility do-
mains. More so, as we can not assume a constant return time on the elements of &,,
finding a useful expression of

d(G")xpa
dp
is hard, if not impossible. This forces us to abandon the concept of a quenched tower
base and forces us to conduct our analysis on the random tower directly.

Effectively, this will result in us being able to show the acip vao we obtain for
(A, Zp, ua, G) in Section has a density with a uniform lower bound. This also
makes us unable extend the ergodic properties found in Section to v nor are
we able to find v, as a limit point in total variation norm. Even though a stronger
result is commonly accepted in the literature, its proofs in [4], [26], [2] and [7] are sig-
nificantly lacking in mathematical rigour. We used intuitive concepts presented [2],
formalised them to precise definitions and give rigorous proofs for according results.
The argument in Section[5.4]is to our knowledge novel. Section[5.5|proves and identi-
fies a disintegration theorem perfectly fitted to Random Towers as it essentially only
on absolute continuity instead of topological arguments.

To make sure the reader is not overwhelmed by the technicalities and conditions
we shall introduce the (random) Markov property and (random) bounded distortion
as late as possible in the text.
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5.1 The Core Definitions

In this section we start building our theory necessary for treating random towers.
Definition through Proposition show the construction of a random tower
system and prove this is a random dynamical system in the sense of Definition[4.2.3]
After doing this, we will define the random principal partition in Definition [5.1.10
and characterise its sections in Corollary[5.1.12] We close the section with two tech-
nical results showing we can embed higher floors of random towers into lower floors.
In the section thereafter we shall impose extra conditions on random tower systems
to guarantee the existence of Jacobians for the sections of the tower map.
Suppose we have a measure-preserving dynamical system (Q, %q, P, o) with P(Q)

1, 0 : Q — Q bi-measurable and P-invariant with bi-measurable P-invariant inverse,
a finite measure space (X, ¥x, 1) and a measurable set A € Zq. x, such that u(A,) =1
for P-almost every w € Q. Furthermore, suppose we have a measurable mapping

g: OxX-—-X
(W, x) — gu(x)

such that for P-almost every w € Q we have (g,)+ ¢ < u so that we may construct a
skew product S and a random dynamical system

(QXXngXX)n:DXu)S); (146)

as seen by Lemma and Definition We shall refer to (I146) as the Base RDS.
Furthermore suppose we have an integrable return time

R: A—17s
(W, x) —inf{n € Z>1: S} (x) € Agny},

and suppose we have a countable partition 22\ € g« x of A such that for every w € Q
and every P € 22, such that P, # @ we have R,|p, = cp, for some cp, € Z-(. That is,
for every P € 225 the return time R is constant on the w-sections of P. We then call
A the (random) induced domain, 2, the (random) principal partition (of A) and the
family (g,)weq the random map. We shall fix all objects thus far defined until Section
For sake of notational brevity we shall omit the adjective Tandom’ whenever it is
clear from the context we are not dealing with an exclusively deterministic system. To
define a random tower in Definition5.1.1|concisely and correctly we need the objects,

00:OxX—->QxX

R.;:={(w,x) e A:R(w,x) > 1}, for l € Zy. (147)
(w,x) — (0w, x),

Recall Lemma for the properties of o and note that for any / € Z-, we have

Ro;=Z-1\R7Y1,....L e Z) by measurability of R.
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Below we define a random tower. The definition may seem rather contrived but
turns out to be useful when interpreted in the context of a random dynamical system.

Definition 5.1.1. Define

A= || oLRap x (B, (148)
lEZEQ

We call A a (random) tower, for | € Z>y, A; a (random) floor of A and Ay = A, the
(random) ground floor of A.

Remark 5.1.2. 1. Note that for each [ € Z-y we have A} = af) (R>)).

2. For the rest of this section, when mentioning towers, we shall refer to towers as
defined in Definition|5.1.1} with its associated objects 2, R, (g,)weq-

We endow A with a o-algebra and a finite measure.

Lemma 5.1.3. Let (Zxo,%z.,,¢) be the integers equipped with the o -algebra 7., :=
2720 and the counting measure c. Let A € Q x X x Zsq be a tower as in Definition|5.1.1]
Then A is Fqx xxz.,-measurable with (P x u x ¢)(A) € [1,00) and hence we may define
(A, Zn, ua) as a (restricted) finite measure space.

Proof. Note that for l € Z>y we have R.; € %5. As A € Q x X we then see R-; € Fqxx
and so by bi-measurability of oo we have for each [ € Z-( that A; = aéz(R>l) € Faxx.
We then see A = | |;cz., A;x{l} is a countable union of #q x x7.,-measurable sets and
hence it is #qx xx7.,-measurable. We conclude we may construct (A, %x, ua) as the
restricted measure space of

(Qx X xZ50,Faxxx7-9)P x L x ¢) to A.
What remains to be proven is that pa (A) = [1,00). Note

A=Y Exwap= Y PxwohRm= Y PxwR),

16220 leZ5 lEZZ()

by invariance of the mapping 051. By using a standard probabilistic equality (e.g.
seen in (14, Lemma 4.4]) we see

Y (P xR = IRl < oo,
lEZz()

As by construction we have A x {0} € A, A € Fq«x and u(A,) =1, P-almost surely,
we can use Proposition to show

pa(A) = P x ) (A) = j;z'u(Aw) dP(w) =1,
so that indeed ua (A) € [1,00). O
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We call the measure space (A, %, 1a) as seen in Lemma a random tower
(space). As mentioned, most of the analysis on random tower spaces takes place their
sections. We make a quick notational comment.

Remark 5.1.4. When taking multiple sections on the same set, we adopt the following
notation. For w € Q and [ € Z-y we write

Ay ={x,)e X xZ5¢:(w,x,I) € A} and Ayi=xeX:(ox, I)e AL
Similarly, we write for A€ %, w € Q and ie 7 that,

Ay ={x,DeNy:(w,x,])e A}, and A.J = {xeAM (@, x,1) € Al

w

By Lemma we see that A, € Fp,, and A j € F5 ;. We can similarly define for

l€Zspand weQ A; , first taking the [-section and then the @-section. As we then
see A; , = A, j we are free to use both notations interchangeably.

Note we only have required u(A,) = 1 and (gy) <t < W, to hold P-almost ev-
erywhere. This has been done to accommodate random dynamical systems where
the random dynamic behaves abnormally for particular w € Q. An example of such
an w € Q is for instance in the annealed example in Section 3.6.2] a sequence w =
(Wn) =0 € {s,g}7>0 where w is eventually constant s. This disrupts the dynamics as
points are no longer sure to return to their induced domain.

Like in the annealed approach, this is not a problem in the quenched approach
if these ‘abnormal’ w only add up to a measure zero set. We shall formalise this by
defining a set Q < Q of full measure, consisting of well-behaved points in Q.

Remark 5.1.5. Given a random tower space (A, %, 1a) we have by construction for
almost every w € Q, ua,(Ay) = 1(A,) = 1. Moreover, as a consequence of Lemma
we have s, (Ay) < oo for almost every w € €. Lastly we now by construction
(8w)« 1 < u for almost every w € Q. Combined, we can see

Q:={weQ:up,(Ay) €11,00), () x 1t < i} € Fq,

and P(Q\ Q) = 0. Finally we close Q under o by writing

o0
Q:= () o".

nez
Note again we have Qe Fq and P(Q\ Q) = 0. As we now have (8w)x 1t < u for each
w € Q, and Q is closed under o, we can see that for any w € Q and any m € Zs( and
l € Z we have (g(’;’}w)* U << U as g(’;}w is a composition of measurable, non-singular
mappings. The set Q will be useful in almost every statement onwards and will save
us many technical complications. As there are no drawbacks for us to use Q instead
of Q, we shall do so consistently.
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Remark 5.1.6. Below we have provided a schematic representation of (a part of) a
random tower (A, %, 1a). On the last row of the figure we have specified which Q-
section of the tower is being shown in the column above. As can be seen each row

represents a floor of the tower.

Dg-143 % 13]

Aaflw,Z x {2}

Aa‘lw,l x {1}

AU‘lw,O x {0}

A

o lw

Figure 5: A schematic representation of a part of a random tower

Aw,s x {3} Aaw,S x {3}
Ap2 x {2} Agw,2 x {2}
Ap1 x {1} Agp,1 x {1}
Aw,O x {0} AUw,O x {0}
Ay Ao

To make some more comments on how the sections of a tower in the figure relate,
it can be useful to rewrite the above figure in term of the return time. That is, for w € Q

and / € Z>, k € Z we can directly derive from the definition of A that

Aakw,l x{l} = (R>1) ghe-14 ¥ {1}

yielding the figure
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(R>3)(j_4w X {3}

(R>2) g‘sw X {2}

(R>1)a'_2w X {1}

(R>0) o lw X {0}

(R>3)g_3w X {3}

(R>2)g'_2a) X {2}

(R>]_)o'_1a) X {1}

(R>0)w x {0}

(R>3)o'_2w X {3}

(R>2)g'_1w X {2}

(R>1)w x {1}

(R>0)ow * {0}

As-14 Ay Agw

Figure 6: Figurereimagined using Identity (149)

Looking at this figure intent-fully we can make two important remarks

1. The individual floors of an Q-section of a tower do not have to be related. For-
malising this, suppose w € ) and [, I’ € Z-( and note that the sets A, ; and A,
are floors in the same Q-section A, however, we have

Aw,1=Rsp) g1y ENg-14 Doy = (R>l’)g—l'w - Ao-—l’w-

Conceptually, the sets Ay, and A -1, may be unrelated other than both being
subsets of X. For instance in restricting the skew product S to A we can see that

SO ®,) = Syetyla, 4, () and SIa0 ™ @, ) =S, la (),
which can be very different functions.

2. Rather that the floors of an individual Q-section of A, there is a more direct
connection along the diagonals in the figures above. Indeed, we clearly have
(Ropw 2 (Ropsp)o foreach k,l € Z5¢ so

Acz),O = (Rs0)w 2 (Rs1)w =2 (Rs2)p2....
By Equation (149) we have A, ; = (R>i)w, SO that

Aw = A&),O 2 AUU},I 2 Ao—zwyz 2...
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Embedding floors A« ; into A k-1, o Will be central to our to our theory and

will be formalised in Lemma|5.1.13|and Corollary|5.1.14

Now we will equip a random tower with a mapping making it into a dynamical
system.

Definition 5.1.7. Let (A, %a,ua) be a (random) tower. Then define the (random)
tower map by
G: A—A
(@,x,) — (0w, Gy(x, 1))

where for w € Q, with A, # @, G, : A, — Ay is such that for (x, ) € A, we have

(x,1+1), ifR,-1,(x)>1+1,

Go(x, 1) =
el {(gfj_}w(x),m, if Ryo1,(x) = 1+1.

Remark 5.1.8. Before proving the measure-theoretical properties of a random tower
map on a technical level, we explain the way the tower map acts on the tower using
the Figures[7]and[8] Both figures are based on Figure[6|where we use for /, k € Z5 the
identity

(RoD) gk % (1} = (Ror41) gy X U (R4 1)) gk, x A1)

As we have A k41, x {1} = (R>) 5, % {1} by Equation (149) we can then write

Ga.k+lw|AUk+lw’lx{l} : A0k+lw,l X {l} nd A0k+l+1w

(x,l+1), xE(R>l+1)Ukw
(6 D=9 -1
(go,kw(x)vo)) X € (R (l+1))gkw

In the Figures[7|and 8| the arrows represent the action of

G,i, A _i

og'w "~ 0w

— Ayiry,i€1-1,0,1}

restricted to the sets as specified in the figures.
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(R™144}) g4, x 13} (R4} 53, x 13} (R4} g1, x {3}

(R™H3}1) 53, x {2} (R™H3}) 52, {2} (R7H3}) g1, X

(RI{Z})Usz})UIwN{z})w x {1}
(Ro0)g-14 X 10} (R>0)w X {0} (R>0)ow X {0}\

Figure 8: Subsets of floors mapped to the ground floor under the tower map

\

(R>4) 510 x 13} (R>4)5-3 X 13} (R>4)g-14 % {3}
/
(R>3) g3 X {2}/(R>3)0'2a) X {2}/(R>3)01w x {2}
/
(R>2)g-2¢ X {H/(R>z)g1w x {I}/(R>z)w x {1}
/
(R>1)5-10 X {O}/(R>l)w x {0}/(,R>l)aw x {0}

Figure 7: Subsets of floors mapped to a higher floor under the tower map

The following lemma affirms the quadruple (A, %a, pua, G) is a random dynamical

system. We refer to it as a random tower system.

Proposition 5.1.9. Let (A, Fa, a) be a tower, with G : A — A a tower map as in Defini-
tion5.1.7, Then the mapping G is measurable and non-singular so that (A, Fa, pia, G)

is a random dynamical system as seen in Definition[4.2.3 Moreover, we have (Gy)xpia,, <
Ha,,, foreach w € Q).
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Proof. Let (A, %, ua) be arandom tower and let G be its random tower map. We first
prove measurability of G. So let A € %, and write A = (Ap x {0}) L[ ;> A; x {I}. First
we calculate G (Ag x {0}). Note that (keeping Figurein mind)

G (Ap x 10) = {(w, x,)) € A: (0w, Gy (x, 1)) € Ag x {03}
={w,x,DeA: (0w, g} (X)) € A, Rymi,,(x) = 1+1}
={w,x,DeA:S" (07w, x) € Ag, xe (RTHI+1)),-1,)
={w,x,DeA: 8" ol (w,x) € Ay, 05 (0, x) e R +1)}
={,x,DeA: (@x)€ah (ST V(AN R+ 1))}
= L obS™ " VA0 n RN+ 1) x {1} € P xxza0

I€Zzo
as a countable union of measurable sets. Note we have
oL (ST (A N RN+ 1) x (I} € Ay x (I} for [ € Zsg
as well, so that

G Ao = | ] oLV A N R+ 1) x {1} € Fa, (150)

lEZZO

and for [ € Z, we see (keeping Figure[7]in mind)

G A x{) =05 (A) x {1 -1} € Fp. (151)
Combining Equations and we obtain
G'A=G (Agx{OhuG || | A x {z}) € Fn. (152)
=1

To show non-singularity of G we calculate the inverse images of the tower map sec-
tion wise. Let w € Q2 and suppose we have a B € %, ,. We can derive

Gy Box 10N = | ] ("% ) 7 BN (R, v, ) W+ 1) x 10}, (153)
l’EZzO

andforle 7+,
G,'(Byx {I}) =By x {I-1}.

Now assuming ua_, (B) = 0 we see pa,,, (B; x {I}) = 0 for each [ € Z.
We then see using Equation (153) that

Ha, (G  Box 0 = Y pua, (817} )7 (Bo) 1 (R, ) + 1y x A1)

!
o lw

l'EZzo
=X u(E ) By) =0, (154)
'€Z>0
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I'+1
!

as (gUi . w)* u << pand p(By) = pa,, (Bo x {0}) = 0. Similarly we can obtain using c to

denote the counting measure

pa, (G, (By x {1) = pa, (By x {1 - 1})
= p(Bp) - c({l—1})
= u(B)) - c({1})
= U, (Br x {l})
=0. (155)

Combining Equations (I54) and[155|we then see

(Go)xtta,(B) = Y (Gy)spia, (Br x {1}) =0,
leZ5

proving (Gy)«ta, < Ua,, for each w € Q. Applying Propositionthen shows that
(A, Fa, pa, G) is arandom dynamical system. O

As mentioned in the introduction of this section, we now turn to defining a (ran-
dom) principal partition for 225. We do so using the collection 22, at the start of this
section, similar to the deterministic case. In Lemma/5.1.11]and Corollary [5.1.12|the
namesake of the objects defined in Definition[5.1.10|below will be justified.

Definition 5.1.10. Let (A, %5, ua, G) be arandom tower system. We say the collection
Pp:={0G[P N Rofl x {1} : Pe Py, 1€ Z20}\ (0} (156)

is the (random) principal partition for A and for w € Q we say its w-section P, as
defined in is the (random) principal partition for A,,.

We now prove the random principal partition 2, for a random tower system A is
a countable partition for A consisting of measurable sets.

Lemma 5.1.11. Let (A, %, ua) be a random tower. Then the collection 2Py as defined
in Definition partitions A, is countable and consists of %x-measurable sets.

Proof. To start, the countability of 225 follows from countability of 22y and Z>y. We
proceed with the proof.

(1: &5 covers A) Let (w, x,1) € A. Thisimplies (0 'w,x) € Aand R(c'w, x) > I so that
we may fix the unique P € 22, with (0 'w,x) € P. We note (0" 'w,x) e PN R
s0 (w,x) € oL, (PN Rs) and hence (w,x,1) € L,(P N Rs;) x {I}. We then have by
definition o, (PN Rs)) x {1} € Py.
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(2: 25 consists of disjoint sets) Suppose we have Q, Q' € 22y, QN Q' # @ then there
must exist PP’ € 22y and [, 1’ € Z~( such that

Q=0LIPnRIx{l}, Q =0h[P' Ry x{I'}.

Clearly QN Q # @ implies [ = I’ and as Uéz is a bijection on Q2 x X we can see

PNnP #@soP=P asPP e, Weconclude Q = Q’, and so &, consists of
disjoint elements of A

(3: 2, < Z,) Finally, in noting that by construction 22y < %, and thatforany /e Z
we have R.; € %, by measurability of R, we can see P N R-; € %,. In particular
PNR.; € Faxx and 06 (PN R-)) € Fqxx, by bi-measurabilty of 0, Lemma
We finally see o/, (PN Rs;) x {1} € Fp as 0L, (PN Rop) x {l} €Ay x {1} € A and
06PN Rs) % {1} € FQuxxzay-

We have shown the claims in the Lemma. O

To conclude our discussion on principal partitions we show that for w € Q the col-
lection &y, is a partition of A, and give an explicit characterisation of its elements.

Corollary5.1.12. Let (A, Fp, ia) be a random tower. For eachw € Q the collection Py,
is a countable partition of 2, consisting of &, -measurable. Moreover, we have

Pn, =Pyt < € Fa, : Rymiylp_, > LPEPpL. (157)

w

Proof. Let w € Q. Lemma|5.1.11]and Lemma together imply that 2y, < Fa,,
that 22, , partitions A, and that it consist of countably many sets.

To prove Equation (157), we first derive that for any P € &2 and [l € Z~( we have
that Q = 05 (PN Rs}) x {I} satisfies

Qu=P,-1, x{l} with Ra—lwlpg_lw >1 ifQ, #®. (158)
To do so, let P € &y, and | € Z>( and note that for Q = aé(P N R-;) x {I} we have

Q={ch(p,x),DeQx X x{l}:(p,x) € PN R}
={(p,x, D eQx X x{l}: (0 'p,x) ePN R}
= {0, %, D) €Qx X x {I}: X € Py, N (Ro1) g1},
so that we see Q, = Py-1, N (R>1),-1,, x {I}. Note thatas R;-i,|p _, is constant, we

have either
Quw=Ps1,N(Rs))g-1, =D OF P, S (Rsp)s-1-

Soif Q, # @, we see Py, N (Rsp) 51, % {1} = Py-1,, x {1} proving Equation (I58).
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Now to show Equation (157), note for Q € 22y we havea P € 2?5 and | € Z>( such
that Q = 06 (PN R-p) x {l}. We then see that

Pr, ={Quw € Fxxz.y: Qu # D, Q€ Pp} by Lemmal[4.2.5]
={Py-1y X IL€Fp, : Ry1ylp ;> 1, PEP}, by Equation (I58)
proving our claim. O

We postpone any measure theoretical properties of the random principal parti-
tion until the next section and focus on its ‘mechanical’ nature first. We point out
once more that in Remark we have defined

Gl =Gyn-1,0--0G,, forneZs,.

Adding to this we shall fix G, :=1d|a,,.

We now formalise the embedding that was hinted at in Remark[5.1.6] Its use will
become clear in the sections ahead and is also a good way to get acquainted further
with ‘section’ notation.

Lemma 5.1.13. Let (A, %, ua, G) be a random tower system and let w € Q, leZs
such that A,,; # @. Then we have for each I' € {0, ..., I} that A,y x {I'Y S Ay, x{l'}
and the mapping

G- ool B x 1) Doyl X {I"y = Ay, x {1} (159)

o-u-r
(x, 1) — (x, 1),

is bijective. Lastly, (G(lf_l/ )w)‘l(Aw,l x{1}) = Ny x {I'}.

—(=-r
Proof. The case I’ = [ is trivial so assume [ >0 and I’ € {0,...,] — 1}. Note that
Ap,i x 1"t = (Rsp) -1y x {1}
= (R>l)o*l’(g*l*l'w) X {l/}
c (R>l/)a-fl’(o-—l—l’w) X {l/}
= AU_“'Vw,l' X {l,})

proving our first claim. Having shown this, we can indeed write

Gl Iag iy 1 Do X {1} = Ay,

o=y

We have to show injectivity on A, ; x {I'}. To do so, note that for any " € {l’,..., [} we
have
Ra‘(l‘l”)(a‘l”w) (x) =R;-1,(x)>1 forany x€eA,;,
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so that G (x,1") = (x,1" +1) for any x € A, ;. Having shown this we can con-

o-U=1"y¢

clude
l Mg (x,1") = G,i- 1w0---0GU,(l,y) (x, 1) =(x, D),
so G! _fl " |Aw [ x{I} 18 injective. Moreover, we see Gl fl " (Aw,l x {I'") = Ay, x {1}
To show (Gl l, " )—1(Aw,, x {1}) = Ay, x {1}, we der1ve

(Gl ) Bu x I =106 I €A1, 1 GEYL (6,17 € Ay x A1)

a'-lw :
= {6, 1) € Dy x 1 G (1) € Ay x A1)

= Aw,l X {l,}

Ul'*lw,l

O

In the following sections we shall be most interested in the special case of Lemma
where we have an embedding between a (general) floor and a subset of the
ground floor which we phrase in Corollary[5.1.14| below. We also show this embed-
ding has nice measure theoretical-properties.

Corollary 5.1.14. Let (A, ZFn, pua, G) be a random tower system and let w € Q, leZs
such that A, # . Then the mapping

|Ag, x40} D 1 X {0} = Ay g x {1} (160)
(x,0) — (x,D),

_lw

satisfies (G(l,—zwmw <o)« MA ;= P, x{1y and is bi-measurable with invariant inverse.
: oo :

Proof. In noting G(l,—zw|Aw,z><{0} =1dla,,, x #; by Lemma|5.1.13|and that ua,,,(Ay,1) < oo
our claim is immediate by Lemma4.3.18 O

5.2 Measure-Regularity of random towers

As said in Section |5, a difficulty with analysing random towers A is that we do not
know if for elements A € &5 the mapping Gl4 : A — G(A) has a measurable inverse,
making analysing d;“ 2 through Jacobians as in the deterministic case harder. Ad-
ditionally, mimicking the deterministic case and defining some sort of random tower
base (Ao, Fny, ay GH appears to be fruitless as well as there does not seem to be a
clear identification of the densities associated with (G®), Ha,- For this reason, we,
like the papers [26], [2], [4], [7] before us, will continue the work on the sections of
the random tower. That is, we fix an w € Q (with Q as in Remark[5.1.5) and use the
local behaviour of G, to study the global behaviour of G. As said in Section[5.1} we

do need to assume some extra regularity on the random tower System in order to
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apply the theory from Section[4.3] This section is aimed at showing the sections of
random tower maps are pbn-singular and locally invertible allowing us to analyse its
measure-theoretical properties through refined principal partitions and Jacobians.
Moreover, this will mean the (sections) of the random tower map are forward mea-
surable - a property fundamental to almost all of our proofs.

Definition 5.2.1. A random tower system (A, %x, Ua, G) is measure-regular if we have
for all w € Q and all A € P with G, (Ay) N (Age,o % {0}) # @ that

Gu(Ap) € Fa,,, that Gyla, : Ay — Gy (Ay) is bi-measurable,

and we have
(Gwlji)*uAgw <K UA,-

From hereon out we shall assume every random tower system is measure-regular.

We now show the existence of the Jacobian for sections of the random tower map. We
remind the reader that we have already obtained non-singularity on the Q-sections
of random tower systems almost surely in Proposition[5.1.9]

Lemma 5.2.2. Let (A, %, ua, G) be a random tower system. Then for every w € Q) the
map Gy : Ay — Ay is locally invertible with 275, partitioning A, into invertibility
domains for G,,. Moreover, for each w € Q the mapping G,, is pbn-singular so that
there exists a Jacobian JG, : A, — [0,00).

Proof. Let A, € P5,. We prove A, is an invertibility domain and do so by distinguish-
ing two cases. If G,(Ay) N (Agw,0 x {0}) # @ we have the bi-measurability of Gl 4, :
Ay — Gy (A,) by measure-regularity, so A, is an invertibility domain (see Definition
4.3.1). Moreover, again by measure-regularity, we have (G|, )«fia,, < fi4,. Ancil-
ary, we have as A, € 25, with G, (Ay) N (Agw,0 x {0}) # @ that G, (Aw) S Agw,0 x {0}.
Now suppose A, € P, satisfies G, (Ay) N (Agw,0 x {0}) = @. By Corollary|5.1.12|we
then know there exists [ € Z>o and P € &, such that Ay = P, x {I} € Ry 51, x {1}
As Gy (Ap) N (Agw,0 x10}) = @ it follows from the definition of the tower map that A, ; =

p SR In particular, we have

o-lw >l+l,07lw"

GwlAw ZAw,l X {l} d Aw,l X {l +1}
(x, D)= (x,1+1), (161)

which is bi-measurable and satisfies (Gwﬂi)* Ha,, < Ha, aswell. Finally,

Gw (Aw) =P

= Pg—l—l(o-w)
€ ‘@Aaw’

x{l+1}
x {l+1}

o-lw
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and G, (Ay) € Za,, by Corollary 5.1.12, We conclude the partition &5, consists of
invertibility domains making G, locally invertible. Moreover, we have shown

(Gwﬁi)*ﬂAgw < s, foreach AyePy,.

This together with ua, (Ay) € [1,00) as w € Q implies pbn-singularity of G, by Lemma
As Gy : Ay — Ay for w € Q is measurable, locally invertible and pbn-singular
between two finite measure spaces, we have by Lemma that the Jacobian JG,,
exists. O

In the corollary below we have phrased ancillary results following directly from
the proof of Lemma We note the mapping in Equation (I61) has a Jacobian
that is constant by Lemma

Corollary 5.2.3. Let (A, Fn, ia, G) be a random tower system. Let w € Q, A, € Py, We
have either
Gu(Ay) S Aaw,o x {0}

or
Go(Ap) N (Aaw,O x{0}) = @ and G, (Ay,) € @Agw-

In case of the latter, we have additionally
JG, =1, Ha, -almost surely. (162)

The rest of this section is dedicated to deriving the chain rule of the Q-sections of
a random tower map. To this end, it is natural to refine our principal partition. We
shall write for n€ Z-1, w € Q,

n-1 . n-1 .
Py=\G'Py and P =\/G,'Ps, . (163)
i=0 i=0

We derive the existence of the Jacobian for iterated the tower maps.

Lemma 5.2.4. Let (A, %, ua,G) be a random tower system and n € Z»,. Then for
every w € Q the mapping G is pbn-singular and Q’Kw partitions A, into invertibility
domains for G : A, — Agny. Moreover, the Jacobian ]G] exists and is given by
n-1
J(GY) = []UG,i4) 0 Gfu for ua,-almost every x € A,,. (164)
i=0
Proof. In Lemmawe showed that for w € Q the partition 2, , consists of invert-
ibility domains for G, and that G, is pbn-singular. We can see that for v € Q, we
can apply Corollary to see that G} : A, — Ayny is pbn-singular and that P}”Kw
partitions A, into invertibility domains for G'. The existence of JG]} and its charac-
terisation in Equation then follow from Proposition O
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The following Corollary is obvious by Lemma and Lemma We have
included it separately to make sure the reader is left without questions on measura-
bility.

Corollary 5.2.5. Let (A, Zp, ua, G) be a random tower system and n € Z,. Then for
every w € Q and every A, € Fp,, we have G} (Ay) € Fp -

In the next section we will use Equation (164) to prove that J(G}) is positive ua,, -
almost surely for w € , assuming an extra condition.

5.3 The Markov Property and Bounded Distortion for random tow-
ers

In this section we shall continue building the theory of Random Young Towers and to
do so we define random equivalent of the Markov Property (3.2.3), Separation Time
(5.3.9) and Bounded Distortion (5.3.12), cumulating in the notion of (acip) admissi-
bility at the end of this section. Our Definitions, [2.1.27|and [3.2.6|are consistent with
(2] with the exception that we have placed the positivity of the Jacobian under the
Markov Property as seen in Definition This way we can derive the reciprocal
identity in Lemma5.3.7|before needing to introduce the bounded distortion for ran-
dom towers.

We briefly highlight the n’th-Markov Collections as defined in Definition [5.3.2}
This collection contains the sets that for a given n € Zs;, w € Q map onto a ground
floor under GJ}, as can be seen in Corollary[5.3.4} The Markov property will ensure this
happens bi-measurably with a positive Jacobian. These sets will form the backbone
of the arguments in Section[5.4] We still assume measure-regularity on random tower
systems throughout this section.

Definition 5.3.1. Let (A, %, ua,G) be a random tower system. If for each w € Q
and A € Py with G, Ay, N (Agw,o x {0}) # @, the mapping G,| 4, is bi-measurable onto
Agw,0x {0} with JGyla, >0, 4, -almost surely, we say (A, Fa, pa, G) satisfies the (Ran-
dom) Markov Property.

Additionally to measure-regularity, for the rest of this section we shall assume
all random tower Systems satisfy the Markov Property.

Definition 5.3.2. Let (A, %x, s, G) be a random tower system, 7 € Zsy and w € Q. We
then say

Rl 1= { Ay € DL Ay S Do x 10}, Gl (A0) N (B  (0) # @

is the n'th Markov collection with respect to w. We call elements of 2. Markov sets.
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We present two consequences of the Markov Property.

Lemma 5.3.3. Let (A, Fn, ua, G) be a random tower system, n € Z>1,w € Q. Then for
each A, € Q?’Kw we have either

1. G (Ap) € Py n, With Gy (Ay) N (Agne,o x {0}) = @ or
2. GZ(Aw) = Agnw,0 % {0}

Proof. We prove by induction. Note for n =1 our claims follow from Corollary
combined with the Markov Property. Now suppose that for some p € Z; we have for
each B, € ,@Kw, that either

1. GhIByl € Py, With G, [By] N Agrewo x {0} = @ or
2. GhIByl = Agpe,o x 10}

Then note that for any A, € 92’5:1 we have a Cypp € Py, and a By, € Qz’fw such that
Aw=ByNG,  (Cyry). Using the induction hypothesis we then see
Gly(Aw) = G (By N Gy Corw)

= Gz (By) N Cgry using Lemma|2.1.23

3 { Core ifGh(B,) € Pp,p,, (asoverlapping elements from the same partition)

Corw if Gh(By) = Agrwo x {0} (as then necessarily Cypy S Agrey,o % {0})

=Lorw-

Hence G5+1(Aw) = Gorw(Corw). As Cory € Py, the claim follows from Corollary
applied with the Markov Property/ O

Directly from Lemma we obtain a nice characterisation of the Markov Col-
lections.

Corollary 5.3.4. Let (A, %, ua, G) be a random tower system, n € Zs, and w € Q. We
then have

Rl ={ A € DL Ay € Do X 10}, Glla, : Ay — Dgnano x (0} is bi-measurable},
(165)
moreover, in writing R}} == | rezn R we have

(G lapox(0) " (Agrao x 10}) = RL. (166)
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Proof. If Z! = @, there is nothing to prove. If Z] # @, let A, € Z]} so that G!!(A,) N
(Agnw,0x{0}) # @. Lemmal5.3.3|then shows G(Ay) = Ay 0 % {0} and bi-measurability
of GJ}| 4, follows directly from Lemmal.2.4}

Now to prove Equation (166), note that (G} Awrox{o})‘l(Agnw,O x {0}) 2 R}! follows
by Characterisation (I65). Conversely, note that

(Gl lawoxi0) " (Agnw,0 X {01 = {(x,0) € Ag,g x {0} : GJj (x,0) € Agneyg x {0}}

= L (Ghla,) " (Agnwo x {0}
Aweygw,Angu),O x {0}
cRJ,
so that we may claim Equation (166). O

Remark 5.3.5. In Figure[9 on the next page, we have, as a visual aid for the theory,
pictured how an element of a refined principal partition can behave under the appli-
cation of the random tower map. No new concepts will be explained and thus this re-
mark can be skipped. Suppose, given a random tower system (A, %x, pa, G) and w € Q
wehavea A,-s, € Z5 5 ,suchthat Ry-s,la s, =2and RU_3w|(G§_5w(AU—5w))0 =4. Due

to the Markov Property we then have gg_sw(AU-sw) x {0} = Agw,0 % {0} and by Lemma
(.2.4lwe know

Gg—Sw : Ao’*5(u - AUa),O x {0})

is bi-measurable. In Figure[J]the straight arrows display applications of G, : A i, —
Agi+, to nga’) (Ay-s,,) for i € {-5,...,0} which we have rewritten using the definition
of Gy,. The curved arrows below the figure display the (again bi-measurable) map-
pings

Gy, Ag-sy — Gos (Ag-54,),  Go s, i Ag=5 — Dowo x {0},
and
Gi—sw : Gi—sw(Ao‘%)) — Agw,0 % {0},

from left to right as the labels appear in the figure. These we have also rewritten using
the definition of G,,.
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Ag—aw,g x {1}

(Idy \qf

Aa’“w.ﬂ X {O}

(g7 +,(:),0)

ggfﬁw(Aa_Gw.‘U) X {2}

g?,—nw (AU‘%J,U} X {1}

),0) (moyv

(gg u(‘)aﬂ) (9: :‘w(’)#n)

Figure 9: The tower map applied to a markov set

g?,—r,w(Aa""w.ﬂ) X {3}

gg—aw(Aa’:‘w) X {0}



We now start analysing densities associated with random tower maps. First we
prove the positivity (almost everywhere) of the iterated Jacobian in Lemmal5.3.6be-
low, before proving a reciprocal identity in Lemmal5.3.7] Eyeing the Markov Property,
Corollary[5.2.3|and the chain rule in Lemma the result in Lemma5.3.6/should
come to no surprise.

Lemma 5.3.6. Let (A, %, ua, G) be a random tower system. Then for n € Zs;, w € €,
we have that JG]) > 0, ua,, -almost surely.

Proof. Let w € Q and n € Z»;. By Lemma we may assume the Jacobians JG"
and J(G,i,) exist. Note that by Lemma we can find a set A}, < A, such that
ta, (Aw \ A) = 0 for which we have

n-1 .
JGI(x) =[] UG,i,) 0 G, (x) for each x € A,
i=0

Claim: for each i € {0,...,n — 1} there exists a set Ao-iw € ;@Agiw for which we have
pa, ;. Bgip\Agi,) =0 and JGly . >0. (167)

Let i €{0,...n—1} be arbitrary. By Lemma we have forany A, € ‘@Aaiw either

Goio(Agin) € Pa 1y and Gy (Agiy) N (Byisy % (01 = 8,

i+1,
or
Gyigy(Agiy) = (Aai’flw,o x {0}).

In both cases, using Corollary or the Markov Property respectively, we find
for each A,i, € Py , aset A, € Fp , such that

pa, Agio \ Agiy) =0and JGyiyla >0

Write

Agig = |_I Agig
A iwe'@A i
g'w

[

and note pp ; (Agig, \ Agi,) =0and JG,i, |4 . >0, showing our claim.

Now using our claim, construct foreachi € {0,...,n—1} aset Ao.i » satisfying Equa-
tion (I67). Note that we have

pa, B\ (GL) T Agiy) = (GL)xin, (Byiy \ Agiy)) = 0 as (G xpia, < i, .

Then note that
Aw = Aw N---N (Gz_l)_lAa-n—lw,
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satisfies pa, (Ay \ A,) = 0 and that for each i € {0,...,n — 1} we have G};,(Aw) c Ao-iw

by Lemma and that G, (A,) € Fna i, by Corollary Consequently, for each

x€A,NA], wehave
n-1 .
JGh(x) = []UG,i,) 0 G,y (x) >0,
i=0

and pa, (Aw N A;,) = pa, (Ay), proving our statement. O

We now use the positivity found in Lemma5.3.6] to express the Radon-Nikodym
derivative in terms of the Jacobian with the following reciprocal identity. Using this
instead of directly using Lemma[4.3.11] will save us some tedious calculations at the
end of Lemmal5.4.2) which might be the most tedious proof in this thesis.

Lemma 5.3.7. Let (A, %, ua, G) be a random tower system. Then we have forne€ Z-,,
weQ and any A, € @Kw that,

d(Ggla,)«Ha,

JGh((Ghla) (N7 =
dHA

(+), holds pgna,)-almost surely.

Proof. Letn€ Zs;, we Qand A, € 9’” Note that Lemmalmphes that JG]} >
0, pua,-almost surely, so in partlcular ] G” > 0 pa,-almost surely. Lemma“ then
allow us to apply Lemma and obtain a set A, € &, such that s, (A, \ Ay) =

and
d(GJla,)«Ha,

dﬂAU"w

Note by Corollary we have G'(A,), GIX(A,) € Fa,,, and by pbn-singularity of
G} (see Lemmal5.2.4) we then see

i, (Gl (Aw) \ Gl (Aw)) < pa

By bi-measurabilty of G| 4, : Aw — G}(Ay) we can then substitute x’ = (G| Aw)‘l (x)
in Equation (168), which yields

JGMx) ' = (GI(x")), forall x' € A,. (168)

(G2 (Ay\ Ayp)) = 0.

ow

1_ d(GzlAw)*u'Aw

, f € G"(A,),
dpin (x), for every x o (Aw)

JG((G™ 4,) (X))

ow

so that our claim follows. O

For ease of reference, we have rephrased Lemmal5.3.7|for Markov sets using Corol-
lary

Corollary 5.3.8. Let (A, Zp, ua, G) be a random tower system. Then we have for n €
751, weQ andany A, € R that,

d(G$|Aw)*,UAw

JGM(GM ) N = y
Ha

(), holds ua,,,xo}-almost surely.

ow
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Finally, to define the random equivalent to bounded distortion we define the ran-
dom separation time. Note that under this notion of the separation time, we assume
points belonging to different w-sections of A are always separated. Note that in Def-

inition [5.3.9, Lemma [5.3.10| and Definition [5.3.12| we denote for w € Q elements of
A, S X x Z> as a single symbol x or y.

Definition 5.3.9. Let (A, %x, ia, G) be a random tower system. For w € Q we define
the mapping

Ay Ny = Ph,, x— A, fortheunique A, > x.
We then define the (random) separation time on A as the mapping
S:AXA—7Z-yU{o0},

Sw(x,y), incasew=w" €,

0, otherwise.

((w,x), (0, )~ {
where we define for w € Q,
Sw:Ap x Ay — Z50U {00},

(x, ) —inf{n € Zo¢: agny (G (%) # aonw (Gl (M)},

Similar to the deterministic case, the random separation time can give rise to a
metric, making A into a topological space. For the proofs in Section this is not
necessary however. Instead, we merely state that the tower map is expanding section-
wise in Lemma|5.3.10] As the proof is very similar to Lemma we shall refrain
from giving a full proof here.

Lemma 5.3.10 (Expandingness). Let (A, Zx, pa, G) be a random tower system, let n €
Zs1,w€Q, CeRsgandf e (0,1). Then foreach A, € ?}’Kw withx',y' € A, the mapping

dﬁ,C,w Ay x Ay —[0,C]
(x,7) — Cﬁs‘“(x'y),

satisfies foreach i € {1,...,n}
dp,c,510(GoX', G y) = B dp.co(x, ¥)

As said, the mapping dpg c,, in Lemma|5.3.10/above is not a metric unless we as-
sume extra conditions. As such, we shall simply refer to it as the mapping dg,c,.,. We
shall phrase Lemma|5.3.10,conveniently as follows.
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Corollary 5.3.11. Let (A, %a, ia,G) be a random tower system, let n € Z1, w € Q,
CeRs and f € (0,1). Then foreach A, € Z{ and x',y € A, we have

dp,c.omo(Gl(x), Gl (Y = B~ dg ¢ 51, (Gl (X)), GL () fori€{0,...,n}.  (169)

Proof. Let A, € 2] with x',y" € A,. Then note

dp,c,om0(Go(x), Gl (Y)) = B "dg,c.0 (X, ¥, (170)
by Lemma5.3.10jand i € {0, ..., n} again by Lemma5.3.10]
dp,c.ox,y) = B'dg ¢ 51y (GL(x), G, (). (171)

Equation (I69) then follows from substituting Equation (171) in Equation (170). O

Finally, we phrase the random counterpart of bounded distortion.

Definition 5.3.12. Let (A, %5, ua, G) be a random tower system. We say it satisfies
bounded distortionif there are constants C > 1, 0 < 8 < 1 such that for w € Q and each
Ay € Py, we have a set A e F 4, such that s, (A \ A,) =0and

J(G) ()
J(G)(Y)

with dpg ¢, as in Lemmal5.3.10

We can extend Equation (172) inductively. As the proof relies on methods already
shown in Lemma and Lemma in particular we have incorporated it without
proof.

1‘ <dgcw(x,y), foreveryx,yeA,. (172)

Lemma 5.3.13. Let (A, %, ua, G) be a random tower system satisfying bounded dis-
tortion and let n € Z=,. For each w € Q and each A, € Py , we have a set Ay € Fa,

such that prs,(Ag \ A,) =0 and foreachi€{0,...,n—1}

1

, i ) . ;
‘ J(Goin) G () | _ dg c.010(GH(X),GL(y)),  foreveryx,y€ A,. (173)

J(Ggiy) (G (1))
with dg ¢, as in Lemma[5.3.10,

For the readers’ convenience we make the following definition, summarising all
our conditions on random towers so far.

Definition 5.3.14. Let (A, %a, ua,G) be a random tower system. We say it is (acip)
admissible if the following conditions hold.
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Measure-Regularity For all w € Q and all A € 2, with G, (A,) N (Agw,0 X {0}) # @ we
have that

Gu(Ayp) € Fa,,, and that Gyl 4, : Ay — G, (Ay) is bi-measurable,

and we have
(Gol 3 ) xbag, < Ha,-

Markov Property Foreachw € Qand A € 2, with G, A, N (Agw,0 x{0}) # @, the map-
ping G| 4, is bi-measurable onto Ay, 0 x {0} with JG, |4, > 0, 4, -almost surely.

Bounded Distortion There exist constants C > 1, 0 < f < 1 such that for w € Q and
each A, € & ,, we have a set A, € F, such that gy, (Ay\ A,) =0and

JG)W) |
J(G) ()

with dpg ¢, as in Lemmal5.3.10

We say the random dynamical system (Q x X, Zq«x,P x u,S) is (acip) admissible if
we can use it to construct an admissible random tower system as done in Sections

B5.IH5.3]

‘ <dgcw(x,y), foreveryx,yeA,. (174)

5.4 AnAcip In The Quenched Case

In this section we shall assume every random tower system is acip admissible

The main result of this section (and of this thesis) is the Theorem phrased below.

Theorem 5.4.1. Let (A, Fp, n, G) be a random tower system, then there exists an M €
R>1 and a probability measure v on A such thatv < u,, dd_va <M, up-a.e., and G,v =
v. That is, there exists an acip v for (A, %, ua, G).

As we have already developed all other measure-theoretical and functional an-
alytic machinery, the main goal of the proofs of this section are to show that for a
random tower system (A, %, pa, G), we have an M € Rs; such that for all w € Q and
n € Z-o we have

d (Gg.l—nw) *IJ’AU—Vlw’O x{0}
dy’Aa"w

<M, pa,n,-almostsurely,

d(Gg*”w)*“AU_”w,O x{0

}
I , we shall par-

which we shall do in Proposition|5.4.6| In evaluating

ow

aG"_ )*HAgfnw,Ox{O}

)

dpa

tition its domain A,», and evaluate on each floor individually .

o w
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For the set A, o x {0} we prove an adaptation of Lemmausing Markov sets mak-
ing us obtain the bound in Lemma(5.4.2] We shall relate this bound to higher
floors using Lemma|5.4.5, and combine our knowledge to obtain the promised uni-
form upper bound in Proposition|5.4.6

Lemma 5.4.2. Let (A, F, s, G) be a random tower system, let n € 7>, A € { and
w € Q such that we have Ag-n,, € %Z-nw. For up, -almost all x € Ay o x {0}, the density

_ d(Gg—nw |Ag‘nw)*uAa_”w

Ag-ny i= satisfies
d,LtAw
1
M“Ag—nw (AU‘"w) = (PAU—nw (x) = MIJ'AU—nw (AJ‘"w)» (175)
where M € R is independent of w, n, A and x, and
ba,-n,(X)=0 forpup,-almostevery x € Ay \ Ay, % {0}. (176)

Proof. For notational convenience we shall write @ := 0~ "w. Keeping Lemma 3.3.4]
in mind, we start with constructing a set Ag € F 4, such that p s, (Ag\ Al =0 upon
which we can apply the random equivalent of the chain rule in Lemmal5.2.4} bounded
distortion as in Lemmal5.3.13|and reciprocal identity of Corollary|[5.3.8|

As Aq € ), we have by Corollary[5.3.4]that

GZlAa tAg — Aw,o x {0}

is bi-measurable. Furthermore, as we know (Gg)«ta, < pa, by Proposition [5.1.9|
we can apply Lemma[A.1.3]to show (G}f| a,)xa, < Ha,, and allowing us to make the

definition
_ d(GZ|Aa)*,UAa

()bAa : dqu
Now, using Corollary we then obtain a set (A, x {0})' € Fa, ,x0}, SO that
pa, Ay x {03\ (Ayo x {0})') =0 and

P, (2) =JGL(GEa) ()7, (177)
for each z € (A0 x {0})". Furthermore, by Lemmal5.2.4)we can find a set A}, € Z5,, 0
that ua, (Ag \ A,) =0 and

n—-1 .
J(GH(x) = [[UG,ia) 0Gh(x) for x €A, (178)
i=0

Lastly, by Lemmal5.3.13|we find an A}, € %, with pa, (A4 \ A}) = 0 such that for each
ie{0,...,n—-1}
|](Ggia)(Gfx (x))

. -1
J(Gyig) (G (1)

< dg ¢ 4iq(Gy(x),GL(y), foreveryx,ye Ay, (179)
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In writing Ag := (G 4,) " (Aw,0 x {0)") N AL, N AL, we then have that
fa, (Ag\ Ag) = pa, (Ag \ (Gl 4,) " (Ao  (OD))),
as ta, (AL, N A)) = ua,(Age) and more so

pa,(Ag\ Ag) = tia, (GMa) " (Apo x 0D\ (G2 a,) "  (Awo x 10D
< (GHa)wla, (Apo x {01\ (Mg, x {01
=0.

As Ay € F 5, the mapping G}l 5 : Aq — Gl (Ag) is bi-measurable by Lemmaitem
2. Moreover, by pbn-singularity of G;, we have as A, o x {0}\ Gg(Aa) € GJ(Ag\ Ap) that

pa, Dw0 x 01\ Gg(Ag)) < (G ")« in, (Aa \ Ag) = 0.
For any x, y € G(A,) we then have unique elements
x',y' € Ay such that X' = (G}]; )™ (x) and y' = (GJ14,) " (7).

By Equation we then have ¢4, (x) = J(G")(x") ™! and ¢4, () = TG (¥ L
Finally as A, € A, We obtain

dp,cox,y) =B dg ¢ 5i14(GLX',GLY) for i €40,..., n}, (180)
by Corollary[5.3.11] Combining our efforts, we see

'10 (cpAa(x))’ _ ‘10 (](GZ)(y’))’
e &\ 7Gm o)

1o UGy (GL(Y'
_ log(H,:_OI(] gia) q(y))) 181)
174 UG,ig) (G (x))
n—-1 . i,
< Z - (]Gg:a)(Gq(y)) (182)
i=0 UG4ig)(Gg(x")
n—-1 . .
< 2 dpcoia(Ga (X)), Go (1)) (183)
i=0
n-1
<dpcw®y) ) B (184)
i=0
dﬁ,C,w(xyy)
< B2 1
=15 (185)

In Equation (181) we used Equation (178); in Equation (182) we used |log(z)| < max(|1-
zl,|1 - %I) and |log(z)| = |log(%)| for z > 0, and in Equation (183) we used Equation
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(I79); and in Equation (I84) we used Equation (180). As Equation (I85) holds for
general x, y € G"'(A,) we can see that for all x, y € G'(A,,) we have

dp,c.w(X, ) dp,cu(x, )
log(('bA“ (x)) < PCo Y and log(('bA“ (y)) < PCo Y . (186)
$a,y) 1-p b4, (x) 1-4
Exponentiating both equations in line yields
1
M(pAa (V) =pa,(x) = Mpa,(y), (187)

C_ .
for M := e'-F, so that M > 1. Integrating (187) with respect to y on G} (A,) shows
1
]\—/IIJAa,Ox{O} (Aq) = pa, (x) = Mpna,  xio} (Aa),

as Uagox (0} (Aa) = Hagox(0}(Aa) and pia, oxio)(GR(AQ)) = fayox 0} (Dw,o x 10}). Substi-
tuting 0~ "w = a back, we obtain the statement in Equation (I75). As for Equation
(I76), note that (Ay \ Ay x {0}) NG (Ag) = @ as Aq € 1, using Corollary[5.3.4] As
Gll(Ag) € Za, by Corollary we can apply Lemma and derive Equation
(175). O

Similar to the deterministic case, in order to find an acip, we now need to obtain
an uniform upper bound for a density associated with the tower map, here

d(G™) 4 tagx {0}

JforanyneZ;.
dpa Y !

As we are working directly on the tower our analysis starts deviating significantly from
the deterministic case however.

First, we need to wrest thorough control of densities associated with the tower
map. To do so, we shall in Lemma verify some statements on absolute conti-
nuity to make sure we can define these densities to begin with. Here, we shall also
introduce the set A for [ € Zs(. Technically, this set is dependent on a specified
w € Q and n € Z( but we have omitted this for notational brevity. This set contains
all information of floor [ of A for which for a given w € Q we expect the density

A(G -y Ay o 0 * KA -n,,
dﬂAw

to have a non-zero value. In Lemma we show some elementary properties of
this set. In Lemma we shall then calculate an upper bound for

d(Ggf,fwlA(z))*,uAg—nw
leAa_lw .

127



Importantly, as we offset A against Gg:,f, we shall for this only require Markov sets

for which the bounds obtained in Lemmal5.4.2suffice. Lemmal5.4.5/then shows how
this relates to the density
A(Gl-ny, | A0)x KA,
dua,

After combining these statements into a more general upper bound in Proposition
[5.4.6/we are ready to prove the main Theorem of this text.

The key concept in Lemmabelow isthatforl € Z-;, w e Qand (x,0) € Aw,o X
{0} we can only have G/ (x,0) € Agyig, x (I} if for all i € {1,...,1} we have G, (x,0) ¢
Dgigy,0 % 10}.

-ng

Lemma 5.4.3. Let (A, Fa, ua,G) be a random tower system and let w € Q, n € Zs,
le{l,...,n}. Define
AD = (Gl |-y gxi0) " (Do x {11

Then we have
AD = (Ag-nawo x 0D NG LAy x 100 € Fayny GEoL L (AD) € Fn, 00, (188)

—ng

and

(Gg’i,fwlAm)*uA,,_nw K Uy, %10} ANA (G-n gy | AD) % A, -n, < HAy %11+ (189)

Proof. First note that by Lemma(5.1.13|we can derive (using I’ = 0) that G ! 1, Do, X
{1}) = A1 x {0}. Using this we see

A = (G2 |6y -y 0 i) (Dt X A1)
= (G |8y -y gx10) (D1 X {0D)
= (Ag-na0 X 0N NG, L (A, 1 x (01 € Fa,

“ng —Ng*

Moreover, we note that by Lemma|2.1.23|we have
G, (AD) = GI)  (Bgrw,0 % 0D N (Ag,; X 10} S Ayt 0 % {0}
To show Equation (189) we note
AD G (Dyyx (1) and AP € G LA, x {OD).

Equation (I89) then follows from LemmalA.1.3] O

The following Lemma is the first step towards obtaining an almost surely uniform
upper bound for densities of Q-sections of random tower maps.
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Lemma5.4.4. Let (A, Zp, ua, G) be a random tower system, let M € R~ be as in Lemma
[5.4.Fand letw € Q, ne 7o, and1€10,...,n}. Let A be as in Lemmal5.4.3 Then we
have for each A € ng_lw

A(GIZL 1aa) wpia,
L g ! AW I* ‘” (x, l’) d/‘lAg—lw (x, l/) < M,uAg_lw’Ox{o} (A). (190)

d'uAU_lw

Proof. First note that for the case n = [, Equation (190) can be rewritten as
LHA("] (xy l,) duAU—nw (x) l/) = MuAa_nw,()x{O} (A))

foreach A€ Fa__, . As we know M € R.; and A" < Ag-n, 0 x {0} this is immediate.
Now supposing 0 < I < n, we shall derive our bound through the bound obtained
for Markov sets in Lemma5.4.2] using Equation in Corollary[5.3.4] To start, de-
fine
R = || K
Kez"!

and note that we have
AD = (Ag-np o x 0N NG, LA, (O) Using Lemmal5.4.3
< (Ag-nw,0 x {01 N G;Ilr-l‘;i(Ao-—lw,O x {0}) Using Lemmal5.1.13
=R~ ! w’ Using Corollary

Now applying Lemma we have
(GgfrfwlA(lJ)*,UAg-nw <K HA,, % {0}
and so by LemmalA.1.2Jwe then have

_ n—I
d(Gg_y{wlA(l))*lJ,AU_nw - d(Ga'*n(ulR;l:Lw)*lJAg—nw

le/A(Tilw - dMAO'ilw

,uAaflw-almost surely. (191)
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Now note that for arbitrary A € gAf ), We have

[ d(G"Z} 1) k-,
A dpn

(x,Ndpa_, (x,1)

_l(,()

<

d(Gng{wlR"j, )*,UAJ—nw
f L (x, I dpa_, (x,1")
A o w

d'qu_lw

n—1
~ f d(Go.—nw|RlVTl:’l1w)*IJAo—nw
Apx{0}

i (x,Ndpa_,, (x,1) (192)
U_lw
dA(G™! 1K)«
= f oo KB hara gy dpn (1) (193)
ke, < A0x0} dpa, ., o
= 2 M-pa_, (Aox {ODpa, n, (K) (194)
Ke®",
<M- MAU_,wyox{O}(A), (195)

where in Equation we used LemmaA.1.1jand G~} (AP) € Z5 | o) as seen
in Lemmal5.4.3} in Equation we used Lemmal[2.1.20|and the Monotone Conver-
gence Theorem; in Equation we used Lemma5.4.2} in Equation we used
Rl < Ag-nw,o x {0} so that

,UAU—nwyOx{O}(Rg—_rfw) S HAy-ny o x 10} (Bo-n,0 X {0}) = 1,
proving our claim. O
Conceptually the rest of this section will rely on Corollary|5.1.14

Lemma 5.4.5. Let (A, Fa, ua,G) be a random tower system and let w € Q, n € Zs,
le{l,...,n}. Let AY be as in Lemma Then we have for each A x {l} € Fp, x
that

A(Gl | A0« A ,-n,, 4% (0}
L " g W 0 (x, l,) dqu,lX{l}(x’ l,)

AR, >
~ f (N I T
Ax{0} dpa,, <10}

(x, 1) dpn,, 0y (x, 7). (196)

Proof. We shall use LemmalA.1.6|and quickly verify its conditions. By Lemma5.4.3
we can write
Gl law AP = Ay x {0},
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and have (Gg:,waAu))*uAHw < A, x{0}- BY Corollary|5.1.14/we know

l
Go‘lw

|Ag, %10} A 1 X {0} = Ay g x {1}

is bi-measurable and satisfies

I
<10} = (G__; JxHa, x{0} = KA, =1}

cr‘lw

1
(Gt lagxi0)x By,

Combining the above we can see that on the composition G, [y = G(lI _ ,woGgi,f wlaw
we can apply Lemma and obtain for ua, ,«(;-almost every (x,1) € Ay, x {1},

A(Gl_, I AD) < Ay, o x (0} A(GZL 1A %A, n, o0}
- —(x, ) = — = —(G L, (D).
apn, xii apa, %0}

Note this implies that for each A x {l} € gAw, ,x{1y we have

dG"_, | D) * A, -n, o0}
f l o "wA 2 (x, 1) d,qu,lx{l}(X,l,)
Ax{l}

ApA, 1)
f d(G"=! 1w )5 A 1y 0 % {0}
Ax{l} d,quJ x {0}

(G, @ 1) dpa, ey (6, 1)

d(Gn__,{ |A(l])*ﬂA07nw x {0}
:fA {0} — - (x, 1) dpa, <10y (x, 1),
x{0

apa,, xo)

G2l 1) %HA —n,, 010}

A n

7w 7 @0 |, <1)and Corol-
dpa,, ;0

lary|5.1.14]in the last step, proving Equation (196). O

Proposition 5.4.6. Let (A, Fa, ia, G) be a random tower system, letw € Q, n € Zsy and
let M € R>, be as in Lemmal5.4.4, Then we have for each A€ F,,,

d(
where we used Lemma|2.1.10[(applicable as ||

d(Gn—n |A -n, 0*x{0 ) Ay-n
f o "w Zo7 w0 {0} *M o w SMIJAM(A)-
A

dpa,

Proof. Let A€ %y, be arbitrary. First note that we have

G;l—nw(AU*"w,O x{0}) = U Aw,l x {1},
lefo,...,n}

so that in writing

As, = AN

U Aw,l X {l}) ’

I>n
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we have G”_,, (Ag-nu,0 % {0}) N A>,, = @. Hence, by Lemma

f d(Gg—nw|Ag—nw,0><{0})*/~LAg*"w
Asn dpn,

(x, I dpa,(x,1') =0.

Proceeding, we see

A(Gl -1y Ag-ngy o x (0D % KAy,
fA dun,

n A(Gl-n iy | Ag-ngox 10D % Ay,
luzofA,,, x{1"} dua,

o A(Gl-n iy | Ag-neox 10 % Ay,
B fAl,, x {1} duna,

(x, 1) dua,, (x,1"

(x, 1) dua, (x,1)

(x, ll) dﬂAw,l” < {1"} (xy l,)'
I"=0

Recapping the definition A?") := (G2 |8y o x101) " (A, x {1"}) from Lemma 5.4.3

we then see using LemmalA.1.1|that

n A(GL -1, | Ay o x 101 % Ay,
fA il dua,,

1 A(G) | nam) xHa
OfA,,, x{1") Apn, wxiy

(x, l,) dqu,l” x{l”} (xy l,)
I"=0

T, 1) iy (6 1).

1=

Finishing our proof we then see that,

n f d(G;-l—nw|A(l”))*,uA
Aprx{1"}

o (x,1') Apin,, iy (%, "

1"=0 dqu,lHX{l”}
n d(an” ) * A, -n,,
_ f 0wl (5, dpns, (61 (197)
1= Ay x{0} d:qu,l// x {0} ‘
n d(GI=1 | ) wba,
— f o "w A(l ) *IJAU w (x’ ll) dIJAw l,,x{o}(x, l/) (198)
17=0Y Ay x{0} d”Ao_l//w '
n d(anrfﬂ | " ) -n
— f g "w!'AUD *I’I‘AU ) (x’ l!) duA » (x’ ll) (199)
1= Ay x{0} duAg_l”w g @
n
<Y Mus , (Apx o} (200)
1"=0 oMo
n lH
=) MGy I8, pxto)xba _n (Ap x (1"} (201)
1"=0
n
= Y Mpp, yoiin (Ap < {1") (202)
1"=0
< Mpa, (A),
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where in Equation we used Lemma [5.4.5} in Equation we used Lemma
A.1.4} as A, x {0} € A__ by Lemma in Equation we used Lemma
A.1.4} in Equation we used Lemma [5.4.4} in Equation we used Lemma
and in Equation we used Corollary[5.1.14] This proves our claim. O

We can now combine all our work in the following theorem. That is:

1. Proposition provided us with a uniform upper bound for the density of
the sections of the tower map.

2. Lemmaf[4.2.9|will then allow us to claim the bound holds for the density of as-
sociated with the tower map itself as well.

3. Proposition will then supply us with the necessary convergence result to
obtain our acip for (A, Za, ua, G).

Theorem 5.4.7. Let (A, Fa, ua, G) be a random tower system and M > 1 as in Proposi-
tion|5.4.6, then there exists a probability measure v on A such thatv < U, dd_va <M,
ua-a.e., and Gyv =v. That is, there exists an acip v for (A, &, ua, G).

Proof. First note in Lemma we proved that (A, %, pa, G) is a random dynami-
cal system. Moreover pa(Ag x {0}) = (P x u)(A) = 1. Firstlet A€ %5 and n € Z5( be
arbitrary. Note that by Lemmal4.2.10/we have

fQ pa, (Aw) dP(@) = pa(A),

and by Lemma4.2.7
d Gn X d Gn X
f G bioox0) () ) g ,0) = f f G ebiooxt0) () oy s, () dP().
A dpa alJa, dun

Note that according to Lemma we have for almost every w € Q that for each
Be 9Aw that

d (G(’Tl_nw)* 'UAU*”w,OX{O}

d,qu

[ (G ka0 () dpes,, ()
B ’ |

}
D) dpa, () = f
diin (w, x) dpp,, (x) -

Furthermore, as (Gg—nw)*:uAg—nw,ox{O} = (G(’;_nwlAU_”w,Ox{O})*qu we can write

f d(Gg—nw)* ”Aa—"w,ox{O} f d(Gg_nw|A‘7_nw'ox{0})*”Ag—nw (x) d,UA (x)
B o

(x)dpa,(x) =
dpia, Hiu B dpa,

By Proposition we then have for each w € Q that

d(ann |A0—nw X{O})*“Ao_"w
fB o "w 0 (x) dua, (x) < Mup, (B).

dpa,
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To conclude we see

fﬂ( w,x) dpa(w,x) = ff M( w, x) dpia,, (%) dP(w)
A dpa ,u

d(GIn,), 1A ,-n, ox (0}
f f o) °— (x) dpta,, (x) AP (o)
Ao dpa,

<M [ s, (o) dP()
Q
= Mun(A).

. . . d(G™) x
As A € &, was given arbitrarily we have W

Consequently, for n € Z>, we have ua-almost surely,

< M, up-a.e.. for each n € Z5,.

17 d(G™) w0y

<M.
nizo dpin
We can then apply Proposition to infer
ng—1
— Y Gl pagxiop — v set-wise as k — oo,
Nk i=o

for some strictly increasing sequence (ny)x=o and a finite positive measure v on A,
with v <« ua, and j—JA < M. We can then see by set-wise convergence

n—1
= — Y Glhagxo(8) = v(d) as k— oo,
Nk i=o
so that v is a probability measure. Finally note that for general A € %, we have
ny—1 ng—1

1
V(A) = Gxv(A) = lim — Z G pia, (A) - Z G pa, (A)

k—o0 ﬂk
= lim —(pAO (A) — ta, (G (A))
k—oo N
=0,

proving the invariance of v. We have shown our statement. O

5.5 Shattered Measures

When dealing with measures associated with RDS’s it is usually convenient to dis-
integrate measures over the random dynamic and the base dynamic. Within exist-
ing theory random measures are usually used to fulfil this purpose. These objects
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are well-studied but have two shortcomings: firstly as existence of the disintegration
usually relies on the topological assumptions on the RDS and secondly as the fibers of
their disintegration must be probability measures. Both these conditions can make
it hard to use these objects in our situation.

Alternatively, if we have a measure on an RDS that is absolutely continuous with
respect to the overlying product measure, we can ‘disintegrate’ said measure in such
a way that we are not faced with either of the previously mentioned constraints. As
this method is different than what is commonly understood as a disintegration we re-
fer to it as a shattering. We remind the reader that for a measurable space (X, #x) the
spaces 4} (X), 4™ (X) denote the positive measures on X and positive finite mea-
sures on X respectively.

Proposition 5.5.1. Suppose (Q, %q,P) is a probability space, (X, ZFx, 1) is a o-finite
measure space and let (A x X, Fqxx,P x ) be their product measure space. Suppose
we have a measurev € M+ (Qx X), withv < Px u and let d
of the Radon-Nikodym derivative of v with respect toP x . T hen the mapping

v:Q— M (X) (203)

Vo Fx — 0,00]

@ Afﬂ()
XAxd

is so that for each A € %x the mapping w — v,(A) is Fq-measurable and v.(A) €
LY (Q). Moreover we havP-almost every w € Q, v, < p with

de()_ dv @)
dp = dPxp

dzu(w,x) du(x)

andv, € H*(X).

Proof. Note that by Proposition for each x € X the mapping

w —

P x (w, x),

is Z#o-measurable. By the Radon Nikodym Theorem [2.1.11) we then see that v,, €
MG (X) and v, < 4, w1th ( )= dPX” (w,-). Moreover for arbltrary A€ Fx we have

Taxa € L'(v) so that by Lemma A.1.7|Item (3) we have gy - d(l]:"x,u) e LY(P x w. By
Fubini’s Theorem[2.1.8we then see that

v.(A) : Q — RU {oo}

wa Toxa(w, x) (w x) dp(x)
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is Zq-integrable. In particular, note that this implies w — v, (A) is integrable and
hence also measurable. As, again by Fubini’s Theorem 2.1.8, the mapping

X+— (w, x)

dP x
is in L!(X), P-almost surely, we see that (again) by the Radon-Nikodym Theorem
2.1.11/we have v,, € .4 * (X), P-almost surely.
O

Theorem 5.5.2 (Disintegration Theorem - Existence and Uniqueness). Suppose
(Q,Zq,P) is a probability space, (X,%x, 1) is a o-finite measure space and let ({2 x
X, Zaxx,P x ) be their product measure space. Suppose we have a finite measure
ve U (QxX), withv <P x u. Then a mappingv.:Q — 43 (X) as in Proposition
[5.5.1] satisfies for each f € L' (v)

f(w,x)dv(w,x):fff(a),x)de(x)d[P’(w). (204)
aJx

QxX
Finally, the equation

f Vu(Ap) dP(w) =v(A) forall Ae Fqxx, (205)
Q

defines the mapping w — v, uniquelyP-a.s..

Proof. Our proofrelies on the standard machinery. First, to erase any doubts on mea-
surability, let B € &g x and we prove that we have w — v, (By) € LY(Q). To do so, we
note

Vw(Bw)=fX1]Bw(X)d

=f 1]B(w,x)
X

d[P’y

dv d
P u(w,x) u(x)

(w, x) dp(x). (206)

e L1 (Qx X).

Now as 1g € L!
Integrability with respect to P of

(Qx X),weseelp:

dqu

w V(B)—fﬂ(w ) dv (w, x) dp(x)
ww—XB ,deIJ » X Mx,

then follows from Fubini’s Theorem[2.1.8] Now note we have
f f Tg(w, x) dvy(x) dP(w) = f Vo (By) dP(w)
ffﬂg(w X)——— (w x) du(x) dP(w)
=v(B)

=f 1p(w, x) dv(w, x),
QxX
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using Fubini’s Theorem
For an arbitrary simple function s = Z?;OI a;lp;, with B; € Fqo.x, a; ER,0=<1i <
n—1, wethenseeas se L' (v):

n—-1
f s, x)dv(w,x) = )Y a;v(B))
QxX i=0
n—1
=Y ai| Vo((B)w) dP()
i=0 Q
n—1
_ f Y i | sy, () dve () dP(w)
Q=0 X
n—-1
- f Y ai | 150, dve(x) dP)
Q=0 X

_ f f s(w, ) dvy(x) dP(w) (207)
QJX

so that Equation also holds for simple functions.

General integrable functions f € L!(v) can be split into a positive and negative
part f*, f~ € L' (v) respectively, both of which we can approximated by simple func-
tions, that is, there exists sequences of simple functions (s,,) n=0, () n=0 S L' (v) such
thats, 1 f*, r, 1 f~ pointwise as n — oco. Knowing this, it is easily seen that

flw,x)dv(w,x) = supf sp(w, x)dv(w, x) —supf rm(w,x)dv(w,x) (208)
QxX n=0JQOxX n=0JQxX

:supffsn(w,x)de(x)dp(w)
aJx

n=0

—supff rp(w, x) dvy(x) dP(w) (209)
n=0JQJX

:fff(w,x)de(x)dﬂj’(w), (210)
QJx

holds, from which we conclude that Equation (204) indeed holds. In Equations (208)
and (210) use was made of the monotone convergence theorem whereas (209) relies

on Equation (207).
Finally, as for uniqueness suppose we have two mappings w — v,,, w — v/, both
satisfying Equation (205). We can see that for any A € #x and for any O € % we have

wa(A) dP(w) =f V(O x A)y) le’(w)=f Ve (0 x A)y) le’(a))=f Vi (A) dP (w),
0 Q Q 0

S0 Vy(A) = v, (A), P-a.s. for any A € Fx. So w — v,, is indeed defined uniquely P-a.s.
by Equation (205). O
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Definition 5.5.3. Suppose (2, %q,P) is a probability space, (X, %x, ) is a o-finite
measure space and let (Q x X, Zqx x,P x ) be their product measure space. Suppose
we have ameasure v € 4" (Qx X), with v < Px u. We call amapping v. as in Equation
a shattered measure and for each w € Q we call v,, a shard.

Remark 5.5.4. As in Theorem [5.5.2] any version of the Radon-Nikodym derivative

dv dv ! _dv "
i satisfies Equation (205), we can see that any two versions dPX ik dPX m give

rise to shattered measures v/, v respectively for which we have v/, = v/}, P-almost
surely. This means that shattered measures constructed for some v are unique up
to a P-measure zero set. As all claims on shattered measures we make hold up to
a P-measure zero set we shall speak of the shattered measure v. when we mean its
naturally induced equivalence class.

Remark 5.5.5. Strictly speaking we do not require (Q2, %q,P) to be a probability space
- even a o-finite space will yield the same result as long as v is a positive finite mea-
sure. We shall, however, not encounter this and hence we impose P(Q2) = 1 in Defini-

tion5.5.3

We will typically want to think of shattered measures in the context of Random
Dynamical Systems and we shall give an elementary example. We remind the reader
of Remark[4.2.4l

Example 5.5.6. Given a random dynamical system (A, %a, ta, S), we naturally have
pa < P x p so that by Theorem[5.5.2] we obtain a shattered measure p,,.. Note then
by Proposition we have for each A € #, that w — u((An A),) is Fq-measurable
and as u((An A)y) < p(Ay) we have [[u((An A)) 1 q) < (P x p)(A). Consequently, we
may write

fQHA,w(Aw)dP(w)=HA(A)=fQ,U((AﬂA)w)d|P’(w)=fQqu(Aw)d[P’(w),

so that by Theorem 5.5.2 we can see pia , = pa, holds P-a.s.. Using this, we can for
instance see that Lemma [4.2.9 immediately holds, again using the disintegration in
Theorem Moreover, any statement in Section [4.2] on densities can be phrased
in terms of shattered measures.

Lemma 5.5.7. Let (Q2, %q,P) be a probability space, (X, Zx, 1) be a o-finite measure
space and let (Q x X, Fqxx,P x 1) be their product space. Now suppose we have v,1n €
MT(Q x X) such that v < 11 < P x u. Then we have for P-almost every w € Q that

Vo K1) and

d
&( )= —(a), 1), Nw-almost everywhere.
dne
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Proof. First as n < P x u we have a set Q € %o with P(Q\ Q) = 0 and for each w € Q

i ()= dgz o (w, ), u-almost surely, by Proposition(5.5.1} Similarly, due to Proposition

5.5.1|we can find a set Q € Fo with P(Q\ Q) = 0 such that N Vo € A" (X) for each
w € Q). Then note that for w € QN Q) we have for arbitrary A € Fy,

v(A)—f D 0,0 du)
® _AdIF’X/,Lw’X w(x

= _(w) )

dn dIP (w, x) dp(x)

f an —(w,x) - —(x) du(x) asweQ
=| —(w,x)d .
fA an (w, x) dne(x)
As A € Fx was given arbitrarily, we see in particular that for € QN <) we have

Ane(x) = vy (X) <oo,

'dv( )
—(w, x
dn

1mply1ng (w ) € L'(X,n,,) and so by Theorem|2.1.11{we have v, < 1, and Z—;’](w, )=

de 2(), M- almost everywhere, for each w € QN Q. O

To close our discussion on shattered measures, we show how invariance of shat-
tered measures and bounds on densities of shattered measures carry over to their
shards.

Corollary 5.5.8. Let (A, Zp, ua,S) be an RDS with o : Q — Q measure preserving. Fur-
thermore, suppose we have an acip v < pua on A. Then for P-almost every w € Q we
havev, < ua, and

ﬂ( x) = dVe
dpa “x dpa,,

(x), forpua,-almosteveryx € A,. (211)

If additionally we have an M € R such that - TN dv_ < pp, ua-almost surely then

dav,
dpn

(x) =M, forpun,-almost every x € A, (212)

w

and if Syv =v, then
(fw)x Vo = Vo, P-almost surely. (213)
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Proof. As seen in Example we have pup < P x u. As v < up, Equation (211) then
follows directly from Lemma
Assuming we have M € R such that f—lfA, ua-almost surely, the (%-measurable)
set
dv
Y .= {(w,x) eEN—(w,X) > M},
d HA
has pa(Y) = 0. Using Theorem we then have pa, (Y,) =0, on some set Qy € Fq
with P(Q2\ Qy) = 0. Furthermore, by Lemma we have a () € #q such that P(()) =

P(Q) and that for each w € Q we have d%(a),x) = %(x) on some set x € A, with

ta, Ay \ Ay) = 0. We then note P(QAN Qy) = P(Q) and that for each w € AN Qy and
A€ Fp, we have

f av,
AnAyn(Bp\Ye) AlA,

fA ;;:w () dpa, (x) = (20) dpa, (x)

dv
_ f | (w0, 0) dpa, () (214)
AnAyN(A\Y,) AUA

< Mup,(ANAy N (Ay\ Yy))
= MMAw (A))

Vo

which shows dleA < M, pa,-almost surely on the set QN Qy which has measure
w

P(Q) = PN Qy), proving Equation (212).
Finally assuming S, v = v we shall exploit the uniqueness of shards to prove Equa-
tion (213). To do so, let A € Zq« x be given arbitrarily and note

fQ Vo (A,) dP() = v(A) (215)
= (SV)(A)
= fQ Vo (ST A)y) dP (@) (216)
- fQ (fo) Vo (Age) dP(©)
= fQ (fr-10) % Vo1 (Aw) dP(w), (217)

where in Equation (215) we used Theorem |5.5.2} in Equation (216) we used Theo-
rem and in Equation (2I7) we used Lemma [2.1.10| with the invariance of o1,
showing Equation (213) by the uniqueness condition phrased in Theorem O

As an application to shattered measures we state the following consequence of
Theorem together with Proposition5.5.8
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Corollary 5.5.9. Let (A, Fa, ua, G) be a acip admissible random tower system and M €
R, as in Theorem|[5.4.7, and let v : Fx — [0,1] be an acip for (A, Fa, ua, G). Then for
P-almost every w € Q we have v, < Ua,,

dv dv,
—(w,x) = (x), forpa,-almost every x € A,
dua dpa,
and
dv,
(x) =M, forpun,-almost every x € A,
d,LlAw
and

(Gw)x Vo = Vouw-

Returning to the original problem we indeed obtain an acip for our skew product
S as in Section 4] We remind ourself that an acip admissible random dynamical sys-
tem is a random dynamical system for which we can construct a random tower, that
is measure-regular and satisfies both the Markov Property and bounded distortion.
In particular, we can apply Theorem to this random tower. We shall now show
how we can use this to find an acip for our underlying system.

Corollary 5.5.10. Let (O x X, Zqxx,P x 1, S) be a random dynamical system that is
acip admissible. Then there exists an acipn on Q x X and a shattered measuren.:Q —
ML (X) such that for almost every w € Q the shard n,, is a probability measure with

(gw)*nw =Now-

Proof. As (Qx X,Fqxx,Px pu,S) is acip admissible we can construct a random tower
system (A, Za, ta, G) on (Q x X, Fqxx,P x u,S) for which, by Theorem |5.4.7} there
exists an acip v < pua so that j—uVA < M pa-almost surely, for some M € R;. We show
this induces an acip on (Q x X, Zqxx,P x i, S) using the mapping
T A—QxX
!
(@, x,0) = (0,8, (x)).

We claim 7 := 7, ua is an acip for (Q x X, Fq«x,P x u,S). First we prove 7 is measur-
able, and let A € Zq«x. Note that by definition of 7 we have 7 1(A) cA. Proceeding,
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we see,

A = {(w,x, ) eA:n(w,x,]) € A
={@x,Ded:g, ()€ A
= | {wxeaxX:g , (€A xe€N,1,}x 1]}
lEZzo

= | ] o, eQxX:S 0 'w,x) e A (0 w,x) e A}y x {1}
lEZzo

= | ] (0,0 eQx X: (1) eah(ST (A NN} x {1}
lEZzo

= || oLST' A nA) x {1} € Faxx,
IEZZ()

so that 771 (A) € Za.
As for absolute continuity of n with respect to P x y, assuming P x u(A) = 0 we see

pa ) = pa| L o567 N A x (1)
lEZzo

= Y ualehS AN Ax (1)
lEZEQ

= Y PxwehS AN
€75

=Y PxwES'Wna (218)
l€220

< Y Pxws$'a
leZ5

= Y sl®xwa)
leZ5

=0, (219)

where in Equation (218) we used the invariance and bi-measurability of o as seen
in Lemma and in Equation (219) we used the non-singularity of S as proven in
Lemmal[4.2.21

Finally, we show 7 o G = So . Namely, note for (w, x, 1) € A we have

ntlow,x,[+1), R,-1,(x)>1+1

now,gl (0,0), Ry, (x)=1+1

(o G)w,x, 1) = {
= (0w, g} ()

= (Som)(w,x, D),
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so that 7o G = Som holds. For general A € g x we then see

Su(Txpin) (A) = pa(mr1(S71A))
= pa((mo G~ A)
=4 ua(A),

proving invariance of 7 = m, ua under S.
Having proven that n < P x u and S, n = 1) we see there exists a shattered measure

7. for n by Definition (and Proposition to be precise). Corollary then
yields our result. O

5.6 An Example

We shall now showcase the quenched approach by applying the theory of Section|5.4]
to a random dynamical system with a non-mixing ergodic driver, namely the irra-
tional rotation from Example[2.1.3] For our definition of the irrational rotation of the
circle (Q, %q,P,0p) over some 6 € R\ (, we have based ourselves on the conventions
as seen on Page 16 of [23]. We give some further explanation in subsection below.

5.6.1 Conventions made for the (irrational) rotation

We define an equivalence relation ~ on R such that for x, y € R we have
X~yox—-yel.

Define 7 : R — R/Z as its quotient mapping. We then define Q := R/ ~ and endow
this with the quotient topology .. We then naturally have a quotient metric. More
specifically, if we let dr denote the Euclidian metric on R we can define the quotient
metric as

d([x],[y]) = inf{dr(u, v): u€ [x],v € [y} for [x],[y] € Q}.

Equipping Q with J_ yields a compact topological space. More so, for each x € R
we can represent its equivalence class [x] by x — [x] € [0,1), so that we can write Q =
R/Z=10,1).

As for the o-algebra &g on Q, we can define

Fq:={AcQ:17(A) e BR)},

as the push-forward o-algebraof the Borel o-algebraZ8(R) on R. In denoting m for
the Lebesgue measure on the real line we can define the Lebesgue measure on the
circle as

P(E) = m(n ' (E)n[0,1)).
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The measure P is a probability measure which is invariant under the operation oy :
[0,1) — [0,1), x — x+6 mod 1. It is well known that (Q, Zq,P,0¢) is a uniquely er-
godic dynamical system (e.g. as seen in [10, Example 7.2.1], for a definition of unique
ergodicity, see Definition[5.6.I). Lastly, we define, given a, b € [0,1) with a # b the
open interval (a,b) < [0,1) as

(a,b), a<pb
(a,b) = ,
(ayl)u(oyb)) a>Rb)

where with < g and > r we mean the natural ordering on R. The open intervals in
[0,1) are open (contained in 9.) and measurable. We shall now very briefly explain
the ergodic property to prove Lemma below. Namely, for irrational 6 € R the
rotation (QQ, Zq,P,0q) is uniquely ergodic as defined below.

Definition 5.6.1. [10, Section 7.2] Let (X,%,A,T) be a dynamical system with X a
compact metric space, (X, %8, 1) the standard Borel space with the Lebesgue measure,
and T : X — X a continuous transformation. If there exists only one T-invariant
probability measure we call T uniquely ergodic.

In our case, we shall use unique ergodicity in that is strengthens typical theorems
such as the Pointwise Ergodic Theorem in obtaining a claim that holds everywhere
instead of just almost everywhere claims in this thesis. In particular, we shall use the
following Theorem.

Theorem 5.6.2 ([10] Theorem 7.2.1). Let (X, %, u, T) be a dynamical system with X a
compact metric space, (X, %, ) a standard Borel space and T : X — X a continuous
transformation. Then the following are equivalent:

1. There exists an T-invariant probability measure u on (X,98) such that for all
feC(X) andall x € X we have

n—-1 .
lim ~ Y f(T'x) :f fau. (220)
n—oon i=0 X

2. T is uniquely ergodic.

A proof that irrational rotations are uniquely ergodic can be found in Example
(13, Example 7.2.1].

Before going into random towers we now prove an observation on circle dynamics
that will be vital to proving integrability of return times in Lemma[5.6.7]

Lemma 5.6.3. Let (QQ, %q,P,04) be the irrational rotation. Let P,Q € %q be such that
P 1Q =Q and suppose P° # @. Then there exists an M € R~ such that for every x € Q
we haveinf{ne 7, : agx e P}< M.
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Proof. First note, gy : Q — Q is a continuous mapping, so that {05”P° ‘neZstisa
collection of non-empty open sets. As P° is open there exists a y € P°, § € R such
that (y—96,y+96) < P°. Now note that the mapping

d(x,
f:Q—-Q, meax(l— (xy)’o)’

0

is continuous and that we have
f fx)dP(x)=6>0.
Q

By unique ergodicity of 09 we may apply Theorem and derive that for all
x €[0,1) we have

N—oo

1 N-1
lim — Y fo"(x) =4,
Nn:O

so 0"x € (y—0,y+0) for infinitely many n € Z(, and in particular, at least once.

Note this implies that for any x € Q we have an n € Z-; such that "x € (y —
6,y +0). Consequently, {o™"(y—6,y+0): n € Z;} is an open cover for Q and by
compactness of Q, there exists an M € Z-; and a finite sub-cover

€={0""(y-6,y+06):nefl,...,M}}

for Q. For an arbitrary x € O we then have a C € ¢ and a k € {1,..., M} such that
xe€C=0"k(y—-6,y+0) sothatoX(x) = (y -8,y +8) < P°. We then see

supinfin€ Z-,:0"xe P} <M
xeQ)

as desired. O

5.6.2 The Quenched Stalling System

We define the base RDS (see (146)) of the random tower constructed later in this sec-
tion. The ergodic (non-mixing) driver we will equip the base dynamics with, is the
irrational rotation. To do so, similar as in Section we define two mappings

fe:10,1) —10,1) £::10,1) = [0,1)
1 3
x—2x mod]l X X xe(?’é)U( , 1)
2x—1’ xe(i)Z))

where refer to fg asa ‘go’ and f; as a ‘stop’. We now use ([0, 1), #|o,1), A) as the standard
Borel space on [0,1). Now, fix (Q,%q,P,0g) as the irrational rotation on the circle.
Partition Q into two non-empty half-open intervals I, I; € q, define a mapping

a:Q—1{g,s}
w—7y, suchthat wel, (221)
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and construct the tuple
(Qx[0,1), Faxo,1),P x4-1,U), U(w, x) = (0pw, faw) (x). (222)
We shall now show it is a random dynamical system.

Lemma 5.6.4. The system (Q x [0,1),Zax0,1),P x 4-A,U) as in Equation 222) is a
(random) dynamical system.

Proof. We shall use Lemma and to do so, we need to prove measurability of
(w, X) = faw)(x). To do so, note that for an arbitrary C € %[y ;) and w € Q we have

Fily (© = Iix f7HO U I x £ 1(C) € Faxo,

proving measurability of f, . Similarly, in having C € %y 1), with 4- A(C) = 0, we can
see that for w € Q we have

Az (©) = max{A(f (€N, S O}
= 0,by non-singularity of f; and f;.
Applying Lemma3.6.7)yields our result. O

Similar to Lemma|3.6.11|we derive an ergodic equivalence of the system in (222)
with an RDS that nicer to work with. To do so, we recall the following definitions from
Section Define the product measure space ({0, 1}220,3{0,1}220,;1) with weights

(po, p1) = (5, 3). Now define the mappings
0g:{0,1}° —{0,1}=°  0:{0,1}%=0 — {0, 1}
(x,) — (Xe1) (x,) . (Xn+1)n=0, (Xp)n=0 € [10]
R T Gdnsor ez € (0] UL,
and construct the tuple
@x {0,150, Fy 011720, Px4-11,5),  S(@,%) = (090, 0 a(w) (1) (223)

This system we also show is an RDS.

Lemma 5.6.5. The system (Q x {0, 1}Zzo,gm{0 720, P x 4- 1, 8) in Equation (223) is a
(random) dynamical system.

Proof. We shall use Lemma and to do so, need to prove measurability of (w, x) —
0 a(w)(x). To do so, note that for an arbitrary C € & ;,z., and w € Q2 we have

-1

aa(w)

(C)=I;x 0 (C)UIgx 05" (C) € Fpp0117505
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proving measurability of o 4(,. Similarly, in having C € F10,1)720 with 4 - u(C) =0, we
can see that for w € Q2 we have

1044, (©) = max{p(@ (), plo (€}

= 0,by non-singularity of o5 and .

Applying Lemma|3.6.7|yields our result. O

Concluding our first task, we prove the ergodic equivalence between the systems

(222) and (223).

Lemma 5.6.6. The systems
(Q X [Or ]-))gQX[O,l))IP x4 'Ar U)

and
7>
(Q2x{0,1} —O,QQX{M}ZZO,IP x4-u,S)

as defined in (222) and (223) respectively are ergodically isomorphic.

Proof. By LemmalA.2.4we know the systems
([0, 1), Fo,1), A, f) and ({0, 11720, Fg 11720, 4 1, T g)
are ergodically isomorphic. More so, by Corollary[A.2.5the dynamical systems
([0,1), Fpo,1),4- A, f5) and ({0, 13720, F g 1,72, 4 - 14, 0'5)
are ergodically isomorphic. Our claim is then immediate by Lemma|3.6.10 O

For the rest of this Section we shall fix (Q x {0, 1}%2o, gﬂ
Equation (223).

Px4-u,S)asin

x{0,1}4207

We shall now construct a random tower on (Q x {0,1}%=0, %, _ oz P x4-1,5),
and to do so we reuse objects from Section[3.6] We again define
Y= {x €{0,13%20: forall i € Z-( thereis a J € Z51 such that x; # xj}, (224)

and fix A = Y n[10]. For the reader’s convenience we restate the following notation

from Lemma/3.6.5|

F:=1{[1010]}, % :={[10110],(10010]}, and for =3,
P = {[10a10] SA: ac{0,1}2 aja;, £10,i€ {0,...,1—3}}, (225)
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and Py :=1{I:1€ .9, 1€ Z=,}. We then define A\’ := Q x A and let
Prri={Qx1:1€F,l€Z5}. (226)

Innoting A’ = ez, QxI we can apply Lemmal[3.6.5)and see 2, is indeed a partition
of A’ consisting of countably many sets. It is important to note that the sections of
A are constant over Q, thatis A], = A =[10] n'Y for each w € Q.

We now need to prove A’ and &, are a (random) induced domain and a (ran-
dom) principal partition for (Q x {0, I}ZZO,QQX 0.220° Px4-u,S). As astep up to this,
we first obtain a convenient expression for

R': N — 7= U{oo} (227)
(w,x) —infine Z5;: Sk (x) e \'},

in Lemma showing it indeed takes values in Z; and is integrable on A’. Note
the similarity of the claim with Lemma [3.6.13, and recall the definition of a from

Equation (221).
Lemma5.6.7. InlettingR: A — Z5 be the return time from Lemmal3.6.3 and defining
for k € Z, the measurable mapping
#r(w):=#ie{l,... . k-1}:aloh (@) =gt+1, (228)
we have a return time R' : A — Z, which is given by
R'(w,x) =inf{k € Zs5 : R(x) = #1.(w)}. (229)

Moreover, we have R' € L*(\"), making 2n: into a random principal partition with
random induced domain A\ for (Q x {0, I}ZEO,L@QX{O 1220 Px4-u,S).

Proof. First, note that in denoting o : Y — Y for the shift o ((x;)>0) = (X+1)n=0 We
have

ogla=0sla=0ln and osly\a =1dly\a, Ogly\n = Tly\a-

Recall we have A), = A = [10] nY for each w € Q. Then note that for each w € Q we
have S, |p = o|x and for x € Y \ A that

okx), alw=g

Solvia(x) = {

X, a(w) =s.

Now let R’ be as given by [227). First, we note that for any (w, x) € A’ we have as
x € [10] that

R'(w,x)=inf{n€Z-1:S}(x) e AL, }
> inf{n €Z-:0"(x) € [10]}
>2.
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We can then see that for any w € Q and x € A}, we have that for n € Z,5, 2<n <
R'(w, x) we see that

Sy () = S -1 © -0 S () (1) = " ().
We then derive that for any (w, x) € A’ we have as R'(w, x) = 2

R'(w,x)=inf{neZ.y:S}x) e AL}
=inf{ne€Z.,: o™ @ (x) e AV

=inf{neZ-p:0"“ (x) e 10]nY}.

Now to prove R’ is constant over the elements of the partition 25, we note that for
any w € Q and any P, € Ppr we have an [ € Z-, and I; € .#; such that P, = I;. Recall-
ing the property R|;, = [ from Lemma(3.6.5} and that

R(x)=infln€ Zsy:0™(x) € [10] N Y},
with R as in Lemma we note that for any x € I; we have
R'(w,x) =inf{neZsp: 0™ (x) € (10N Y} =inf{n e Zoy : #,(0) = 1}, (230)

proving that R, (-) := R'(w, ) is constant on elements P,, € 2, . More so, this implies
for general x € A, that

R (w,%) =inf{neZsp:0"“ (x) € 10N Y} =inf{n e Zsy : #,(w) = R(x)},

proving Equation (229). To show R), takes values in Z-; note that by Lemma we
have an M € Z-; so that

#Hiel{l,...M}:alopw) =g} =1.
This implies that for any w € Q we have
tn() 2 || (231)
n@)z |
Combining this with Equation then shows that for w € Q and x € I; we have
R'(w,x) =inflk € Z55 : R(x) = #1(w)} < M(I - 1) (232)

proving the return time indeed takes finite values (as for any w € Q and any P,, € &)1,
we have P, = I; for some [ € Zs, and I; € .#). Finally, to show R’ € L'(A’), we note
that for all w € Q we have

4-u(AL) = p(101N X) = 711’ sothat 4-(Pxu)(A)=1.
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Moreover, as seen in the proof of Lemma we have for each [ € Z>, and [; € .9
that ua(I)) =4-27""? and #.9; = I — 1. As we know pp = (4- u) o, we then calculate

fR(w,x)d(4~qu)(w,x):4ff Ry (x) du(x) dP(w)
N QJIN,

=4-) ) f f Ry,(x) dp(x) dP(w) (233)
1=2 e /I

<4-) Zf M(1-1)dp(x) dP(w) (234)
=2 19 QJI

<4.Y | M(I-1)-272(1-1) dPw)
1=27Q

=Y (1-1*M-27" <oo, (235)

=2

where in Equation we used the Monotone Convergence Theorem; in Equation
(234) we used ([232); and in Equation we used the Ratio Test [12, Theorem 2.31].
We conclude R € L'(A’) and that A’ is a random principal partition with random
induced domain A, O

As in Definition we can then construct a random tower system (A, Zx, pa, G)
on A’ and 2, on

(Qx {0, 1720, F, 01,720, P x 4-11,9), S, %) = (090, g () (X))

We shall now prove (A, Za, tia, G) is acip admissible as seen in Definition[5.3.14] That
is, it is measure-regular (see Definition |5.2.1) and satisfies the Markov Property (see
Definition and has bounded distortion (see Definition [5.3.12). As in Remark
We shall fix Q as well (but note that in this particular instance we can likely take
Q=0Q).

Proposition 5.6.8. The system (A, %, ua, G) is acip-admissable. In particular there
exists an acip v < [a.

Proof. We need to verify measure-regularity, the markov property and bounded dis-
tortion for (A, Zx, ua, G). Fixw € Q.

First suppose we have an A € 22/ such that G, (Ay) N (Agw,0 X {0}) # @. Then ac-
cording to Corollarywe have a P € &), k € Z such that A, = P;-x,, x {k}.
If GylAwl N (Agw,o % {0}) # @ we then have by Definition for each x € A, that
Gpla, (x, k) = (S(’;“_L,}w(x),O), where Rykyla,, = k + 1. By definition of 225, we then

know there existsa [ € Z-, and an I; € .¢; with P« , = I}, so that for any x € P, we

‘kw ‘ka)

150



have

SK () =Sk L (04(x)
=o, "ol o)
=0 (x),

so that we have Gyla, (x, k) = (aé(x),O). By Lemma we know a{glll I} — Ais
bi-measurable satisfying ((05) ") < p. Finally, we know

Jog(x) (1/27Y!
1| = —
(1/2-H!

l — 1' =0, (236)
Jok(y)

holds for almost every x, y € I;.

Proceeding, in denoting c, cjo; for the counting measures restricted to {k} and
{0} respectively, we see the mapping i : {k} — {0}, k — 0 is trivially bi-measurable and
pbn-singular with respect to the measure spaces ({k}, {®, {k}, cix;) and ({0}, {®, {0}, c(0).
More so, we see J(ci) (k) = 1. In noting that Gyl 4, = Uéhl x tr, we can apply Lemma
to show Ggyly, is bi-measurable and satisfies (Gw@,)* Ha,, < Ma,, showing
measure-regularity. Moreover, as again by Lemma[4.3.18/ we have

J(Gla, = ](Uélzl)](tk) =1/27hHt1 {4, -almost surely,

so that J(Gyl,) is constant and positive almost surely so that the Markov property
and bounded distortion follow as well.

As (A, Zp, ua, G) is acip admissible, we obtain an acip v < ua with f—MVA < M for
some M € R by Theorem[5.4.7 O

From Proposition [5.6.8/ we can directly apply Corollary[5.5.9|to obtain an acip v/
for (Q x {0, I}ZZO,QQX{O,HZEO ,Px4-u,S). The same measure v’ will then be an acip for
(Qx{0,1}%=0, LOIQX 01720 P x u, S). We shall use the ergodic equivalence of this system
with the system (Q x [0, 1), #qx|0,1),P x i, U) as seen in Equation to show there

exists an acip v for (Q x [0,1), Zqx(o,1), P x u, U).

Corollary 5.6.9. The system (2 x [0,1), Zax0,1),P x u, U) admits an acip v and a shat-
tered measurev. such that for almost every w € Q the shardv,, is a probability measure
and satisfies (Uy) xNw = Now-

Proof. By Lemma we know that

(Q % [0,1), Faxio,1),P x A, U) and (Q x {0,1}7>0, F,

ax,nZ0 P X1 S)
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are ergodically equivalent. By Proposition we can then construct an acip-admissible
tower on
(Qx {0,170, %, o220, P x4-11,9),

so that we may find an acip v/ < P x 4- u. Note that we have v/ < P x g and S,v' =+
as well. By Corollary|[2.1.19|we obtain an acip n < P x A for

(Q X [0) 1))gﬂx[0,l)r|p X /"4 U)

The existence of a shattered measure 7. of n satisfying (U,,) « (N») = Nge then follows
from Corollary [5.5.8] (note this Corollary applies to general random dynamical sys-
tems so in particular to this case). O

A Appendix

A.1 Some Radon-Nikodym Derivative Identities

The following Lemma relates the image of the push-forward mapping with the sup-
port of the Radon-Nikodym derivative.

LemmaA.l.1. Let (X, Z,u) and (Y,9%,v) be o-finite measure spaces with f : X — Y a
measurable mapping with fi,u < v. Now let A€ & with f(A) € 2. We then have

aA(fla)«p
dv

Proof. Let B e %, with B< Y\ f(A) be given arbitrarily. Note this implies BN f(A) = @
and we (generally) have f(A)NB = f[An f~1(B)], so that

() =0 foralmosteveryy¢ f(A). (237)

Anf'B=g o fIANfB)I=0¢ o f(AANB=9.

Consequently, we have

d
L%m dv(y) = (fla)«p(B) = p(fl2) " (B)) = w(An f1(B) =0,
which shows Equation as Be #,B< Y\ f(A), was given arbitrarily. O

LemmaA.1.2. Let (X,%,u) and (Y,98,v) be o -finite measure spacesand f : X — Y a
measurable mapping so that f, it < v. Then for A, B € & with A< B we have

d(fla)xu < d(le)*'u, holds v-a.s..

dv dv
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Proof. Let C € Zy be arbitrary and note

A(fla)x .
f ATV ) 1) = wAn £1(C)
C dv

<uBn fHC)

[ d(fIB)xu
_ fc QL ) aviy)

As C € Zy was given arbitrarily, our claim follows. O
LemmaA.1.3. Let (X, %, ) and (Y,98,v) be o -finite measure spacesand f : X — Y a

measurable mapping so that fix it < v. Then suppose A€ ¥, Be B sothat A< f~1(B),
then we have

(fla) s < vp.

Proof. Note that for general C € 28 with vp(C) =0 that fou(BNC) =0as fiu << v. We
see

(f14)x1(C) = wAN fFHC) < fupu(BNC) = 0.
O

Lemma A.1.4. Let (X,%,u) and (Y,9,V) be finite measure spacesand [ : X — Y a
measurable mapping so that fi it < v. Then suppose A€ F,Be % sothat Ac f~1(B).

We then have
d(f|A)*IJ| _ d(fla)«u
dv B dvg

, vp-almost surely.

Proof. First note that by LemmalA.1.3/and Theorem2.1.11|we have % € L'(vp).
Moreover, note that

(fla)x <K Vp<KV

so that we may write

ad(fla)«p _ d(fla«pdve

,v-almost surely,

dv dvg dv
so that in particular
d d d
(fclli)*“m = (le;*”m. dvj |g, vp-almost surely.
In noting that % |p =1, vp-almost surely, we then see that for arbitrary C € %5
d(fla)«p f d(fla)«p
_— d =| —————(y)d
fc v IB(y)dvg(y) T dv () dvg(y)
d(f|A)*,U
= _— da ,
fc ave () dvp(y)
proving the statement. O
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Lemma A.1.5. Let (X, %,u) and (Y,9,V) be finite measure spacesand f : X — Y a
measurable mapping so that fypu < v. Let A€ & then we have

d(f|A)*I~L _ df*HA

dv dv

Proof. Note that for C € 28 we have

(fla)«p(C) = wAN £F7HC) = fupa(C),

and so
fapa(C) < fip(C)

SO fxpta < u. The claim follows. O

Lemma A.1.6. Let (X, %,u), (Y,%4,v) and (Z,#,1n) be finite measure spaces and let
T:X—Y,andU:Y — Z be measurable mappings such that T,pt < v and Uy,v =1
with U bi-measurable. Then we have

dUoT) dT

an (z) = d:ﬂ (U '2), n-almost surely.

Proof. Let C € A be arbitrary. Note then

f AdUoT)u
C

_ -1
an (2)dn(z) = (T (U "C)

_ d(Typ)
—fU_IC oy DavQy)

B A(Tep) 1
= fU_IC—dV W toU(y) dv(y)

da(T.
:f ( *'u)(U_l(y))dU*V(y) (238)
c dv

AT
- fc U 12 dn(a),

dv
(239)

where in Equation (238) we used Lemma [2.1.10|with the integrability of the Radon-
Nikodym derivative. O

The following lemma is here for easy reference in Proposition|5.5.1

Lemma A.1.7. Suppose (0, %q,P) is a probability space and (X, Fx, 1) is a o-finite
measure space. Construct (Q x X, Fqxx,P x u). Suppose we have a finite positive mea-
surev on Q x X, withv <P x u. Then we have:
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(1) The Radon-Nikodym derivative d

(2) For almost every w € Q and for each A € &x we have

f DV_ 0,3 dp(x) = 0;
AdPxpw’x =5

(3) Forevery f € L'(v) we have f - 72 Qx X).

Proof. Firstly note that for general A € ,@Qx x we have

f DV 03 dP x 1)@, %) = v(A) = 0
Adﬂj’xuw’x w(w,x) =v(A) =0,

showing Claim (1) of the lemma. Furthermore, for general A € ¥x and O € g we
have using Theorem

ff WV oxd (x)dP(w)—f V0,2 d(P x 1)@, )
odiarx ™ 7 = OxAdPXHw’ ) (w,

=v(Ox A)
=0,

so that indeed for almost every w € Q and for each A€ Fx

f DV o3 dp(x) = 0
adp P eHI =0,

proving Claim (2). Lastly, note that for f € L' (v) we have
f |f(, x)| (w x)dP x ) (w,x) = f |f(,%)] dvw,x) < oo,
QxX QxX

so f- deeLl(QxX) m

A.2 Ergodic Equivalence of Bernoulli shift with Doubling map

The rest of this Section is dedicated to proving the equivalence of the doubling maps
and the binary shift. A technical complication in the lemma below is that binary
expansions need not be unique. Luckily, there are at most countably many real values
having a non-unique expansion.

LemmaA.2.1. Let

7 {0,130\ {(1,) nxo} — [0, 1) (240)

(e 0]
-n-1
(Xn)n=0— Z Xn2
n=0
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and
$:10,1) — {0,1}%=° (241)
0, if2"x - [2"x] < 3
x—|n— : !
1, if2"x—[2"x] = 3
then we have 7t o p(x) = x for each x € [0, 1).

Proof. Well-definedness of 7 Note that for every x € {0,1}%>° we have x,, = 0 for all
neZspand w(x) <Y%, 27""1 =1, s0 7(x) is absolutely convergent. Note that
7(x) =1 only holds for x € {(1,) ,>0}, so & indeed takes values in [0, 1).

¢ is aright-inverse for 7: We claim that
o0
a(p(x)) = Z 2_”_1(¢>(x))n = x foreach x € [0, 1).

n=0
For a proof, suppose N = 0 and write (x,) ;>0 := ¢(x). We will show
N
x= Y 27" x, 00,27V (242)
n=0

by induction. First for the case N =0, note that
if

€
if

= X
v A
D= D=

0 x—0- 1
x—Y 27"y, = o,—) =[0,27 V0.
n;o ! {X—l' 2

Then suppose for some fixed N = 0 Equation (242) to holds. Then we have

D= N|—=

N+1
x= Y 27"y, e0,27 N 27N = 0,277

n=0

so that by induction Equation (242) holds for all N = 0. Consequently, we note

N
x = ((Xn)nz0) = lim x= Y 27" 'x,) =0,
N—oo n=0
so that indeed
T(p(x)) = (X)) n=0) = X (243)

O

We shall now show we obtain a bijection when we restrict the domain of 7 to a
suitable subset.
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LemmaA.2.2. Let

X :={(x,) n=0 € {0, 1340 forallie Zsg thereisa j = i such that x; = 0}, (244)

T X—1[0,1) (245)
(Xn)n=0— Z xnz_n_l
n=0
and
$:00,1)— X (246)

0, if2"x—[2"x] < %
x—|n— ) T
1, if2"x—[2"x] = 5

then ¢ and nt are well-defined on their respective domains and we have
¢om = Idy, mod¢=Idyp, ). (247)

Proof. ¢ takes values in X: Suppose we have an x € [0, 1), such that (x,) ;>0 := ¢d(x) ¢
X. Then there exists a lowest N € Z( such that (n— x,)|,=n = 1.

If N =0 then Z‘,’Z":OZ_”_Ixn = 1, which contradicts Lemma SO suppose
N = 1. We then necessarily have xy_; = 0 and define

Wnn=0:=41, n=N-1.
0, n>N-1

Note (yn)n=0 € X and y := Zﬁgl 2_i_1y,- € [0,1). We then see

A((Xn)nz0) = A((Yn)nz0) =271 = )" 27172

i=n

o0
=gl Y gnmin2
i=0
o0

— 2—71—1(1 _ Z 2—1—l)

i=0
=0,

so by Lemma [A.2.1|we see x = 7(¢p(x)) = (¢p())), so that x = y. Finally, note
then that
ON=1y L oN=1y) = oN=1y_ pN=1y —

contradicting xy-; =0, so x € X.
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¢ is aleft-inverse for 7: Suppose x € X. We shall show
Xm=(pom)(x)y,, forallmeZsy.

To do so let m € Z5, and to evaluate (¢ o ) (x) ,, we note

oo oo oo
2" Y xp 2712 Y xp27 =2 Y x27
n=0 n=0 n=m
o0
= -7Cn+n12_n_1
n=0

> > ifand only if x,, = 1
where the last inequality holds as x € X. Thus,

o0
PomX)m=1e Y Xpim2 " '2-oxy=1

n=0

1
2
Similarly, we can derive

o0
@om(Im=0 Y Xnim2 " <5 & xm =0,
n=0

as x € X. We conclude Equation (248) for all m € Z5, so that ¢pom =1d|y.

(248)

In addition to the above, Lemma yields 7 o ¢p = Id|,;) from which Identity

follows.

O

The following corollary is useful when applying measure theory to the set X of
Equation (244) as in Lemma[4.3.17] For the notation on cylinders, see Section 3.6]

Corollary A.2.3. Let, n € Z>,, and y; € {0,1} for i € {0,...,n—1}. For the cylinder

[Yo:**Yn-1] € X we have that

n-1 n-1
Z z—k—l,}/k, Z z—k—l,)/k +2_n) - n[YO .o .’)/n_l].
k=0 k=0

Proof. First we prove

n—-1 n-1
Yoy, ¥ Z_k_l)/k+2_") > alyo-+Yn-1l-
k=0 k:o

To do so, let (x) k=0 € [Yo---Yn-1] and note

o) r n—1 ' [e) ©
T(()k=0) = 3 27 =Y 27y Y 275 g
k=0 k=0 k=n
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Now as ZCI’CO:nZ_k_ka < 27" we have

n—-1 n—1
((XK)k=0) € Z Z_k_IYk; Z Z_k_lyk +2_n).

k=0 k=0
To show
n-1 k-1 n-1 k-1 _
Y 27y, Y 27 w27 calyo e ynatl, (251)
k=0 k=0

let x € [Zz;é 27k 1y, Zz;é 271y, +27"). Note that for l € {0,...,n— 1} we have
n—-1
2lx—2%x] = > 27k 1y 2],
k=1

so that 1 1
2'x-12'x) = S ify =1, and2'x - 2'x) < S if 71 =0,

meaning that ¢(x); =y; for [ € {0,...,n—1}. As ¢ = ™! this implies Equation 251).
Equations (250) and (251) imply Equation (249), proving the corollary. O

Lemma A.2.4. Let ([0,1),980,1), A, D) be the standard Borel measure space equipped
with the doubling map and ({0,1}%2°, % 1,,P,0) be the Bernoulli shift with for all i €
L=

P({xe{0,1}%20: x; = 1) = P({x € {0,1}%>°: x; = 0) = %

Then the mappingn from LemmalA.2.2is an ergodic isomorphism between ([0, 1), 2[0,1), A, D)
and ({0, 1}%=0, Fyo,11, P, 0).

Proof. The proof comes down to verifying the properties of Definition|2.1.15] We fix
X as in Equation [244]

Measurability of X Taking for all n € Z, the cylinders
Cno = {(Xn)nz0 € {0,170 x, = 0

we can write o ! oo
X =limsupCpp:= () ( U Cm,O) € Fp,1}-

n—oo n=1 \m=n
The set X is of full measure First note that for each ! € Z-, we have
n+l

(0 0]
P( Cmo) =1 — 27150 that P( U Cmo) = 1.
m=n

m=n

The set X is, as the countable intersection of sets of full measure, has full mea-
sure, thatis, P(X) = 1.
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7 and ¢ are measurable We shall make use of Lemma First write . = 171,
where € denote the cylinders in X. For clarity sake, note that by Corollary[A.2.3]
we have

|

Using this, we note for any open interval [a, b) < [0, 1) we have by LemmalA.2.2]

n-1 n—-1
Yool 3 2"Hy,c+2—”) c[0,1):yr€{0,1},k€{0,...,n—1},n= 1}.
k=0 k=0

0, 22""1«/)(19)),-),

i=0

la,b) =
n=0

Y 27 N p(a);, 1) n U
i=0 n=0

so that o(n71€) = 2[0,1). Now as o(¥) = Fx, we see by Lemma that
m: X — [0,1) is measurable. Conversely ¢~ !(.#) = € < Fx and 0 (.F) = %[0,1)
so ¢:[0,1) — X is also measurable by Lemma|2.1.4

The property 70 S = Domholds Let x € X. Note by Corollary[A.2.3|we have 7(x) €
[0, %) if and only if xo = 0 and 7(x) = [%, 1) if and only if xo = 1, so that xy =
12:3% ,27" 1 x,]. Note then

70 S8(x) =n((Xp+1)n=0)

-n-1
2 Xn+1
2—71

Xn— Xo

>
n=0
2
n=0
Y DR " xy) - {Z DZ_”_lan
n=0

n=0

18

@ " x,) - {D(Z 2‘”‘1xn)J

n=0

Il
=]

o

D
Domn(x).

The property P = ¢+ A holds We shall use Lemma[2.1.5] We denote the set of cylin-
ders in X with the empty set as given by

€ ={lyo-yn-11SX:n€Zs,yi €{0,1},i€{0,...,n—1}} U {g}.

Then € contains the empty set, generates &, and is closed under finite inter-
section. Moreover, by Lemmawe seePlyo - yn-1l= (%) "and P Alyo - Yn-1] =
(%)” so that by Lemma we have ¢, A =P.

We have shown the desired equivalence. O
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CorollaryA.2.5. Let([0,1),28[0,1), A, D) be the standard Borel measure space equipped
with the mapping

D;:[0,1) —[0,1)

oD, xe (3.3)
X, else,

where D is the doubling map. Also let ({0,1}%20, %y 1;,P,05) be with P defined by
1
P(ixe {0,134 : x; =1) =P({x € {0,1}%2° : x; = 0) = >

forallieZsyandletos:{0,1}%20 — {0,1}>° be as given by

(o)) = {a((xn)nzo), xo=1,%=0 (252)

(X1) n=0 else.

Then the mappingrt from LemmalA.2.2)is an ergodic isomorphism between ([0,1), 4(0,1), A, D)
and ({0, 13720, Fyo,1;, P, 7).

Proof. By Lemmal|A.2.4] the only thing we need to prove is for every (x,)=o € X with
X as in Equation (244) we have moo; = Dsom. To do so, let x € X and note that by
Corollarywe have 7(x) € [3,3) if and only if xo = 1 and x; = 0. Then note

Don(x), m(x)€(3,3)

Dgom(x) :{

m(x), else

{Don(x), Xo=1,x=0

m(x), else

_ (moo)(x), x9=1,x1=0
ﬂ(X), else

= (os0m)(x)

proving moo s = Dsomr on X. Again, by the claims proven in Lemmas|A.2.4/and|A.2.2|we
then have the ergodic equivalence of ([0,1),28[0,1), A, Ds) and ({0, 1}%20, %y 1;,P, o).
O

A.3 Functional Analysis

In this Appendix we have compiled some functional analytic results needed in Sec-

tion[d.1l

The following Theorem characterises duals of L” spaces.
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Theorem A.3.1 ([8] Appendix B ). Let (X,%,u) be a measure space, let1 < p,q < oo
andl/p+1/q=1.1fge L1(X), define Fg : LP(X) — [ by

Fg(f) =ffgdu.

If1 < p < oo the map g — Fg defines an isometric isomorphism of LY(X) onto L” (X)'.
Ifp=1and (X,%,p) is o-finite, g — Fq is an isometric isomorphism of L (X) onto
L'(w)'.

The following Theorem is known as the Banach-Alaoglu Theorem. It is perhaps
the main result on compactness within functional analysis.

Theorem A.3.2. |8, Theorem V.3.1] Let (X,||-|) be a normed vector space. Then the
closed balls in the dual space X' are compact in the weak* topology.

The following Theorem is known as the Eberlein-Smulian Theorem. It shows
that weak compactness and weak sequential compactness are equivalent in Banach
spaces. Note we do not require a separability condition on our space.

Theorem A.3.3. |8, Theorem V.13.1] If X is a Banach space and A < X, then the fol-
lowing statements are equivalent.

1. Each sequence of elements of A has a subsequence that is weakly convergent.

2. The weak closure of A is weakly compact.
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